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Abstract
This article explores the relationship between Schubert varieties and equivariant embeddings,
using the framework of homogeneous fiber bundles over flag varieties. We show that the
homogenous fiber bundles obtained from Bott–Samelson–Demazure–Hansen varieties are
always toroidal. Furthermore, we identify the wonderful varieties among them. We give a
short proof of a conjecture of Gao, Hodges, and Yong for deciding when a Schubert variety is
sphericalwith respect to an action of aLevi subgroup.ByusingBP-decompositions,weobtain
a characterization of the smooth spherical Schubert varieties. Among the other applications
of our results are: (1) a characterization of the spherical Bott–Samelson–Demazure–Hansen
varieties, (2) an alternative proof of the fact that, in type A, every singular Schubert variety of
torus complexity 1 is a spherical Schubert variety, and (3) a proof of the fact that, for simply
laced algebraic groups of adjoint type, every spherical G-Schubert variety is locally rigid,
that is to say, the first cohomology of its tangent sheaf vanishes.

Keywords Wonderful varieties · Spherical varieties · Toroidal varieties · Schubert varieties ·
G-Schubert varieties · BSDH-varieties · G-BSDH-varieties · Automorphism groups ·
Tangent sheaves

.

1 Introduction

Let G be a connected reductive group defined over an algebraically closed field. Let X be a
normal G-variety. If a Borel subgroup B of G has an open orbit in X , then X is said to be a
spherical G-variety. This conventional definition of a spherical variety requires a reductive
group action, but it is worth recognizing that there are some outstanding examples of non-G
but B-varieties X that have an open orbit for B. Some of themost prominent instances of such
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varieties include Schubert varieties and some Bott–Samelson–Demazure–Hansen varieties
(BSDH-varieties). Moreover, such varieties always have a reductive group action with its
Borel subgroup contained in B. So we let X denote a Schubert variety in the full flag variety
G/B. In the present article, we investigate, among other things, the following basic question:

Is X a spherical L-variety, where L is a maximal reductive subgroup of the stabilizer of
X in G?

Let T be a maximal torus contained in B, and let W denote the Weyl group of the pair
(G, T ). Let S be the set of simple reflections of W relative to B. For I ⊂ S, we denote by
WI (resp. by W I ) the subgroup generated by I in W (resp. the set of minimal length left
coset representatives of WI in W ). Let PI denote the parabolic subgroup generated by B
and the representatives in G of the elements of WI . For w ∈ W I , the associated Schubert
variety in G/PI , denoted by XwPI , is defined as the Zariski closure of the B-orbit of the
point wPI in G/PI . In particular, sinceW ∅ = W , the Schubert varieties in G/B are indexed
by the elements of W . Let w ∈ W . The stabilizer of the Schubert variety XwB is a parabolic
subgroup P(w) such that B ⊂ P(w). Let L(w) be a Levi subgroup of P(w) such that
T ⊂ L(w). Then the Weyl group of L(w) is of the form WJ (w) for some J (w) ⊆ S. For
J ⊂ J (w), we denote by WJ , L J , and BJ , respectively, the Weyl group generated by J , the
Levi subgroup of L(w) determined by WJ , and the Borel subgroup B ∩ L J . By a Coxeter
elementwe mean the product of all elements of S in some order. In this terminology, the first
main result of our paper is the following statement.

Theorem 1.1 Let G be a connected semisimple simply connected algebraic group defined
over an algebraically closed field. Let XwB be a Schubert variety in G/B. Then, for J ⊆
J (w), the following statements are equivalent:

1. XwB is an L J -spherical variety such that dim BJ = dim XwB;
2. w = w0,J c, where w0,J is the longest element of WJ and c is a Coxeter element of W

such that �(w) = �(w0,J ) + �(c).

The statement of our theorem was proposed as a conjecture by Gao et al. [13], where
the underlying field is assumed to be of characteristic 0, and G was assumed to be simple.
In the original version of the Hodges–Yong conjecture, the equality dim BJ = dim XwB

was not required. By adopting the proof of our theorem to the action of a torus quotient
of BJ , we easily remove this condition. We should mention that, in type A, the Hodges–
Yong conjecture has recently been proved in [12] by Gao, Hodges, and Yong.1 Working with
the Demazure characters in characteristic zero, they use a totally different, computational
approach. We should also mention that, in the same article [12], the authors conjectured
a pattern avoidance criterion for the sphericalness of a Schubert variety in type A. More
recently, in [11, Theorem 1.4], Gaetz proved this pattern-avoidance criterion.

As an application of Theorem 1.1 and a result of Richmond and Slofstra from [27],
we prove the following interesting theorem which shows that there are strong connections
between smoothness and sphericalness of Schubert varieties.

Theorem 1.2 Let w ∈ W. Let J be a subset of J (w). We assume that XwB is a spherical
L J -variety such that dim XwB = dim BLJ . Then the following assertions are equivalent:

1. XwB is a smooth Schubert variety.
2. Xw−1B is a smooth Schubert variety.
3. Xc−1PJ is a smooth toric variety.

1 After the completion of this article, we learned that Gao et al. [14] independently proved their conjecture.
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Note that the equivalence of the first two assertions in the theorem was proven by Carrell
[9].

Our next result establishes a connection between the BSDH-varieties and equivariant
embeddings. Let w be a word in the simple reflections of W relative to B. We denote by
Xw the BSDH-variety associated with w. It is defined as follows. If w = (si1 , . . . , sim ), then
we have the product of minimal parabolic subgroups

∏m
j=1 Pi j , where Pi j = B ∪ Bsi j B for

j ∈ {1, . . . ,m}. The corresponding BSDH-variety, denoted Xw , is defined as the quotient
variety

∏m
j=1 Pi j /B

m , where the (right) action of Bm is given by

(p1, . . . , pm) · (b1, . . . , bm) = (p1b1, b
−1
1 p2b2, . . . , b

−1
m−1 pmbm),

for (b1, . . . , bm) ∈ Bm and (p1, . . . , pm) ∈ Pi1 × · · · × Pim .
Let w be the element of W that is obtained by multiplying the entries of w in the order

that they appear in w. If w is a reduced word, then the length of w is equal to the dimension
of XwB . Furthermore, in this case, there is a natural mapm : Xw → XwB that is a resolution
of singularities of XwB . The homogenous fiber bundles of the form G ×B XwB are known
as the G-Schubert varieties (in G/B × G/B). In this paper, we term a homogeneous fiber
bundle of the form G ×B Xw a G-BSDH variety. Note that, since the BSDH-varieties are
nonsingular, so are the G-BSDH varieties. Indeed, a G-BSDH variety can be viewed as a
natural G-equivariant resolution of singularities of a G-Schubert variety via the canonical
mapmG := 1 × m : G ×B Xw → G ×B XwB , [g, x] → [g,m(x)]. Now let H be a closed
subgroup of G such that the left multiplication action of B on G/H has an open orbit. Then
H (resp. G/H ) is called a spherical subgroup (resp. a spherical homogeneous space). A
G-equivariant embedding X of G/H is said to be simple if G has a unique closed orbit in
X . It is called a toroidal embedding if whenever a B-stable prime divisor D of X contains a
G-orbit, then D is G-stable. Our second main result is the following statement.

Theorem 1.3 Let X be a G-BSDH variety. Let D be a B-stable divisor in X. If D contains
a G-orbit, then D is G-stable.

This result shows that a G-BSDH variety behaves like a toroidal variety even if it is not
spherical. By using Theorem 1.3, we obtain a similar result for G-Schubert varieties.

Corollary 1.4 Let G ×B XwB be a G-Schubert variety. Let D be a B-stable divisor in
G ×B XwB. If D contains a G-orbit, then D is G-stable.

As an example of such aG-Schubert variety,wemay consider X := G×B Xw0B , wherew0

is the longest element ofW . Then we have a G-equivariant isomorphism X → G/B×G/B.
On the target, the action of G is the diagonal action. The classification of spherical diagonal
actions on double partial flag varieties is well-known. In [22], Littelmann classified the
spherical diagonal actions on the products of twoGrassmannians.Working in typeA,Magyar
et al. [24] classified the spherical diagonal actions across all products of partial flag varieties.
Finally, Stembridge classified spherical diagonal actions on double partial flag varieties for
all types in [29]. In particular, we know from [24, Theorem 2.2] (or from [29, Corollary
1.3.A]) that, for G = GL(n, C), where n ≥ 4, G/B × G/B is not a spherical G-variety.
Therefore, X cannot be a spherical G-variety. Nevertheless, Corollary 1.4 implies that if a
B-stable divisor D in X contains a G-orbit, then D is a G-stable divisor.

We proceed with the assumption thatG/H is a spherical homogeneous space as before. A
G-equivariant embedding X of G/H is called a wonderful variety if it is smooth, complete,
simple, and toroidal. Strictly speaking, the original definition of a “wonderful variety” is
slightly different. The equivalence of the definitions is themain result of Luna’s paper [23]. By
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building on some basic observations of Luna and Avdeev, we obtain the following interesting
connection between Schubert varieties and wonderful varieties.

Theorem 1.5 Let w be a word in S. Then G ×B Xw is a wonderful variety if and only if Xw

is a toric variety. Furthermore, if w is a reduced word in S, then G ×B Xw is a wonderful
variety if and only if XwB is a toric variety.

The structure of our paper is as follows. In the next section,we review somebasic invariants
of the algebraic group actions. In Sect. 3, we investigate the poset of G-orbit closures in
a homogenous fiber bundle over G/H . We prove the following fact (Theorem 3.1): the
inclusion poset of H -orbit closures in the fiber over eH is isomorphic to the inclusion poset
ofG-orbit closures in X , where X is assumed to possess an openG-orbit. In Sect. 4, we prove
Theorem 1.3. In Sect. 5, we prove Theorem 1.5. In Sect. 6, we prove our first main result,
Theorem 1.1. We discuss some applications of our results in Sect. 7. In particular, we prove
Theorem 1.2 in this final section. We finish our paper by mentioning some future work on
the relative versions of our results.

2 Preliminaries

Throughout this article, we work over an algebraically closed field k. The one-dimensional
multiplicative (resp. additive) algebraic groups (k×, ·) (resp. (k,+)) will be denoted by Gm

(resp. byGa). The letterG is reserved for a connected affine algebraic group unless otherwise
specified. We will use the letter B to denote a Borel subgroup of G. Unless otherwise noted,
the letter e will stand for the identity element of an algebraic group under consideration.

If an algebraic group H acts by a morphism on an algebraic variety X , then we will denote
the action by H : X .

2.1 Modality and complexity

Let X be a G-variety. The generic modality of the action G : X , denoted by dG(X), is the
transcendence degree over k of the field of G-invariant rational functions on X . In other
words, we have dG(X) := tr.deg k(X)G . It follows from a well-known result of Rosenlicht
[28, Theorem 2] on the rational invariants that the generic modality is equal to the minimum
codimension of a G-orbit in X . A readily accessible proof of this fact can be found in [26,
Corollary 2.3]. The modality of G : X , denoted by mod(G : X), is defined by mod(G :
X) = maxY⊆X dG(Y ), where Y varies in the set of all G-stable irreducible subvarieties of
X . It follows from a result of Popov and Vinberg in [31, Theorem 8] that the actions with
modality 0 are precisely the actions with a finite number of orbits.

For a reductive group G, the complexity of the action G : X , denoted by cG(X), can be
defined as the generic modality of X with respect to the action B : X , where B ⊂ G is a
Borel subgroup. In particular, the condition cG(X) = 0 is equivalent to B having an open
orbit in X . If X is normal, G is reductive, and cG(X) = 0, then X will be called a spherical
G-variety. Brion and Vinbeg showed separately that X is a G-spherical variety if and only
if there are only finitely many B-orbits in X . In other words, mod(B : X) = 0 if and only if
cG(X) = 0.

Let H be a closed subgroup ofG. IfG/H is a sphericalG-variety via the leftmultiplication
action, then H is called a spherical subgroup. In this case, wewill refer toG/H as a spherical
homogeneous space. If there is an open G-orbit O in a normal G-variety X , then we will call
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X an embedding of O . In particular, any spherical G-variety is an embedding of a spherical
homogeneous space.

2.2 Toroidal embeddings, regular varieties

Let G be a connected reductive group. Let X be a spherical G-variety. Let H denote the
stabilizer in G of a point x0 from the open G-orbit in X . Then G/H ∼= G · x0. Let us denote
the open orbit by X0. We denote the set of B-stable prime divisors of X0 by D. Notice that
if a prime divisor D does not intersect X0, then D must be G-stable. Indeed, the closed set
X \ X0 is G-stable, and D is one of its irreducible components. Since G is connected, the
closures of its orbits are the irreducible components of X\X0. Notice also that a G-stable
prime divisor E ⊆ X cannot intersect the open orbit nontrivially. Otherwise, we would have
E = X , which is absurd. Thus, we see that the G-stable prime divisors of X are precisely
the irreducible components of X \ X0.

Let Y ⊂ X be a G-orbit. We set

DY := {D ∈ D : Y ⊆ D} and Dall :=
⋃

Y is a G-orbit in X

DY . (2.1)

A B-stable but not G-stable divisor of X is called a color of X . In other words, the colors of
X are the Zariski closures in X of the elements ofD. A spherical variety X is called toroidal
if none of its colors contain a G-orbit. Equivalently, X is toroidal ifDall = ∅. In this case, we
call X a toroidal embedding ofG/H . In our earlier work, [7], we determined some necessary
conditions for a Schubert XwB to be toroidal.

The notion of a “regular G-variety” is introduced by Bifet, De Concini, and Procesi in
[3, Definition 5]. A smooth G-variety X is called a regular G-variety if the following three
conditions are satisfied:

1. X contains an open G-orbit X0 such that X \ X0 is a union of smooth prime divisors with
normal crossings. These prime divisors are called the boundary divisors.

2. Every G-orbit closure in X is the transversal intersection of the boundary divisors.
3. For every x ∈ X , the normal space Tx X/Tx (G · x) contains a dense orbit of StabG(x).

It turns out that any complete regular G-variety is spherical. Conversely, every homogeneous
spherical G-variety admits a completion, which is a regular G-variety.

Under the assumption of completeness, the toroidal and regular varieties are closely related
to one another. The following result which we will use later is due to Bien and Brion [2,
Proposition 2.2.1].

Theorem 2.2 Let X be a smooth complete spherical G-variety. Then X is a toroidal
embedding (of its open orbit) if and only if X is a regular G-variety.

2.3 Homogeneous fiber bundles

Let H be a closed subgroup of G. The notion of a “homogeneous bundle” over G/H is a
bridge between the category of H -varieties and the category of G-varieties. A concise but
good presentation of this useful gadget is given in [30, Chapter 2.1].

Definition 2.3 A homogeneous fiber bundle over G/H is a G-variety X together with a G-
equivariant surjective morphism X → G/H . The homogeneous space G/H is called the
base of homogeneous fiber bundle.
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Quotients provide for a more precise expression of homogenous fiber bundles. Let Z be a
quasi-projective H -variety. Then H acts diagonally on G × Z via h · (g, z) := (gh−1, h · z)
for h ∈ H , and (g, z) ∈ G × Z . The quotient set, denoted G ×H Z , is a G-variety. In fact,
G ×H Z is a homogeneous fiber bundle over G/H ; the surjective G-equivariant morphism
is given by

G ×H Z −→ G/H

[(g, z)] �−→ gH .

Some simple examples of homogeneous fiber bundles will be useful for our purposes.

Example 2.4 Let G be a connected reductive group. Let B be a Borel subgroup of G. Let χ
be a character of B. Then we have a one dimensional representation ρ : B → Gm defined
by ρ(b) · x := χ(b)x (x ∈ k, b ∈ B). By using this action of B on k, we get a B-variety
G × k where the action of B is given by

b · (g, x) = (gb−1, ρ(b) · x) = (gb−1, χ(b)x) (g ∈ G, x ∈ k, b ∈ B). (2.5)

The action (2.5) has a geometric quotient. Hence, its quotient is an algebraic variety, which
we denote by G ×B kχ . Clearly, the map

p : G ×B kχ −→ G/B

[g, x] �−→ gB

is a surjective morphism. Furthermore, G acts on G ×B kχ via left multiplication on the first
factor. The projection p : G×B kχ → G/B is equivariant with respect to this action. In other
words, G×B kχ is a homogeneous fiber bundle over G/B. It is easy to check that G×B kχ is
(the total space of) a line bundle, denoted by Lχ , on the flag variety G/B. In characteristic 0,
if χ is an anti-dominant weight of B, then the dual of the space of global sections of Lχ , that
is H0(G/B,Lχ )∗, is the irreducible representation of G with highest weight χ . For further
details of this correspondence, see [17, Chapter II].

The previous example has a far reaching generalization. Let P be a parabolic subgroup
of G. Let Y be a P-variety. Then G ×P Y → G/P is a homogeneous fiber bundle with fiber
Y . In this case, there is an equivalence between the category of G-linearized sheaves on the
homogeneous fiber bundle G ×P Y and the category of P-linearized sheaves on Y , see [4,
Sect. 2] and [15, Sect. 4].

We continue with a very simple lemma that has some important consequences.

Lemma 2.6 Let X be a homogeneous fiber bundle over G/H. If O is a G-orbit (closure) in
X, then O is a homogeneous fiber bundle over G/H.

Proof We will show that the restriction of p to O , denoted p|O , is a G-equivariant surjective
morphism. Let z be a point from O . Then, by the G-equivariance of the original map X →
G/H , we have p(G · z) = G · p(z) = G/H . It follows that p|O is surjective. This finishes
the proof of our assertion. �

The structure of aG-orbit in a homogeneous fiber bundle is determined to a certain degree
by the fiber at the “origin” of the base.

Lemma 2.7 Let p : X → G/H be a homogeneous fiber bundle over G/H. Let Y denote the
fiber at eH, that is, Y := p−1(eH). Then every G-orbit in X intersects Y . Furthermore, Y
is stable under H-action.
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Proof Let x be a point in X . Since p is aG-equivariantmorphism,wehave p(G·x) = G·p(x).
Clearly, G · p(x) is equal to G/H . In particular, there exists g ∈ G such that p(g · x) = eH .
Therefore, we have g · x ∈ (G · x) ∩ Y . This means that the intersection (G · x) ∩ Y is
nonempty.

Our second claim also follows from the G- (hence H -) equivariance of p combined with
the fact that HeH = H = eH . �
Lemma 2.8 We maintain the notation from Lemma 2.7. Let g ∈ G and y ∈ Y . Then we have
g · y ∈ Y if and only if g ∈ H.

Proof If g · y ∈ Y , then we have p(g · y) = eH . By the G-equivariance of p, we see that
p(g · y) = g · p(y). But y ∈ Y implies that p(y) = eH , hence that, gH = eH , or g ∈ H .
Conversely, if g ∈ H , then p(g · y) = g · eH = gH = eH . Therefore, g · y ∈ Y . This
finishes the proof of our assertion. �
Corollary 2.9 We maintain the notation from Lemma 2.7. We assume that Y , that is, the fiber
at eH, is irreducible. Then G has an open orbit in X if and only if H has an open orbit in Y .

Proof By Lemmas 2.7 and 2.8, we see that (1) Y is H -stable, and (2) every G-orbit in X
intersects Y along an H -orbit in Y . It follows that if O is an open G-orbit in X , then O ∩ Y
is an open H -orbit in Y . To prove the converse statement, let us assume that H has an open
orbit, denoted by O , in Y . Towards a contradiction, let us assume also that G does not have
an open orbit in X . Then there are infinitely many G-orbits of maximal dimension in X . This
follows from the well-known fact that [10, Ch. 7, Theorem 3.3] the points whose orbits have
maximal dimension form an open subsetC ⊂ X . Let us show thatC ∩O is a nonempty open
subset of Y . Indeed, C ∩ Y is a nonempty open subset of Y . Since Y is irreducible, all open
subsets in Y intersect each other. In particular, we see that C ∩ O �= ∅. Now, since C ∩ O
contains infinitely many points with disjoint G-orbits, we find a contradiction. Hence, we
conclude that G has an open orbit in X . �

3 The Poset ofG-orbit closures

Let L : X be an algebraic group action. By I (L : X) we will denote the inclusion poset of
L-orbit closures in X .

Theorem 3.1 Let p : X → G/H be a homogeneous fiber bundle over G/H. Let Y denote
the fiber of p at eH, that is, Y := p−1(eH). If G has an open orbit in X, then the posets
I (G : X) and I (H : Y ) are isomorphic.

Proof Let O be an element from I (G : X). Then O is of the form G · x for some point x
in X . We know from Lemma 2.7 that O ∩ Y �= ∅. We will show that O ∩ Y is actually an
H -orbit closure. Let y be an element from (G · x)∩Y . Clearly, we have H · y ⊆ (G · x)∩Y .
We claim that this inclusion is actually equality, that is, H · y = (G · x) ∩ Y . Let z be an
element from (G · x) ∩ Y . Then z = g · x for some g ∈ G. Since both z and y are elements
of the G-orbit G · x , there exists d ∈ G such that d · z = y. Then by Lemma 2.8, we have
d ∈ H . In particular, we see that z ∈ H · y in Y . This argument finishes not only the proof
of our claim but also shows that the following map is well-defined:

ϕ : I (G : X) −→ I (H : Y )

G · x �−→ Y ∩ (G · x).
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Let K be an element of I (H : Y ). Then K = H · y for some y ∈ Y . Clearly, theG-orbitG · y
intersects Y along K . Therefore, ϕ is surjective. Now let K1 := H · y1 and K2 = H · y2 be
two distinct H -orbit closures in Y . We claim that (G · y1) ∩ (G · y2) = ∅. Indeed, if these
two G-orbits coincide, then since yi ∈ H (i ∈ {1, 2}), by Lemma 2.8, there exists d ∈ H
such that y1 = d · y2. But this contradicts with our assumption that K1 �= K2. This proves
our claim. Hence, ϕ is injective. Thus we proved that ϕ is a bijection between I (G : X) and
I (H : Y ). We are now ready to prove that it is an order isomorphism, that is,

O1 ⊆ O2 ⇐⇒ ϕ(O1) ⊆ ϕ(O2)

for every O1, O2 from I (G : X). We will use induction on dim X .
If dim X = 1, then we have one of the following two possibilities:

(a) dimG/H = 0,
(b) dimG/H = 1

In the former case, since G is connected, we have G = H . Then G/H is a point and
Y = X . Thus, I (G : X) = I (H : Y ) = {X}. In the latter case, for dimension reasons, we
have X = G/H . It follows that Y = eH . In other words, we have I (G : X) = {X} and
I (H : Y ) = {Y }. Since both posets have single element, they are isomorphic.

We now assume that our claim holds for every homogeneous fiber bundle Z → G/H such
that dim Z = n. Let X be a homogeneous fiber bundle over G/H such that dim X = n + 1.
Let O1 and O2 be two G-orbit closures from I (G : X).

First, we assume that O1 ⊆ O2. Let us assume also that dim O2 < n + 1. Notice that
the restriction of p to O2 gives a surjective G-equivariant morphism p|O2 : O2 → G/H .
Hence, O2 stands as a homogeneous fiber bundle itself. Since its dimension does not exceed
n, by applying our inductive assumption, we readily see that the inclusion ϕ(O1) ⊆ ϕ(O2)

holds in I (G : O2). But this is a subposet of I (G : X). Hence, the inclusion ϕ(O1) ⊆ ϕ(O2)

holds in I (G : X) as well. If dim O2 = n + 1, then the G-orbit G · x such that G · x = O2 is
the open orbit in X . Hence, the intersection (G · x) ∩ Y is open in Y . In particular, we have
ϕ(O2) = Y . Therefore, the inclusion ϕ(O1) ⊆ ϕ(O2) holds in I (G : X) in this case, also.

Conversely, we assume that ϕ(O1) ⊆ ϕ(O2). We want to show that O1 ⊆ O2. To this
end, we notice that the inclusion ϕ(O1) ⊆ ϕ(O2) implies that G ·ϕ(O1) ⊆ G ·ϕ(O2). Since
we have the equality G · ϕ(Oi ) = Oi for i ∈ {1, 2}, our claim follows. Hence, the proof is
complete. �
Remark 3.2 Thanks to Corollary 2.9, in Theorem 3.1, we may replace the hypothesis that
G has an open orbit by the following two assumptions: (1) Y is irreducible, and (2) H has
an open orbit in Y . Alternatively, we may use the following two assumptions: (1’) H is
connected, and (2’) H has a dense orbit in Y . To see that 1’ and 2’ together imply 1 and 2,
we first notice that since H is connected, the closure of an orbit of H is irreducible. Since H
has a dense orbit O ⊆ Y , its Zariski closure, that is, Y is irreducible. Secondly, since orbits
of maximal dimension form an open set, we see that O is open. Hence, we showed that the
assumptions 1’ and 2’ imply the assumptions 1 and 2.

Example 3.3 Let G be a connected reductive group. Let B be a Borel subgroup. Let χ be
a nontrivial character of B. As we mentioned before, the projection G ×B kχ → G/B is
a homogeneous (line) bundle over G/B. The fiber of G ×B kχ → G/B at eB is given by
{e} ×B kχ . This is naturally isomorphic to the vector space k on which B acts via χ . In
characteristic 0, this action has only two orbits; {0} and k\{0}. The former orbit is contained
in the closure of the latter orbit. It follows that G has two orbits on G ×B kχ with the same
inclusion relationship.
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4 G-BSDH varieties

Webeginwith fixing some additional notation.Hereafter,G will denote a connected reductive
group. As usual, B will denote a Borel subgroup of G, and T will denote a maximal torus of
B. The Weyl group of (G, T ) is denoted by W . The set of Coxeter generators of W (relative
to B) is denoted by S (or by S(G) when we need to make a distinction). We let ≤ denote the
Bruhat-Chevalley order. The length function on W will be denoted by �.

The unipotent radical of an algebraic group H will be denoted by Ru(H). If H is the Borel
subgroup B, then we will use the letterU instead of Ru(H). The unique Borel subgroup that
is opposite to B is denoted by B−. Also, its unipotent radical will be denoted by U−.

Let P be a parabolic subgroup of G. If P is standard with respect to B, that is to say
B ⊆ P , then we write PJ instead of P , where, J ⊆ S is the set of Coxeter generators
such that B and the representatives of the elements of J in G generate PJ . In this notation,
the Weyl group of PJ is denoted by WJ . The corresponding set of minimal length left coset
representatives inW is denoted byW J . For s ∈ S, the minimal parabolic subgroup generated
by B and the representative ns ∈ G of s is denoted by Ps . Then Ps is given by the union
B ∪ BsB. Notice that, in this union, we used s instead of ns . We will continue to follow this
convention in the sequel to simplify our notation.

A word in S is a finite sequence of not necessarily distinct elements from S. If w denotes
the word (si1 , . . . , sim ) in S, then the product w := si1 · · · sim is an element of W . In this
notation, the corresponding Schubert variety is given by

XwB = Psi1 Psi2 · · · Psim /B.

We say that a word w = (si1 , . . . , sim ) is a reduced word if its lengthm equals the dimension
of the corresponding Schubert variety, m = dim XwB .

We are now ready to discuss our generalized Schubert varieties.We consider themorphism

ξ : G ×B G/B −→ G/B × G/B (4.1)

[g, g′B] �−→ (gB, gg′B).

It is well-known that every closed irreducible G-stable subvariety of G/B × G/B is of the
form ξ(G ×B XwB) for some w ∈ W , see [6, p. 69]. For this reason, a homogeneous fiber
bundle of the form G ×B XwB , where w ∈ W , is called a G-Schubert variety.

We recall the definition of the BSDH-varieties to set up our notation. Letw be a word from
S. Ifw = (si1 , . . . , sim ), then we have the product of minimal parabolic subgroups

∏m
j=1 Pi j ,

where Pi j = B ∪ Bsi j B for j ∈ {1, . . . ,m}. Then the BSDH-variety Xw is defined as the
quotient variety

∏m
j=1 Pi j /B

m , where the (right) action of Bm is given by

(p1, . . . , pm) · (b1, . . . , bm) = (p1b1, b
−1
1 p2b2, . . . , b

−1
m−1 pmbm),

for (b1, . . . , bm) ∈ Bm and (p1, . . . , pm) ∈ Pi1 × · · · × Pim . The image of an element
(p1, . . . , pm) of Pi1 × · · · × Pim under the quotient map πw : ∏m

j=1 Pi j → Xw will be
denoted by [p1, . . . , pm]. The BSDH-variety Xw is closely related to the corresponding
Schubert variety XwB . Indeed, the Schubert variety XwB is image of the natural product
map,

m : Xw −→ G/B

[p1, . . . , pm] �−→ p1 · · · pm B.
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Fig. 1 A diagram of
G-equivariant quotient maps

It is well-known that [6, Theorem 3.4.3] if w is a reduced word, then m is a resolution of
singularities of XwB . We note in passing that in [6] a BSDH-variety associated with w is
denoted by Zw.

Definition 4.2 A G-BSDH variety is a homogeneous fiber bundle of the form G ×B Xw ,
where w is a word in S.

We are now ready to prove our Theorem 1.3. Let us recall its statement for convenience.
Let X := G ×B Xw be a G-BSDH variety. If a B-stable divisor D in G ×B Xw contains

a G-orbit, then D is G-stable.

Proof of Theorem 1.3 We fix a B-linearized very ample line bundle L → Xw . Let Y ⊆ A
N+1

denote the affine cone for the corresponding projective embedding Xw → P
N . Let Y0 :=

Y\{0}. Then G × Y0 is a quasi-affine variety. Let q : Y0 → Xw denote the quotient map.
This is a smooth morphism. We consider the following morphisms:

p : G × Y0 → G × Xw

(g, x) �→ (g, q(x)),

and π : G × Xw → G ×B Xw

(g, q(x)) �→ [(g, q(x))].
Let p̃ : G × Y0 → G ×B Xw denote their composition as in Fig. 1. It is easy to check that
both p and π are smooth, G-equivariant quotient morphisms. It follows that p̃ is a smooth,
G-equivariant, and surjectivemorphism of quasi-projective varieties as well. It is also evident
that p̃({e} × Y0) = {e} ×B Xw .

Now let D be a B-stable divisor in G ×B Xw . Then, the preimage p̃−1(D) is a B-stable
divisor in G × Y0. Let O be a G-orbit contained in D. Then there exists a point [h, x] ∈ D,
where h ∈ G and x ∈ Xw , such that O = G · [h, x]. Since G acts on the first coordinate,
we have O = G ×B {x}. Notice that π(G × {x}) = G ×B {x} = O . Hence, we have the
following containments of quasi-affine varieties:

G × {x} ⊂ p̃−1(O) ⊂ p̃−1(D).

It follows that the coordinate ring k[G] is a quotient of the coordinate ring of p̃−1(D).
We proceed to make a related observation. We will consider the first projection,

α1 : G ×B Xw → G/B

[g, x] �→ gB,

which is a G-equivariant morphism. Then we have α−1
1 (eB) = {e} ×B Xw . Let us call this

preimage the special fiber. We know that every G-orbit in G ×B Xw intersects the special
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fiber. Let F := D ∩ ({e} ×B Xw). Since D contains a G-orbit, F is nonempty. At the same
time, since D is a divisor in G ×B Xw , exactly one of the following two cases may occur:

(1) F is a divisor in {e} ×B Xw , or
(2) {e} ×B Xw is contained in D, so F = {e} ×B Xw .

We will show that (2) is not possible. Towards a contradiction, let us assume that (2)
holds. Then, we see that {e} × Y0 is a subvariety of p̃−1(D). This means that the coordinate
ring k[Y0] is a quotient of the coordinate ring of p̃−1(D). We know the following facts:
1) (e, x) ∈ {e} × Y0, 2) D contains the G-orbit of (e, x), 3) p̃ is G-equivariant, and 4) G
is connected. Therefore, the irreducible component of p̃−1(D) that contains {e} × Y0 also
contains the G-orbit of (e, x). But this implies that G × {x} is a subvariety of the irreducible
component of p̃−1(D) that contains {e}×Y0. Nowwe know that p̃−1(D) contains two closed
subsets Z1 := G × {x} and Z2 := {e} × Y0 which intersect along the point (e, x). It follows
that p̃−1(D) contains a subvariety that is isomorphic to

J := (G × {x}) × ({e} × Y0).

Since the coordinate ring of J is isomorphic to k[G] ⊗ k[Y0], we see that the coordinate
ring k[ p̃−1(D)] contains a subring that is isomorphic to k[G]⊗ k[Y0]. Nonetheless, this ring
is isomorphic to the coordinate ring of the ambient variety G × Y0 � p̃−1(D). Hence, we
obtain a contradiction from the fact that p̃−1(D) is only a divisor in G × Y0.

We proceed with (1). Since both D and {e} ×B Xw are B-stable, we see that F :=
D ∩ ({e} ×B Xw) is a B-stable divisor in {e} ×B Xw . Let F0 denote the image of F under
the second projection α2 : G ×B Xw → Xw . Let O denote the G-orbit of some point [e, z]
in F . Let O denote the Zariski closure of O in X . It is easy to that π−1(O) is the divisor
G × F0 in G × Xw . It follows that π−1(D) is contained in G × F0 = (π ◦ α2)

−1(F0). But
π : G × Xw → G ×B Xw is a smooth morphism, and D is a prime divisor. Hence, π−1(D)

is a prime divisor. Clearly, G × F0 is a prime divisor as well. It follows that we have the
equality,

π−1(D) = G × F0.

In particular, we see thatπ−1(D) isG-stable. Sinceπ isG-equivariant and D = π(π−1(D)),
the proof of our theorem is finished. �
Corollary 4.3 Let XwB be a Schubert variety in G/B. Let X denote the corresponding G-
Schubert variety G ×B XwB. Let D′ be a B-stable divisor in X. If D′ contains a G-orbit,
then D′ is G-stable.

Proof We fix a reduced word w of w. Since the map m : Xw → XwB is a resolution of
singularities, the induced map 1 × m : G ×B Xw → X is a resolution of singularities as
well. At the same time, 1 × m is a G-equivariant morphism, where the action of G is given
by

g · [h, x] = [gh, x], where g ∈ G,

and [h, x] represents either an element of G ×B Xw or an element of G ×B XwB . Now, since
1 × m is B-equivariant and birational, we see that the preimage of every B-stable divisor
D′ in X is a B-stable divisor D in G ×B Xw . Let D′ be a B-stable divisor in X . We claim
that if D′ contains a G-orbit, then the divisor D := (1 × m)−1(D′) contains a G-orbit as
well. To see this, let y ∈ D′ be a point such that G · y ∈ D′. Let z ∈ (1×m)−1(y). Assume
towards a contradiction that there exists t := g · z ∈ G · z such that t /∈ D. Then we have
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(1 × m)(t) /∈ D′. But since 1 × m is G-equivariant, we obtain the following contradictory
membership:

(1 × m)(t) = g · (1 × m)(z) = g · y ∈ D′.

This contradiction shows D contains a G-orbit as well. Then, it follows from Theorem 1.3
that D is G-stable. By using the G-equivariance of 1 × m once more, we see that D′ is
G-stable as well. This finishes the proof of our assertion. �
Corollary 4.4 Letw be aword in S. Letw denote the corresponding element in W. If G×B Xw

is a spherical variety, then both of the varieties G ×B Xw and G ×B XwB are regular
G-varieties.

Proof Let X ∈ {G ×B Xw,G ×B XwB}. By Theorem 1.3 and its Corollary 4.3, we know
that for every G-orbit Y in X , we haveDY = ∅. Here,DY is the notation introduced in (2.1).
Hence, we haveDall = ∅. In other words, X is a toroidal variety. The rest of the proof follows
from Theorem 2.2. �

5 Toroidal homogeneous fiber bundles

In light of our Corollary 4.4, It is important to find a characterization of the spherical G-
BSDH varieties. Finding obstructions that prevent variety G ×B Xw from being a spherical
G-variety is not difficult; dimension provides the first obstruction.

Proposition 5.1 Let w be a word in S, and let w be the corresponding element of W . If
�(w) > |S|, then G ×B Xw is not spherical.

Proof First, we note that dim T = |S| and dim Xw ≥ dim XwB = �(w). Let z̃0 be a point
from Xw . Since �(w) > |S|, the dimension of XwB , hence the dimension of Xw is at least
dim T + 1. Let us compute the dimension of the homogeneous fiber bundle G ×B Xw ,

dimG ×B Xw = dimG + dim Xw − dim B

= dimU− + dim Xw. (5.2)

It follows that we have the inequality dimG ×B Xw > dimU− + dim T = dim B. Since
the dimension of a B-orbit is at most dim B, we see that dimG ×B Xw cannot have an open
B-orbit. This finishes the proof of our assertion. �

We continue with a finer analysis of the number of parameters on which a family of
G-orbits in G ×B Xw may depend.

Proposition 5.3 Let w be a word in S. Then we have

mod(G : G ×B Xw) = mod(B : Xw).

In particular, if w is a reduced word of length l, then we have mod(B : Xv) = 0 for every
subword v of length l − 1 if and only if we have mod(G : G ×B Xw) = 0.

Proof Recall that the modality of an action G : X is the number maxY⊆X tr.deg k(Y )G ,
where the maximum is taken on the set of allG-stable irreducible subvarieties Y of X . Recall
also that every G-orbit in G ×B Xw is of the form G ×B Z , where Z is a B-orbit in Xw .
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Since k(G ×B Z) ∼= k(G × Z)B , and since the left action of G and the right action of B
commute with each other, we see that

Gk(G ×B Z) = G(k(G × Z)B) = (Gk(G × Z))B = k(Z)B .

Thus, the transcendence degree of Gk(G ×B Z) is equal to the transcendence degree of
k(Z)B . In light of the correspondence between the G-orbits in G ×B Xw and the B-orbits in
Xw , we see that

max
Y :B-stable irr. subv. of Xw

tr.deg k(Y )B = max
Y :G-stable irr. subv. of G×B Xw

tr.deg Gk(G ×B Y ).

This finishes the proof of our first assertion.
To prove our second assertion we note the fact that if w is a reduced word, then the

B-equivariant surjective proper map, m : Xw → XwB is a birational morphism. Let j ∈
{1, . . . , l}. Ifw is given byw := (si1 , . . . , sil ), then letw

j denoteword defined by suppressing
the j-th entry,

w j := (si1 , . . . , si j−1 , si j+1 , . . . , sil ).

By [5, Proposition 2.2.6 (ii)], we see that Xw is given by the union

Xw = m−1(CwB) ∪
l⋃

j=1

Xw j , (5.4)

where CwB is the open B-orbit in the Schubert variety XwB . At the same time, we know
from [5, Proposition 2.2.1 (iv)] that m−1(CwB) is isomorphic to CwB via the restriction of
the B-equivariant morphism, m. Since mod(B : Xw j ) = 0 if and only if Xw j has only
finitely many B-orbits, we see from (5.4) that Xw has only finitely many B-orbits. Clearly,
this argument is reversible. Now, the rest of the proof follows from our first assertion. This
finishes the proof of our proposition. �
Example 5.5 Let G denote GL(3, C). Let B denote the Borel subgroup of upper triangular
matrices in G. Let T denote the maximal diagonal torus in B. The Weyl group of (G, T ) is
the symmetric group S3. The set of simple reflections is given by S = {s1, s2}, where si (for
i ∈ {1, 2}) is the simple transposition that interchanges i and i +1. Let w0 denote s1s2s1. We
will consider the reduced word w0 := (s1, s2, s1). For i ∈ {1, 2}, let Psi denote the standard
parabolic subgroup of GL(3, C) that is generated by B and si . Now, the three subwords of
w0 of length 2 are (s1, s2), (s2, s1), and (s1, s1). Then the corresponding BSDH-varieties are
given by Ps1 ×B Ps2/B, Ps2 ×B Ps1/B, and Ps1 ×B Ps1/B � Ps1/B × Ps1/B, respectively.
The first two BSDH-varieties are isomorphic to the Hirzebruch surface P(O⊕O(−1)). Here,
O is the structure sheaf of P

1. Let v := (s1, s1). Then Xv is isomorphic to P
1×P

1 as an L{s1}-
variety, where L{s1} is the standard Levi subgroup of P{s1}. The maximal torus T ⊂ L{s1} has
an open orbit in P

1 × P
1. We conclude from this calculation that for every (not necessarily

reduced) subword v of length 2 of w0 = (s1, s2, s1), the corresponding BSDH-variety Xv

contains only finitely many B-orbits.

We know from Karuppuchamy’s work ([18, Theorems 2 and 4]) that a Schubert variety
XwB is a toric variety if and only if w is a product of distinct simple reflections from S. It
turns out that XwB being a toric variety is equivalent to the G-Schubert variety G ×B XwB

being a spherical variety. To state this more precisely, we will briefly review some results
which are originally due to Luna.
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Definition 5.6 Let P be a parabolic subgroup. Let L be a Levi factor of P . We denote by
BL a Borel subgroup of L . A normal P-variety Z is called a spherical P-variety if the Z
is a spherical L-variety. A spherical P-variety Z is said to be wonderful if it possesses the
following properties:

(1) Z is smooth and complete;
(2) Z contains exactly one closed P-orbit Z0;
(3) every irreducible BL -stable closed subvariety Z ′ ⊆ Z containing Z0 is actually P-stable.

Notice that the properties (1)–(3) are equivalent to saying that Z is smooth, complete, simple,
and toroidal.

Lemma 5.7 [1, Proposition 6.3] Let Z be a P-variety and consider the G-variety X =
G ×P Z. Then we have

1. Z is a spherical P-variety if and only if X is a spherical G-variety.
2. Z is a wonderful P-variety if and only if X is a wonderful G-variety.

We are ready to prove the main result of this section.

Proposition 5.8 Letw be a reduced word in S. Then the following statements are equivalent:

1. Xw is a toric variety;
2. XwB is a toric variety;
3. G ×B Xw is a spherical G-variety;
4. G ×B XwB is a spherical G-variety.

Proof The two sided implications (1)⇔(3) and (2)⇔(4) follow from Lemma 5.7 where P is
B. Since w is a reduced word, the canonical B-equivariant map Xw → XwB is a birational
morphism. Hence, Xw is a toric variety if and only if XwB is a toric variety. This finishes the
proof of our assertion. �

Weare now ready to remove the reducedness assumption onw. Recall that ourTheorem1.5
is the following statement:

Let w be a word in S. Then G ×B Xw is a wonderful variety if and only if Xw is a toric
variety. Furthermore, if w is a reduced word in S, then G ×B Xw is a wonderful variety if
and only if XwB is a toric variety.

Proof of Theorem 1.5 By [2, Proposition 2.2.1], we know that a smooth and complete G-
variety is regular if and only if it is spherical without color. It follows from this fact that a
regular G-variety is spherical if it is complete. Clearly, every G-BSDH variety is complete.
We mentioned in Sect. 2.2 also that a regular G-variety X is a wonderful variety if and only
if X has a unique closed G-orbit. Therefore, to prove our first claim it suffices to show that
G ×B Xw is a regular variety with unique closed orbit if and only if the BSDH-variety Xw

is a toric variety.
By Lemma 5.7 we know that Xw is a toric variety if and only if G ×B Xw is spherical.

Since G ×B Xw is smooth, by Corollary 4.4, G ×B Xw is regular variety. To show that
G×B Xw is a simple G-variety, we will use Theorem 3.1. SinceG×B Xw is spherical, G has
an open orbit in G ×B Xw . Thus, by Theorem 3.1, the poset of G-orbit closures in G ×B Xw

is isomorphic to the poset of B-orbit closures in Xw . Since there is a unique B-fixed point in
a BSDH-variety, we see that G has a unique closed G-orbit in G ×B Xw . This finishes the
proof of our first assertion.

The proof of our second assertion follows from thefirst part combinedwithProposition 5.8.
�
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Evidently, wonderful varieties have a special place among spherical varieties.We conclude
this section by a discussion of the “ranks” of our wonderful varieties.

Let X be a spherical G-variety with open orbit denoted by X0. Let H be the stabilizer
subgroup StabG(x0), where x0 ∈ X0. Then we have k(X) = k(G/H). Under the natural
action of B, k(G/H) decomposes into eigenspaces. We denote by Ö(X) the lattice of the
B-weights of the B-eigenvectors in k(G/H). This is a sublattice of the character lattice of
(G, T ). The rank of Ö(X) is called the spherical rank of X . There is a distinguished basis
for the Q-vector space Ö(X) ⊗Z Q consisting of certain primitive elements of Ö(X). The
elements of this basis are called the spherical roots of G/H . It is observed in [19] that this
basis generates Ö(X) as a lattice if and only if X is a wonderful variety. Let us now continue
with the assumption that X is a wonderful G-variety. Then the rank of X is defined as the
number of irreducible components of the boundary, X \ X0. Each such component is a G-
stable prime divisor. In [1, Remark 3.17], Avdeev points out that the number of irreducible
boundary divisors is equal to the spherical rank of X .

Proposition 5.9 Letw be a reducedword in S. If Xw is a toric variety, then the poset of G-orbit
closures in G ×B Xw is isomorphic to the boolean lattice of all subsets of the set {1, . . . , �},
where � = dim Xw . In particular, the spherical rank of G ×B Xw equals � = dim Xw .

Proof Since w is a reduced word, if Xw is a toric variety, then m : Xw → XwB is an
isomorphism. In particular, we have dim Xw = � = dim XwB . In fact, since Xw is B-
equivariantly isomorphic to XwB , we see that the number of B-orbits in Xw is finite, implying
mod(B : Xw) = 0. It follows from Proposition 5.3 that G ×B Xw has an open G-orbit. Now
by Theorem 3.1, the poset of G-orbit closures in G ×B Xw is isomorphic to the poset of
B-orbit closures in Xw . Since we have Xw

∼= XwB by the B-equivariant map m, we see
that the poset of B-orbit closures in Xw is given by the lower interval [e, w] of the Bruhat
poset (W ,≤). In particular, the number of B-stable prime divisors of Xw is equal to the
co-atoms of the interval [e, w]. But w is a product of � distinct simple reflections. Hence,
deleting a simple reflection from w gives a coatom. It follows that the number of distinct
simple reflection in w is the number of G-stable prime divisors of G ×B Xw . This finishes
the proof of our assertion. �

The arguments that we used in the proof of our previous proposition can be used for
proving the following result. We omit its details.

Proposition 5.10 Let w be a reduced word in S. Let w denote the element associated with
w in W. If Xw has finitely many B-orbits, then the poset of G-orbit closures in G ×B Xw is
isomorphic to the boolean lattice structure on the set of T -fixed points, XT

w .

6 Parabolic decompositions and the spherical Schubert varieties

In this sectionG denotes a connected semisimple algebraic group over an algebraically closed
field k of arbitrary characteristic. We proceed with establishing our notational conventions.

Notation 6.1 Earlier, we used the letter S to denote the set of Coxeter generators of W
determined by the pair (B, T ). Hereafter, when confusion is unlikely, we will use S to denote
the set of simple roots corresponding to this set of Coxeter generators as well. We will follow
the standard convention that if α is a simple root, then the corresponding simple reflection
is denoted sα . However, if the set of simple roots are given by an ordered set {α1, . . . , αn},
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then the corresponding simple reflections will be written in the form {s1, . . . , sn}, where si
corresponds to αi for 1 ≤ i ≤ n. The root system of the pair (G, T ) will be denoted by R.
We use the notation R+ for the system of positive roots determined by S. If β is a (positive)
root, then its support, denoted by supp(β), is the set of simple roots that appear in β as a
summand.

Let β be a root from R. The root subgroup associated with β is denoted byUβ . It is given
by the image of the isomorphism xβ : Ga → Uβ satisfying

t xβ(a)t−1 = xβ(β(t)a) for t ∈ T and a ∈ Ga .

Letw ∈ W . Let XwB be the corresponding Schubert variety. The stabilizer subgroup P(w) =
StabG(XwB) is always a parabolic subgroup since it contains the Borel subgroup B. In
particular, P(w) is a standard parabolic subgroup of G. This means that there exists a subset
J (w) ⊆ S such that P(w) = PJ (w), where PJ (w) is generated by B and {sα : α ∈ J (w)}.
Combinatorially speaking, the set {sα : α ∈ J (w)} is the left descent set of w, that is, the set
of simple reflections sα in W such that �(sαw) < �(w). The standard Levi factor of PJ (w)

is the unique Levi subgroup L(w) such that T ⊆ L(w). Let L(w) denote the standard Levi
factor of PJ (w). Then the intersection B∩L(w), denoted BL(w), is a Borel subgroup of L(w).

For w ∈ W , we define

R+(w−1) := {β ∈ R+ : w−1(β) ∈ R \ R+}.
Note that J (w) = R+(w−1) ∩ S. We now define two special subsets of R+(w−1),

R1 := ZJ (w) ∩ R+ and R2 := {β ∈ R+(w−1) : supp(β) � J (w)}.
Recall that #R+(w−1) = �(w). Then the key observation of this section is that R1 and R2

give a partitioning of R+(w−1):

R+(w−1) = R1 � R2.

Let R1 = {β1, β2, . . . , βk} and R2 = {βk+1, . . . , βr }, where �(w) = r . It will be important
for our purposes to keep in mind that the cardinality of R1 equals the dimension of the flag
variety of L(w). Indeed, the elements of R1 correspond to the root subgroups of the unipotent
radical of BL(w).

Now we will prove a special case of the first announced theorem of our paper.

Theorem 6.2 Let w ∈ W. Then the associated Schubert variety XwB is a spherical L(w)-
variety such that dim BL(w) = dim XwB if and only if w can be written as

w = w0,J (w)c,

where w0,J (w) is the longest element of WJ (w) and c is a Coxeter element such that �(w) =
�(w0,J (w)) + �(c).

Proof (⇒) Assume that XwB is an L(w)-spherical variety such that dim BL(w) = dim XwB .
Then there exists a point ξ in XwB such that BL(w)ξ = XwB and dim(StabBL(w)

(ξ)) = 0. In
fact, since BL(w) is a subgroup of B, ξ is an element of the openU -orbit in XwB . Now notice
that

dim(XwB) = #R1 + #R2 = dim(BL(w)) = dim(T ) + dim(Uw), (6.3)
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where Uw denotes the unipotent radical of BL(w). Since the dimension of the flag variety of
L(w) is given by

dim(Uw) = �(w0,J (w)) = #R1,

it follows from the equality in (6.3) that #R2 = dim(T ). In other words, we have k = r − n,
where n = rank(G).

Let U∗ = {u ∈ U : xβ(u) �= 0 for all β ∈ R+}. Since U∗wB/B is open in XwB , and
since XwB is irreducible, the following intersection is nonempty:

BL(w)ξ ∩ U∗wB/B �= ∅.

Note that U∗wB/B = UwwB/B, where Uw := ∏r
j=1U

∗
β j

and U∗
β j

= Uβ j \{1}. We write
ξ accordingly, as follows:

ξ =
r∏

j=1

xβ j (a j )wB/B

for some a1, . . . , ak ∈ Ga and ak+1, . . . , ar ∈ Ga \ {0}. Then, without loss of generality, we
may assume that

ξ =
r∏

j=k+1

xβ j (a j )wB/B for some a j ∈ Ga \ {0}. (6.4)

Indeed, if ξ = ∏r
j=1 xβ j (a j )wB/B for some a j ∈ Ga \ {0}, then we consider the product,

xβk (−a1)xβ2(−a2) · · · xβ1(−ak)ξ,

which is denoted by ξ ′. Clearly, ξ ′ is in the BL(w)-orbit of ξ , implying that BL(w)ξ
′ = BL(w)ξ .

Since dim(StabBL(w)
(ξ)) = 0, we have dim(StabBL(w)

(ξ ′)) = 0. So, we may replace ξ with
the point ξ ′.

Since P(w) is the stabilizer of XwB in G and since the element w0,J (w) is represented
by an element in the normalizer of T in L(w) ⊂ P(w), we see that w0,J (w)w represents a
T -fixed point in XwB . In particular, we see that w0,J (w)w ≤ w in the Bruhat order of W .
Equivalently, if v denotes the element w0,J (w)w, then we have the inclusion,

XvB ⊂ XwB .

Wewill compute the dimension of XvB . Let γ j := w0,J (w)(β j ) for k+1 ≤ j ≤ r . Then note
that γ j ∈ R+ for all k+1 ≤ j ≤ r , and that R+(v−1) = {γ j : k+1 ≤ j ≤ r} = w0,J (w)(R2).
Thus, the dimension of XvB is given by #R2 = n = dim T .

Now, consider the point η = w0,J (w)ξ in XwB . By replacingw withw0,J (w)w0,J (w)w (or,
equivalently, replacing it with w0,J (w)v) in (6.4), we see that η = ∏r

j=k+1 xγ j (b j )vB/B for
some b j ∈ Gm . It follows that the point η is in UvB/B. Consider the orbit map

oη : T −→ Tη ⊆ XvB : t �→ tη.

We notice the following logical equivalences:

t ∈ StabT (η) ⇐⇒ w0,J (w)tw0,J (w)ξ = ξ

⇐⇒ w0,J (w)tw0,J (w) ∈ StabT (ξ)

⇐⇒ t ∈ w0,J (w)StabT (ξ)w0,J (w).
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After (6.4), we observed that dim(StabBL(w)
(ξ)) = 0. It follows that dim(StabT (ξ)) = 0,

or, equivalently, dim(StabT (η)) = 0. But since dim(XvB) = dim(T ), Tη ⊆ XvB is open
in XvB . Therefore, XvB is a toric variety. Hence, by the main result of [18], v is a Coxeter
element. Therefore, we have w = w0,J (w)v and �(w) = �(w0,J (w)) + �(v) as we claimed.

(⇐) Conversely, since c is a Coxeter element, by [18], XcB is a toric variety for the
action of T . This means that there exists a point η ∈ UcB/B such that Tη = XcB . Let
R+(c−1) = {γ j : 1 ≤ j ≤ n}. Then η = ∏n

j=1 xγ j (a j )cB/B for some a j ∈ Ga \ {0}.
We now consider the point ξ = w0,J (w)η. Let β j = w0,J (w)(γ j ) for 1 ≤ j ≤ n. Since
w = w0,J (w)c is such that �(w) = �(w0,J (w)) + �(c), β j ∈ R+ for all 1 ≤ j ≤ n.
So, we have ξ = ∏n

j=1 xβ j (b j )wB/B for some b j ∈ Gm . Since dim(StabT (η)) = 0 and
�(w) = �(w0,J (w)) + �(c), we have dim(BL(w)ξ) = dim(XwB). Therefore, it follows that
BL(w)ξ = XwB . �

For J ⊆ J (w), let L J denote the standard Levi factor of PJ . Let BJ denote the Borel
subgroup of L J . We are now ready to prove the first stated result of our paper, namely,
Theorem 1.1. We paraphrase it for convenience.

Theorem 6.5 The Schubert variety XwB is a spherical L J -variety such that dim XwB =
dim BJ if and only if w = w0,J c, where w0,J is the longest element of WJ and c is a Coxeter
element of W such that �(w) = �(w0,J ) + �(c).

The proof of this theorem is similar but not identical to the proof of Theorem 6.5. We will
omit explanations of the arguments that are used in the previous proof.

Proof (⇒) XwB is a spherical L J -variety such that dim XwB = dim BJ . Then there exists
a point ξ in XwB such that BJ ξ = XwB and dim(StabBJ (ξ)) = 0. Let R+(w−1) =
{β1, . . . , βr } be such that S1 = ZJ ∩ R+ = {β1, . . . , βk}. Let S2 be the subset defined
by

S2 := {β ∈ R+(w−1) : supp(β) � J } = R+(w−1) \ S1 = {βk+1, . . . , βr }.
Note that

dim(XwB) = #S1 + #S2 = dim(BJ ) = dim(T ) + dim(UJ ),

where UJ denotes the unipotent radical of BJ . Since dim(UJ ) = �(w0,J ) = #S1, by the
above equation we have #S2 = dim(T ). Thus, we have k = r − n, where n = rank(G).

We observe as in the proof of Theorem 6.5 that, forU∗ = {u ∈ U : xβ(u) �= 0 for all β ∈
R+}, the intersection BL(w)ξ ∩ U∗wB/B �= ∅ is nonempty. As before, we have ξ =∏r

j=1 xβ j (a j )wB/B for some a1, . . . , ak ∈ Ga and ak+1, . . . , ar ∈ Ga\{0}. In fact, without
loss of generality, we may assume that ξ = ∏r

j=k+1 xβ j (a j )wB/B for some a j ∈ Ga\{0}.
Since PJ (w) = StabG(XwB), the T -fixed point w0,Jw satisfies w0,Jw ≤ w in W . Let
v := w0,Jw. Let γ j = w0,J (β j ) for all k + 1 ≤ j ≤ r . Then note that γ j ∈ R+ for all
k + 1 ≤ j ≤ r , and R+(v−1) = {γ j : k + 1 ≤ j ≤ r} = w0,J (S2). Thus, XvB is a Schubert
subvariety of XwB of dimension #R2 = n.

We define η := w0,J ξ ∈ XwB . Notice that η = ∏r
j=k+1 xγ j (b j )vB/B for some b j ∈

Ga\{0}. This means that η ∈ UvB/B. Consider the orbit map

oη : T −→ Tη ⊆ XvB : t �→ tη.

Then the stabilizer StabT (η) = ⋂r
j=k+1 ker(γ j ). So, we have w0,J (StabT (η)) ⊆ StabT (ξ).

By the previous discussion we have dim(StabT (η)) = 0. Since dim(XvB) = dim(T ), Tη ⊆
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XvB is open in XvB . Therefore, XvB is a toric variety. Hence, by the main result of [18], v
is a Coxeter element. We now conclude that w can be written in the form w = w0,Jv, where
�(w) = �(w0,J ) + �(v).

(⇐) Conversely, since c is a Coxeter element in W , by [18], it follows that XcB is a
toric variety for the action of T . So, there exists a point η ∈ UcB/B such that Tη = XcB .
Let R+(c−1) = {γ j : 1 ≤ j ≤ n}. Then η = ∏n

j=1 xγ j (a j )cB/B for some a j ∈ Gm .
Consider the point ξ = w0,Jη. Let β j = w0,J (γ j ) for 1 ≤ j ≤ n. Since w = w0,J (w)c
is such that �(w) = �(w0,J (w)) + �(c), β j ∈ R+ for all 1 ≤ j ≤ n. So, we have ξ =∏n

j=1 xβ j (b j )wB/B for some b j ∈ Gm . Since dim(StabT (η)) = 0 and �(w) = �(w0,J ) +
�(c), we have dim(BJ ξ) = dim(XwB). Therefore, it follows that BJ ξ = XwB . �

We demonstrate our Theorem 6.5 by an example.

Example 6.6 Let w denote the permutation 513624 in the symmetric group S6. A reduced
word of w is given by

513624 = s2s4s5s3s4s2s1.

Denoting the set {s2, s4} by J , we see that J ⊆ J (w). The standard Levi subgroup of
GL(6, C) associated with J is given by

L J := GL(1, C) × GL(2, C) × GL(2, C) × GL(1, C).

Let c denote s5s3s4s2s1, which is a Coxeter element. The product s2s4 is the maximal element
of the parabolic subgroup of S6 corresponding to J . Sincew = w0,J c and �(w) = �(w0,J )+
�(c), according to our Theorem 6.5, the Schubert variety XwB is a spherical L J -variety in
GL(6, C)/B. Of course, this is in conformity with the main result of [12].

We now have a remark about our Theorem 6.5 showing that it recovers the conjecture of
Gao et al. [13] in characteristic 0.

Remark 6.7 The assumption dim BL(w) = dim XwB can be relaxed by accordingly relaxing
the condition on the length of the (Coxeter) element c. More precisely, the proof of Theo-
rem 6.5 shows that the unipotent radical of BL(w) always acts faithfully on the open cell of
XwB . Thus, if the inequality dim BL(w) > dim XwB holds, then we see that a torus quotient
of BL(w) acts faithfully with an open orbit. In this case, we observe as in the proof of Theo-
rem 6.5 that the orbit closure of the semisimple part of the torus quotient of BL(w) is a toric
Schubert subvariety XvB ⊂ XwB such that w = w0,Jv, where J is a subset of J (w).

We proceed to present an analogous sphericalness result for the BSDH-varieties. To this
end, let w be a reduced word in S of the form w = (si1 , si2 , . . . , sir ). Then we have the
corresponding sequence of simple roots, (αi1 , . . . , αir ). Using this list, we define

J (w) := {αi j : si j sik = sik si j for all 1 ≤ k ≤ j}.
In other words, J (w) is the set of simple roots αi j from the list (αi1 , . . . , αir ) such that all of
the simple roots αik with 1 ≤ k ≤ j commute with si j . Let PJ (w) be the standard parabolic
subgroup of G corresponding to the subset J (w) of S. Then there is a natural action of PJ (w)

on Xw that is given by the left multiplication.

Theorem 6.8 Let w be a reduced word in S. Then Xw is a spherical L(w)-variety such that
dim BL(w) = dim Xw if and only if w0,J (w)w is a Coxeter element, where w is the element
of W associated with w and w0,J (w) denotes the longest element of WJ (w).
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Proof Since w is a reduced word, the natural product map

m : Xw −→ XwB

[p1, . . . , pm] �−→ p1 · · · pm B,

is a surjective birational morphism. Furthermore, since m is PJ (w)-equivariant, the BSDH-
variety Xw is a spherical L(w)-variety if and only if XwB is a spherical L(w)-variety. But
notice that J (w) ⊆ J (w). Hence, it follows from Theorem 6.5 that Xw is a spherical L(w)-
variety such that dim Xw = dim BL(w) if and only if w0,J (w)w is a Coxeter element. �

The following generalization of Theorem 6.8 follows from our remark Remark 6.7.

Theorem 6.9 Let w be a reduced word. Then Xw is a spherical L(w)-variety if and only if
w0,J (w)w is a product of distinct simple reflections, where w is the element of W associated
with w and w0,J (w) denotes the longest element of WJ (w).

Corollary 6.10 Let w be a reduced word. Then, Xw is a spherical L(si1)-variety if and only
if si1w is a product of distinct simple reflections.

7 Additional results

There is an interesting interaction between the modality of the natural T -action and the
complexity of a Schubert variety. In [8, Theorem 1.4], by using the main result of the article
[11], Can and Diaz obtained the following result.

Proposition 7.1 Let XwB be a singular Schubert variety in GL(n, C)/B. If the complexity
of the T -action on XwB is 1, then XwB is a spherical L J (w)-variety.

Here we provide another proof.

Proof In [21, Theorem 1.3, part 4], Lee, Masuda, and Park show that if XwB is a singular
T -complexity 1 Schubert variety in GL(n, C)/B, then there is a reduced decomposition
red(w) of w and an index j ∈ {1, . . . , n − 1} such that the segment s j+1s j s j+2s j+1 appears
in red(w) and no other simple reflection in red(w) appears more than once (except s j+1

in the segment s j+1s j s j+2s j+1). Now let us look at the product s j+1w. Since both s j and
s j+2 appear on the right hand side of the left most s j+1 in red(w), the multiplication of w

on the left by s j+1 deletes the leftmost s j+1 from red(w). But this means that s j+1w is a
product of distinct simple reflections. Now, by Corollary 6.10, we see that Xw is a spherical
L(s j+1)-variety. Since the multiplication map m : Xw → XwB is an L(s j+1)-equivariant
birational morphism, we see that XwB is a spherical L(s j+1)-variety. At the same time, we
know that L(s j+1) is a subgroup of the stabilizer StabG(XwB). Therefore, the bigger Levi
subgroup L J (w) acts spherically on XwB as well. This finishes the proof of our assertion. �

We proceed with the assumption that G is a connected semisimple algebraic group over
an algebraically closed field k of arbitrary characteristic. As before, for w ∈ W , let PJ (w)

denote the stabilizer of XwB . Let L(w) denote the standard Levi factor of PJ (w) so that
T ⊆ L(w). Then the intersection B ∩ L(w), denoted BL(w), is a Borel subgroup of L(w).
For a subset J ⊂ L(w), we follow the similar convention that PJ denotes the parabolic
subgroup generated by B and J , L J denotes the standard Levi factor of PJ , and BLJ denotes
the Borel subgroup B ∩ L J .
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We now fix two subsets I and K of S such that I ⊂ K and K �= ∅. For w ∈ W I , let XwPI
denote the Schubert variety in G/PI , where PI is the parabolic subgroup determined by I
and B. Following [27, pg. 34, paragraph 2], we define the (right) parabolic decomposition of
w with respect to K as the unique decompositionw = vu, where v ∈ WK and u ∈ WK ∩W I .
Closely related to the notion of a parabolic decomposition is the stronger notion of a Billey-
Postnikov decomposition (abbreviated to a BP-decomposition). A parabolic decomposition
w = vu (v ∈ WK , u ∈ W I ∩WK ) is called a BP-decomposition with respect to (I , K ) if the
Poincaré polynomial of XwPI is the product of the Poincaré polynomials of XuPI and XvPK .
Note that if I = ∅, then we haveW I = W . We are now ready to prove our Theorem 1.2. We
recall its statement for convenience.

Let w ∈ W . Let J be a subset of J (w). We assume that XwB is a spherical L J -variety
such that dim XwB = dim BLJ . Then the following assertions are equivalent:

1. XwB is a smooth Schubert variety.
2. Xw−1B is a smooth Schubert variety.
3. Xc−1PJ is a smooth toric variety.

Proof of Theorem 1.2 (2 ⇔ 3) Under our assumptions, by Theorem 6.5, we know that there
exists an element c ∈ W , which is a product of distinct simple reflections, such that w =
w0,J c and �(w) = �(w0,J ) + �(c). Clearly, the product c−1w0,J (w) is the right parabolic
decomposition ofw−1 with respect to J . In fact, it follows from [27, Proposition 4.2 (c)] that
c−1w0,J is a BP-decomposition with respect to (∅, J ).

Let π : G/B → G/PJ denote the canonical projection map. This is a smooth and proper
morphism. On one hand, since w−1 = c−1w0,J is the right parabolic decomposition of w−1

with respect to J , we have Xc−1PJ = π(Xw−1B). On the other hand, we know that Xc−1B
is a toric variety in G/B and π(Xc−1B) = Xc−1PJ . But at the same time, Xw−1B is the full
preimage of Xc−1PJ under the morphism π : G/B → G/PJ . Hence, the generic fiber of
this surjection is given by Xw0,J B , which is a smooth Schubert variety. Now, the rest of the
proof of the equivalence of 2. and 3. follows from [27, Theorem 3.3, part 1.], which states that
Xw−1B is smooth if and only if both the fiber and the base of the projection Xw−1B → Xc−1PJ
are smooth Schubert varieties.

(1 ⇔ 2) This result is proven by Carrell in [9, Corollary 4]. �
Example 7.2 Let us consider the Schubert variety XwB in SL(4, C)/B, wherew is the element
w = s1s3s2s1s3 = 4231. Note thatw2 = id . We denote J (w) simply by J . Since the longest
element of WJ = {s1, s3} is w0,J = s1s3 and c := s1s3s2 is a Coxeter element, we see that
XwB is a spherical L J -variety such that dim BLJ = dim XwB . It follows from Lakshmibai-
Sandhya criterion [20] that Xw−1B is not a smooth Schubert variety. Conforming with our
Theorem 1.2, the toric variety Xc−1P{s1,s3} is not smooth. Indeed, Xc−1P{s1,s3} is the unique

singular Schubert variety in the Grassmann variety of two dimensional subspaces of C
4.

Our next observation is a consequence of the recent work [25, Proposition 4.9, p. 15]. It
is concerned with the automorphism groups of the spherical G-Schubert varieties and the
rigidity question for G-BSDH varieties.

Theorem 7.3 We assume that the underlying field of definitions is k = C. Let G be of simply-
laced type. In addition, we assume that G is simply connected. If G ×B XwB is a spherical
G-Schubert variety, then the identity component of the automorphism group of G ×B XwB

is Gad , that is, the adjoint group of G. In addition, the first cohomology of its tangent sheaf
vanishes.
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Proof By Proposition 5.8, the G-Schubert variety G ×B XwB is a spherical G-variety if and
only if XwB is a toric variety. In particular, G×B XwB is isomorphic to the G-BSDH variety,
G ×B Xw . Hence, it is smooth. We know from [25, Proposition 4.9, p. 15] that

(i) Aut0(G ×B XwB) = Gad ,
(ii) H j (G ×B XwB , TG×B XwB ) = 0 for j ≥ 1.

Here, Aut0(G ×B XwB) stands for the connected component of the identity element of the
automorphism group of G ×B XwB , and TG×B XwB denotes the tangent sheaf of G ×B XwB .
Hence, by [16, Proposition 6.2.10,p.272], we conclude that the sphericalG-Schubert varieties
are locally rigid for simply-laced groups. This finishes the proof of our assertion. �
Remark 7.4 If G is not simply-laced, then spherical G-Schubert varieties need not be rigid,
that is to say, H1(G ×B XwB , TG×B XwB ) �= 0. We will demonstrate this phenomenon in our
next example.

Example 7.5 Let G = SO(5, C). Throughout this example, we work with a Borel subgroup
B ⊂ G that is associated with the negative roots. Let w = s2s1 and w1 = s2. Let p : Xw →
Xw1 denote the natural Pα1/B (� P

1) fibration. Then, we have the following short exact
sequence of tangent sheaves on Xw:

0 −→ Lα1 −→ Tw −→ p∗Tw1 −→ 0,

where Tw (respectively, Tw1 ) denotes the tangent sheaf of Xw (respectively, of Xw1 ), and

Lα1 denotes the relative tangent bundle with respect to the map p. Notice that H1(Xw,Lα1)

is isomorphic to the one dimensional B-module corresponding to the character α1 + α2 of
B, and H0(Xw1 , Tw1)μ = 0 for μ = α1 + α2. Therefore, by using the long exact sequence
associated to the above short exact sequence, we obtain the following exact sequence:

0 −→ H1(Xw,Lα1) −→ H1(Xw, Tw) −→ H1(Xw1 , Tw1) −→ 0.

Note that H1(Xw1 , Tw1) vanishes. Hence, we have the isomorphism,

H1(Xw, Tw) = H1(Xw,Lα1).

Moreover, H1(G ×B Xw, TG×B Xw ) fits in the following short exact sequence:

0 → H1(G/B,L(H0(Xw,Lα1))) → H1(G ×B Xw, TG×B Xw )

→ H0(G/B,L(H1(Xw1 ,Lα1))) → 0.

Since α1 + α2 = �1, we have H0(G/B,Lα1+α2) = V (�1), where V (�1) is the Weyl
module of highest weight�1. Here,�1 is the fundamental weight associated with the simple
root α1. Hence, we have H1(G ×B Xw, TG×B Xw ) �= 0. Therefore, the G-Schubert variety
G ×B XwB is a not rigid G-variety. But we know from Proposition 5.8 that it is a spherical
G-variety.
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