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1. Introduction

Let Ω be a bounded domain in Cd and ω : Ω → (0, ∞) be a continuous function. 
The weighted Bergman space A2

ω(Ω) is the closed subspace consisting of holomorphic 
functions in L2

ω(Ω). For u ∈ L∞(Ω), Toeplitz operator Tu : A2
ω(Ω) → A2

ω(Ω) is defined 
by

(Tuf) = Pω(uf),

where Pω : L2
ω(Ω) → A2

ω(Ω) is the orthogonal projection. Suppose that G is a finite group 
acting on Ω. Then Ω is said to be a G-invariant domain or a G-space. In this article, we 
study algebraic properties of Toeplitz operators on the weighted Bergman space of Ω/G

for a G-invariant domain Ω. The study of Toeplitz operators on function spaces has a 
long history. Starting from the seminal work of Brown and Halmos [14], it has attracted a 
lot of attention. Brown–Halmos proved various algebraic properties (such as generalized 
zero-product theorem, characterization of commuting pairs) of Toeplitz operators on the 
Hardy space H2(D) on the unit disc D. Later, Halmos posed the zero-product problem 
for a finite product of Toeplitz operators and it was solved on H2(D) in full generality 
in [3]. Interestingly, even the zero-product problem, in its full generality, is still open 
for the Bergman space A2(D). Important result due to Ahern and Cucković [2] proved 
that the answer is affirmative for A2(D) under additional conditions on the functions. 
An ingenious proof by Ahern improved this result, by studying the range of the Berezin 
transform on the Bergman space on D [1], see also [30]. There have been several attempts 
to extend the above results to the higher dimensional situations, in particular, to the 
Hardy space and Bergman space over the unit ball and the polydisc in Cd, see [15], [17], 
[18], [26], [37] and the references therein. As for the commutativity, Axler and Cucković 
gave necessary and sufficient conditions on the bounded harmonic symbols u and v such 
that Toeplitz operators Tu and Tv on A2(D) commute [5]. Since then various attempts 
have been made to generalize this problem in polydisc and unit ball in Cd [37,26,16]. The 
study of algebraic properties of Toeplitz operators on the Hardy spaces on the quotient 
domains emerged very recently [11,19]. However, the analogous questions in the Bergman 
spaces of quotient domains turn out to be much more difficult and of worth to study.

To achieve our goal, we first observe that it is not obvious that Ω/G is a domain for 
a G-invariant domain Ω. However, it is known that Ω/G can be given the structure of 
a complex analytic space which is biholomorphically equivalent to some domain in Cd

whenever G is a finite pseudoreflection group [8] [12, Subsection 3.1.1] [27, Proposition 
1]. Henceforth, we confine our attention to Ω/G where G is a finite pseudoreflection 
group. Recall that a pseudoreflection on Cd is a linear homomorphism σ : Cd → Cd such 
that σ has finite order in GL(d, C) and the rank of (Id − σ) is 1. A group generated by 
pseudoreflections is called a pseudoreflection group. For example, any finite cyclic group, 
the permutation group Sd on d symbols, the dihedral groups are finite pseudoreflection 
groups [27]. A pseudoreflection group G acts on Cd by (right action) σ · z = σ−1z for 
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σ ∈ G and z ∈ Cd. The right action on Cd gives rise to the left action of G on the set 
of all complex-valued functions on Cd as follows:

σ(f)(z) = f(σ−1 · z), for σ ∈ G and z ∈ Cd. (1.1)

If Ω is a G-space under the above action then the quotient Ω/G is biholomorphically 
equivalent to the domain θ(Ω), where θ : Cd → Cd is a basic polynomial map associated 
to the finite pseudoreflection group G [12,34]. Notice that if Ω̃ is a domain such that there 
exists a proper holomorphic map f : Ω → Ω̃ with G as the group of deck transformations, 
then Ω̃ is biholomorphic to Ω/G and θ is a representative of f , that is, f = θ ◦ h for 
some biholomorphism h : θ(Ω) → Ω̃ [20, Proposition 2.2]. Therefore, without loss of 
generality, we work with the domain θ(Ω) instead of Ω/G. It is important to note that 
this phenomena is not in general true for any group G. Below are a few examples of 
well-studied quotient domains.

• The symmetrized polydisc is a quotient domain biholomorphic to Dd/Sd where Sd

denotes the permutation group on d symbols [28].
• The tetrablock is biholomorphic to the quotient domain RII/S2 where RII is the 

classical Cartan domain of second type [34].
• Rudin’s domains are realized as Bd/G (Bd is the unit ball of Cd with respect to 

�2-norm) for a finite pseudoreflection group G [31].
• A monomial polyhedron is a quotient domain Ω/G where Ω ⊆ Dd and G is a finite 

abelian group [10].

The study of Toeplitz operators on the Bergman space largely depends on the geom-
etry and function theory of the domain. In most of the cases, the quotient domains Ω/G

behave differently from the domain Ω and the geometry of such domains can be com-
plicated. For example, though both of the polydisc Dd and the classical Cartan domain 
of second type RII are homogeneous, the quotient domains Dd/Sd and RII/S2 are not 
homogeneous [23, p. 265] [35, p. 764, Corollary 3.2]. On the other hand, characterization 
of commuting Toeplitz operators on A2(Ω) (for Ω = D, Dd and Bd) depends on the ho-
mogeneity of the domains to a great extent [37,16,6,36]. We emphasize that our method 
relies only on invariant theory and representation theory of the group G, which provides 
us a greater freedom to work with domains Ω/G without making any appeal to their 
geometry. We now briefly describe the main results of this paper.

1.1. Generalized zero-product problem

Let ω : Ω → (0, ∞) be a G-invariant continuous function. For each one-dimensional 
representation � of G, we define the relative invariant subspace of the weighted Bergman 
space A2

ω(Ω) by

RG
� (A2

ω(Ω)) = {f ∈ A2
ω(Ω) : σ(f) = χ�(σ)f for all σ ∈ G},
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where χ� denotes the character of �. A characterization of the relative invariant subspace 
is that every f ∈ RG

� (A2
ω(Ω)) is divisible by some polynomial �� and the quotient is in 

the ring of G-invariant holomorphic functions on Ω [20, p. 8, Lemma 2.8]. An explicit 
expression for �� has been obtained from the representation � [32, p. 139, Theorem 3.1]
(cf. Lemma 2.4). For each one-dimensional representation � of G, we set

ω�(θ(z)) = |��(z)|2
|Jθ(z)|2ω(z), (1.2)

where Jθ is the determinant of the complex jacobian of the basic polynomial map θ
associated to the group G. Then RG

� (A2
ω(Ω)) is isometrically isomorphic to the weighted 

Bergman space A2
ω�

(θ(Ω)) with weight function ω� [20, p. 2, Theorem 1.1].
We also obtain that for a G-invariant function ũ in L∞(Ω), there exists u ∈ L∞(θ(Ω))

such that ũ = u ◦ θ (cf. Remark 2.2).

Theorem 1.1. Suppose that G is a finite pseudoreflection group, the bounded domain 
Ω ⊆ Cd is a G-space and θ : Ω → θ(Ω) is a basic polynomial map associated to the 
group G. Let ũ, ̃v and q̃ be G-invariant functions in L∞(Ω) such that ũ = u ◦θ, ṽ = v ◦θ
and q̃ = q ◦ θ.

1. Suppose that for a one-dimensional representation μ of G, TuTv = Tq on A2
ωμ

(θ(Ω)), 
then
(i) TuTv = Tq on A2

ω�
(θ(Ω)) for every one-dimensional representation � of G, and

(ii) TũTṽ = Tq̃ on A2
ω(Ω),

where the weight function ω : Ω → (0, ∞) is G-invariant and continuous and 
ω� : θ(Ω) → (0, ∞) is as defined in Equation (1.2) for every one-dimensional repre-
sentation �.

2. Conversely, if TũTṽ = Tq̃ on A2
ω(Ω), then TuTv = Tq on A2

ω�
(θ(Ω)) for every one-

dimensional representation �.

We provide a number of consequences of Theorem 1.1 in Sections 5 and 6. We briefly 
describe some of those below.

1. Zero-product theorem. Let h∞
G (θ(Ω)) denote the set of all bounded G-pluriharmonic 

functions on θ(Ω) (cf. Definition (5.3)) and ∂SΩ denote the Shilov boundary of Ω. 
For the weight function ω� as in Equation (1.2) with ω ≡ 1, we have the following 
as an application of Theorem 1.1:

Theorem 1.2. Let Ω = Dd or Bd and G be a finite pseudoreflection group with a 
basic polynomial map θ. Suppose that u, v ∈ h∞

G (θ(Ω)) are continuous on θ(Ω) ∪W

for some relatively open subset W of ∂Sθ(Ω). If TuTv = 0 on A2
ω�

(θ(Ω)) for a one-
dimensional representation � of G, then either u = 0 or v = 0.
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Theorem 1.2 provides explicit sufficient conditions for zero-product problem of 
Toeplitz operators on the weighted Bergman spaces of quotient domains such as 
the symmetrized polydisc, Rudin’s domain, monomial polyhedron, see section 5. In 
particular, the permutation group Sd acts on the polydisc Dd and the symmetriza-
tion map s (cf. Equation (5.1)) is a basic polynomial map associated to Sd. The 
domain Gd := s(Dd) is said to be the symmetrized polydisc. For the sign representa-
tion of Sd, A2

ωsign
(Gd) reduces to the Bergman space A2(Gd). Then a straightforward 

application of Theorem 1.2 yields the following:

Corollary 1.3. Suppose that u, v ∈ h∞
Sd

(Gd) are continuous on Gd ∪ W for some 
relatively open subset W of s(Td). If TuTv = 0 on A2(Gd) then either u = 0 or 
v = 0.

2. Generalized zero-product theorem on the weighted Bergman space on Gd. For α > −1, 
the continuous function ωα : D → (0, ∞) is defined by ωα(z) = (α + 1)(1 − |z|2)α. 
A similar result as Ahern and Cucković’s on generalized zero-product problem of 
Toeplitz operators on A2(D) [2] is established for Toeplitz operators on A2

ωα
(D) in 

[4], under additional conditions on the symbols (cf. Proposition 6.1). We extend 
that result for Toeplitz operators on A2

ωα
(Dd), where ωα : Dd → (0, ∞) is defined 

by ωα(z) =
∏d

i=1(αi + 1)(1 − |zi|2)αi for α = (α1, . . . , αd), αi ∈ N ∪ {0}. Let 
Δ̃i = (1 − |zi|2)2 ∂2

∂zi∂zi
.

Theorem 1.4. Let f, g ∈ L∞(Dd) be pluriharmonic symbols and h ∈ L∞(Dd) such 
that Δ̃ni

i h ∈ L1(Dd, ωαdV ) for i = 1, . . . , d and ni = 0, 1, . . . , αi. If TfTg = Th on 
A2

ωα
(Dd), then h = fg and either ∂jf = 0 or ∂jg = 0 for each j = 1, . . . , d.

For α = (α, . . . , α), α ∈ N ∪{0}, the weight function ωα is Sd-invariant. Then there 
exists ω̃α ∈ L∞(Gd) such that ωα = ω̃α ◦ s, where s is the symmetrization map as 
defined in Equation (5.1). Combining Theorem 1.4 and Theorem 1.1, we have the 
following result.

Theorem 1.5. Let u, v ∈ L∞(Gd) be Sd-pluriharmonic function and q ∈ L∞(Gd)
such that Δ̃t

i(q ◦s) ∈ L1(Dd, ωαdV ) for i = 1, . . . , d and t = 0, 1, . . . , α. If TuTv = Tq

on Aω̃α
(Gd), then q = uv and either ∂j ũ = 0 or ∂j ṽ = 0 for each j = 1, . . . , d, where 

ũ = u ◦ s, ̃v = v ◦ s.

1.2. Characterization of commuting pairs of Toeplitz operators

The following theorem states that a pair of commuting Toeplitz operators on the 
weighted Bergman space on a quotient domain Ω/G can be characterized by a pair of 
commuting Toeplitz operators on A2(Ω) whenever G is a finite pseudoreflection group.
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Theorem 1.6. Suppose that G is a finite pseudoreflection group, the bounded domain 
Ω ⊆ Cd is a G-space and θ : Ω → θ(Ω) is a basic polynomial map associated to the 
group G. Let ũ and ṽ be G-invariant functions in L∞(Ω) such that ũ = u ◦ θ and 
ṽ = v ◦ θ.

1. If for a one-dimensional representation μ of G, TuTv = TvTu on A2
ωμ

(θ(Ω)), then
(i) TuTv = TvTu on A2

ω�
(θ(Ω)) for every one-dimensional representation � and

(ii) TũTṽ = TṽTũ on A2
ω(Ω),

where the weight function ω : Ω → (0, ∞) is G-invariant and continuous and 
ω� : θ(Ω) → (0, ∞) is as defined in Equation (1.2) for every one-dimensional repre-
sentation �.

2. Conversely, if TũTṽ = TṽTũ on A2
ω(Ω), then TuTv = TvTu on A2

ω�
(θ(Ω)) for every 

one-dimensional representation �.

Using the above results, we provide characterizations of a pair of commuting Toeplitz 
operators on the quotient domains such as symmetrized polydisc and Rudin’s domains 
in Section 5.

2. Preliminaries

We begin by recalling a number of useful definitions and standard results about pseu-
doreflection groups.

2.1. Chevalley-Shephard-Todd theorem

Let G be a finite pseudoreflection group acting on the set of complex-valued functions 
on Cd by the action defined in Equation (1.1). A function f is said to be G-invariant if 
σ(f) = f for all σ ∈ G. We denote the ring of all complex polynomials in d-variables by 
C[z1, . . . , zd]. The set of all G-invariant polynomials, denoted by C[z1, . . . , zd]G, forms 
a subring and coincides with the relative invariant subspace RG

tr(C[z1, . . . , zd]) associ-
ated to trivial representation of G. Chevalley, Shephard and Todd characterized finite 
pseudoreflection groups in the following theorem.

Theorem (Chevalley-Shephard-Todd theorem). [13, p. 112, Theorem 3] The invariant 
ring C[z1, . . . , zd]G is equal to C[θ1, . . . , θd], where θi’s are algebraically independent 
homogeneous polynomials if and only if G is a finite pseudoreflection group.

We abbreviate it as CST theorem for further references. The collection of homogeneous 
polynomials {θi}di=1 is called a homogeneous system of parameters (hsop) or a set of basic 
polynomials associated to the pseudoreflection group G. The map θ : Cd → Cd, defined 
by

θ(z) =
(
θ1(z), . . . , θd(z)

)
, z ∈ Cd (2.1)
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is called a basic polynomial map associated to the group G.

Proposition 2.1. Let G be a finite pseudoreflection group and Ω be a G-space. For a basic 
polynomial map θ : Cd → Cd associated to the group G,

(i) θ(Ω) is a domain and
(ii) θ : Ω → θ(Ω) is a proper map.
(iii) The quotient Ω/G is biholomorphically equivalent to the domain θ(Ω)

Proof of (i) and (ii) can be found in [34, Proposition 1, p.556]. The remaining part of 
the Proposition follows from [8, Proposition 1], see also [12, Subsection 3.1.1], [27].

Remark 2.2. We note a few relevant properties of a basic polynomial map associated to 
G.

1. Although a set of basic polynomials associated to G is not unique but the degrees of 
θi’s are unique for G up to order.

2. Let θ′ : Cd → Cd be another basic polynomial map of G. Then θ′(Ω) is biholo-
morphically equivalent to θ(Ω) [20, p. 5, Proposition 2.2]. Therefore, the notion of a 
basic polynomial map can be used unambiguously in the sequel.

3. Clearly, any function on θ(Ω) can be associated to a G-invariant function on Ω. 
Conversely, any G-invariant function u on Ω can be written as u = û ◦ θ for a 
function û on θ(Ω). Let q : Ω → Ω/G be the quotient map. Since the function u is 
G-invariant, so u = u1 ◦ q for some function u1 defined on Ω/G. It is known that 
θ = h ◦q for a biholomorphic map h : Ω/G → θ(Ω) [12, p. 8, Proposition 3.4]. Then u
can be written as u = û ◦h ◦ q = û ◦θ. Clearly, if u is in L∞(Ω), then û ∈ L∞(θ(Ω)).

2.2. One-dimensional representations of pseudoreflection groups

Since the one-dimensional representations of a finite pseudoreflection group G play 
an important role in our discussion, we elaborate on some relevant results for the same. 
We denote the set of equivalence classes of one-dimensional representations of G by Ĝ1.

Definition 2.3. A hyperplane H in Cd is called reflecting if there exists a pseudoreflection 
in G acting trivially on H.

For a pseudoreflection σ ∈ G, define Hσ := ker(Id − σ). By definition, the subspace 
Hσ has dimension d − 1. Clearly, σ fixes the hyperplane Hσ pointwise. Hence each Hσ

is a reflecting hyperplane. By definition, Hσ is the zero set of a non-zero homogeneous 
linear polynomial Lσ on Cd, determined up to a non-zero constant multiple, that is, 
Hσ = {z ∈ Cd : Lσ(z) = 0}. Moreover, the elements of G acting trivially on a reflecting 
hyperplane forms a cyclic subgroup of G.
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Let H1, . . . , Ht denote the distinct reflecting hyperplanes associated to the group G
and the corresponding cyclic subgroups are G1, . . . , Gt, respectively. Suppose Gi = 〈ai〉
and the order of each ai is mi for i = 1, . . . , t. For every one-dimensional representation 
�, there exists a unique t-tuple of non-negative integers (c1, . . . , ct), where ci’s are the 
least non-negative integers that satisfy the following:

�(ai) =
(
det(ai)

)ci
, i = 1, . . . , t. (2.2)

The t-tuple (c1, . . . , ct) solely depends on the representation �. The character of the one-
dimensional representation �, χ� : G → C∗ coincides with the representation �. The set 
of polynomials relative to the representation � ∈ Ĝ1 is given by

RG
� (C[z1, . . . , zd]) = {f ∈ C[z1, . . . , zd] : σ(f) = χ�(σ)f, for all σ ∈ G}. (2.3)

The elements of the subspace RG
� (C[z1, . . . , zd]) are said to be �-invariant polynomials. 

Stanley proves a fundamental property of the elements of RG
� (C[z1, . . . , zd]) in [32, p. 

139, Theorem 3.1].

Lemma 2.4. [32, p. 139, Theorem 3.1] Suppose that the linear polynomial �i is a defining 
function of Hi for i = 1, . . . , t. The homogeneous polynomial �� =

∏t
i=1 �

ci
i forms a 

basis of the module RG
� (C[z1, . . . , zd]) over the ring C[z1, . . . , zd]G, where ci’s are unique 

non-negative integers as described in Equation (2.2).

We call �� by generating polynomial of RG
� (C[z1, . . . , zd]) over C[z1, . . . , zd]G. It follows 

that σ(��) = χ�(σ)��. The sign representation of a finite pseudoreflection group G, 
sgn : G → C∗, defined by

sgn(σ) = (det(σ))−1, (2.4)

is given by sgn(ai) =
(
det(ai)

)mi−1 = (det(ai))−1, i = 1, . . . , t, [32, p. 139, Remark (1)]
and it has the following property.

Corollary 2.5. [33, p. 616, Lemma] Let H1, . . . , Ht denote the distinct reflecting hyper-
planes associated to the group G and let m1, . . . , mt be the orders of the corresponding 
cyclic subgroups G1, . . . , Gt, respectively. Then for a non-zero constant c,

Jθ(z) = c

t∏
i=1

�mi−1
i (z) = �sgn(z),

where Jθ is the determinant of the complex jacobian matrix of the basic polynomial 
map θ. Consequently, Jθ is a basis of the module RG

sgn(C[z1, . . . , zd]) over the ring 
C[z1, . . . , zd]G.
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3. Decomposition of weighted L2-spaces

In this section, we define the relative invariant subspaces of L2
ω(Ω) and A2

ω(Ω) associ-
ated to � ∈ Ĝ1. Then we show that those subspaces can be naturally identified to some 
weighted L2-spaces and weighted Bergman spaces on θ(Ω), respectively. We also include 
some necessary details of the relative invariant subspaces of L2

ω(Ω) and A2
ω(Ω).

3.1. Isotypic decomposition and projection operators

Given a continuous G-invariant weight function ω : Ω → (0, ∞), L2
ω(Ω) denotes the 

Hilbert space of Lebesgue measurable functions (equivalence classes of functions) on Ω
which are square integrable with respect to the measure ω(z)dV (z), where dV is the 
normalized Lebesgue measure on Ω. The weighted Bergman space A2

ω(Ω) is the closed 
subspace consisting of holomorphic functions in L2

ω(Ω). For ω ≡ 1, A2
ω(Ω) reduces to 

the Bergman space A2(Ω). We consider the natural action (sometimes called regular 
representation) of G on L2

ω(Ω), given by σ(f)(z) = f(σ−1 · z). This action is a unitary 
representation of G (as the weight ω is G-invariant) and consequently the space L2

ω(Ω)
decomposes into isotypic components.

Now we define the projection operator onto the isotypic component associated to an 
irreducible representation � ∈ Ĝ in the decomposition of the regular representation on 
L2
ω(Ω) [25, p. 24, Theorem 4.1]. For � ∈ Ĝ, the linear operator P� : L2

ω(Ω) → L2
ω(Ω) is 

defined by

P�φ = deg(�)
|G|

∑
σ∈G

χ�(σ−1) φ ◦ σ−1, φ ∈ L2
ω(Ω),

where χ� denotes the character of � and |G| denotes the order of the group G.

Lemma 3.1. For each � ∈ Ĝ, the operator P� : L2
ω(Ω) → L2

ω(Ω) is an orthogonal projec-
tion.

Proof. An application of Schur’s Lemma implies that P 2
� = P� [25, p. 24, Theorem 4.1]. 

We now show that P� is self-adjoint. Using change of variables formula, we get that for 
all φ, ψ ∈ L2

ω(Ω) and σ ∈ G,

〈σ · φ, σ · ψ〉 = 〈φ, ψ〉, (3.1)

where 〈·, ·〉 denotes the inner product in L2
ω(Ω). For φ, ψ ∈ L2

ω(Ω), we have

〈P∗
�φ, ψ〉 = 〈φ,P�ψ〉 = 〈φ, deg(�)

|G|
∑
σ∈G

χ�(σ−1) ψ ◦ σ−1〉

= deg(�)
|G|

∑
χ�(σ)〈φ, ψ ◦ σ−1〉
σ∈G
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= deg(�)
|G|

∑
σ∈G

χ�(σ)〈φ ◦ σ, ψ〉

= 〈P�φ, ψ〉,

where the penultimate equality follows from Equation (3.1). �
Therefore, L2

ω(Ω) can be decomposed into an orthogonal direct sum as follows:

L2
ω(Ω) = ⊕�∈ĜP�(L2

ω(Ω)). (3.2)

Remark 3.2. The space A2
ω(Ω) is clearly G-invariant and hence admits a decomposition 

as above. The linear map P� : A2
ω(Ω) → A2

ω(Ω), defined by,

P�φ = deg(�)
|G|

∑
σ∈G

χ�(σ−1) φ ◦ σ−1, φ ∈ A2
ω(Ω)

is the orthogonal projection onto the isotypic component associated to the irreducible 
representation � in the decomposition of the regular representation on A2

ω(Ω) [25, p. 24, 
Theorem 4.1] [12, Corollary 4.2] and

A2
ω(Ω) = ⊕�∈ĜP�(A2

ω(Ω)). (3.3)

For every one-dimensional representation �, we provide a characterization of the sub-
space P�(L2

ω(Ω)) in next lemma. Generalizing the notion of a relative invariant subspace, 
defined in Equation (2.3), we define the relative invariant subspace of L2

ω(Ω) associated 
to a one-dimensional representation � of G, by

RG
� (L2

ω(Ω)) = {f ∈ L2
ω(Ω) : σ(f) = χ�(σ)f for all σ ∈ G}.

Lemma 3.3. Let G be a finite pseudoreflecion group and Ω be a G-invariant domain in 
Cd. Then for every � ∈ Ĝ1, P�(L2

ω(Ω)) = RG
� (L2

ω(Ω)).

Proof. For any τ ∈ G, φ ∈ P�(L2
ω(Ω)),

τ(φ) = τ(P�φ) = 1
|G|

∑
σ∈G

χ�(σ−1) φ ◦ σ−1τ−1

= 1
|G|

∑
η∈G

χ�(η−1τ) φ ◦ η−1 ( taking η = τσ)

= χ�(τ) φ.

Conversely, for φ ∈ L2
ω(Ω) with the property σ(φ) = χ�(σ) φ, we have



G. Ghosh, E.K. Narayanan / Bull. Sci. math. 188 (2023) 103340 11
P�(φ) = 1
|G|

∑
σ∈G

χ�(σ−1) φ ◦ σ−1 = 1
|G|

∑
σ∈G

χ�(σ−1)χ�(σ) φ

= 1
|G|

∑
σ∈G

φ = φ. �

The elements of P�(L2
ω(Ω)) are called �-invariant elements of L2

ω(Ω). For the trivial 
representation, tr : G → C∗ such that

tr(σ) = 1, σ ∈ G, (3.4)

we have Ptr(L2
ω(Ω)) = {f ∈ L2

ω(Ω) : σ(f) = f for all σ ∈ G}. We refer to the elements 
of Ptr(L2

ω(Ω)) as G-invariant elements of L2
ω(Ω).

Suppose that ��φ̂ ∈ L2
ω(Ω) for some G-invariant φ̂, then σ(��φ̂) = χ�(σ)��φ̂, that is, 

��φ̂ ∈ RG
� (L2

ω(Ω)), consequently, ��φ̂ ∈ P�(L2
ω(Ω)) by Lemma 3.3. The following lemma 

ensures that P�(L2
ω(Ω)) = {φ ∈ L2

ω(Ω) : φ = ��φ̂, where φ̂ is G-invariant}.

Lemma 3.4. Let � ∈ Ĝ1 and f ∈ P�(L2
ω(Ω)). Then f = �� f̂ , where �� is a generating 

polynomial of RG
� (C[z1, . . . , zd]) over the ring C[z1, . . . , zd]G and f̂ is G-invariant.

Proof. Since �� vanishes only on a set of measure zero, we can write any f ∈ P�(L2
ω(Ω))

as

f = f̂ ��

where f̂ = f
��

. Clearly, f̂ is G-invariant. �
We recall an analytic version of Chevalley-Shephard-Todd theorem which allows us 

to state a few additional properties of the elements of the weighted Bergman space 
A2

ω(Ω). First note that C[z1, . . . , zd] is a free C[z1, . . . , zd]G module of rank |G| [13, 
Theorem 1, p. 110]. Further, one can choose a basis of C[z1, . . . , zd] consisting of ho-
mogeneous polynomials. We choose the basis in the following manner. For each � ∈ Ĝ, 
P�(C[z1, . . . , zd]) is a free module over C[z1, . . . , zd]G of rank deg(�)2 [29, Proposition 
II.5.3., p.28]. Clearly, C[z1, . . . , zd] = ⊕�∈ĜP�(C[z1, . . . , zd]), where the direct sum is 
orthogonal direct sum borrowed from the Hilbert space structure of A2

ω(Ω). Then we 
can choose a basis {��,i : 1 ≤ i ≤ deg(�)2} of P�(C[z1, . . . , zd]) over C[z1, . . . , zd]G for 
each � ∈ Ĝ such that together they form a basis {��,i : � ∈ Ĝ and 1 ≤ i ≤ deg(�)2}
of C[z1, . . . , zd] over C[z1, . . . , zd]G. We work with such a choice of basis for the rest of 
discussion.

Theorem 3.5 (Analytic CST). [12, p. 12, Theorem 3.12] Let G be a finite group generated 
by pseudoreflections on Cd and Ω ⊆ Cd be a G-space. For every holomorphic function f
on Ω, there exist unique G-invariant holomorphic functions {f�,i : 1 ≤ i ≤ deg(�)2}�∈Ĝ

such that
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f =
∑
�∈Ĝ

deg(�)2∑
i=1

f�,i��,i.

Remark 3.6. With such a choice of basis, we have the following:

1. For any element f in A2
ω(Ω), there exist unique G-invariant holomorphic func-

tions {f�,i : 1 ≤ i ≤ deg(�)2}�∈Ĝ such that f =
∑

�∈Ĝ

∑deg(�)2
i=1 f�,i��,i and 

P�f =
∑deg(�)2

i=1 f�,i��,i for every � ∈ Ĝ.
2. For simplicity, we write �� in the place of ��,1 if � is in Ĝ1. For every ψ ∈ P�(A2

ω(Ω)), 
there exists a unique G-invariant holomorphic function ψ̂ such that ψ = �� ψ̂ [20, 
Lemma 3.1, Remark 3.3]. A description of �� is given in Lemma 2.4.

3. For � ∈ Ĝ1, any other choice of basis of P�(C[z1, . . . , zd]) as a free module over 
C[z1, . . . , zd]G is a constant multiple of ��.

Weighted L2-spaces on θ(Ω): Consider a G-invariant continuous weight function ω :
Ω → (0, ∞). We write ω = ω̃ ◦ θ for a continuous map ω̃ : θ(Ω) → (0, ∞). For � ∈ Ĝ1, 
we set

ω�(θ(z)) = |��(z)|2
|Jθ(z)|2 ω̃(θ(z)),

and define the Hilbert space L2
ω�

(θ(Ω)) as follows:

L2
ω�

(θ(Ω)) = {φ : θ(Ω) → C |
∫

θ(Ω)

|φ(u)|2ω�(u)dV (u) < ∞}.

Lemma 3.7. For every � ∈ Ĝ1, the linear operator Γ� : L2
ω�

(θ(Ω)) → P�(L2
ω(Ω)), defined 

by,

Γ�φ = 1√
|G|

(φ ◦ θ)��, φ ∈ L2
ω�

(θ(Ω)), (3.5)

is unitary.

Proof. The polynomial �� is in P�(A2
ω(Ω)) ⊆ P�(L2

ω(Ω)), that is, σ(��) = χ�(σ)�� for all 
σ ∈ G from Lemma 3.3. From the explicit expression of �� in Lemma 2.4, we conclude 
that there exists a unique positive integer, say m�, such that �m�

� is G-invariant. Using 
CST theorem, �m�

� (z) = f�(θ(z)) for a unique polynomial f�. The function ω� can be 
written as

ω�(u) = |f�(u)|
2

m�

2
msgn

ω̃(u), u ∈ θ(Ω) \N, (3.6)

|fsgn(u)|
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where N = {θ(z) ∈ Cd : Jθ(z) = 0}. Then Γ� is an isometry because for ψ ∈ L2
ω�

(θ(Ω)),

‖Γ�ψ‖2 = 1
|G|

∫
Ω

|ψ ◦ θ(z)|2|��(z)|2ω(z)dV (z)

= 1
|G|

∫
Ω\θ−1(N)

|ψ ◦ θ(z)|2 |f�(θ(z))|
2

m�

|fsgn(θ(z))|
2

msgn
|Jθ(z)|2ω̃(θ(z))dV (z)

=
∫

θ(Ω)\N

|ψ(u)|2ω�(u)dV (u) = ‖ψ‖2
, (3.7)

the last equality follows since the set N has Lebesgue measure 0.
Let φ be in P�(L2

ω(Ω)). Then there exists a φ̂ such that φ = �� φ̂ ◦ θ (cf. Lemma 3.4). 
We are to show that φ̂ ∈ L2

ω�
(θ(Ω)). From Equation (3.7), we get the norm of φ̂ is equal 

to the norm of φ. Since the later is finite, so is the norm of φ̂. �
Let O(Ω) be the set of all holomorphic functions on Ω. We denote the weighted 

Bergman space with weight function ω� by

A2
ω�

(θ(Ω)) = {φ ∈ O(θ(Ω)) :
∫

θ(Ω)

|φ(u)|2ω�(u)dV (u) < ∞}.

The restriction operator Γ� : A2
ω�

(θ(Ω)) → P�(A2
ω(Ω)) is surjective. Thus the weighted 

Bergman space A2
ω�

(θ(Ω)) is isometrically isomorphic to P�(A2
ω(Ω)) via the unitary 

operator Γ� [20]. This enables us to make the following observations which are essential.

Remark 3.8.

1. For each � ∈ Ĝ1, we have the following identity involving the reproducing kernel Kω�

of A2
ω�

(θ(Ω)) and the reproducing kernel B(�)
ω of P�(A2

ω(Ω)) [20, p. 11, Equation 3.3]:

B(�)
ω (z,w) = 1

|G|��(z)Kω�

(
θ(z),θ(w)

)
��(w).

For a fixed w ∈ Ω, we have

��(w)Γ�

(
Kω�

(·,θ(w))
)
(z) = 1√

|G|
��(z)Kω�

(θ(z),θ(w)
)
��(w)

=
√
|G|B(�)

ω (z,w). (3.8)

2. Recall that the polynomial �sgn = Jθ (cf. Corollary 2.5). Therefore, for ω̃ ≡ 1 in 
Equation (3.6), we get ωsgn ≡ 1 and thus A2

ω (θ(Ω)) coincides with the Bergman 

sgn
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space A2(θ(Ω)). Consequently, A2(θ(Ω)) is isometrically isomorphic to Psgn(A2(Ω))
via the unitary operator Γsgn.

4. Toeplitz operators and the weighted Bergman spaces

In this section, we establish a number of identities involving Toeplitz operators on 
A2

ω(Ω) and Toeplitz operators on A2
ω�

(θ(Ω)) which enables us to study algebraic prop-
erties of Toeplitz operators on A2

ω�
(θ(Ω)). We start with two very useful lemmas.

Lemma 4.1. For every one-dimensional � ∈ Ĝ1, the following diagram commutes:

L2
ω�

(θ(Ω)) A2
ω�

(θ(Ω))

P�(L2
ω(Ω)) P�(A2

ω(Ω))

Pω�

Γ� Γ�

P̃ω,�

where Pω�
and P̃ω,� are the associated orthogonal projections and Γ� is as defined in 

Equation (3.5).

Proof. Note that for f ∈ L2
ω�

(θ(Ω)), we have

(Γ�Pω�
f)(z) = 1√

|G|
(Pω�

f ◦ θ)(z)��(z)

= 1√
|G|

��(z)〈f,Kω�
(·,θ(z))〉

= 1√
|G|

��(z)〈Γ�f,Γ�

(
Kω�

(·,θ(z))
)
〉

= 1√
|G|

〈Γ�f,
√
|G|B(�)

ω (·, z)〉 = (P̃ω,�Γ�f)(z),

where the penultimate equality follows from Equation (3.8). �
If f ∈ P�(A2

ω(Ω)), then ũf ∈ P�(L2
ω(Ω)). It follows from the orthogonal decompo-

sition of L2
ω(Ω) in Equation (3.2) that (Tũf)(z) = 〈ũf, Bω(·, z)〉 = 〈ũf, B(�)

ω (·, z)〉 =
P̃ω,�(ũf)(z). Therefore, the subspace P�(A2

ω(Ω)) remains invariant under Tũ and the 
restriction operator Tũ : P�(A2

ω(Ω)) → P�(A2
ω(Ω)) is given by Tũf = P̃ω,�(ũf). More-

over, the orthogonal complement of P�(A2
ω(Ω)) is ⊕�′∈Ĝ,�′ �≡�P�′(A2

ω(Ω)), which is also 
invariant under Tũ. Thus P�(A2

ω(Ω)) is a reducing subspace for Tũ.

Lemma 4.2. Let ũ ∈ L∞(Ω) be a G-invariant function such that ũ = u ◦ θ. For every 
� ∈ Ĝ1, the following diagram commutes:
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A2
ω�

(θ(Ω)) A2
ω�

(θ(Ω))

P�(A2
ω(Ω)) P�(A2

ω(Ω))

Tu

Γ� Γ�

Tũ

Proof. Note that Γ�(uf) = 1√
|G| (u ◦ θ)(f ◦ θ) �� = ũ Γ�(f). From Lemma 4.1, we have

Γ�Tuf = Γ�(Pω�
(uf)) = P̃ω,�(Γ�(uf)) = P̃ω,�(ũΓ�(f)) = TũΓ�f. �

The following corollary is immediate from Lemma 4.2.

Corollary 4.3. Let ũ1, . . . , ̃un ∈ L∞(Ω) be G-invariant functions such that ũi = ui ◦ θ

for i = 1, . . . , n. For every � ∈ Ĝ1, the product Tu1 · · ·Tun
on A2

ω�
(θ(Ω)) is unitarily 

equivalent to Tũ1 · · ·Tũn
on P�(A2

ω(Ω)).

If ũ is holomorphic, it is easy to see that the subspace �� · Ptr(A2
ω(Ω)) is invariant 

under the restriction of the operator Tũ on P�(A2
ω(Ω)). We prove that this continues to 

hold even when ũ is only a bounded function.
Let f ∈ Ptr(A2

ω(Ω)), then ��f ∈ �� · Ptr(A2
ω(Ω)) ⊆ RG

� (A2
ω(Ω)) = P�(A2

ω(Ω)), where 
the last equality follows from [20, Lemma 3.1]. The density of G-invariant polynomials 
in Ptr(A2

ω(Ω)) implies that �� · Ptr(A2
ω(Ω)) is dense in P�(A2

ω(Ω)).
We consider f ∈ P�(A2

ω(Ω)) such that f = ��f� for f� ∈ Ptr(A2
ω(Ω)). Then ũf� ∈

Ptr(L2
ω(Ω)) using Lemma 3.3 and the following holds:

(Tũf)(z) = 〈ũf,Bω(·, z)〉 = ��(z)〈ũf�,Bω(·, z)〉
= ��(z)〈ũf�,B(tr)

ω (·, z)〉
= ��(z)P̃ω,tr(ũf�)(z),

where B(tr)
ω denotes the reproducing kernel of Ptr(A2

ω(Ω)). Therefore, we have Tũ(�� ·
Ptr(A2

ω(Ω)) ⊆ �� · Ptr(A2
ω(Ω)) for every � ∈ Ĝ1.

This result can be extended to any representation � ∈ Ĝ with deg(�) > 1. We 

consider a basis {��,i}deg(�)2
i=1 of P�(C[z1, . . . , zd]) as a free module over C[z1, . . . , zd]G. 

Since 
∑deg(�)2

i=1 ��,i ·C[z1, . . . , zd]G is dense in 
∑deg(�)2

i=1 ��,i ·Ptr(A2
ω(Ω)) and 

∑deg(�)2
i=1 ��,i ·

Ptr(A2
ω(Ω)) is contained in P�(A2

ω(Ω)), we get that 
∑deg(�)2

i=1 ��,i · Ptr(A2
ω(Ω)) is dense 

in P�(A2
ω(Ω)). For f =

∑deg(�)2
i=1 ��,if�,i, such that f�,i ∈ Ptr(A2

ω(Ω)), we conclude the 
following:

(Tũf)(z) = 〈ũf,Bω(·, z)〉 = 〈
deg(�)2∑
i=1

��,iũf�,i,Bω(·, z)〉

=
deg(�)2∑

〈ũf�,i,M∗
��,iBω(·, z)〉
i=1
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=
deg(�)2∑
i=1

��,i(z)〈ũf�,i,Bω(·, z)〉

=
deg(�)2∑
i=1

��,i(z)〈ũf�,i,B(tr)
ω (·, z)〉

=
deg(�)2∑
i=1

��,i(z)P̃ω,tr(ũf�,i)(z). (4.1)

Hence, each 
∑deg(�)2

i=1 ��,i · Ptr(A2
ω(Ω)) remains invariant for the operator Tũ.

4.1. Generalized zero-product problem

Let ũ, ̃v and q̃ be G-invariant functions in L∞(Ω). It is evident that if TũTṽ = Tq̃

on A2
ω(Ω), then the restriction operator TũTṽ = Tq̃ on P�(A2

ω(Ω)) for every � ∈ Ĝ. 
Interestingly enough, the converse holds as well with a weaker hypothesis.

Lemma 4.4. If TũTṽ = Tq̃ on P�(A2
ω(Ω)) for at least an irreducible representation � ∈ Ĝ, 

then TũTṽ = Tq̃ on A2
ω(Ω).

Proof. Suppose that the assumption holds for the representation � ∈ Ĝ. Consider an 
element f =

∑deg(�)2
i=1 ��,if̂�,i such that f̂�,i ∈ Ptr(A2

ω(Ω)). Then from Equation (4.1), it 
is clear that TũTṽf = Tq̃f implies

deg(�)2∑
i=1

��,iP̃ω,tr(ũ P̃ω,tr(ṽf̂�,i)) =
deg(�)2∑
i=1

��,iP̃ω,tr(q̃f̂�,i).

In case � ∈ Ĝ1, we get

��,1P̃ω,tr(ũ P̃ω,tr(ṽf̂�,1) = ��,1P̃ω,tr(q̃f̂�,1)

for f̂�,1 ∈ Ptr(A2
ω(Ω)), equivalently, P̃ω,tr(ũ P̃ω,tr(ṽf̂)) = P̃ω,tr(q̃f̂) for every f̂ ∈

Ptr(A2
ω(Ω)). If deg(�) > 1, we take f̂�,i = 0 for i = 2, . . . , deg(�)2 and then repeat 

the above argument to observe the same.
Let f =

∑
�∈Ĝ

∑deg(�)2
i=1 ��,if�,i, for some f�,i ∈ Ptr(A2

ω(Ω)). Then we get

TũTṽf =
∑
�∈Ĝ

deg(�)2∑
i=1

��,iP̃ω,tr(ũ P̃ω,tr(ṽf�,i)) =
∑
�∈Ĝ

deg(�)2∑
i=1

��,iP̃ω,tr(q̃f�,i) = Tq̃f

on a dense subset of A2
ω(Ω). Hence, the result follows. �
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We note down an useful observation from the proof of Lemma 4.4 in the following 
corollary.

Corollary 4.5. Let ũ, ̃v and q̃ be G-invariant functions in L∞(Ω). If TũTṽ = Tq̃ on 
Pμ(A2

ω(Ω)) for at least one representation μ ∈ Ĝ, then TũTṽ = Tq̃ on P�(A2
ω(Ω)) for 

every � ∈ Ĝ.

Proof. The result follows since the assumption boils down to P̃ω,tr(ũ P̃ω,tr(ṽf̂) =
P̃ω,tr(q̃f̂) for every f̂ ∈ Ptr(A2

ω(Ω)) and consequently

deg(�)2∑
i=1

��,iP̃ω,tr(ũ P̃ω,tr(ṽf̂�,i)) =
deg(�)2∑
i=1

��,iP̃ω,tr(q̃f̂�,i)

for every f =
∑deg(�)2

i=1 ��,if̂�,i where f̂�,i ∈ Ptr(A2
ω(Ω)). �

Proof of Theorem 1.1. Since Γμ : A2
ωμ

(θ(Ω)) → Pμ(A2
ω(Ω)) is a unitary operator, for 

each f̃ ∈ Pμ(A2
ω(Ω)) there exists f ∈ A2

ωμ
(θ(Ω)) such that Γμ(f) = f̃ . We note that for 

every f̃ ∈ Pμ(A2
ω(Ω)),

TũTṽ f̃ = TũTṽΓμ(f) = TũΓμ(Tvf) (4.2)

= Γμ(TuTvf)

= Γμ(Tqf) (4.3)

= Tq̃Γμ(f) = Tq̃ f̃ ,

where the equality in Equation (4.2) and the penultimate equality follow from Lemma 4.2, 
the equality in Equation (4.3) follows from the assumption. This with Lemma 4.4 im-
mediately proves 1(ii).

Furthermore, from Corollary 4.5 we get TũTṽ = Tq̃ on P�(A2
ω(Ω)) for every � ∈ Ĝ. A 

repetitive use of Lemma 4.2 in a similar argument as above leads us to 1(i).
Conversely, if the assumption holds then TũTṽ = Tq̃ on P�(A2

ω(Ω)) for every � ∈ Ĝ. 
Then a repetitive application of Lemma 4.2 as above proves part 2. �

An important observation is noted down in the following corollary for the particular 
case of sign representation of G and weight function ω ≡ 1.

Corollary 4.6. Let Ω be a G-space under the action of a finite pseudoreflection group G
and θ : Ω → θ(Ω) be a basic polynomial map associated to G. For ũ = u ◦ θ, ṽ = v ◦ θ
and q̃ = q ◦ θ ∈ L∞(Ω), TũTṽ = Tq̃ on A2(Ω) if and only if TuTv = Tq on A2(θ(Ω)).

Remark 4.7. For q̃ ≡ 0, Corollary 4.6 connects the zero-product problem of two Toeplitz 
operators on A2(Ω) to that of Toeplitz operators on A2(θ(Ω)). In fact, minor modification 



18 G. Ghosh, E.K. Narayanan / Bull. Sci. math. 188 (2023) 103340
of the above method shows that Tũ1 · · ·TũN
= 0 on A2(Ω) if and only if Tu1 · · ·TuN

= 0
on A2(θ(Ω)) for ũi = ui ◦ θ ∈ L∞(Ω), i = 1, . . . , N .

4.2. Characterization of a commuting pair of Toeplitz operators

Theorem 1.6 characterizes commuting pairs of Toeplitz operators on the weighted 
Bergman spaces of θ(Ω) in terms of commuting pairs of Toeplitz operators on A2

ω(Ω). 
We give a proof of Theorem 1.6 here. Let ũ and ṽ be G-invariant functions in L∞(Ω). If 
TũTṽ = TṽTũ on A2

ω(Ω), then TũTṽ = TṽTũ on each P�(A2
ω(Ω)). Also the converse holds 

with a rather weaker assumption.

Lemma 4.8. If TũTṽ = TṽTũ on P�(A2
ω(Ω)) for at least one irreducible representation 

� ∈ Ĝ, then TũTṽ = TṽTũ on A2
ω(Ω).

Since the proof is similar to that of Lemma 4.4, we omit the details. Clearly, if TũTṽ =
TṽTũ on Pμ(A2

ω(Ω)) for at least one irreducible representation μ ∈ Ĝ, then TũTṽ = TṽTũ

on P�(A2
ω(Ω)) for every � ∈ Ĝ.

Proof of Theorem 1.6. From the assumption and Lemma 4.2, we have TũTṽ = TṽTũ on 
Pμ(A2

ω(Ω)) and then Lemma 4.8 proves 1(ii).
Since 1(ii) implies that TũTṽ = TṽTũ on P�(A2

ω(Ω)) for � ∈ Ĝ, we apply Lemma 4.2
to conclude 1(i).

Converse is straightforward with a similar application of Lemma 4.2 as above. �
Corollary 4.9. Let ũ = u ◦ θ and ṽ = v ◦ θ be G-invariant functions in L∞(Ω). Then 
TuTv = TvTu on A2(θ(Ω)) if and only if TũTṽ = TṽTũ on A2(Ω).

Remark 4.10 (Hankel Operators). For ũ ∈ L∞(Ω), the Hankel operator Hũ : A2
ω(Ω) →

A2
ω(Ω)⊥ is defined by Hũf = ũf− P̃ω(ũf), where P̃ω : L2

ω(Ω) → A2
ω(Ω) is the orthogonal 

projection. We note that the unitary Γ� : A2
ω�

(θ(Ω)) → P�(A2
ω(Ω)) intertwines Hũ and 

Hu, where ũ = u ◦ θ and � ∈ Ĝ1. Then a similar method to the above helps us to study 
algebraic properties of the Hankel operators on the Bergman spaces of the quotient 
domains.

5. Application to certain quotient domains

Let Dd = {z ∈ Cd : |z1|, . . . , |zd| < 1} be the polydisc in Cd and Bd be the open unit 
ball with respect to the �2-norm induced by the standard inner product on Cd. In this 
section, we apply the general results (Theorem 1.1 and Theorem 1.6) on the zero-product 
problem and on the characterization of commuting of Toeplitz operators to the weighted 
Bergman spaces on specific quotient domains Ω/G where Ω = Dd or Bd.
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First we recall the zero-product theorems for Toeplitz operators on the Bergman 
spaces A2(Dd) and A2(Bd) from [17] and [15], respectively. A function φ is called a 
d-harmonic on a domain Ω ⊂ Cd if

∂2φ

∂zi∂zi
= 0 for all i = 1, . . . , d.

Let h∞(Ω) denote the class of all bounded d-harmonic functions on Ω.
A function φ is called pluriharmonic on Ω if

∂2φ

∂zi∂zj
= 0 for all i, j = 1, . . . , d.

Theorem 5.1. [17, p. 45, Theorem 1.1.] Suppose that u, v ∈ h∞(Dd) are continuous on 
Dd ∪ W for some relatively open subset W of Td. If TuTv = 0 on A2(Dd) then either 
u = 0 or v = 0.

Theorem 5.2. [15, p. 309, Theorem 1.1.] Suppose that u, v ∈ h∞(Bd) are continuous on 
Bd ∪W for some relatively open subset W of ∂SBd. If TuTv = 0 on A2(Bd) then either 
u = 0 or v = 0.

Definition 5.3. Let Ω be a G-invariant domain and θ : Ω → θ(Ω) be a basic polynomial 
map associated to the finite pseudoreflection group G. A function φ defined on θ(Ω) is 
said to be G-pluriharmonic on θ(Ω) if φ ◦ θ is a pluriharmonic function on Ω.

Suppose φ̃ be a pluriharmonic function on Ω. Then we write φ ◦ θ =
∑

σ∈G φ̃ ◦ σ

and φ is a G-pluriharmonic function on θ(Ω). The set of all bounded G-pluriharmonic 
functions on θ(Ω) is denoted by h∞

G (θ(Ω)).
Here we recall some requisite facts on the Shilov boundary ∂SΩ of a bounded domain 

Ω. The Shilov boundary of the polydisc Dd is the d-torus Td. The Shilov boundary of 
the unit ball Bd coincides with its topological boundary. We note that θ : Ω → θ(Ω)
is a proper holomorphic map which can be extended to a proper holomorphic map of 
the same multiplicity from Ω′ to θ(Ω)′, where the open sets Ω′ and θ(Ω)′ contain Ω and 
θ(Ω), respectively. Then [24, p. 100, Corollary 3.2] states that θ−1(∂Sθ(Ω)) = ∂SΩ. So 
for a relatively open subset W of ∂Sθ(Ω), there exists at least one relatively open subset 
W ′ of the Shilov boundary of Ω such that θ(W ′) = W . Thus if a function u is continuous 
on θ(Ω) ∪W then so is ũ = u ◦ θ on Ω ∪W ′.

Proof of Theorem 1.2. From the hypothesis and Theorem 1.1, we note that TũTṽ = 0
on A2(Ω). The assumption on u and v implies that ũ = u ◦ θ and ṽ = v ◦ θ ∈ h∞(Ω). 
The functions u and v are continuous on Ω ∪W ′ for some relatively open subset W ′ of 
∂SΩ. For Ω = Dd, we use Theorem 5.1 and for Ω = Bd, we use Theorem 5.2 to conclude 
that either ũ = 0 or ṽ = 0. This completes the proof. �
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It is worth mentioning the particular case of the sign representation.

Corollary 5.4. Let Ω = Dd or Bd. Suppose that u, v ∈ h∞
G (θ(Ω)) are continuous on 

θ(Ω) ∪W for some relatively open subset W of ∂Sθ(Ω). If TuTv = 0 on A2(θ(Ω)) then 
either u = 0 or v = 0.

5.1. Symmetrized polydisc

The permutation group on d symbols is denoted by Sd. The group Sd acts on Cd by 
permuting its coordinates, that is,

σ · (z1, . . . , zd) = (zσ−1(1), . . . , zσ−1(d)) for σ ∈ Sd and (z1, . . . , zd) ∈ Cd.

Clearly, the open unit polydisc Dd is invariant under the action of the group Sd. Let sk
denote the elementary symmetric polynomials of degree k in d variables, for k = 1, . . . , d. 
The symmetrization map

s := (s1, . . . , sd) : Cd → Cd (5.1)

is a basic polynomial map associated to the pseudoreflection group Sd. The domain 
Gd := s(Dd) is known as the symmetrized polydisc.

The symmetric group Sd has only two one-dimensional representation in Ŝd. Those 
are the sign representation and the trivial representation of Sd. We take ω ≡ 1 in 
Equation (1.2) and thus we have ωsgn ≡ 1 and ωtr(s(z)) = 1∏

i<j |zi−zj |2 , z ∈ Dd.

5.1.1. Zero-product problem
We have the following zero-product theorem for Toeplitz operators on A2

ωtr
(Gd) and 

A2(Gd) as a consequence of Theorem 1.2.

Corollary 5.5. Suppose that u, v ∈ L∞(Gd) are continuous on Gd∪W for some relatively 
open subset W of s(Td). Assume that ũ = u ◦ s, ̃v = v ◦ s belong to h∞(Dd).

1. If TuTv = 0 on A2(Gd), then either u = 0 or v = 0.
2. If TuTv = 0 on A2

ωtr
(Gd), then either u = 0 or v = 0.

5.1.2. Commuting pairs of Toeplitz operators
A bounded Sd-pluriharmonic function u on Gd can be written as ũ = u ◦ s for a 

Sd-invariant pluriharmonic function ũ on Dd. It is known that a bounded pluriharmonic 
function ũ on Dd can be written as ũ = f̃ + g̃ for f̃ , ̃g ∈ O(Dd), where O(Ω) denotes 
the set of all holomorphic functions on Ω. Moreover, if ũ is Sd-invariant, then both f̃ , ̃g
are Sd-invariant and from [12, Subsection 3.1.1.], we have f̃ = f ◦ s and g̃ = g ◦ s

for f, g ∈ O(Gd). Thus u ◦ s(z) = ũ(z) = f̃(z) + g̃(z) = f ◦ s(z) + g ◦ s(z) for 
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f, g ∈ O(Gd). Moreover, if u is Sd-pluriharmonic on Gd, then u ◦ s is a symmetric 
d-harmonic function on Dd. However, it is not clear whether u is an Sd-pluriharmonic 
function on Gd, whenever u ◦s is a symmetric d-harmonic function on Dd. Let X (Gd) =
{u : u is Sd-pluriharmonic on Gd and u ◦ s is d-harmonic on Dd}.

Proposition 5.6. Let u, v ∈ L∞(Gd) be Sd-pluriharmonic functions such that u = f + g

and v = h + k for f, g, h, k ∈ O(Gd). Then if fk − hg is Sd-pluriharmonic on Gd then

1. TuTv = TvTu on A2(Gd) and
2. TuTv = TvTu on A2

ωtr
(Gd).

Moreover, TuTv = TvTu on A2(Gd) (or on A2
ωtr

(Gd)) if and only if fk − hg ∈ X (Gd).

Proof. Let u ◦ s(z) = ũ(z) = f̃(z) + g̃(z) and v ◦ s(z) = ṽ(z) = h̃(z) + k̃(z). From 
the assumption, it follows that ũ and ṽ ∈ L∞(Dd) and those are pluriharmonic on Dd. 
Note that fk − hg is Sd-pluriharmonic on Gd implies that f̃ k̃ − h̃g̃ is d-harmonic on 
Dd. Therefore, TũTṽ = TṽTũ on A2(Dd) from [16, p. 1728, Theorem 1.1] and then using 
Theorem 1.6, we get 1. and 2.

Conversely, if TuTv = TvTu on A2(Gd) (or on A2
ωtr

(Gd)), then combining Theorem 1.6
and [16, p. 1728, Theorem 1.1], one gets f̃ k̃ − h̃g̃ is d-harmonic on Dd. Thus the result 
follows. �
5.2. Rudin’s domains

A family of quotient domains of the form Bd/G is described in [31], where the group 
G is a conjugate to a finite pseudoreflection group. Following [9, p. 427], we refer to such 
domains as Rudin’s domains. The domain Ω ⊂ Cd is a Rudin’s domain if and only if 
there exists a proper holomorphic map F : Bd → Ω.

5.2.1. Zero-product problem
We have the following zero-product theorem for Toeplitz operators on the weighted 

Bergman space on Rudin’s domains using Theorem 1.2.

Corollary 5.7. Let Ω be a Rudin’s domain which is biholomorphic to Bd/G for some 
finite pseudoreflection group G. Suppose that u, v ∈ h∞

G (Ω) are continuous on Ω ∪W for 
some relatively open subset W of ∂SΩ. If TuTv = 0 on A2

ω�
(Ω) for a one-dimensional 

representation � of G, then either u = 0 or v = 0.

In particular for the sign representation, if TuTv = 0 on A2(Ω) then either u = 0 or 
v = 0, provided u and v follow the assumption in Corollary 5.7.
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5.2.2. Commuting pairs of Toeplitz operators
The following result describes necessary and sufficient conditions for a pair of com-

muting Toeplitz operators on the Bergman spaces of Rudin’s domains. We reduce the 
problem to the characterization of commuting Toeplitz operators on the Bergman space 
on the unit ball and then a direct application of [37, p. 1597, Theorem 2.1] and [12, 
Theorem 3.1] proves the result.

Proposition 5.8. Let Ω be a Rudin’s domain which is biholomorphic to Bd/G for some 
finite pseudoreflection group G. Suppose that u, v ∈ h∞

G (Ω), then

TuTv = TvTu

on A2
ω�

(Ω) for a one-dimensional representation � of G, if and only if one of the following 
holds:

1. Both u and v are holomorphic on Ω.
2. Both u and v are holomorphic on Ω.
3. Either u or v is constant on Ω.
4. For a nonzero constant b, u − bv is constant on Ω.

Proof. Note that for u and v ∈ h∞
G (Ω), there exist bounded pluriharmonic functions 

ũ = u ◦F and ṽ = v ◦F on Bd, where F : Bd → Ω is a proper holomorphic map. Clearly, 
if u (or u) is holomorphic on Ω, then ũ (or ũ) is holomorphic on Bd. On the other hand, 
if ũ (or ũ) is holomorphic on Bd, then so is u (or u) on Ω from [12, Theorem 3.1].

Also, TuTv = TvTu on A2
ω�

(Ω) for a one-dimensional representation � of G implies 
TũTṽ = TṽTũ on A2(Bd) (cf. Theorem 1.6) and vice-versa. From [37, p. 1597, Theorem 
2.1], it is known that TũTṽ = TṽTũ on A2(Bd) if and only if one of the following holds:

1. Both ũ and ṽ are holomorphic on Bd.
2. Both ũ and ṽ are holomorphic on Bd.
3. Either ũ or ṽ is constant on Bd.
4. For a nonzero constant b, ũ− bṽ is constant on Bd.

Thus the result follows. �
5.3. Monomial polyhedrons

For d ≥ 2, a d-tuple α = (α1, . . . , αd) ∈ Qd of rational numbers and a d-tuple of 

complex numbers z = (z1, . . . , zd) ∈ Cd, we denote zα :=
d∏

k=1

zαk

k . Consider a matrix 

B ∈ Md(Q). We enumerate the row vectors of B by F = {b1, . . . , bd}, where bk =
(bk1 , . . . , bkd). The monomial polyhedron associated to B is defined by
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U = {z ∈ Cd : |zbk | < 1 for all 1 ≤ k ≤ d},

unless for some 1 ≤ k, j ≤ d, the quantity z
bkj
j is not defined due to the division of zero 

[10, Equation 1.1].
Without loss of generality, we assume that B ∈ Md(Z), det(B) > 0 and B−1 � 0

[10, Equation 3.3]. Set A = adjB. The Smith Normal form of the matrix A is given 
by A = PDQ, where P, Q ∈ GLd(Z) and D = diag(δ1, . . . , δd) ∈ Md(Z). Then U is 
biholomorphically equivalent to Dd

L(B)/G, where Dd
L(B) is the product of some copies 

of the unit disc with some copies of the punctured unit disc and G is isomorphic to 
the direct product of cyclic groups 

∏d
i=1 Z/δiZ [10]. It implies that every irreducible 

representation of G is one-dimensional.
A point w0 belongs to the minimum boundary of U if and only w0 is an isolated point 

of the variety V0 = {w : wbki = w0
bki for all 1 ≤ i ≤ d0} for the indices k1, . . . , kd0

such that |w0
bki | = 1. The Shilov boundary ∂SU of the monomial polyhedron U is the 

closure of the minimum boundary of U [22, p. 1348].

Corollary 5.9. Suppose that u, v ∈ h∞
G (U ) are continuous on U ∪W for some relatively 

open subset W of ∂SU . If TuTv = 0 on A2
ω�

(U ), � ∈ Ĝ, then either u = 0 or v = 0.

This is a direct application of Theorem 1.2.

6. Generalized zero-product problem on the weighted Bergman space

In this section, using the results from [4] and following the methods in [18], we prove 
Theorem 1.4. For α > −1, the continuous function ωα : D → (0, ∞) is defined by 
ωα(z) = (α + 1)(1 − |z|2)α. The weighted Bergman kernel K(α) of A2

ωα
(D) is given by

K(α)(z, w) = 1
(1 − zw)α+2 , z, w ∈ D.

We recall the Berezin type operators from [21, p. 29]. For α > −1, the Berezin type 
operator Bα, defined on L1(D, ωαdV ), is given by

Bαf(z) =
∫
D

f ◦ φz(w)ωα(w)dV (w),

where φz(w) = w−z
1−zw . However, we use the following expression of Berezin type operators 

more often (which is obtained after a change of variable):

Bαf(z) = (α + 1)
∫
D

(1 − |z|2)α+2(1 − |w|2)α
|1 − zw|4+2α f(w)dV (w). (6.1)

We collect two results from [4] which will be needed. In the following discussion, 
Δ̃ = (1 − |z|2)2 ∂2

is the invariant Laplacian of D.
∂z∂z
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Theorem 6.1.

1. Let Bα(v) = fg where f and g are holomorphic functions on D and v ∈
L1(D, ωαdV ). Then either f or g is a constant.

2. Suppose that α is a non-negative integer. Let f and g be bounded harmonic functions 
on D and h be a bounded C2α function on D such that Δ̃h, . . . , Δ̃αh ∈ L1(D, ωαdV ). 
If TfTg = Th on A2

ωα
(D) then either f is co-analytic or g is analytic.

Proof. See [4, Theorem 10] and its proof. �
6.1. Weighted Bergman spaces on the polydisc

Consider d > 1. Let us denote α = (α1, . . . , αd), where αi’s are non-negative integers. 
The continuous function ωα : Dd → (0, ∞) is defined by ωα(z) =

∏d
i=1(αi + 1)(1 −

|zi|2)αi . The weighted Bergman space A2
ωα

(Dd) is a reproducing kernel Hilbert space 
with the reproducing kernel

K(α)(z,w) =
d∏

i=1

1
(1 − ziwi)αi+2 .

Before proving Theorem 1.4, we recall a few relevant notions.
For simplicity, we denote the weighted Bergman projection by Pα : L2

ωα
(Dd) →

A2
ωα

(Dd). For g ∈ A2
ωα

(Dd) and w ∈ Dd, we have:

Pα(gK(α)
w )(z) = 〈gK(α)

w ,K(α)
z 〉 = 〈K(α)

w , gK(α)
z 〉 = g(w)K(α)

w (z).

. Hence

Pα(gK(α)
w ) = g(w)K(α)

w andPα(gK(α)
w ) = gK(α)

w . (6.2)

For f ∈ L1(Dd, ωαdV ), the Berezin type operators are given by

Bαf(z) =
∫
Dd

d∏
i=1

(
(αi + 1)(1 − |zi|2)αi+2(1 − |wi|2)αi

|1 − ziwi|4+2αi

)
f(w)dV (w). (6.3)

In addition to it, if f ∈ A2
ωα

(Dd), then Bαf(z) =
∏d

i=1(1 − |zi|2)αi+2〈fK(α)
z , K(α)

z 〉 =∏d
i=1(1 − |zi|2)αi+2f(z)K(α)(z, z) = f(z). Similarly one gets Bαf = f .

Lemma 6.2. Suppose that f = f1 + f2, g = g1 + g2 are bounded harmonic functions with 
fi, gi holomorphic and h is bounded in Dd. Then the following are equivalent.

1. TfTg = Th
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2. For all z, w ∈ Dd,

f1(z)g1(z) + f2(w)g2(w) + f1(z)g2(w)

=
∫
Dd

d∏
i=1

(
(1 − ziwi)αi+2

(1 − ziηi)αi+2(1 − wiηi)αi+2

)
(h(η) − f2(η)g1(η))ωα(η)dV (η).

3. For all z ∈ Dd,

f1(z)g1(z) + f2(z)g2(z) + f1(z)g2(z) = Bα(h− f2g1)(z).

Proof. For w ∈ Dd, we get from Equation (6.2)

TgK
(α)
w = Pα(g1K

(α)
w + g2K

(α)
w ) = g1K

(α)
w + g2(w)K(α)

w .

Then

TfTgK
(α)
w = Pα((f1 + f2)(g1K

(α)
w + g2(w)K(α)

w ))

= f1g1K
(α)
w + g2(w)f1K

(α)
w + f2(w)g2(w)K(α)

w + Pα(f2g1K
(α)
w ).

Moreover, TfTg = Th if and only if TfTgK
(α)
w = ThK

(α)
w for all w ∈ Dd, equivalently,

f1g1K
(α)
w + g2(w)f1K

(α)
w + f2(w)g2(w)K(α)

w + Pα(f2g1K
(α)
w ) = Pα(hK(α)

w ).

That is, for z ∈ Dd,

f1(z)g1(z) + g2(w)f1(z) + f2(w)g2(w)

= 1
K(α)

w (z)
Pα(hK(α)

w − f2g1K
(α)
w )(z),

which is 2. with w replaced by w. This proves that 1. and 2. are equivalent.
Now replacing w with z, we get

f1(z)g1(z) + g2(z)f1(z) + f2(z)g2(z)

=
∫
Dd

d∏
i=1

(
(αi + 1)(1 − |zi|2)αi+2(1 − |ηi|2)αi

|1 − ziηi|4+2αi

)
(h− f2g1)(η)dV (η)

= Bα(h− f2g1)(z),

which provides the expression in 3. Note that in 2. both sides are holomorphic on Dd×Dd. 
We assume 3. It holds on the subset {(z, w) ∈ Dd × Dd : z = w} and thus holds on 
Dd ×Dd. Thus, 3. implies 2. This argument is analogous to [2, p. 205]. �
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Proof of Theorem 1.4. For bounded pluriharmonic functions f and g on Dd, we can write 
f = f1 + f2 and g = g1 + g2 for holomorphic functions fi, gi, i = 1, 2. For a ∈ Dd, we 
note that Tf1+f2

K(α)(·, a) = Pα((f1 + f2)K(α)(·, a)) = (f1 + f2(a))K(α)(·, a), which 
implies,

Tf1+f2
Tg1+g2K

(α)(·,a) =
(
f1g1 + f1g2(a) + f2(a)g2(a)

)
K(α)(·,a)

+Pα(g1f2K
(α)(·,a)).

From Lemma 6.2, we get

Bα(v) = f1g2

for

v = h− f2g1 − f1g1 − f2g2,

since Bαf1g1 = f1g1 and Bαf2g2 = f2g2. For a fixed w0 ∈ D, let (w0, 0) be the point 
(w0, 0, · · · 0) ∈ Dd. Then we have

(Bαv)(w0,0) = f1(w0,0)g2(w0,0)

= (α1 + 1)
∫
D

(1 − |w0|2)α1+2

|1 − w0w|4+2α1
u(w)(1 − |w|2)α1dV1(w)

= Bα1u(w0),

where

u(η) =
d∏

i=2
(αi + 1)

∫
Dd−1

v(η,z)(1 − |z2|2)α2 · · · (1 − |zd|2)αddVd−1(z)

for η ∈ D. A similar argument as in [18, p. 304, Theorem 4] shows that u is in 
L1(D, ωα1dV1). Then using Theorem 6.1, we conclude that either ∂1f(w0, 0) = 0 or 
∂1g(w0, 0) = 0. To complete the proof we argue as in [18, p. 304, Theorem 4], using the 
automorphisms of Dd. For z = (z1, z2, · · · zd) ∈ Dd, let ϕz be the automorphism given 
by

ϕz(w) =
d∏

i=1

zj − wj

1 − zjwj
.

Then, for f, g, h ∈ L∞(Dd) we have TfTg = Th implies

Tf◦ϕzTg◦ϕz = Th◦ϕz .



G. Ghosh, E.K. Narayanan / Bull. Sci. math. 188 (2023) 103340 27
The above can be proved, first for the weighted Bergman space A2
ωβ

(D) on D, where β is 
a non-negative integer following the proof of Lemma 8 in [5], using the unitary operator 
Vψf = f ◦ ψ ψ

β
2 +1 on L2(D, ωβdV1). It then readily extends to A2

ωα
(Dd). This finishes 

the proof. �
6.2. Weighted Bergman spaces on the symmetrized polydisc

Let α be a non-negative integer. For α = (α, . . . , α), the continuous function ωα is 
Sd-invariant. Consider the probability measure

ωα(z)dV (z) =
(α + 1

π

)d( d∏
i=1

(1 − r2
i )αridridθi

)

on the polydisc Dd. Let dV (α)
s be the measure on the symmetrized polydisc Gd obtained 

by the change of variables formula [7, p. 106]:
∫
Gd

fdV (α)
s = 1

d!

∫
Dd

(f ◦ s)|Js|2ωαdV, (6.4)

where Js(z) is the complex jacobian of the symmetrization map s. The weighted 
Bergman space Aωα(Gd), on the symmetrized polydisc Gd is the subspace of L2(Gd,

dV
(α)
s ) consisting of holomorphic functions. The weighted Bergman space Aω̃α

(Gd) is 
isometrically isomorphic to Panti(A2

ωα
(Dd)) for ωα = ω̃α ◦ s [28, p. 2363]. Then from 

Theorem 1.1, we deduce that for ũ = u ◦ s, ̃v = v ◦ s and q̃ = q ◦ s symmetric symbols in 
L∞(Dd), TũTṽ = Tq̃ on A2

ωα
(Dd) if and only if TuTv = Tq on Aω̃α

(Gd). Then the proof 
of Theorem 1.5 is straightforward from Theorem 1.4.
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