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Abstract. The modeling and control of epidemics, such as the novel Coronavirus, have become crucial on a

global scale, for effective management of epidemic situations. This paper is focused on using the mean field

approach for modeling and control of epidemics. The mean field approach is an effective alternative to the

classical approach of using continuous time Markov decision process (CTMDP) models, which suffer from the

curse of dimensionality and entail knowledge of global state information. The mean field approach captures the

collective behavior of a dynamic system consisting of numerous interacting nodes representing individuals in the

population. The objectives of this paper are twofold: (a) to provide an overview of the mean field approach to

epidemic modeling and control, and (b) to present recent advances in this area. Emphasizing the importance of

containing and suppressing epidemic spread through non-pharmaceutical interventions, the paper highlights the

need to minimize loss of lives, reduce suffering, and alleviate the burden on the public healthcare system. A

potential challenge here is the presence of a section of the population who act on their free will and deviate from

recommended best practices, which could lead to a potential public health crisis. Motivated by this, the paper

explores two specific threads to modeling and control. The first thread assumes that individual nodes comply

with a socially optimal control policy mandated by a regulatory authority. The second thread allows for

independent and strategic behavior by the individual nodes, modeled as a mean field game, where the strategies

of rational agents are based on mean field Nash equilibria. The paper begins by discussing the modeling of

epidemics using an extended SIVR (Susceptible-Infected-Vaccinated-Recovered) compartmental model,

accompanied by an illustrative example. Next, a literature review is provided, focusing on the mean field

approach for socially optimal control of epidemics and how a regulatory authority can effectively contain the

spread. Subsequently, the paper presents an update on the use of mean field game-based approaches in studying

epidemic spread and control. Finally, future research directions in this important area are discussed.

Keywords. Mean field games; mean field control; epidemic games; optimal control; population games; mean

field nash equilibrium; Stackelberg game.

1. Introduction

Throughout history, epidemics have had major effects,

often catastrophic, on the lives and lifestyle of the global

population. The Bubonic Plague also called Black Death
ravaged Asia and Europe in several waves during the

fourteenth century, and is estimated to have caused the

death of as much as one third of the population of Europe

between 1346 and 1350. Spanish Flu, also known as the

Great Influenza epidemic, was an exceptionally deadly

global influenza pandemic which started in 1918. Two

years later, nearly a third of the global population, or an

estimated 500 million people, had been infected in four

successive waves. Estimates of deaths range from 17 to 50

million, and possibly as high as 100 million, making it one

of the deadliest pandemics in human history.

More recently, the entire world has been devastated by

multiple waves of a novel Corona virus and its variants

since December 2019. Unsurprisingly, this has led to

research and innovation efforts of an unprecedented scale

towards prediction, mitigation, and management of the

pandemic. Epidemiology has now moved to the centre-

stage of research and policy making in public health.

1.1 Motivation

When an epidemic or pandemic such as Corona strikes, it is

important to contain and suppress the spread of the disease

to minimize the loss of life and the suffering and also to
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lower the burden on the health care system. Non-pharma-

ceutical interventions such as reduction of social interac-

tions, masking, social distancing, hand washing, hand-

sanitizing, and disinfecting surfaces are simple yet very

effective measures to limit the spread of an ongoing

epidemic. However, it is observed that in spite of the threat

posed by the pandemic individuals tend to go by their

freewill rather than adhering to best practices such as stated

above. There are numerous instances, throughout the world,

where individuals have refused to comply with Covid

appropriate behaviour [1]. This could dangerously push the

dynamics of the entire population towards alarming or even

catastrophic consequences. This lack of responsible

behavior has forced regulatory authorities to seek suit-

able measures and incentives to improve compliance to best

practices. In order for these measures to be computed sci-

entifically, we need an appropriate modeling and control

framework.

1.2 Mean field approach

Set in the above backdrop, modeling and control of epi-

demics have assumed paramount importance. A natural and

powerful model that has emerged in this context is a con-

tinuous time Markov decision process (CTMDP) which

encompasses the classical compartmental paradigms such

as the SIR (Susceptible - Infected - Recovered) model. The

use of a CTMDP based model, however, poses certain

technical and computational challenges. First, the state

space of any CTMDP based model grows exponentially

with the population size and the computation of the optimal

policy using dynamic programming principles become

intractable even for moderate population sizes [2]. Second,

the controller needs to know the global population state to

execute the policy. These two challenges motivate the need

for a more efficient approach and the mean field approach
has emerged as an effective alternative [3]. The mean field

approach computes the collective behavior of a dynamical

system comprising numerous interacting nodes (individuals

in the population). Our objective in this paper is to provide

a bird’s eye view of and a state-of-the-art update on some

recent advances in the use of the mean field approach for

epidemic modeling and control.

1.3 Structure of the paper

Our discussion in this paper proceeds along two threads.

The first thread assumes that the individual nodes faithfully

follow a socially optimal control policy prescribed by a

regulatory authority. Here we follow a mean field approach

to derive optimal control. The second thread allows the

nodes to exhibit individualistic, strategic behavior. In this

case, a mean field game is formulated and the individuals’

controls are governed by the mean field Nash equilibrium.

This paper is structured as follows.

• Section 2: This section provides a description of the

model used to analyze the spread of epidemics in the

paper. Initially, an extension of the classical SIR

model (Susceptible-Infected-Recovered model) is

introduced, incorporating vaccinations, known as

the SIVR (Susceptible - Infected - Vaccinated -

Recovered) model. The associated costs for each

node, including lockdown cost, infection cost, and

vaccination cost, are outlined. Subsequently, the

evolution of the population is described as a time-

inhomogeneous continuous time Markov chain. The

formulation of the optimal control problem aims to

minimize the expected average cost for an individual

over a finite time horizon. Furthermore, a stochastic

game model is presented to analyze situations where

the individual nodes act strategically.

• Section 3: This section discusses mean field modeling

of epidemics. The spread of epidemics can be modeled

as the mean field limit of a sequence of dynamical

processes. We consider a general dynamical system

and recall key results in mean field analysis. We

present the standard solution to the mean field control

problem. We then consider the strategic case and

present the mean field game model and a solution for

the same.

• Section 4: Here, we present an illustrative example. To

keep things simple, we consider an SIR model rather

than an SIVR model. For this example, we illustrate

mean field control for the non-strategic case followed

by a mean field game model and control for the

strategic case.

• Section 5: This provides a state-of-the-art update of

mean field optimal control of epidemics when a

centralized regulatory authority prescribes a control

policy and the individual nodes faithfully follow the

policy. There is rich literature on applying optimal

control methods to compartmental models of epi-

demics. We categorize the literature into (1) Non-

pharmaceutical interventions (2) Vaccination

strategies.

• Section 6: This section is devoted to a state-of-the-art

update of literature on the use of the mean field game

approach in the study of epidemic spread and control.

We have categorized the relevant literature into the

following groups:

1. Non-pharmaceutical interventions

2. Vaccination strategies

3. Control and policy design.

• Section 7: We conclude the paper by providing several

directions for future research in this section.

  207 Page 2 of 20 Sådhanå          (2023) 48:207 



2. Modeling of epidemics

Modeling of spread of epidemics is a vast topic and there

are numerous papers which present a variety of models. We

wish to point to the paper by Guan et al [4] which provides

a review of literature on modeling techniques and dynamic

models in the context of the COVID-19 pandemic. The

authors there discuss how three aspects, (a) epidemiological

parameter estimation, (b) trend prediction, and (c) control

measure evaluation, which are addressed in the literature.

They conclude that dynamic models which are extensions

of basic SIR (Susceptible - Infected - Recovered) and SEIR

(Susceptible - Exposed - Infected - Recovered) models

provide useful insights into these three aspects. Their

conclusion is that dynamic models are useful for exploring

possibilities of interventions but can fail at making strong

predictions about long-term disease dynamics.

In this section, the modeling framework employed

throughout the paper is presented. Firstly, an extension of

the classical SIR compartmental model is described,

incorporating vaccinations, referred to as the SIVR model.

The compartmental model proves suitable for illustrating

the computation of optimal control and mean field equi-

librium. The costs incurred by each node, including

lockdown cost, infection cost, and vaccination cost, are

outlined. The population’s evolution is then described as a

time-inhomogeneous continuous time Markov chain. The

formulation of the optimal control problem aims to mini-

mize the expected average cost for an individual over a

finite time horizon. Additionally, a mean field game model

Table 1. List of symbols and notation.

N Number of nodes (individuals or agents) in the population

S State space of a Markov chain

K Cardinality of a discrete state space S

T Time horizon

Mi Number of nodes in state i
Yi State of agent i. Yi 2 S

Xi Xi :¼ Mi=N, fraction of nodes in state i
pi Probability of an agent being in state i

DN
K

x
N jx 2 ZK

þ;
PK

i¼1 xi ¼ N
� �

DK x 2 RK
þj
PK

i¼1 xi ¼ 1
� �

XN State of population of N agents :¼ X1; . . .;Xkð Þ 2 DN
K

x(t) State of the population in mean field :¼ x1; . . .; xkð Þ 2 DK

Q 2 RK�K Transition rate matrix. Qij is the transition rate from state i to j

cLð�Þ Lockdown cost per unit time per individual

cIð�Þ Infection cost per unit time per individual

cV Vaccination cost per individual

uð�Þ Control variable as a function of time. uðtÞ 2 U � Rm

gð�; �Þ Running cost function for optimal control problem. g : RK � U ! R

hð�Þ Terminal cost function for optimal control problem. h : RK ! R

pt Markov decision rule pt : D
N
K ! U

p p :¼ ðpt; t 2 ½0; T �Þ is the policy

JpðxÞ Cost for the population, given the initial state x and policy p
J �pði; x; pÞ Cost for an agent starting in state i, using policy �p, with the population

starting in state x and using policy p

Suscep�ble (S)

Infected (I)

Recovered (R)

Vaccinated (V)

Figure 1. State transition diagram for an individual node. Values in edges are the transition rates between states.
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is presented, wherein the individual nodes are strategic.

Important symbols used in this paper are listed here for

ready reference (table 1).

2.1 Modeling an Individual Node: SIVR Model

Let us consider a population of N nodes. Each node can be

in one the four states, susceptible (S), infected (I), vacci-
nated (V) or recovered (R). The state transition diagram for

an individual node is shown in figure 1 (a more detailed

description of the figure appears subsequently). The nodes’

states evolve with time due to their interactions with other

nodes, external interventions or because of their own

actions. For instance, a susceptible node becomes infected

on meeting an infected node or can choose to become

vaccinated. On the other hand, an infected node may

recover over time either on its own or through medical

treatment. It is assumed that recovered nodes will not be

infected in the future and gain full immunity.

The number of unrestricted meetings between any pair of

nodes is assumed to constitute a Poisson process of rate j.
Furthermore, these processes are assumed to be indepen-

dent across node pairs. Moreover, the number of meetings

between any pair of susceptible-infected nodes constitutes a

Poisson process of rate jaSðtÞaIðtÞ where

aðtÞ:¼ aSðtÞ; aIðtÞð Þ 2 amin; 1½ � � amin; 1½ �¼:A quantify the

efforts of susceptible and infected individuals to contact

other individuals. We also assume that the susceptible

nodes’ vaccination processes are independent Poisson

processes with rate bðtÞ 2 B and infected nodes’ recovery

times are exponentially distributed with parameter cðtÞ 2 C.
We refer to uðtÞ:¼ðaðtÞ; bðtÞ; cðtÞÞ 2 U:¼A� B� C as the

action at time t, and the function u : ½0; T � ! U as the action

function.

2.2 Evolution of the population

Let YnðtÞ denote the state of the nth node at time t and Y(t)
denote the state of the entire population; YðtÞ:¼ Y1ðtÞ;ð
Y2ðtÞ; � � � ; YNðtÞÞ. Let MðtÞ:¼ðMSðtÞ;MIðtÞ;MVðtÞ;MRðtÞÞ

denote the numbers of nodes in states S, I, V and R at time

t, respectively;

MiðtÞ ¼
XN

n¼1

1fYnðtÞ¼ig for i 2 fS; I;V;Rg:

From the above discussion, YðtÞ; t� 0 is a time inhomo-

geneous continuous time Markov chain (CTMC). For the

nth node, its state evolution at any time t depends on the

joint population state Y(t) only through YnðtÞ and M(t).
Figure 1 shows the associated state transition rate dia-

gram. Moreover, MðtÞ; t� 0 is also a CTMC with transi-

tion rate diagram as in figure 2. Observe that

MSðtÞ þMIðtÞ þMVðtÞ þMRðtÞ ¼ N for all t, and hence,

it suffices to specify three numbers, MSðtÞ;MIðtÞ and

MVðtÞ.
Further, let XðtÞ:¼ðXSðtÞ;XIðtÞ;XVðtÞ;XRðtÞÞ denote the

fractions of nodes in states S, I, V and R at time t;

XðtÞ ¼ MSðtÞ
N

;
MIðtÞ
N

;
MVðtÞ
N

;
MRðtÞ
N

� �

2 DN
4

where DN
K :¼ m

N : m 2 ZK
þ;
PK

i¼1 mi ¼ N
� �

. Clearly,

XðtÞ; t� 0 is also a CTMC. Both MðtÞ; t� 0 and XðtÞ; t� 0

offer equivalent characterisations of the same dynamical

system. From the state transition diagram in figure 2, we

can also write the expected conditional drift rates of X(t).
These are as follows:

dE½XSðtÞjXðtÞ�
dt

¼ jaSðtÞaIðtÞðNXSðtÞÞðNXIðtÞÞ
�1

N

� �

þ bðtÞNXSðtÞ
�1

N

� �

¼� NjaSðtÞaIðtÞXSðtÞXIðtÞ � bðtÞXSðtÞ:
ð1aÞ

dE½XIðtÞjXðtÞ�
dt

¼NjaSðtÞaIðtÞXSðtÞXIðtÞ � cðtÞXIðtÞ: ð1bÞ

dE½XVðtÞjXðtÞ�
dt

¼bðtÞXSðtÞ: ð1cÞ

Figure 2. State transition diagram of the continuous time Markov chain MðtÞ; t� 0 at MðtÞ ¼ MS;MI ;MV ;MRð Þ.
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We prefer to work with XðtÞ; t� 0 for reasons that will be

clear in the next section.

2.2.1 Costs incurred by the nodes: We characterise

the costs incurred by the nodes during the course of an

epidemic. An individual can incur the following costs,

according to the action at time t, uðtÞ ¼ ðaðtÞ; bðtÞ;
cðtÞÞ 2 A� B� C.

1. Lockdown cost: This quantifies financial costs or

discomfort caused to a susceptible or infected individual

due to social distancing and lockdowns. These are

reflected in susceptible and infected nodes’ controls of

meeting rates aSðtÞ and aIðtÞ, respectively. Function cL :
½amin; 1� ! R defines the lockdown cost where cLðaðtÞÞ
represents the lockdown cost per unit time for a node

using action aðtÞ.
2. Infection cost: This captures medical expenses, financial

losses, etc., incurred by an infected individual. In

general, the infection cost per unit time and the average

recovery time 1=cðtÞ are correlated. For instance, better

health care incurs more cost per unit time but facilitates

quicker recovery. To capture this correlation, we define

function cI : C ! R and cIðcðtÞÞ denotes the infection

cost per unit time.

3. Vaccination cost: This represents the per individual cost
of vaccination and treatment of side effects of vaccina-

tion, if any. We assume the vaccination cost to be fixed.

Let cV represent the vaccination cost per individual.

Now we compute the average total cost, averaged over all

the individuals. We express this cost as a function of initial

population distribution Xð0Þ ¼ x and actions uðtÞ:¼ðaðtÞ;
bðtÞ; cðtÞÞ; t� 0.

1

N

XN

n¼1

E

Z T

0

cLðaSðtÞÞ1YIðtÞS
�

�

þ cLðaIðtÞð Þ þ cIðcðtÞÞÞ1YIðtÞ¼I

�
dt

þcV1YIðTÞ¼V j Xð0Þ ¼ x
	

¼ E

Z T

0

cLðaSðtÞÞXSðtÞ þ cLðaIðtÞð Þ þ cIðcðtÞÞÞXIðtÞð Þ dt
�

þcVXVðTÞ j Xð0Þ ¼ x�
ð2Þ

2.2.2 The Optimal Control Problem: Observe that

population evolution as well as the expected average cost

over [0, T] depend on actions uðtÞ; t 2 ½0; T�. The optimal

control problem seeks to minimize this cost via appropriate

choice of actions.

Decision rule: A decision rule at time t, pt, is function

that takes the states XðsÞ; s 2 ½0; T � as input and output the

action or decision u(t). A history dependent decision rule at

time t relies only on XðsÞ; s 2 ½0; t� for its output. Further,
the output of a Markov decision rule at time t depends only

on the instantaneous state X(t). More precisely, a Markov

decision rule pt is a mapping pt : D
N
4 ! U.

Policy: A policy is an ordered set of decision rules for all

t 2 ½0; T �:

p:¼ðpt; t 2 ½0; T�Þ ð3Þ

A policy is called history dependent (respectively, Markov)

policy if it consists of history dependent (respectively,

Markov) decision rules.

We have at our disposal a finite horizon continuous time

Markov decision process (CTMDP) with finite state space

and compact action spaces. Furthermore, the cost rates are

bounded. Hence, following [3], there exists a Markov

policy that is optimal within the class of all deterministic

history-dependent policies. Further, observe that a Markov

policy p together with the initial state X(0) characterize the
whole trajectory XðtÞ; t 2 ½0; T �. So, the cost in (2) also is a

function of p and Xð0Þ ¼ x, we use JpðxÞ to refer to this

cost,

JpðxÞ:¼ E

Z T

0

cLðaSðtÞÞXSðtÞ
�

þ ðcLðaIðtÞÞ þ cIðcðtÞÞÞXIðtÞ dt
þcVXVðTÞ j Xð0Þ ¼ x�

ð4Þ

where ðaðtÞ; bðtÞ; cðtÞÞ ¼ ptðXðtÞÞ. The cost-to-go from a

starting state x 2 DN
4 is given by (5a) and the optimal

control is given by (5b). The following pair of equations

solves the Markov control problem.

JðxÞ ¼ min
p2P

JpðxÞ ð5aÞ

p� 2 argmin
p2P

JpðxÞ: ð5bÞ

Here P is the set of all Markov policies. However, this

solution has two drawbacks.

1. The state space of the CTMDP grows exponentially with

the population size. Consequently, the algorithm to

obtain the optimal policy has a prohibitive complexity

even for moderate population sizes.

2. The controller needs to know the global population state

to execute the policy.

Both these problems are addressed with a mean-field

approach. We work with the mean-field limit of the

CTMDP as described in section 3.

2.3 Evolution of an individual node

We now focus on a particular node, say the nth node. Let

pðtÞ:¼ðpSðtÞ; pIðtÞ; pVðtÞ; pRðtÞÞ denote the conditional

probabilities of this node being in states S, I, V and R,
respectively, at time t, given Ynð0Þ ¼ i and Xð0Þ ¼ x;
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piðtÞ ¼ E 1YnðtÞ¼i




Ynð0Þ ¼ i;Xð0Þ ¼ x

� 	
for i 2 fS; I;V;Rg:

The rates of change of these probabilities are as follows.

dpSðtÞ
dt

¼ �NjaSðtÞaIðtÞpSðtÞ EðXIðtÞÞ � bðtÞpSðtÞ ð6aÞ

dpIðtÞ
dt

¼ NjaSðtÞaIðtÞ EðXIðtÞÞ � cðtÞpIðtÞ: ð6bÞ

dpVðtÞ
dt

¼ bðtÞpSðtÞ þ cðtÞpIðtÞ: ð6cÞ

Suppose Ynð0Þ ¼ i and Xð0Þ ¼ x. Further, suppose the

nth node employs an action function �uðtÞ ¼
ð�aðtÞ; �bðtÞ; �cðtÞÞ; t� 0 whereas all other nodes use

uðtÞ ¼ ðaðtÞ; bðtÞ; cðtÞÞ; t� 0. Then the expected total cost

of the tagged node is given by the following expression.

E

Z T

0

cLð�aSðtÞÞ1YnðtÞ¼S

�
�

þðcLð�aIðtÞÞ þ cIð�cðtÞÞÞ1YnðtÞ¼I

�
dt

þcV1YnðTÞ¼V j Ynð0Þ ¼ i;Xð0Þ ¼ x
	
¼
Z T

0

cLð�aSðtÞÞpSðtÞð

þðcLð�aIðtÞÞ þ cIð�cðtÞÞpNI ðtÞ
�
dt þ cVpVðTÞ:

ð7Þ

2.4 The case of strategic agents: stochastic game
model

Let us consider the individual nodes of the population to be

strategic agents who wish to minimize their respective

costs. These autonomous nodes also control their respective

parameters giving rise to a stochastic game. We seek a

symmetric Nash equilibrium, i.e., an equilibrium in which

all the nodes employ the same policy.

A symmetric Nash equilibrium can be formally defined

as follows. Suppose a tagged node uses a policy

�p ¼ ð�pt; 0	 t	 TÞ whereas all other nodes use a policy

p ¼ ðpt; 0	 t	 TÞ. Then the occupancy measure of the

other N � 1 nodes is characterised by (6). On the other

hand, the tagged node’s state evolves as (6) with uðtÞ; t 2
½0; T� replaced by �ptðXðtÞÞ; t 2 ½0; T �, and its cost is

�J �pði; x; pÞ ¼
Z T

0

cLð�aSðtÞÞpSðtÞð

þðcLð�aIðtÞÞ þ cIð�cðtÞÞÞpNI ðtÞ
�
dt

þ cVpSðTÞ

ð8Þ

where ð�aðtÞ; �bðtÞ; �cðtÞÞ ¼ �ptðXðtÞÞ. A policy �p is called a

symmetric NE if

�p 2 argmin
p02P

�Jp0 ði; x; �pÞ ð9Þ

for all x 2 DN
4 . Nash equilibrium computation and imple-

mentation are marred with computational complexity

issues, much as those faced by the computation of an

optimal policy. The computational complexity problem can

be addressed by appealing to the mean field limit as

described in section 3.

3. Mean field modeling of epidemic spread

This section discusses mean field modeling of epidemics.

The spread of epidemics can be modeled as the mean field

limit of a sequence of dynamical processes. To present the

key results in mean field analysis, for the sake of conve-

nience, the SIVR model presented in the previous section is

moved away to a more general K-compartmental model.

The standard solution to the mean field control problem is

presented. Then, the strategic case is considered and the

mean field game model and a solution for the same are

presented.

The discussion starts by considering a sequence of sys-

tems with increasing population sizes. Under certain regu-

larity conditions to be described below, the corresponding

sequences of processes XNðtÞ; t� 0 and pNðtÞ; t� 0 con-

verge to deterministic functions referred to as mean field

limits. Below we discuss this convergence in the context of

a more general dynamical system; spread of epidemics in a

population will be a special case.

3.1 Mean field limit in a general dynamical system

Let us consider a population of N nodes, where each node

can be in one of the K states, f1; . . .;Kg ¼: S. Let YNðtÞ ¼
YN
1 ðtÞ; . . .; YN

N ðtÞ
� �

denote the states of the nodes at time t as

in section 2.2.

3.1.1 Evolution of population in the mean field

case: Let pN ¼ pNi;t; i2S; t2 ½0;T �
� 

where pNi;t :D
N
K !Ui

for all t2 ½0;T� and Ui are compact subsets of RLi
þ , be the

policy used by each of the nodes. Further, with the

occupancy measure XNðtÞ 2DN
K ; t�0 as defined in

section 2.2, the expected conditional drift rates are, for

j¼ 1; . . .;K,

dE XN
j ðtÞjXNðtÞ ¼ x

h i

dt
¼
XK

i¼1;i 6¼j

xiQij xj; p
N
i;tðxÞ; pNj;tðxÞ

� 
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Here, for any i; j ðj 6¼ iÞ, given XNðtÞ ¼ x,

Qij xj;pNi;tðxÞ; pNj;tðxÞ
� 

is the state transition rate of a node

from state i to state j, and

Qiiðx; pNi;tðxÞ; j ¼ 1; . . .;KÞ:¼�
X

j 6¼i

Qij xj; p
N
i;tðxÞ; pNj;tðxÞ

� 
:

We can also write a general form of average cost of the

population, JNpN ðxÞ, as follows.

JNpN ðxÞ ¼ E

� Z T

0

XNðtÞTg XNðtÞ; pNi;tðXNðtÞÞ; i 2 S
� 

dt

þXNðTÞTh XNðTÞ
� �

j XNð0Þ ¼ x

�

where

g x; pNi;tðxÞ; i 2 S
� 

:¼ gi x; pNi;tðxÞ
� 

; i ¼ 1; . . .;K
� 

are the cost rates and hðxÞ:¼ h1ðxÞ; � � � ; hKðxÞð Þ are the

terminal costs. The optimal control problem and its solution

are as in (5).

3.1.2 Evolution of an individual node in the mean
field case: Consider a tagged node, say the nth node,

which, at time t ¼ 0 is in state i 2 S and the initial

population state, XNð0Þ ¼ x. Further, suppose that this node

employs a policy �pN ¼ ð�pNi;t; i 2 S; t 2 ½0; T �Þ whereas all

other nodes use �pN ¼ ð�pNi;t; i 2 S; t 2 ½0; T�Þ. Let

pNðtÞ:¼ðpN1 ðtÞ; � � � ; pNKðtÞÞ denote the conditional

probabilities of the nth node being in states 1; � � � ;K,
respectively, at time t. The rate of change of these

probabilities can be expressed as follows. For j ¼ 1; � � � ;K,

dpNj ðtÞ
dt

¼
XK

i¼1;i6¼j

pNi ðtÞ E QijðXN
j ðtÞ; �pNi;tðXNðtÞÞ; �pNj;tðXNðtÞÞÞ

h i

ð10Þ

Further, the nth node’s cost, �J �pN ði; x; pNÞ, can be expressed

as follows.

�J
N
�pN ði; x; pNÞ ¼

Z T

0

pNðtÞTg XNðtÞ; pNj;t XNðtÞ
� �

; j 2 S
� 

dt

þ pNðTÞThðXNðtÞÞ:

Finally, the Nash equilibrium can be characterised as in (9).

Example (Epidemics): In the special case of evolution of

epidemics as in section 2, K ¼ 4; L1 ¼ L2 ¼ 3; L3 ¼ L4 ¼ 0

and for u1 ¼ ðaS; bÞ and u2 ¼ ðaI ; cÞ,

Qðx; u1; u2Þ ¼

�NjaSaIxI � b NjaSaIxI b 0

0 � c 0 c

0 0 0 0

0 0 0 0:

2

6
6
6
4

3

7
7
7
5
:

Moreover,

gðx; u1; u2Þ ¼ ½cLðaSÞ cLðaIÞ þ cIðcÞ 0 0�T

hðxÞ ¼ ½0 0 0 cV �T :

3.2 Mean field control

Darling [5] analyse the convergence of CTMCs to solutions

of certain ODEs. Gast et al [3] study convergence of con-

trolled DTMCs to continuous times controlled deterministic

dynamical systems. Following these works, we make the

following hypotheses on the dynamics and the costs.

3.2.1 Mean field convergence: Assumptions on

dynamics

1. Initial Conditions: The initial occupancy measure xNð0Þ
converges to xð0Þ 2 DK in probability, i.e.,

limN!1 PðkXNð0Þ � xð0Þk[ �Þ ¼ 0 for all �[ 0.

2. Transition rates: For all i; j ðj 6¼ iÞ, the state transition

rates Qijðxj; ui; ujÞ are O(1). This implies that the

expected number of transitions per unit time is O(N).
3. Drift rates: The drifts are O(N). Moreover, there exist

bounded transition rate matrices Qð�; uÞ 2 RK�K

8u 2 U:¼b
K

i¼1
Ui, such that xTQðx; uÞ converges to

xTQðx; uÞ uniformly in (x, u).

4. Lipschitz continuity: xTQðx; uÞ is Lipschitz continuous in
(x, u).

Assumptions on the costs

1. Cost rates: The cost rates gið�; uiÞ and the terminal costs

hið�Þ are bounded.

2. Lipschitz continuity: The cost rates gið�; uÞ are Lipschitz

continuous for all ui 2 Ui, and the terminal costs hið�Þ are
also Lipschitz continuous.

Observe that the scaling conditions are satisfied in the

case of epidemics if the parameters are chosen as:

jN ¼ j=N; aNS ¼ aS; aNI ¼ aI ; b
N ¼ b and cN ¼ c. We fur-

ther assume that cLð�Þ and cIð�Þ are bounded functions. It

can be easily checked that the above hypotheses are satis-

fied under these assumptions.
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In order to state the mean field convergence results, we

introduce the following optimal control problem. Consider

a continuous time dynamical system

dxðtÞ
dt

¼ QTðxðtÞ; uðtÞÞxðtÞ ð11Þ

with state xðtÞ; t� 0, initial condition x(0), and action func-

tion uðtÞ ¼ ðuiðtÞ; i ¼ 1; � � � ;KÞ; t� 0. Let Ju : DK ! Rþ be

the associated cost function defined as follows.

JuðxÞ ¼
Z T

0

xðtÞTgðxðtÞ; uðtÞÞ dt þ xðTÞThðxðTÞÞ

where xðtÞ; t� 0 is a solution to (11) given xð0Þ ¼ x. We

seek to find an action function u�ðtÞ; 0	 t	 T which

together with its corresponding state trajectory

x�ðtÞ; 0	 t	 T attains the minimum cost

JðxÞ:¼min
u

JuðxÞ:

We then have the following convergence results.

1. Optimal trajectory: The CTMC XNðtÞ; 0	 t	 T con-

verges to the mean field limit xðtÞ; 0	 t	 T . More

precisely, for all �[ 0,

lim
N!1

P sup
0	 t	 T

kXNðtÞ � xðtÞk[ �

� �

¼ 0

2. Optimal cost: The optimal cost for the population of size

N, JNðXNð0ÞÞ, converges to the optimal cost of the mean

field control problem, J(x(0)), in probability.

3. Optimal policy: An optimal action function for the mean

field limit, say u�, is asymptotically optimal for the

system with finitely many nodes. More precisely,

JNp� ðXNð0ÞÞ � Jðxð0ÞÞ converges to 0 in probability

where p�i;t 
 u�i ðtÞ for all i.

3.2.2 Solution to the mean field control
problem: With a slight abuse of notation, we let JtðxÞ
denote the optimal cost over [t, T] given xðtÞ ¼ x. We can

write

JtðxÞ ¼min
u2U

xTgðx; uÞdt þ Jtþdtðxðt þ dtÞÞ
� �

¼min
u2U

xTgðx; uÞdt þ JtþdtðxÞ þ xTQðx; uÞrxJtðxÞdt
� �

On rearranging the terms, we obtain

�rtJtðxÞ ¼ min
u2U

xTgðx; uÞ þ xTQðx; uÞrxJtðxÞ
� �

:

The above equation, referred to as the Hamilton-Jacobi-

Bellman (HJB) equation, yields both the optimal action

function u� : ½0; T � ! U and the optimal cost JðxÞ 
 J0ðxÞ
of the mean field control problem.

The Minimum Principle [6] : Let us introduce

adjoint (also called costate) processes kðtÞ 2 RK ; t 2
½0; T� and the Hamiltonian function H : DN

K � U � RK !
R given by

Hðx; u; kÞ ¼ xTgðx; uÞ þ xTQðx; uÞk:

Let u�ðtÞ; t 2 ½0; T � be an optimal action function and

x�ðtÞ; t 2 ½0; T � be the corresponding state trajectory, i.e.,

x�ðtÞ; t 2 ½0; T � is the solution to (11) with uðtÞ ¼ u�ðtÞ; t 2
½0; T� and initial condition x�ð0Þ ¼ x. The HJB equation can

be compactly written in terms of the Hamiltonian function

as

�rtJtðx�ðtÞÞ ¼ Hðx�ðtÞ; u�ðtÞ;rxJtðx�ðtÞÞÞ:

The following result, referred to as the Minimum Principle,
provides a necessary condition for optimality of

u�ðtÞ; t 2 ½0; T �. Let kðtÞ; t 2 ½0; T� be the solution to

equation

dkðtÞ
dt

¼ �rxHðx�ðtÞ; u�ðtÞ; kðtÞÞ;

referred to as the adjoint equation, with the boundary

condition:

kðTÞ ¼ rðx�ðTÞThðx�ðTÞÞÞ:

Then, for all t 2 ½0; T �,

u�ðtÞ ¼ argmin
u2U

Hðx�ðtÞ; u; kðtÞÞ:

Furthermore, there is a constant h such that

Hðx�ðtÞ; u�ðtÞ; kðtÞÞ ¼ h; for all t 2 ½0; T�:

The minimum principle can be used as the basis of a

numerical solution. In the so called two-point boundary
problem method, we use the necessary condition

u�ðtÞ ¼ argmin
u2U

Hðx�ðtÞ; u; kðtÞÞ:

to express u�ðtÞ in terms of x�ðtÞ and kðtÞ. We then sub-

stitute the result into the system and the adjoint equations,

to obtain a set of 2K first order differential equations in

x�ðtÞ and kðtÞ. These equations can be solved using the split

boundary conditions:

x�ð0Þ ¼ x and kðTÞ ¼ rðx�ðTÞThðx�ðTÞÞÞ:

3.2.3 Solution to the finite population control
problem: We thus obtain the following procedure for

solving the optimal control problem for a finite

population.
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• From the original system with N nodes, write the mean

field limit. In particular, set xð0Þ ¼ XNð0Þ and obtain

Qð�; uÞ via appropriate scaling of parameters.

• Obtain the optimal control for the limiting problem via

solving the HJB equation or via some other method,

e.g., using the minimum principle [6].

• Use this control in the finite population problem.

From the above discussion, this is asymptotically

optimal.

3.3 Mean field game model of epidemic spread

Let us focus on a tagged node, say the nth node. Suppose it

uses an action function �u : ½0; T � ! U whereas all other

nodes use an action function u : ½0; T� ! U. Following the

discussion in section 3.2.1, the occupancy measures of

these nodes, XNðtÞ; t 2 ½0; T � asymptotically approach the

mean field limit xðtÞ; t 2 ½0; T �. Hence, in the limiting sys-

tem, the probabilities of the tagged node being in various

states, pðtÞ; t 2 ½0; T�, given its initial state, say i, evolve as
follows.

dp

dt
¼ QTðxðtÞ; �uðtÞÞpðtÞ ð12Þ

with pð0Þ ¼ di. Let �J �uði; x; uÞ be the associated cost defined

as follows.

�J �uði; x; uÞ ¼
Z T

0

pðtÞTgðxðtÞ; uðtÞÞ dt þ pðTÞThðxðTÞÞ

where xðtÞ; 0	 t	 T and pðtÞ; 0	 t	 T are solutions to

(11) and (12), respectively, given xð0Þ ¼ x and

pð0Þ ¼ di. We seek to find a action function

�u : ½0; T � ! U, which, together with the corresponding

trajectory �pðtÞ; t 2 ½0; T�, minimizes the tagged node’s

cost when other nodes are also using the same action

function �u : ½0; T � ! U, i.e.,

�u 2 argmin
u0

�Ju0 ði; x; �uÞ:

The equilibrium trajectory, policy, and cost for the

stochastic game for a finite size population are expected to

be asymptotically close to those for the mean field game.

This is a conjecture and we do not yet have a proof of

convergence.

3.3.1 Solution to the mean field game: With a slight

abuse of notation, let �Jtði; x; uÞ denote the optimal cost

of the nth node over [t, T] given YnðtÞ ¼ i;Xð0Þ ¼ x.
Then,

�Jtði; x; uÞ ¼min
u0i2Ui

E giðxðtÞ; u0iÞ dt
�

þ �JtþdtðYnðt þ dtÞ; x; uÞ jYnðtÞ ¼ i; xð0Þ ¼ x�
¼min

u0i2Ui

giðxðtÞ; u0iÞ dt
�

þ
X

j 6¼i

QijðxjðtÞ; u0i; ujðtÞÞ dt �Jtþdtðj; x; uÞ

þ 1�
X

j6¼i

QijðxjðtÞ; u0i; ujðtÞÞ dt
 !

�Jtþdtði; x; uÞ
)

ð13Þ

On rearranging the terms,

�rt
�Jtði; x; uÞ

¼ min
u0i2Ui

giðxðtÞ; u0iÞ
�

þ
X

j 6¼i

QijðxjðtÞ; u0i; ujðtÞÞð �Jtðj; x; uÞ � �Jtði; x; uÞÞ
)

¼ min
u0i2U

giðxðtÞ; u0iÞ þ
X

j

QijðxjðtÞ; u0i; ujðtÞÞ �Jtðj; x; uÞ
( )

ð14Þ

This is the HJB equation for the mean field game. A control

�u is a Nash equilibrium of the game provided

�uiðtÞ 2 argmin
u0i2Ui

giðxðtÞ; u0iÞ þ
X

j

QijðxjðtÞ; u0i; �ujðtÞÞÞ �Jtðj; x; �uÞ
( )

for all t 2 ½0; T�. So, Nash equilibria are characterized by

the system of Kolmogorov and HJB equations, (11) and

(14), respectively, together with the boundary conditions:

xð0Þ ¼ x

and �JTði; x; �uÞ ¼ hiðxðTÞÞ:

Thus we get a initial-terminal value problem (ITVP) whose

fixed points yield the solutions to the mean field game.

Under regularity assumptions for the cost functions gið�; �Þ
and the transition rates Qð�; �Þ, it can be shown that a unique

minimizer exists in (14), which is the Nash equilibrium of

the game [7, section 7.2.2]. Following is a fixed point

iteration to obtain a Nash equilibrium given x(0).

• Initialize with an action function u : ½0; T � ! U.

• Solve Kolmogorov equations (11) to obtain trajectory

xðtÞ; 0	 t	 T corresponding to u.
• For each j 2 f1; � � � ;Kg, solve HJB equations (14) to

obtain the best responses u0i : ½0; T � ! Ui to u for all i.
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• If u0ðtÞ ¼ uðtÞ for all t 2 ½0; T �, set �u ¼ u0 and exit.

Otherwise, set u ¼ u0, and continue with the next

iteration (go to Step 2).

Let fx denote the mapping from u to �u. When fx is a con-

tractive mapping on a complete metric space, Picard-

Banach fixed point theorem states that there is a unique

fixed point and that the convergence is geometric [8].

The Master Equation: [7, section 6.5] Let us introduce

the adjoint processes �kðtÞ 2 RK ; t 2 ½0; T� and the Hamil-

tonian functions Hi : D
N
K � U � RK ! R given by

Hiðx; u; kÞ ¼ giðx; uiÞ þ
X

j

Qijðxj; ui; ujÞkj:

Let �uiðtÞ; i 2 S; t 2 ½0; T � be the best response action

functions of the tagged player. The HJB equations can be

compactly written in terms of the Hamiltonian functions as

�rt
�Jtði; x; uÞ ¼ min

u0i2Ui

HiðxðtÞ; ðu0i; u�iðtÞÞ; �Jtð�; x; uÞÞ 8i 2 S;

and

�uiðtÞ 2 argmin
u0i2Ui

HiðxðtÞ; ðu0i; �u�iðtÞÞ; �Jtð�; x; �uÞÞ 8i 2 S;

where �Jtð�; x; uÞ 2 RK has jth component �Jtðj; x; uÞ for all

j 2 S. Finally, let J t; t 2 ½0; T � be real valued functions,

J t : ½K� � RK ! R, and let us also introduce the following

equation known as the master equation.

rtJ tði; xÞ þ Hiðx; ðmiðx; u�iðtÞ;J tð�; xÞÞ;
u�iðtÞÞ;J tð�; xÞÞ

þ
X

j

X

l

xlQljðxj; miðx; u�iðtÞ;J tð�; xÞÞ; ujðtÞÞ
 !

rxjJ tði; xÞÞ ¼ 0

ð15Þ

where

miðx; u�i; kÞ 2 argmin
u0i2Ui

Hiðx; ðu0i; u�iÞ; kÞ

where

qjðx; u; zÞ ¼
X

l

xlQljðxj; ulðzÞ; ujÞ:

Let J t; t 2 ½0; T � be a solution to the master equation with

terminal condition J Tði; xÞ ¼ hiðxÞ for all i 2 S, and

�uðtÞ; t 2 ½0; t� be the associated optimal action function. Let

�xðtÞ; t 2 ½0; T� be a solution to

d�xiðtÞ
dt

¼ qtði; �xðtÞ; �uðtÞ;J tð�; �xðtÞÞÞ ð16Þ

with initial condition �xð0Þ. Then, setting
�Jtði; x; uÞ ¼ J tði; �xðtÞÞÞ,

rt
�Jtði; x; uÞ þ HiðxðtÞ; �uðtÞ; �Jtð�; xðtÞ; uðtÞÞÞ

¼ rtJ tði; xÞ þ
X

j

qtðj; x; �uðtÞ;J tð�; xÞÞrxjJ tð�; xÞÞ

þ Hiðx; �uðtÞ;J tð�; xÞÞ
¼ 0:

Clearly, �Jtði; x; uÞ solves the HJB equation and is value

function in the optimization problem (14). Also, (16) can

be identified with the Kolmogorov equation (11). Conse-

quently, �xðtÞ is the equilibrium state trajectory. It is there-

fore seen that the master equation encapsulates both the

Kolmogorov and the HJB equations in a single equation.

3.3.2 Solution to the finite population stochastic
game: Finally, we can adopt a procedure similar to that

in section 2.2, to obtain a solution to the stochastic game for

a population of size N.

4. An illustrative example

Let us now formulate a mean field control and a mean field

game problem in a compartmental model of epidemic

spread. For ease of our presentation, we simplify the SIVR

model introduced in section 2 to an SIR model without

vaccination. We assume that the transmission rate of the

disease, j, is influenced by two factors: the disease char-

acteristics and the baseline contact factor within the pop-

ulation. The recovery rate c is taken to be a constant.

Individuals can adjust their level of social interaction by

choosing their contact factor. This is reflected by choosing a
value of aðtÞ:¼ðaSðtÞ; aIðtÞÞ 2 ½amin; 1� � ½amin; 1�¼:A. amin
represents the minimal transmission rate that an indi-

vidual who adopts maximum protection effort will

encounter.

4.1 Illustrative example: Mean field control

From a societal viewpoint, we assume that the regulating

authority chooses a policy p ¼ ðpt; t 2 ½0; T �Þ for the whole
population. This can be thought of as a combination of non-

pharmaceutical interventions like lockdowns, mandatory

usage of masks, proactive testing and quarantine, etc. We
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look at a finite horizon setup to identify the social optimum

strategy that minimizes the total social cost.

Once the social planner commits to a policy pðtÞ, anal-
ogous to equation (11), the forward evolution of the state

with the initial conditions xð0Þ ¼ ðxSð0Þ; xIð0Þ; xRð0ÞÞ is

given by:

_xSðtÞ ¼ �jaIðtÞaSðtÞxSðtÞxIðtÞ ð17aÞ

_xIðtÞ ¼ jaIðtÞaSðtÞxSðtÞxIðtÞ � cxIðtÞ ð17bÞ

_xRðtÞ ¼ cxIðtÞ ð17cÞ

We assume that individuals in states i 2 fS; Ig choosing a

contact factor aiðtÞ incurs a running cost

cLðaiðtÞÞ ¼ cQð1� aiðtÞÞ. In addition to this lockdown cost,

infected individuals pay a cost cI per unit time.

Starting from xð0Þ ¼ ðxSð0Þ; xIð0Þ; xRð0ÞÞ, policy p
induces a social cost which can be expressed as:

JpðxÞ ¼
Z T

0

cQð1� aSðtÞÞxSðtÞð

þðcI þ cQð1� aIðtÞÞÞxIðtÞÞ dt

Hamiltonian corresponding to the optimal control problem

is defined as,

Hðx; p; kÞ ¼cQð1� aSðtÞÞxSðtÞ
þ ðcI þ cQð1� aIðtÞÞÞxIðtÞ

� k2ðtÞcxIðtÞ þ jaIðtÞaSðtÞxSðtÞxIðtÞðk2ðtÞ � k1ðtÞÞ

Defining kðtÞ ¼ ðk1ðtÞ; k2ðtÞ; k3ðtÞÞ as the co-state variable

vector, with k3ðtÞ :¼ 0 8t 2 ½0; T �,

_k1 ¼� oH

oxS
¼ �cQð1� aSðtÞÞ

þ jaIðtÞaSðtÞxIðtÞðk1ðtÞ � k2ðtÞÞ

_k2 ¼� oH

oxI
¼ �cI � cQð1� aIðtÞÞ þ k2ðtÞc

þ jaIðtÞaSðtÞxSðtÞðk1ðtÞ � k2ðtÞÞ

ð18Þ

The final constraints for the co-state variables are:

k1ðTÞ ¼ k2ðTÞ ¼ 0.

From our discussion in section 3.2.2, functions k1; k2
exist that satisfy equation (18), and the optimal control p� is
the minimization of Hamiltonian, assuming that the co-state

variables are set according to optimum control.

4.1.1 Numerical computation of optimal
control: Note that in the previous section, we had to

deal with two sets of ODEs. We have the forward evolution

ODEs of the compartmental model (17) along with their

initial conditions. In addition to which, we had the co-state

ODE (18) with terminal conditions. There are several

classical procedures available to compute the optimal

control.

We use the forward-backward sweep method in [9,

Chapter 4]. Figure 3 shows time evolution of the epidemic

in the population. Figure 4 shows the socially optimal

control for the set of parameters in table 2.
Figure 3. Time evolution of the state ðxS; xI ; xRÞ under socially
optimal control policy.

Figure 4. Socially optimal control policy.

Table 2. Set of parameters for the numerical experiments.

ðS0; I0;R0Þ c j T cI cQ amin

(0.8, 0.2, 0) 0.1 0.2 100 100 10 0.1
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4.2 Illustrative example: mean field game model

From the point of view of a strategic individual node,

computing the best response to a population strategy can be

seen as a mean field game. Suppose a tagged node uses a

policy �u ¼ ð�aðtÞÞt2½0;T � whereas all other nodes use a policy
u. The cost of an individual node is

�J �uði; x; uÞ ¼
Z T

0

�

cQð1� �aSðtÞÞpSðtÞ

þ ðcI þ cQð1� �aIðtÞÞÞpIðtÞ
�

dt:

We seek to find a policy �u : ½0; T� ! U which, together

with the corresponding trajectory �pðtÞ; t 2 ½0; T� minimizes

the tagged node’s cost when other nodes are also using the

same policy �u (9).

Writing the corresponding Bellman equations (from

section 3.3), with JiðtÞ denoting the cost to go at time t from
state i 2 fS; Ig we have:

� _JSðtÞ ¼ min
aSðtÞ

cQð1� aSðtÞÞ þ jaSðtÞaIðtÞpIðtÞðJIðtÞ � JSðtÞÞ

ð19aÞ

� _JIðtÞ ¼ min
aIðtÞ

cI þ cQð1� aIðtÞÞ � cJIðtÞ ð19bÞ

along with the terminal conditions JSðTÞ ¼ JIðTÞ ¼ 0. The

cost-to-go from recovered state JRðtÞ is identically set to

zero. From (19), we can immediately see that for an

infected individual, aIðtÞ ¼ 1 is the best response action.

Defining a switching function /ðtÞ :¼ jpIðtÞ ðJIðtÞ
�JSðtÞÞ � cQ, we can find the individual best response

strategy for a susceptible individual as follows: for any

t 2 ½0; T �,

a�SðtÞ ¼
amin if /ðtÞ� 0

1 if /ðtÞ\0

�

4.2.1 Numerical computation of mean field
equilibrium:

Nash equilibria correspond to a fixed point of the best

response function. The idea is to use an inductive sequence

unþ1 ¼ fx0ðunÞ to reach the fixed point. The Kolmogorov

equations (11) are solved for a given control un and the best

response is computed from solving the Bellman ODE (19)

backward in time, giving unþ1. We use the iterative

scheme detailed in section 3.3.1 to compute the mean field

equilibrium.

Figure 5 shows the individually optimal control for the

set of parameters in table 2. We observe that the socially

optimal control policy requires that the population should

reduce their social interaction for a longer period compared

to the mean field equilibrium policy.

4.3 Comparison of mean field control and mean
field equilibrium strategies

We can see from figure 4 that in an idealized setting where

the regulating authority has full control on contact between

individuals, only the infected needs to be isolated and this is

reflected in the control actions aS and aI chosen for indi-

viduals in Susceptible and Infected states respectively.

However, when we look at a mean field equilibrium strat-

egy (figure 5), infected individuals are self interested and

does not undergo mitigation efforts. When the infection is

near its peak, susceptible individuals undergo protective

measures to avoid getting the infection. This is consistent

with the free riding phenomenon which has been observed

in the context of COVID-19 pandemic.

5. Current state-of-the-art in optimal control
of epidemics

Optimal control of epidemics concerns how a regulating

authority can optimally contain epidemic spread in a

population. Depending on the underlying epidemic

model, we can classify them as (1) compartmental

models (2) network based models. Tools from optimal

control were applied to compartmental models as early as

1970s [10, 11]. Compartmental models are formulated as

Markov chains and due to their simplicity, they will be

the go-to model in our discussions. Nowzari, Preciado

and Pappas [12] presents a survey on analysis and con-

trol of epidemics in complex networks. In this section,

we categorize the literature into the following groups

according to the control variable available to the regu-

lating authority: (1) non-pharmaceutical interventions (2)

vaccination strategies.

Figure 5. Mean field equilibrium control policy.
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5.1 Optimal control: non-pharmaceutical
interventions

The first line of defence against epidemics in the absence of

preventative vaccines or in the case of vaccine hesitancy

are non-pharmaceutical interventions which reduce the

mixing of infected people in the community. Non-phar-

maceutical interventions include (1) a full regional lock-

down, where only essential services are allowed to operate

(2) mandatory use of personal protective equipment (3)

targeted interventions like symptomatic testing, contact

tracing and quarantine, and (4) travel restrictions.

In the initial stages of the COVID-19 pandemic, the

governments all around the world introduced strict regional

lockdowns and travel bans to curb the disease spread.

However, this led to serious economic and social disrup-

tions as witnessed by the global economic recession

following COVID-19. Early on in the disease evolution,

extensive testing, contact tracing and quarantine are

effective ways to prevent an exponential growth of the

disease. This necessitates a timely intervention from gov-

ernments in terms of healthcare infrastructure and testing

capacity. Over the years, researchers have explored how to

model the cost associated with these interventions and how

to frame the problem faced by the regulator as an optimal

control problem.

Abakuks [10, 11] first formulated stochastic and deter-

ministic compartmental models where optimal policies are

computed numerically for the stochastic model and ana-

lytically for the deterministic model. Abakuks [10] con-

siders a compartmental SIR model of epidemic evolution.

The length of infection period is assumed to have an

exponential distribution. Under the assumption that a subset

of infected population can be isolated instantaneously, the

optimal isolation policy is calculated. Note that this is a

restrictive assumption because instantaneous isolation is

not practical and for many diseases, testing is required to

ascertain the state of an individual agent. Optimal isolation

policies are numerically computed for a stochastic model

and analytically computed for a deterministic model and

the two policies compared. Abakuks [11] uses a similar

model to analyze optimal vaccination policies.

Wickwire [13] extended the previous works of Abakuks,

[10, 11] on isolation and vaccination to analyze Kermack-

McKendrick type compartmental models by means of value

function and the Bellman equation. Optimal isolation

policies for deterministic and stochastic epidemics were

determined by [13]. Wickwire et al also relaxed the unre-

alistic assumption that an arbitrary number of individuals

can be isolated instantaneously, and instead assumed that

there is a hard constraint on the isolation rate. See [14] for a

survey.

Behncke [15] further adapts Wickwire’s model [14] to a

more general control and cost setup and deals with both

finite and infinite time horizon problems. They use the

Pontryagin’s maximum principle [6] throughout instead of

Bellman equations and study the control problem qualita-

tively, thus avoiding differentiability assumptions on the

value function.

In the context of the COVID-19 pandemic, optimal

control has been applied to compartmental and network

based models. Tsay et al [16] use a compartmental SEAIR

(susceptible - exposed - asymptomatic - infectious -

recovered) model with an asymptomatic compartment,

provide methods for estimation of parameters, and study

the effect of isolation measures. The work by Perkins et al
[17] performs optimal control analysis of a compartmental

SEAIHV (susceptible - exposed - asymptomatic - infected -

hospitalised - vaccinated) model and concludes that

(a) heightened control early on in the pandemic is important

for achieving long-term success, (b) preventing a large

wave that overwhelms the public health system may not

even be possible under some parameter combinations and

(c) prioritizing the minimization of deaths versus days

under control leads to vastly different outcomes. Kohler

et al [18] use a compartmental model with 8 states and

employ a robust model predictive control (MPC) based

feedback policy. This policy adapts the social distancing

measures cautiously and safely, thus leading to a minimum

number of fatalities even if measurements are inaccurate

and the infection rates cannot be precisely specified. Silva

et al [19] considers a social opinion biased SAIRP model to

provide forecasting mathematical models to anticipate the

consequences of political decisions.

Kantner and Koprucki [20] compute the optimal non-

pharmaceutical intervention strategy based on an extended

SEIR (Susceptible-Exposed-Infected-Recovered) model

and continuous time optimal control theory. The optimal

control must satisfy the the following requirements: (1)

minimize disease related deaths; (2) establish a sufficient

degree of natural immunity at the end of horizon, to exclude

a second wave; and (3) keep the socio-economic costs of

interventions minimum. This model was then calibrated to

reproduce the initial exponential growth phase of COVID-

19 pandemic in Germany. The optimal intervention strategy

can be structured into 3 phases. In the first phase, inter-

vention begins with a strict initial lockdown to hold the

effective reproduction number, Reff\1. In the second

phase, there is a critical period where the number of

simultaneous cases is approximately held constant

(Reff � 1). During this period, the non-pharmaceutical

interventions are relaxed on a gradually increasing rate.

Phase 3 commences after the critical period is over and the

number of active cases start to decay. In Phase 3, a final

moderate tightening of measures is required.

Kruse and Strack [21] derive optimal policies for social

distancing in an SIR model. They find that the optimal

policy has the following features: (1) if the death rate is not

too sensitive to the number of infected, the optimal policy

has two phases. A first phase of strong interventions, fol-

lowed by a second phase with weaker interventions. (2) If
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the cost of reducing transmission rate is linear, the optimal

policy is always extreme (bang-bang).

Richard and co-authors [22] identify optimal age-strati-

fied non-pharmaceutical interventions to implement as a

function of time since the onset of epidemic. By applying

optimal control theory, they arrive at a solution which

minimizes deaths and control costs. This strategy is

implemented for three countries with contrasted age dis-

tributions. They also show that this age-stratified policy

strongly outperforms a constant uniform control over the

whole population or over the younger population.

Bliman et al [23] aims to study how partial or total

containment can be applied to an SIR epidemic model to

minimize the epidemic final size (cumulative number of

infected cases during the complete course of an epidemic).

Theoretical and numerical results demonstrate that this

approach can lead to a significant decrease in epidemic final

size. It is shown that optimal intervention has to begin

before the number of susceptible individuals has crossed

the herd immunity level.

Dimarcoet al [24] use an SEIAR type compartmental

model to study the optimal control strategy when agents

reduce their mean number of contacts. The novelty lies in

using a kinetic-type model to account for heterogeneity in

contact distribution of the population. Using a data driven

approach to determine the relevant epidemiological

parameters, they show that different types of control can

lead to very different mitigation effects according to the

level of heterogeneity in contact distribution of agents.

Arruda et al [25] incorporates multiple viral strains and

reinfection to an SEIR model and studies optimal control

policies. The model is validated from epidemiology data

from COVID-19 in England and Brazil. They consider the

cost of mitigation efforts to grow exponentially with the

mitigation effort and solve an optimal control problem to to

determine optimal mitigation measures. Their results point

to the importance of controlling an epidemic from outset in

hindering the emergence of new strains and avoiding the

effects of a prolonged epidemic.

Morris et al [26] studies the role of non-pharmaceutical

interventions in reducing or delaying the peak number of

infected individuals. A classical SIR model is used to

derive the theoretically optimum strategy and show that

easier to implement strategies without perfect information

about current state can perform near optimally. However,

neither the optimal strategy nor the near-optimal strategies

are robust strategies. Small deviations in intervention tim-

ing can cause large increases in the infection peak. Robust

controls should therefore aim at strong, early interventions

which are sustained in an ideal scenario.

The general conclusion which we can draw from the

above literature is that for linear cost of control, the optimal

policy switches from exerting maximum control effort until

some point in time and then switches off the control efforts

after that time point. This bang-bang solution, with at most

one switch, is common in similar problems. Although the

bang-bang solution is common, different types of solutions

can be obtained for various formulations of the optimal

control problem [27, 28]. For an SIR model with quadratic

control cost, [28] shows that the optimal solution is not a

bang-bang controller.

5.2 Optimal control with vaccinations

Abakuks [11] started the work on optimal vaccination

strategies for epidemics. However, this model works under

the assumption that the whole of susceptible population is

instantaneously vaccinated once a vaccine is available. This

work computes the optimal control for a stochastic model

as well as a deterministic model and provides a compara-

tive study.

Bauch and Earn [29] models spread of childhood dis-

eases and analyze voluntary vaccination policies using a

compartmental SIR model. Morton and Wickwire [30]

consider an immunisation model for susceptible individuals

where the vaccination control is bounded. This bounded-

ness assumption on vaccination control is needed because

in practical scenarios, there will be a bound on the maxi-

mum number of vaccines available. Kuga and co-authors

[31] combine evolutionary game theory and mathematical

epidemiology to evaluate the performance of vaccination

subsidizing policies for a seasonal epidemic. Multi-agent

simulations are used to find how the topology of network

structure affects the vaccination behavior. Mean field

approximations are used in this paper to confirm the sim-

ulation results and to see the change in social behavior

when the vaccine is imperfect. The authors are able to point

out instances where vaccine subsidizing policies could be

counterproductive.

Arefin and co-authors [32] build a mean-field vaccination

game to analyse the effect of an imperfect vaccine on a

two-strain epidemic. The vaccination-decision takes place

at the beginning of an epidemic season and depends upon

the vaccine-effectiveness along with the cost. An additional

situation where the original strain continuously converts to

a strain by mutation is also considered.

Zamanet al [33] propose an SIR epidemic model where a

percentage of susceptible population is vaccinated. They

show that an optimal control exists for the optimal vacci-

nation problem and describe numerical simulations using a

Runge-Kutta fourth order procedure. Furthermore, a real-

world example is constructed where smoking is modelled

as an epidemic, demonstrating the efficiency of optimal

control. Kar and Batabyal [34] study an optimal control

problem with vaccination coverage as a control variable on

an SIR epidemic model. With the help of the Pontryagin

maximum principle and and an iterative method, it is shown

that there are two equilibria, one a disease free equilibrium

and the other an endemic equilibrium. The existence and

stability of these equilibria are studied and the optimality

system is then solved numerically.
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Tchuenche and co-authors [35] analyze the dynamics of

an influenza pandemic model with vaccination and treat-

ment using two preventive scenarios: increase in vaccine

uptake and decrease in vaccine uptake. The optimal control

is computed using Potryagin’s maximum principle and

sensitivity analysis and simulations are performed to

determine the relative importance of transmission

parameters.

Acuna et al [36] formulate an optimal control problem

where vaccination coverage (covering a certain percentage

of the population in a given period) and hospital occupancy

are constrained and identifies vaccination policies that

minimizes the number of disability-adjusted years of life

lost. A compartmental model is used in the analysis and the

burden of COVID-19 is studied with respect to different

scenarios such as optimal vs constant vaccination policies,

vaccine efficacy, induced vaccine immunity and natural

immunity.

5.2.1 Note: It should be noted that although this section

focused on optimal control in the context of epidemics, the

same models and tools are directly applied to general

spreading processes in complex networks. Examples of

optimal control applied to these models include: malware

propagation in computer networks [27, 37], opinion

dynamics in social networks [38], and adoption of a new

product in a marketplace. Nowzari et al [12] provides a

survey on analysis and control of epidemics in complex

networks.

6. Current state-of-the-art in mean field game
modeling of epidemics

This section is devoted to the use of the mean field

game approach in the study of epidemic spread and

control. We have categorized the relevant literature into

the following groups: (1) Analysis of epidemic spread

and non-pharmaceutical interventions (2) Study of vac-

cination effects (3) Control and policy design for

Epidemics.

The paper by Huang and Zhu [39] is a recent survey of

the use of game theoretic models (including mean field

games) for epidemic spread and control. The paper starts

with a review of various models (such as the SIR model) for

epidemic spread. The focus of the survey is on the use of

the models in answering important questions such as what

interventions, when to intervene, etc. The review also

provides a taxonomy of the literature based on (1) types of

games, such as static games, differential games, stochastic

games, evolutionary games, and mean field games (2) types

of interventions, such as social distancing, vaccination,

quarantine, and antidotes; and (3) types of decision-makers,

such as individual nodes, adversaries, and central

authorities.

6.1 Mean field game modeling and analysis
of epidemic spread and non-pharmaceutical
interventions

Elie et al [40] formulate a model of COVID-19 spread and

control using an SIR model with an embedded mean field

game. The control in the SIR model is induced by the

degree of contact among the individual nodes. An indi-

vidual node can decrease the contact rate during the epi-

demic and this intervention has a social cost and an effort

cost. The mean field game model is shown to have an

equilibrium in which the transmission rate of the epidemic

is reduced. The transmission rate achieved in the equilib-

rium is however higher compared to a socially optimal

solution. Similar results are derived in the case of an SEIR

model where an additional exposed state is introduced. The

divergence between autonomous behavior and socially

optimal behaviors are shown to be more prominent

immediately before and immediately after the peak of the

epidemic.

The paper by Petrakova and Krivorotko [41] presents a

model for spread of an epidemic like COVID-19 by con-

sidering three separate groups of population, namely, sus-

pectable (S), infected (I), removed (R) and cross-immune

(C) ones. The model is based on the mean-field control

inside these three groups of population. This model takes

into account population heterogeneity and is therefore

superior to a traditional SIR model. The numerical exper-

iments are able to produce accurate estimates for COVID-

19 spread in Novosibirsk, Russia for two 100-day periods.

Cho [42] presents a mean field game model of individual

nodes in a population affected by an epidemic, where each

node chooses a dynamic strategy of interactions, given the

benefits of the interactions as well as the risk involved in

getting infected. The mean field equilibrium that results

from the non-cooperative game model is computed and the

outcome is compared to the socially optimal outcome

which maximizes the total utility of the population. It is

shown that the mean field equilibrium strategy is to make

more contacts than the level at which it would be socially

optimal, in the absence of any public policy or incentives. If

incentives are offered and the cost of incentivizing people

is included, then it is shown that policies reducing contacts

of the infected should continued to be enforced even after

the peak of epidemic has passed. The paper also computes

the price of anarchy to get an idea of the conditions under

which the discrepancies between the mean field behaviour

and socially optimal behaviour warrant public policy

interventions.

Olmez et al [43] develop mean field game models for the

evolution of epidemics. The specific problem that is mod-

elled as a mean field game is the decision facing an indi-

vidual node regarding the degree of social activity. This is

modelled as a mean field game, taking into accounts

healthcare related cost and benefits accruing from social

interactions. The authors investigated the fully observed

Sådhanå          (2023) 48:207 Page 15 of 20   207 



setting as well as a partially observed setting. The paper

presents a complete analysis of the fully observed case and

some analytical results for the partially observed case. In

the fully observed case, each individual node knows its

epidemiological status perfectly. It turns out that a sus-

ceptible node will engage in a social interaction if any only

the reward outweighs the risk whereas an infected indi-

vidual will choose to quarantine. In the partially observed

case, the nodes do not know their epidemiological status

perfectly and it turns out that an infected node behaves like

a susceptible node. This could make the epidemic spread

faster. The paper [44] is a follow-up of the work in [43] and

studies the behavior of self-interested agents in a large

heterogeneous population and how pre-symptomatic agents

can drive the growth in infection. A mean field type optimal

control model is used to investigate the effect of partial

observation on individual decision making.

Tembine [45] considers a class of mean-field-type

games with discrete-continuous state spaces and presents

Bellman systems that provide sufficiency conditions for

the existence of mean-field-type equilibria in state-and-

mean-field-type feedback form. The author derives

unnormalized master adjoint systems (MASS) which

provide a methodology powerful enough to model the

propagation of the COVID-19 virus in the globe. Based on

MASS, the author presents data-driven modelling and

analytics for mitigating COVID-19. The model is very

versatile and captures many aspects: untested cases, age-

structure, decision-making, gender, pre-existing health

conditions, location, testing capacity, hospital capacity,

and a mobility map of local areas, including in-cities,

inter-cities, and international aspects. The author shows

that this data-driven model can capture the trends of the

reported data on COVID-19.

The report by Bremaud [8] models the propagation of

epidemics in which individual nodes have control on some

parameters such as vaccination rate or social interactions.

The report focuses on two models based on the standard

SIR model. The first model focuses on vaccination control.

The existence of a unique mean field equilibrium is shown

and a numerical method is presented for computing the

equilibrium. The second model captures the effect of social

contacts. Here again, a mean field equilibrium is computed

numerically.

Bremaud and Ullmo [46] consider a SIR compartmental

model with social structure, where individuals are grouped

by age and interact in different settings where individuals

have contact with the other (schools, households, commu-

nity, etc.). The mean field Nash equilibrium is computed in

this setting and is compared with the social optimum. They

also investigate how an approximation of socially optimum

policy can be obtained with social policies like lockdown.

Aurell et al [1] discuss the modeling of epidemics using

graphon games. A crucial assumption in mean field game

theory is that nodes are indistinguishable and interact

identically regardless of with whom they interact. In the

context of modeling of epidemics, there is often a need to

model the diversity of individual nodes and the variation of

their interactions (for example, travel restrictions, multiple

age groups with distinct social behavior and risk profiles,

and a wide range of co-morbid conditions, etc.). Games

with a large number of non-identical players can be ana-

lyzed with so-called graphon games whenever the network

specifying the interactions is dense. A graphon can be

viewed as the limit of a dense random graph. The authors

develop a framework for epidemic modeling using graphon

games and analyze their Nash equilibria. They provide a

sufficient condition for the existence of a Nash equilibrium

and propose a numerical approach based on machine

learning tools to compute the equilibrium. The paper also

presents numerical results on several applications of com-

partmental models for epidemics.

In the paper by Kordonis et al [47], the authors study a

dynamic game model that captures social distancing

behaviors during an epidemic, assuming a continuum of

players and infection dynamics caused by individual

choice. The authors assume a slight variant of the SIR

model. The players have incomplete information about

their infection state, and their choice of actions is deter-

mined by the individual beliefs on the probabilities of being

susceptible, infected, or recovered. The cost of each player

is determined by the infection and the contact factor. The

authors show that a Nash equilibrium is guaranteed to exist

and develop an efficient computational procedure for the

same. Even when the players have the same parameters,

they could exhibit different behaviors. The work studies the

effect of various parameters like the vulnerability (co-

morbidity for example) of players, the time horizon, and the

various interventions on the optimal policies and the costs

of the nodes.

The paper by Gao et al [48] is concerned with accurate

modeling of COVID-19 evolution with mean field evolu-

tionary dynamics (MFEDs) by invoking optimal transport

theory and mean field games on graphs. The authors

compute the payoff functions for different individual states

from the commonly used replicator dynamics (RDs) and

employ them to govern the evolution of epidemics. The

authors compare epidemic modeling based on MFEDs with

that based on RDs through numerical experiments. The

efficacy of MFEDs is demonstrated by fitting the model to

the COVID-19 statistics of Wuhan, China. The authors also

analyze the effects of one-time social distancing as well as

the seasonality of COVID- 19 through the post-pandemic

period.

6.2 Mean field game modeling of the effect
of vaccinations

Doncel et al [49, 50] present a mean field game model

under the SIR model when the individual nodes in the

population choose when to get vaccinated. The authors
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prove the existence of a unique mean field equilibrium

which shows a bang-bang control behavior. Specifically,

there is a threshold time until which the individuals will

get vaccinated at maximal rate and beyond which they do

not get vaccinated at all. Interestingly, the vaccination

strategy that minimizes the total cost has the same

structure as the mean field equilibrium. However, the

vaccination period of the mean field equilibrium is always

smaller than the one that minimizes the total cost. This

essentially means that vaccination should be subsidized

appropriately in order to nudge the people to exhibit

optimal vaccination behavior.

Hubert and Turinici [51] consider an SIR model with

vaccination where the vaccination is not mandatory. In

particular, they study newborn vaccination. The evolution

of each individual node is modelled as a Markov chain and

the dynamics of the population is modelled using a mean

field approach. The vaccination decision optimizes a

criterion depending on the time-dependent societal vacci-

nation rate and the future epidemic dynamics. It is shown

that a Nash mean field equilibrium exists in the proposed

model. The paper presents a method for numerical com-

putation of the equilibrium.

Laguzet et al [52] analyzes individual vaccination

strategies for a Susceptible-Infected-Recovered (SIR)

model. The decision on whether or not to get vaccinated is

taken by individual nodes and is based on the risk of

infection, the possible side effects of the vaccine and the

overall severity of the epidemic course. An important

realistic condition is captured, namely limited capacity of

vaccination. It is shown that a mean field equilibrium exists

between the individual decisions and the epidemic evolu-

tion. This enables one to compute an optimal vaccination

policy.

Salvarani and Turinici [53] model the behavior of

individual nodes in protecting themselves against an epi-

demic when the vaccination is voluntary. They capture

two aspects of vaccines namely imperfect efficacy and

limited duration of protection. They show the existence of

a Nash equilibrium, assuming non-persistent immunity.

They also provide a numerical method for computing the

equilibrium. Numerical experiments reveal interesting

insights which are useful in planning a vaccination cam-

paign (timing, etc.) in the realistic scenario of imperfect

vaccines.

Lee et al [54] deals with the problem of transporting

and distributing the COVID-19 vaccine(s), to achieve

optimal control of the pandemic. The methodology is

based on a mean-field variational problem in a spatial

domain, which controls the propagation of pandemic by

the optimal transportation strategy of vaccine distribution.

The authors integrate the vaccine distribution into the

mean-field SIR model designed by the authors in [55].

Experimental results show that the proposed model indeed

provides effective strategies in vaccine distribution on a

spatial domain.

6.3 Mean field game approach to control
and policy design for epidemics

Aurell et al [56] model the spread and regulation of an

epidemic as a Stackelberg game between the federal

Government and the population. The Government which

formulates mitigation policies through incentives is the

leader in the game while the mean field of nodes (citizens)

representing the population is the follower. A standard SIR

model is considered to represent the spread of the epidemic.

The paper considers for the first time, a compartmental

model of epidemics capturing the interplay between inde-

pendent autonomous nodes and a regulator. The individual

nodes interact via a noncooperative game where utility

maximization is equivalent to minimizing the individual

cost by controlling the degree of interactions with other

nodes (rates of transitions between the states). The Nash

equilibrium of this non-cooperative game is determined.

The leader, guided by a social objective, applies incentive

policies and non-pharmaceutical interventions which

determine the Nash equilibrium of the mean field game

among the individual nodes.

The mean field game proposed is an extended MFG in

which dependency on the joint distribution of action and

state is explicitly taken into account (in earlier models of

extended MFG, this dependency involved only the mar-

ginal distributions). In terms of the technical novelty of

the model, this paper formulates the leader’s problem

under the constraint of the mean field Nash equilibrium

of the individual nodes as an optimal control problem

with two forward stochastic equations. The numerical

solution of this problem uses an approximation of the

population by an interacting particle system and the

approximation of controls by neural networks, including

the leader’s policy. The optimization of the leader’s cost

is carried out using a variant of stochastic gradient des-

cent to update the neural networks’ parameters (see [56]

for details).

The numerical experiments reveal two interesting

insights: (a) In the first case, when the leader applies a

containment policy, it is found that the nodes are more

cautious about their interactions in the resulting Nash

equilibrium when compared to a free spread scenario

without any containment policy in place. An early lock-

down has a higher impact than any action taken at a later

point in time. (b) When the leader optimizes over its poli-

cies to minimize its own cost, the Nash equilibrium of the

nodes shows interesting outcomes. For example, when the

SIR model is expanded to include two additional states

namely Exposed (E) and Deceased (D), the nodes are found

to choose lower contact levels in their Nash equilibrium

than recommended by the regulator.

Hubert et al [57] investigate the optimal control of an

epidemic by offering incentives to lockdown and testing.

The interaction between the Government and the indi-

vidual nodes in the population is modelled as a principal-
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node problem with moral hazard. This results in a

Stackelberg game model. The spread of the epidemic is

modelled by stochastic model with SIS or SIR com-

partments. The transmission rate of the epidemic is

proposed to be controlled by decreasing the contact rate

between individuals (through various means such as

reducing physical interactions). This causes a social cost

as well as monetary cost to the individual nodes. The

paper proposes that the government can aid this through

a tax or subsidy as well as implement a testing policy.

The testing policy will enable to determine accurately the

spread of the epidemic, facilitating isolation of infected

individuals. The work derives an optimal form of the tax

which is indexed on the (a) proportion of infected indi-

viduals and (b) the optimal effort of the population,

namely the transmission rate chosen in response to this

tax. This yields an optimization problem to be solved by

the government, namely solving an appropriate Hamilton-

Jacobi-Bellman equation. Experimental results show that

the imposition of a tax policy will induce the individual

nodes to cut down on their interactions.

The paper also studies the influence a testing policy can

have on limiting the spread of the epidemic. If the testing is

done aggressively, then individuals who have tested posi-

tive can be isolated. This will enable the individual nodes to

interact more freely than if there were no testing and no

isolation of individuals who tested positive.

Charpentier et al [58] consider an extended SIR model

with several realistic features of COVID-19 pandemic

incorporated. The authors derive an optimal policy for

controlling the spread of the epidemic using and taking into

account: (a) lockdown intervention as well as detection and

isolation intervention, (b) the trade-off between the sanitary

and the socio-economic cost of the pandemic, and (c) lim-

ited capacity of intensive care units (ICUs). A detailed

sensitivity analysis is carried out with parameters chosen

from the COVID-19 literature. It is shown that the optimal

lockdown policy is structured into 4 phases: (1) A quick

and strong lockdown intervention to stop the exponential

growth of the contagion; (2) A short transition to reduce the

prevalence of the virus; (3) a long period with full ICU

capacity and stable virus prevalence; (4) a return to normal

social interactions with disappearance of the virus. This

optimal scenario avoids the second wave of infection,

provided the lockdown is released sufficiently slowly. It is

also shown that with aggressive testing followed by isola-

tion of infected individuals, social distancing norms can be

relaxed.

Lee et al [55] presents a mean field game model to

control the spread of epidemics in the spatial domain. A

standard SIR model is considered and the spatial velocities

in the three states S,I, and R are chosen as the control

variables. The authors consider three crowds, Susceptible,

Infected, and Recovered, which evolve spatially. This is

due to mobility, interactions, etc. The central planner seeks

to mitigate the risk of infection by controlling the spatial

velocity of the nodes in the three states. The paper provides

efficient algorithms based on proximal primal-dual methods

for obtaining the solutions. It is shown that the proposed

model can be effectively used for identifying the infected

and susceptible populations in a spatial domain.

Xu et al [59] discusses three specific COVID-19 epi-

demic control models: (1) the susceptible, exposed, infec-

tious, recovered (SEIR) model with vaccination control;

(2) the SEIR model with shield immunity control; and (3)

the susceptible, un-quarantined infected, quarantined

infected, confirmed infected (SUQC) model with quaran-

tine control. The paper expresses control outcomes using

metric temporal logic (MTL) which is a formal specifica-

tion language. An example of a control outcome would be:

the population immune from the disease should exceed 200

thousand in the next 100 to 200 days [59]. The paper pre-

sents methods to synthesize control strategies with MTL

specifications and presents simulation results for three

scenarios: (a) vaccination control for the COVID-19 epi-

demic; (b) shield immunity control for the COVID-19; and

(c) quarantine control for the COVID-19.

7. Future directions

A prominent direction that has been pursued by many

researchers is to investigate how socially optimal control

and mean field game based control differ in an epidemic

model. The control policies influence various costs

including infection cost, vaccination cost, quarantine cost,

etc. Assuming that these costs can be suitably chosen (with

the support of a regulatory authority), a few researchers

have looked into the problem of nudging the individuals of

the population in a way that mean field game control

approaches the performance of socially optimal control.

Typically, researchers conduct mean field game analyses

and subsequently suggest certain incentives or deterrents

based on the associated equilibria. However, the analyses

do not take into account how the individuals react to the

policies, except for the work by Aurell et al [56] who arrive

at an optimal contract by explicitly taking into account the

reaction of the individuals through a Stackelberg game type

of model. Here, the regulator announces a contract with

recommends levels of social interaction for individuals in

each compartment. Agents in the population incur a run-

ning cost for not adhering to the regulator recommendation.

This two level optimization of Stackelberg type models

mimics the real world scenario of government announcing a

policy and a population of rational agents responding to the

policy. One specific problem here is to extend the work of

[56] by finding optimal levels of pharmaceutical interven-

tions like vaccination and testing.

In the existing literature, the population is treated as

consisting of a single group of individuals. In reality,

however, there are multiple logical groups such that the

weights on the compartmental model would be different for
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different groups: (a) healthy, robust individuals; (b) indi-

viduals with co-morbidities; (c) elderly individuals (which

are more vulnerable), etc. Although such models exist in

the literature for modeling of epidemics, to the best of our

knowledge, mean field control and mean field games have

not been analysed for more complex models. While anal-

ysis of complex models can lead into difficulties, numerical

methods can help circumvent these difficulties.

The ongoing pandemic is continuously evolving.

Research and innovation have led to multiple vaccines and

vaccinated people are well protected. However, compliance

to vaccination and pandemic appropriate behaviour is not

100 percent. It would be valuable and interesting to capture

some of these phenomena in the epidemic models. Data

about the ongoing epidemic will be very useful for these

studies. The models developed will be much more credible

if available data is incorporated appropriately.

Testing plays an important role in controlling the spread

of the epidemic and also in better management of the epi-

demic effects. For infected individuals, early detection is

important for medical intervention and prevention of per-

manent harm to their bodies. It is important to study this

problem as a social problem and compute the optimal

testing strategy for the community as a whole through an

appropriate model.

Analytical techniques are hard to develop for the prob-

lems mentioned in this paper. This offers a formidable

technical challenge and will be an interesting research

direction. Most existing solutions are numerical. Hu et al
[60] gives an overview of state-of-the-art machine learning

methods applied to stochastic control problems and games.

Deep learning methods have enabled the possibility to solve

problems even when the underlying MDP is complex or the

dimension is high. This paper builds on recent advance-

ments in machine learning methods for high dimensional

PDEs and backward stochastic differential equations.

Dayanikli et al [61] propose a single level numerical

approach that uses machine learning techniques to solve

two level Stackelberg problems between a regulator and a

mean field population of agents. Therefore, another

promising direction will be to develop improved numerical

methods leveraging on advances in machine learning

methods.
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