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1. Introduction

1.1. Background of the study

Extremal Kähler metrics were introduced by Calabi [6,7] as candidates for ‘canonical 
metrics’ (Tian [20]) in a given Kähler class on a compact Kähler manifold. These are 
generalizations of constant scalar curvature Kähler (cscK) metrics which themselves 
include Kähler-Einstein metrics as a special case (see Aubin [2], Barth, Hulek et al. [4], 
Székelyhidi [19] and Tian [20] and the references therein). Extremal Kähler metrics can be 
equivalently defined as those Kähler metrics for which the gradient of the scalar curvature 
(which is expressed in terms of the first Chern form) is a holomorphic vector field (viz. 
∇1,0S (ω) = ∇(1,0)

(
2nπc1(ω)∧ωn−1

ωn

)
is a holomorphic vector field) (see [6,7], Pingali [18], 

[19] and [20]). Special cases of these are cscK metrics which can be characterized as 
those metrics for which the corresponding first Chern form is harmonic (viz. Δc1 (ω) =
−∂̄∗∂̄c1 (ω) = 0) (see Bando [3], [6,7], Futaki [9], Pingali [18], [19] and [20]). These 
definitions (and even the definition of a Kähler-Einstein metric ([9] and [19])) involve 
the first Chern form which is the same as the Ricci form for Kähler manifolds [19]; this 
fact and the fact, that the first Chern class of a Kähler manifold does not depend on 
the choice of the Kähler metric on the manifold [19], give some interesting results in the 
theory of extremal Kähler metrics (see [6,7], [9], [19] and Yau [22]).

Taking the analogy of these definitions to the top Chern form, Pingali [18] defined 
higher extremal Kähler metrics and higher constant scalar curvature Kähler (hcscK) 
metrics by considering the following equation (where cn (ω) is the top Chern form of 
a Kähler metric ω on a compact Kähler n-manifold M and λ is a smooth real-valued 
function on M):

cn (ω) = λωn (1.1.1)

where ω is said to be higher extremal Kähler if ∇1,0λ =
(
∂̄λ

)� is a holomorphic vector 
field on M and ω is said to be hcscK if λ is a constant, which is equivalent to saying cn (ω)
is a harmonic top form on M (see Bando [3]). The primary motivations for studying these 
types of Kähler metrics were that firstly the top Chern class of a Kähler manifold is the 
same as its Euler class (see Barth, Hulek et al. [4]) and secondly Yau [23] had stated 
that the behaviour of the higher Chern forms is mysterious in general and was as then 
unexplored, so some interesting results were expected from the study of these objects.

Earlier, hcscK metrics were studied by Bando [3], who defined obstructions for the 
existence of the same in a Kähler class on a compact Kähler manifold (which are now 
called as Bando-Futaki invariants), and also by Futaki [10,11], whereas a version of higher 
extremal Kähler metrics called ‘perturbed extremal Kähler metrics’ (and analogously a 
version of hcscK metrics called ‘perturbed constant scalar curvature Kähler (perturbed 
cscK) metrics’) were studied by Futaki [10,11]. But Futaki’s results [10,11] do not seem 
to apply in our case as mentioned by Pingali [18].
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This paper answers the problem of finding higher extremal Kähler metrics with some 
nice enough symmetries on a certain example of minimal ruled surface, which comes from 
a special family of minimal ruled surfaces called ‘pseudo-Hirzebruch surfaces’, which like 
Hirzebruch surfaces are some of the most important examples of compact Kähler surfaces 
(see Barth, Hulek et al. [4] and Tønnesen-Friedman [21]). The problem of constructing 
higher extremal Kähler metrics on this minimal ruled surface was started by Pingali 
[18] motivated by the analogy with the problem of constructing extremal Kähler metrics 
on this surface which was dealt with first by Tønnesen-Friedman [21] (and later by 
Apostolov, Calderbank et al. [1]). Pingali [18] had proven the existence of a higher 
extremal Kähler metric with some required properties in one specific Kähler class on 
this Kähler surface, while we will prove in this paper that in every Kähler class on this 
Kähler surface there exists a higher extremal Kähler representative (which is constructed 
by a certain method which imposes those required nice symmetries on the metric), and 
it was already proven in [18] that this constructed metric, if it does exist, cannot be 
hcscK. Then after proving some facts about the top Bando-Futaki invariant on a general 
compact Kähler manifold we will be able to conclude that hcscK metrics do not exist in 
any Kähler class on our Kähler surface. We will then generalize our results for all pseudo-
Hirzebruch surfaces. Finally we will do a brief comparison of our results in the higher 
extremal Kähler case with those gotten by Tønnesen-Friedman [21] (and Apostolov, 
Calderbank et al. [1]) in the usual extremal Kähler analogue of this problem.

1.2. Overview of the paper

In this paper we will consider the minimal ruled surface X := P (L ⊕O) where L is a 
degree −1 holomorphic line bundle on a genus 2 Riemann surface Σ, Σ is equipped with 
a Kähler metric ωΣ of constant scalar curvature −2 and L is equipped with a Hermitian 
metric h whose curvature form is −ωΣ. The problem of finding extremal Kähler metrics 
on X was studied by Tønnesen-Friedman [21], more general results regarding the same 
were already proven in [21], then further results in more generalized settings were proven 
by Apostolov, Calderbank et al. [1] and a complete exposition about the specific case of 
X is contained in Székelyhidi [19] where the momentum construction method outlined 
in Hwang-Singer [12] is used to obtain the required symmetries on the metric. In this 
paper we will deal with the higher extremal Kähler analogue of this problem and prove 
some important results on the same.

It has been proven using the Leray-Hirsch Theorem and the Nakai-Moishezon Crite-
rion (proven by Fujiki [8] and Tønnesen-Friedman [21] and briefly explained in Subsection 
2.1) that the Kähler cone (i.e. the set of all Kähler classes) of X is precisely the following 
set:

H(1,1) (X,R)+ = {aC + bS∞ | a, b > 0} ⊆ H(1,1) (X,R) ⊆ H2 (X,R) = RC ⊕RS∞

(1.2.1)
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where C is the Poincaré dual of a typical fibre of X and S∞ is the image of Σ in X sitting 
as the ‘infinity divisor’ of X. Following the usual extremal Kähler case as in Székelyhidi 
[19], Pingali [18] took a = 2π, b = 2mπ where m > 0 and posed the problem of finding a 
higher extremal Kähler metric ω on X, analogously using the momentum construction 
method of Hwang-Singer [12] (described in Subsection 2.2), satisfying the following:

[ω] = 2π (C + mS∞) , c2 (ω) = λ

2 (2π)2
ω2 , ∇1,0λ ∈ h (X) (1.2.2)

where [ω] denotes the Kähler class of ω and h (X) denotes the set of all holomorphic 
vector fields on X.

Pingali [18] solved the problem (1.2.2) for m = 1 (i.e. constructed the required higher 
extremal Kähler metric ω in the Kähler class 2π (C + S∞)) and conjectured that there 
might exist a maximum value of m beyond which there may not exist a solution to the 
problem (1.2.2), meaning there perhaps may not exist higher extremal Kähler metrics in 
the Kähler classes 2π (C + mS∞) for values of m larger than this maximum value. This 
was expected by analogy with the usual extremal Kähler analogue of the problem (1.2.2)
(refer to Apostolov, Calderbank et al. [1], Székelyhidi [19] and Tønnesen-Friedman [21]). 
But on the contrary we will show (in Subsections 2.3, 3.1 and 3.2) that higher extremal 
Kähler metrics with the required properties exist in the Kähler classes 2π (C + mS∞) for 
all positive values of m. Since being a higher extremal Kähler metric is a scale-invariant 
property (as will be seen in Subsection 2.3) an appropriate rescaling procedure applied 
on the Kähler metric and its top Chern form will enable us to construct the required 
higher extremal Kähler metrics in the Kähler classes aC + bS∞ with a, b > 0, which 
exhaust the Kähler cone of X.

As will be seen in Subsections 2.2 and 2.3, solving the problem (1.2.2) eventually 
boils down to solving an ODE BVP for the ‘momentum profile’ φ of the Kähler metric 
ω (a smooth real-valued function of a real variable γ which appears in the momentum 
construction method), depending on m > 0 and one more real parameter C, and the 
ODE in our case is not readily integrable and also not autonomous (it is a version of 
Chini’s Equation) unlike the usual extremal Kähler case given in [19] and [21], and hence 
requires a very delicate analysis for the existence of a solution satisfying all the boundary 
conditions (see Pingali [18]). Pingali [18] used some explicit numerical estimates specific 
to the case m = 1 and managed to solve it for m = 1, but our method of proving the 
existence of a solution to the required ODE BVP (explained in Subsections 3.1 and 3.2) 
is completely different from that of Pingali [18] as we are doing it for an arbitrary positive 
value of m. Roughly speaking, we will fix m > 0 and drop the final boundary condition 
and look at the resultant ODE IVP, and then find the smooth solutions to the ODE 
IVP depending on the parameter C and study the variation of the final boundary value 
of these solutions w.r.t. C, which will eventually lead us to a value of C for which the 
required final boundary condition holds.
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Then after constructing the higher extremal Kähler metric with the required nice 
symmetries in each Kähler class of X we will tackle the problem of (non-)existence of 
hcscK metrics on X in Section 4. We will first prove that the top Bando-Futaki invariant 
Fn : h (M)×H(1,1) (M,R)+ → R for a compact Kähler n-manifold M can be re-expressed 
in the following way, if the Kähler metric ω on M is higher extremal Kähler:

Fn (Y, [ω]) = −
∫
M

(λ− λ0)2 ωn =: −‖λ− λ0‖2
L2(M,ω) (1.2.3)

where λ ∈ C∞ (M,R) satisfies equation (1.1.1) and λ0 ∈ R is a constant. Then it will 
follow that given ω is higher extremal Kähler, Fn (·, [ω]) ≡ 0 if and only if ω is hcscK, 
and further in the Kähler class of an hcscK metric on M every higher extremal Kähler 
representative is hcscK. This statement along with the fact, that our constructed higher 
extremal Kähler metrics on our surface X are not hcscK (proven by Pingali [18] given 
their existence), will help us in concluding the complete non-existence of hcscK metrics 
(even without the nice symmetries imposed by the momentum construction method) on 
X.

In Section 5 we will take the genus of the Riemann surface Σ to be g ≥ 2, the 
constant scalar curvature of the Kähler metric ωΣ on Σ to be −2 (g− 1), the degree of 
the holomorphic line bundle L to be d 
= 0 and the curvature form of the Hermitian 
metric h on L to be dωΣ. We will see that for the minimal ruled surface X := P (L ⊕O)
in this general setting as well, the same analysis and all the arguments as in the special 
case of g = 2 and d = −1 (shown in Sections 2, 3 and 4) go through well and we can 
obtain all the results about the existence of higher extremal Kähler metrics and the 
non-existence of hcscK metrics on X in the general case as well.

We will finally summarize our results on higher extremal Kähler (and hcscK) met-
rics and the top Bando-Futaki invariant and compare them with the analogous results 
of Apostolov, Calderbank et al. [1], Calabi [7], LeBrun-Simanca [14] and Tønnesen-
Friedman [21] on extremal Kähler (and cscK) metrics and the Futaki invariant (exposi-
tion contained in Székelyhidi [19]) in Section 6.

2. Constructing higher extremal Kähler metrics on a minimal ruled surface

2.1. The minimal ruled surface and its Kähler cone

Let (Σ, ωΣ) be a genus 2 (compact) Riemann surface equipped with a Kähler metric 
of constant scalar curvature −2 (and hence area 2π). Let L be a degree −1 holomorphic 
line bundle on Σ equipped with a Hermitian metric h whose curvature form is −ωΣ. Let 
X be the minimal ruled (complex) surface P (L ⊕O) where O is the trivial line bundle 
on Σ and P denotes vector bundle projectivization. This surface X is an example of a 
‘pseudo-Hirzebruch surface’ (see definition in Tønnesen-Friedman [21] and in Section 5).
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Let C be the Poincaré dual of a typical fibre of X (i.e. C is a copy of the Riemann sphere 
S2 sitting in X), S∞ (called the infinity divisor of X) be the image of the subbundle 
L ⊕ {0} ⊆ L ⊕O under the bundle projectivization to X = P (L ⊕O) and similarly S0
(called the zero divisor of X) be the image of the subbundle {0} ⊕ O ⊆ L ⊕ O under 
the bundle projectivization to X = P (L ⊕O), so that S∞ and S0 are actually copies of 
Σ sitting in X as its infinity and zero divisors respectively (and Σ is identified with S0
as a (complex) curve in X). We have the following intersection formulae (refer to Barth, 
Hulek et al. [4], Székelyhidi [19] and Tønnesen-Friedman [21]):

C2 = 0 , S2
∞ = 1 , S2

0 = −1 , C · S∞ = 1 , C · S0 = 1 , S∞ · S0 = 0 (2.1.1)

and also the following intersection formulae (again refer to [4], [19] and [21]), where 
c1 (L) ∈ H(1,1) (Σ,R) = H2 (Σ,R) is the first Chern class of L, [ωΣ] ∈ H(1,1) (Σ,R) =
H2 (Σ,R) is the Kähler class of ωΣ and [Σ] ∈ H2 (Σ,R) is the fundamental class of Σ
(and [Σ] is identified with S0 in H2 (X,R)):

c1 (L) · [Σ] = −1 , [ωΣ] · [Σ] = 2π , C · [Σ] = 1 , S∞ · [Σ] = 0 , S0 · [Σ] = −1 (2.1.2)

By the Leray-Hirsch Theorem we have H2 (X,R) = RC ⊕ RS∞. So starting with a 
general cohomology class α := aC +bS∞ ∈ H(1,1) (X,R) ⊆ H2 (X,R) we have the follow-
ing criterion for determining when α will be a Kähler class on X (integral cohomology 
version attributed to Nakai-Moishezon and explained in Barth, Hulek et al. [4] with all 
the relevant references, while real cohomology version proven in Fujiki [8], Lamari [13], 
LeBrun-Singer [16] and Tønnesen-Friedman [21]):

Theorem 2.1.1 (Nakai-Moishezon Criterion). α is a Kähler class on X if and only if the 
following conditions are satisfied:

(1) α2 > 0.
(2) α · Γ > 0 for every irreducible (complex) curve Γ ⊆ X.

It was further shown by Fujiki [8] that it suffices to check the intersection number of 
α against Γ = C , S∞ , S0 and [Σ] only in Theorem 2.1.1 (see the explanation given in 
Tønnesen-Friedman [21]):

Corollary 2.1.1 (Fujiki, Tønnesen-Friedman). α is a Kähler class on X if and only if the 
following conditions are satisfied:

(1) α2 > 0.
(2) α · C > 0, α · S∞ > 0, α · S0 > 0 and α · [Σ] > 0.

From Corollary 2.1.1 and the intersection formulae (2.1.1) and (2.1.2) we derive the 
following inequalities characterizing all Kähler classes α = aC + bS∞ on X:
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2ab + b2 > 0 , b > 0 , a + b > 0 , a > 0 , a > 0 (2.1.3)

which simply boil down to a > 0, b > 0. Therefore the Kähler cone of X is precisely ([8]
and [21]):

H(1,1) (X,R)+ = {aC + bS∞ | a, b > 0} (2.1.4)

Following Székelyhidi [19] we will first consider Kähler classes only of the form β :=
2π (C + mS∞) with m > 0, and after obtaining results about the existence of higher 
extremal Kähler metrics and the non-existence of hcscK metrics in these Kähler classes, 
we will generalize these results to the general Kähler classes which are of the form 
α = aC + bS∞ with a, b > 0 by using a simple rescaling argument.

2.2. Description of the momentum construction method

We give here a brief description of the momentum construction method attributed to 
Hwang-Singer [12] which was applied by Pingali [18] to define the problem of construction 
of higher extremal Kähler metrics possessing some nice symmetries along the fibres and 
the zero and infinity divisors of the minimal ruled surface X described in Subsection 2.1. 
In this description we are following [18].

We write an ansatz for a Kähler metric on X, which is supposed to lie in a required 
Kähler class and be higher extremal Kähler, in a way similar to Hwang-Singer [12] and 
Székelyhidi [19]. The idea is to first consider an ansatz for a metric on the total space of 
L minus its zero section and then extend this metric across the zero and infinity divisors 
of X = P (L ⊕O), and this is done by taking the pullback of L to its total space minus 
the zero section and then adding the curvature of the resultant bundle to the pullback 
of ωΣ to X.

Let p : X → Σ be the fibre bundle projection, z be a coordinate on Σ, w be a 
coordinate on the fibres of L, s := ln |(z, w)|2h = ln |w|2 + lnh (z) be the coordinate on 
the total space of L minus the zero section, f be a strictly convex smooth function of s
such that s + f (s) is strictly increasing, and ω be a Kähler metric on X given by the 
following ansatz (as in [18] and [19]):

ω = p∗ωΣ +
√
−1∂∂̄f (s) (2.2.1)

From the computations done in [18] and [19] we get the following expression for ω:

ω = (1 + f ′ (s)) p∗ωΣ + f ′′ (s)
√
−1dw ∧ dw̄

|w|2
(2.2.2)

We want ω to be in the Kähler class 2π (C + mS∞) where m ∈ R>0, and for that to 
happen we must have 0 ≤ f ′ (s) ≤ m (which we get by integrating equation (2.2.2) over 
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X and computing the areas of C and S∞ using the intersection formulae (2.1.1) and 
(2.1.2), as done in [18] and [19]).

We compute the curvature form matrix of ω given by Θ (ω) := ∂̄
(
H−1∂H

)
(ω), where 

H (ω) is the Hermitian matrix of ω, as follows:

ω2 = 2 (1 + f ′ (s)) f ′′ (s) p∗ωΣ
√
−1dw ∧ dw̄

|w|2
(2.2.3)

Θ (ω) =
[
−∂∂̄ ln (1 + f ′ (s)) + 2

√
−1p∗ωΣ 0

0 −∂∂̄ ln (f ′′ (s))

]
(2.2.4)

This is where the conditions 1 + f ′ (s) > 0 and f ′′ (s) > 0 are needed. We then use the 
Legendre Transform F (τ) in the variable τ := f ′ (s) as follows:

f (s) + F (τ) = sτ (2.2.5)

We then define the momentum profile of ω as φ (τ) := 1
F ′′(τ) = f ′′ (s) (again as in [18]

and [19]). We then write down the curvature form matrix 
√
−1Θ (ω) in terms of φ (γ), 

where γ := τ + 1 ∈ [1,m + 1], as follows:

√
−1Θ (ω) =

[
φ
γ

(
φ
γ − φ′

)√
−1dw∧dw̄

|w|2 −
(

φ
γ + 2

)
p∗ωΣ 0

0 −φ′′φ
√
−1dw∧dw̄

|w|2 − φ′p∗ωΣ

]

(2.2.6)
The top Chern form of ω is given by c2 (ω) := 1

(2π)2 det
(√

−1Θ (ω)
)

and in terms of 
φ (γ) is given by:

c2 (ω) = 1
(2π)2

p∗ωΣ
√
−1dw ∧ dw̄

|w|2
φ

γ2 (γ (φ + 2γ)φ′′ + φ′ (φ′γ − φ)) (2.2.7)

In order for ω to be a higher extremal Kähler metric we need to have:

c2 (ω) = λ

2 (2π)2
ω2 (2.2.8)

where ∇1,0λ is a holomorphic vector field. Comparing equations (2.2.3), (2.2.7) and 
(2.2.8) we do the following calculation:

∇1,0λ = λ′∇1,0γ = λ′∇1,0τ = λ′∇(1,0) (f ′ (s)) = λ′w
∂

∂w
(2.2.9)

So ∇1,0λ is a holomorphic vector field if and only if λ′ is a constant i.e. λ = Aγ + B for 
some A, B ∈ R.

So finally ω is a higher extremal Kähler metric on X if and only if its momentum profile 
φ (γ), γ ∈ [1,m + 1] satisfies the following ODE, for some C ∈ R (which is obtained by 
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substituting the value of λ in equations (2.2.7) and (2.2.8) and integrating w.r.t. γ, as 
done in [18]):

(2γ + φ)φ′ = A
γ4

3 + B
γ3

2 + Cγ (2.2.10)

with the following boundary conditions (which are required for ω to extend smoothly to 
the zero and infinity divisors of X as shown in [18] and [19]):

φ (1) = φ (m + 1) = 0

φ′ (1) = −φ′ (m + 1) = 1
(2.2.11)

and with φ > 0 on (1,m + 1), as φ = f ′′ > 0.
Now finally the problem boils down to solving the ODE (2.2.10) for φ (γ) on [1,m + 1]

with the boundary conditions (2.2.11) and with φ (γ) > 0 on (1,m + 1), for some con-
stants A, B, C ∈ R.

2.3. Analysis of the ODE BVP for the momentum profile

Following Pingali [18] we define the polynomial p (γ) := Aγ3

3 + B γ2

2 + C and the 

transformation v := (2γ+φ)2
2 , γ ∈ [1,m + 1] after which the ODE BVP (2.2.10) and 

(2.2.11) with φ > 0 on (1,m + 1), obtained in Subsection 2.2, reduces to the following:

v′ = 2
√

2
√
v + p (γ) γ on [1,m + 1]

v (1) = 2 , v (m + 1) = 2 (m + 1)2

v′ (1) = 6 , v′ (m + 1) = 2 (m + 1)

v (γ) > 2γ2 on (1,m + 1)

(2.3.1)

As shown in [18], imposing the boundary conditions on the ODE in (2.3.1) gives us 
A, B as linear functions of C as follows:

A (C) = 3C
m

[
1 − 1

(m + 1)2

]
− 6

m

[
1 + 1

(m + 1)2

]

B (C) = −2C
[
1 + 1

m
− 1

m (m + 1)2

]
+ 4

[
1 + 1

m
+ 1

m (m + 1)2

] (2.3.2)

Now we observe that if we solve the ODE in (2.3.1) with the boundary condition 
v (1) = 2 then equations (2.3.2) will imply that v′ (1) = 6, and similarly solving the ODE 
in (2.3.1) with the boundary condition v (m + 1) = 2 (m + 1)2 will give us v′ (m + 1) =
2 (m + 1) after applying equations (2.3.2). So after this the ODE BVP (2.3.1) reduces 
to the following:
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v′ = 2
√

2
√
v + p (γ) γ on [1,m + 1]

v (1) = 2 , v (m + 1) = 2 (m + 1)2

v (γ) > 2γ2 on (1,m + 1)

(2.3.3)

where p (γ) = A (C) γ3

3 + B (C) γ2

2 + C after considering the equations (2.3.2).
We then analyze the polynomials p (γ) and p (γ) γ on [1,m + 1] and get the following 

result (proven by Pingali [18]):

Lemma 2.3.1 (Pingali). The polynomial p (γ) satisfying p (1) = 2 and p (m + 1) = −2 has 
exactly one root γ0 in [1,m + 1] and has at most one critical point γ′ := −B

A in [1,m + 1]. 
Further the polynomial p (γ) γ also has the same γ0 as its unique root in [1,m + 1] but 
has at most 3 critical points in [1,m + 1]. In particular both p (γ) and p (γ) γ are strictly 
positive on [1, γ0) and strictly negative on (γ0,m + 1].

By using Lemma 2.3.1 we can observe that if v is a smooth solution of the ODE 
in (2.3.3) on [1,m + 1] satisfying both the boundary conditions viz. v (1) = 2 and 
v (m + 1) = 2 (m + 1)2, then integrating the expression for v′ in (2.3.3) on [1, γ0] and 
[γ0,m + 1] separately and noting the sign of p (γ) γ on both the subintervals will help 
us conclude v (γ) ≥ 2γ2 on [1,m + 1], and then rewriting the equation of v′ in (2.3.3)
as 2

√
v
(√

v −
√

2γ
)′ = p (γ) γ and using the uniqueness of γ0 will help us conclude 

v (γ) > 2γ2 on (1,m + 1) (see [18]). Thus the ODE BVP (2.3.3) further reduces to the 
following:

v′ = 2
√

2
√
v + p (γ) γ on [1,m + 1]

v (1) = 2 , v (m + 1) = 2 (m + 1)2
(2.3.4)

Now finally our problem has been reduced to solving the ODE BVP (2.3.4), depending 
on the parameter C ∈ R, for a fixed m ∈ R>0 (indicating the Kähler class under 
consideration). By following the strategy of Pingali [18] we drop the final boundary 
condition v (m + 1) = 2 (m + 1)2 in the ODE BVP (2.3.4) and consider the following 
ODE IVP:

v′ = 2
√

2
√
v + p (γ) γ on [1,m + 1]

v (1) = 2
(2.3.5)

We first get a smooth solution v (·;C) on [1,m + 1] for the ODE IVP (2.3.5) for each C
in an interval of the real line. Then we find a C1 in that interval such that v (m + 1;C1) >
2 (m + 1)2 and another C2 in the same interval such that v (m + 1;C2) < 2 (m + 1)2, 
thereby proving that there exists a C in the interval such that v (m + 1;C) = 2 (m + 1)2. 
The first part was done by Pingali [18] (see the following result where m is fixed) and 
this paper’s main goal is to do the second part which requires some deeper analysis of 
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the variation of the ODE IVP (2.3.5) w.r.t. the parameter C. Note that this will be done 
for an arbitrary m > 0.

Theorem 2.3.1 (Pingali). There exists an M > 2 (depending only on m) such that for 
any C < M there exists a unique smooth solution v (·;C) on [1,m + 1] for the ODE IVP 
(2.3.5). Further there exists a C1 < M such that v (m + 1;C1) > 2 (m + 1)2.

We will prove the following main result in this paper (where m is fixed):

Theorem 2.3.2. There exists a unique M = M (m) > 2 such that for every C ∈ (−∞,M)
there exists a unique smooth solution v (·;C) : [1,m + 1] → R for the ODE IVP (2.3.5)
such that lim

C→−∞
v (m + 1;C) = ∞ and lim

C→M−
v (m + 1;C) = 0, and for every C ≥ M

there exists a unique smooth solution v (·;C) : [1, γ�,C) → R for (2.3.5), for a unique 
γ�,C ∈ (1,m + 1], such that v (·;C) cannot be continued smoothly beyond γ�,C. Further 
there exists a unique C = C (m) ∈ (−∞,M) such that v (m + 1;C) = 2 (m + 1)2, and 
further the C with this property has to be strictly greater than 2.

We will then have answered the question of the existence of higher extremal Kähler 
metrics in the Kähler classes of the form 2π (C + mS∞) on X affirmatively:

Corollary 2.3.1. For each m > 0 there exists a higher extremal Kähler metric ω on X
satisfying the following:

[ω] = 2π (C + mS∞) , c2 (ω) = λ

2 (2π)2
ω2 , ∇1,0λ ∈ h (X) (2.3.6)

Remark 2.3.1. Note that Pingali [18] had proven for m = 1 that there exists a C2 < M

such that v (m + 1;C2) < 2 (m + 1)2, thus proving the existence of a C < M satisfying 
v (m + 1;C) = 2 (m + 1)2, and hence proving the existence of the required higher ex-
tremal Kähler metric in the Kähler class 2π (C + S∞). But this was done by using some 
explicit numerical bounds on p (γ) γ and v′ specifically applicable for m = 1, and the 
author was not able to generalize those arguments and estimates for a general m > 0. 
So we will adopt a completely different strategy of proof for Theorem 2.3.2.

Now we observe that on a compact Kähler n-manifold M if we rescale a Kähler metric 
ω by a factor of k > 0 then the Kähler class and the Hermitian matrix get multiplied by 
k whereas the connection and hence the curvature remain unchanged. So the curvature 
form matrix and hence the top Chern form (as defined in Subsection 2.2) of kω are 
exactly the same as that of ω. Thus if ω satisfying equation (1.1.1) is a higher extremal 
Kähler metric on M then so is kω as seen by the following:

cn (kω) = cn (ω) = λωn = λ (kω)n (2.3.7)

kn
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So on our surface X if ω ∈ 2π (C + mS∞) is a higher extremal Kähler metric satis-
fying the equations (2.3.6) then for any k > 0 the rescaled Kähler metric η := k

2πω ∈
k (C + mS∞) is also higher extremal Kähler and satisfies the equation c2 (η) = λ

2k2 η
2.

This allows us to generalize Corollary 2.3.1 to the general Kähler classes on X which 
are of the form aC + bS∞ where a, b > 0:

Corollary 2.3.2. For all a, b > 0 there exists a higher extremal Kähler metric η on X
satisfying the following:

[η] = aC + bS∞ , c2 (η) = λ

2a2 η
2 , ∇1,0λ ∈ h (X) (2.3.8)

3. Proof of the main result

3.1. First part of the proof

Throughout Subsections 3.1 and 3.2, m > 0 is fixed. The final goal over here is to 
prove Theorem 2.3.2.

Motivation 3.1.1. We will first prove that for every C ∈ R there exists a unique C1

solution v to the ODE IVP (2.3.5) on a non-degenerate interval containing 1, and in 
fact this v exists and is strictly increasing on [1, γ0] where γ0 is the unique root of 
p (γ) γ in [1,m + 1]. We will then prove that the C1 solution v defined on any interval is 
always strictly positive on the interval, and as a consequence is smooth (i.e. C∞) on the 
interval. We will finally prove a necessary and sufficient condition for the continuation 
of the solution v defined a priori on [1, r̃) for a given r̃ ∈ (1,m + 1].

As was noted by Pingali [18] if v is a C1 solution to (2.3.5) on any interval then 
substituting 

√
v < v + 1 and |p (γ) γ| ≤ l (for some l > 0) in the expression for v′ =

(v + 1)′ in (2.3.5) and applying Grönwall’s inequality will give us a K > 0 such that 
v (γ) ≤ K on the interval.

Thus solutions to (2.3.5) are always bounded above (and always bounded below by 
0) on any interval on which they exist. So by standard ODE Theory the existence of 
a strictly positive lower bound on a solution of (2.3.5) is a sufficient condition for the 
continuation of the solution beyond its prior interval of definition (Pingali [18]).

Lemma 3.1.1 (Pingali). For a given C ∈ R let v be a C1 solution to the ODE IVP (2.3.5)
existing on [1, r̃) ⊆ [1,m + 1]. If there exists an ε > 0 such that v (γ) ≥ ε on [1, r̃) then 
v can be continued beyond r̃.

We will prove the converse of Lemma 3.1.1 (viz. Theorem 3.1.1), but before that we 
prove some more basic results:
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Lemma 3.1.2. For every C ∈ R there exists a unique C1 solution v to the ODE IVP 
(2.3.5) on [1, r) for some r ∈ (1,m + 1] such that v′ > 0 on [1, r). If [1, r′) ⊆ [1,m + 1]
is the maximal interval of existence of v then [1, γ0] ⊆ [1, r′) and v′ > 0 on [1, γ0]. 
Similarly if [1,m + 1] is the maximal interval of existence of v then [1, γ0] ⊆ [1,m + 1]
and v′ > 0 on [1, γ0].

Proof. As noted in Subsection 2.3, v (1) = 2 will imply v′ (1) = 6 in (2.3.5). Since √
v (1) =

√
2 > 0 so the RHS of (2.3.5) is continuous in γ and locally Lipschitz in v in 

a neighbourhood of 1 and by standard ODE Theory there exists a unique C1 solution v
to (2.3.5) on [1, r) for some r ∈ (1,m + 1]. Since v′ (1) = 6 > 0 so this r ∈ (1,m + 1] can 
be chosen so that v′ > 0 on [1, r).

Let [1, r′) ⊆ [1,m + 1] be the maximal interval of existence of v. If γ0 ≥ r′ then by 
Lemma 2.3.1, p (γ) γ ≥ 0 on [1, r′) and hence v′ ≥ 0 on [1, r′). So v (γ) ≥ v (1) = 2 > 0 on 
[1, r′) and by Lemma 3.1.1, v can be continued beyond r′ contradicting the maximality 
of r′. So [1, γ0] ⊆ [1, r′) and v′ ≥ 0 on [1, γ0], but as 

√
v (γ) > 0 on [1, γ0] so v′ > 0 on 

[1, γ0].
If [1,m + 1] is the maximal interval of existence of v then by Lemma 2.3.1, [1, γ0] ⊆

[1,m + 1] and by the same arguments as in the above case, v′ > 0 on [1, γ0]. �
Remark 3.1.1. Note that v′ > 0 on [1, γ0] actually implies v′ > 0 on [1, γ′

0) ⊆ [1, r′) (or 
[1, γ′

0) ⊆ [1,m + 1]) for some γ′
0 > γ0.

Observe that if there exists a C1 solution v to (2.3.5) on any interval then v ≥ 0 on 
the interval, but Lemma 3.1.3 is saying that v > 0 on the interval.

Lemma 3.1.3 (Positivity of Solutions). For a given C ∈ R let v be the unique C1 solution 
to the ODE IVP (2.3.5) existing on some interval containing 1.

(1) If [1, r′) ⊆ [1,m + 1] is the maximal interval of existence of v then v (γ) > 0 for all 
γ ∈ [1, r′) and lim

γ→r′
v (γ) = 0 and lim

γ→r′
v′ (γ) < 0.

(2) If [1,m + 1] is the maximal interval of existence of v then v (γ) > 0 for all γ ∈
[1,m + 1].

Proof.

Case. (1) If [1, r′) is the maximal interval of existence of v then by Lemma 3.1.2, γ0 ∈
[1, r′) and v′ (γ0) > 0 and also v (γ0) ≥ v (1) = 2 > 0. Since v cannot be continued 
beyond r′ so by Lemma 3.1.1, inf

γ∈[1,r′)
v (γ) = 0. If t0 ∈ (1, r′) is such that v (t0) = 0 then 

t0 must be a point of local minimum of v and so v′ (t0) = 0 which will imply p (t0) t0 = 0
and then t0 = γ0 (by the uniqueness of γ0) which contradicts the first assertion above. 
So v (γ) > 0 for all γ ∈ [1, r′).
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Now since v and p (γ) γ are bounded on [1, r′), from the expression of v′ in (2.3.5) we 
get v′ is bounded, thereby implying v is Lipschitz on [1, r′). So lim

γ→r′
v (γ) exists and as 

v > 0 on [1, r′) so lim
γ→r′

v (γ) = inf
γ∈[1,r′)

v (γ) = 0.

Now as 
√· on [0,∞), v on [1, r′) and p (γ) γ on [1,m + 1] are uniformly continu-

ous so from (2.3.5), v′ is uniformly continuous on [1, r′) and so lim
γ→r′

v′ (γ) exists. Since 

lim
γ→r′

v (γ) = 0 and v > 0 on [1, r′) so lim
γ→r′

v′ (γ) ≤ 0. If lim
γ→r′

v′ (γ) = 0 then from (2.3.5)

we will get r′ is a root of p (γ) γ which is not possible by Lemma 3.1.2. So lim
γ→r′

v′ (γ) < 0.

Case. (2) If [1,m + 1] is the maximal interval of existence of v then v ≥ 0 on [1,m + 1]
and v (1) = 2 > 0 and from Lemma 3.1.2, v′ (γ0) > 0 and v (γ0) > 0. So by the same 
argument as in Case (1), there cannot exist a t0 ∈ (1,m + 1) such that v (t0) = 0. So 
v (γ) > 0 for all γ ∈ [1,m + 1).

Let if possible v (m + 1) = 0. Since v ≥ 0 and v is C1 on [1,m + 1] so v′ (m + 1) ≤ 0. If 
v′ (m + 1) = 0 then from (2.3.5) we will get m +1 is a root of p (γ) γ which is not possible 
by Lemma 2.3.1. So v′ (m + 1) < 0 i.e. v is strictly decreasing in a neighbourhood of m +1. 
Now v is the C1 solution of (2.3.5) and v > 0 on [1,m + 1), and for v to be extendable 
as the C1 solution to (2.3.5) on an interval strictly containing [1,m + 1) we must have 
v ≥ 0 on the larger interval which will not be possible with v′ (m + 1) < 0. So in that 
case, v will exist as the C1 solution of (2.3.5) maximally on [1,m + 1), a contradiction 
to the hypothesis. So v (m + 1) > 0 and hence v (γ) > 0 for all γ ∈ [1,m + 1]. �

Before proceeding further let us observe the following:

Corollary 3.1.1 (Smoothness of Solutions). Let v be the C1 solution of the ODE IVP 
(2.3.5) on a non-degenerate interval J. Then v′ is bounded and uniformly continuous on 
J, and v(i) exists on J for all i ∈ N≥2 i.e. v is C∞ on J. For all i ∈ N≥2 if inf

J
v > 0 then 

v(i) is bounded on J and if inf
J
v = 0 then v(i) is unbounded on J.

Proof. By Lemma 3.1.3, v > 0 on J and so 1√
v

makes sense. Considering the ODE in 

(2.3.5) and its (i− 1)th derivative, substituting the implied property of 
√·, v and p (γ) γ

in both the cases into these ODEs and using induction will give us the required results 
for all i ∈ N≥2. �

Observe one more thing that the solution v cannot be constant on any non-degenerate 
interval J, as that would imply (again from (2.3.5)) that the polynomial p (γ) γ is a 
constant polynomial which is not possible by Lemma 2.3.1.

We now have the following necessary and sufficient condition for the continuation of 
the solution to (2.3.5) defined a priori on some interval:

Theorem 3.1.1 (Criterion for Continuation of Solutions). For any C ∈ R if v is the 
smooth solution to (2.3.5) defined on an interval [1, r̃) ⊆ [1,m + 1] then:
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(1) v can be continued beyond r̃ if and only if inf
γ∈[1,r̃)

v (γ) = ε1 > 0 if and only if 

lim
γ→r̃

v (γ) = ε2 > 0.
(2) [1, r̃) is the maximal interval of existence of v if and only if inf

γ∈[1,r̃)
v (γ) = 0 if and 

only if lim
γ→r̃

v (γ) = 0.

Proof. From Lemma 3.1.3 and Corollary 3.1.1, v > 0 and v is Lipschitz on [1, r̃) so 
inf

γ∈[1,r̃)
v (γ) and lim

γ→r̃
v (γ) both exist and are non-negative. So again by using Lemma 3.1.3

and Corollary 3.1.1 it can be easily checked that either both inf
γ∈[1,r̃)

v (γ) and lim
γ→r̃

v (γ) are 

simultaneously strictly positive or both are simultaneously zero. From Lemma 3.1.1 we 
already have that if both are simultaneously positive then v can be continued beyond r̃. 
For proving the converse let inf

γ∈[1,r̃)
v (γ) = lim

γ→r̃
v (γ) = 0. Let if possible v be extendable 

as the smooth solution of (2.3.5) to an interval [1, r′) with [1, r̃] ⊆ [1, r′) ⊆ [1,m + 1]. 
Then by Lemma 3.1.3, v > 0 on [1, r′) and as r̃ ∈ [1, r′) and v is continuous on [1, r′) so 
0 = lim

γ→r̃
v (γ) = v (r̃) > 0, a contradiction. So [1, r̃) is the maximal interval of existence 

of v. �
So if the smooth solution v to (2.3.5) cannot be defined on [1,m + 1] then there exists 

a unique γ� ∈ (1,m + 1] such that [1, γ�) is the maximal interval of existence of v.

Remark 3.1.2. Lemma 3.1.3 and Theorem 3.1.1 are together saying that the solution of 
(2.3.5) continues to exist as long as it is strictly positive, but the moment it attains zero, 
it ‘breaks down’ i.e. it cannot be continued further.

So finally for every C ∈ R considering the ODE IVP (2.3.5) depending on C we 
have exactly one of the following two scenarios (as a consequence of Lemma 3.1.2 and 
Theorem 3.1.1):

(1) There exists a unique smooth solution vC := v (·;C) on [1,m + 1].
(2) There exists a unique smooth solution vC := v (·;C) with maximal interval of exis-

tence [1, γ�,C) for a unique γ�,C := γ� (C) ∈ (1,m + 1].

Motivation 3.1.2. In order to prove Theorem 2.3.2 we will first show that the set of all 
C ∈ R, for which the condition (1) above holds true, is precisely the interval (−∞,M)
for a unique M > 2, and then we will check the limits of vC (m + 1) as C → −∞
and as C → M respectively to conclude that the range of the function (−∞,M) → R, 
C �→ vC (m + 1) is precisely the interval (0,∞). For this we will prove some preparatory 
results in the remainder of Subsection 3.1 and in Subsection 3.2.

Let (C [1,m + 1] , ‖·‖∞) be the Banach space of all continuous functions on [1,m + 1]. 
For each C ∈ R define u (·;C) : [1,m + 1] → R as follows:
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(1) If the smooth solution vC to (2.3.5) exists on [1,m + 1] then u (γ;C) := vC (γ) for 
all γ ∈ [1,m + 1].

(2) If the smooth solution vC to (2.3.5) has maximal interval of existence [1, γ�,C) then 
u (γ;C) := vC (γ) for all γ ∈ [1, γ�,C) and u (γ;C) := 0 for all γ ∈ [γ�,C ,m + 1].

By Lemma 3.1.3, u (·;C) is continuous on [1,m + 1] in the Case (2) above as well, and 
hence u (·;C) ∈ C [1,m + 1] in both the Cases (1) and (2) above. Thus we get a function 
Φ : R → C [1,m + 1] defined as Φ (C) := u (·;C) for all C ∈ R. It can be readily checked 
from (2.3.5) that Φ is well-defined and injective.

Motivation 3.1.3. We want to prove that Φ is continuous and considering the pointwise 
partial order ≤ on C [1,m + 1], Φ is monotone decreasing.

For a given C ∈ R let γ0,C := γ0 (C) be the unique root of the polynomial pC (γ) γ :=
p (γ;C) γ in [1,m + 1] and similarly let uC := u (·;C) on [1,m + 1].

Theorem 3.1.2. Let (Cn) → C0 and un := uCn and u0 := uC0 . Then there exists a 
subsequence (unk) of (un) such that (unk) → u0 uniformly on [1,m + 1].

Proof. Let vn := vCn and v0 := vC0 , and pn (γ) γ := pCn (γ) γ and p0 (γ) γ := pC0 (γ) γ. 
Then from the expressions (2.3.2), (A (Cn)) → A (C0) and (B (Cn)) → B (C0), and 
hence (pn (γ) γ) → p0 (γ) γ uniformly on [1,m + 1]. Let γ0,n := γ0,Cn and γ0,0 := γ0,C0

be the roots of pn (γ) γ and p0 (γ) γ in [1,m + 1] respectively. Then we can verify that 
γ0,n → γ0,0. Also note that un (1) = vn (1) = 2 = v0 (1) = u0 (1) and u′

n (1) = v′n (1) =
6 = v′0 (1) = u′

0 (1). After this the proof of Theorem 3.1.2 will be divided into the 
following 3 Cases:

Case. (1) The solution vn exists on [1,m + 1] for all n ∈ N and inf
γ∈[1,m+1],n∈N

vn (γ) =
ε > 0.

Here un = vn for all n ∈ N. Since (pn (γ) γ) is uniformly norm bounded, substituting 
|pn (γ) γ| ≤ l (for some l > 0) and 

√
vn < vn + 1 for all n ∈ N in the expression for 

v′n = (vn + 1)′ in (2.3.5) and using Grönwall’s inequality will yield a K > 0 such that 
ε ≤ vn (γ) ≤ K for all γ ∈ [1,m + 1] and for all n ∈ N, thereby proving that (vn) is 
uniformly norm bounded on [1,m + 1]. Now substituting vn ≤ K and |pn (γ) γ| ≤ l in 
the expression for v′n in (2.3.5) will give us that (v′n) is also uniformly norm bounded, 
implying that (vn) is uniformly equicontinuous on [1,m + 1]. So by Arzelà-Ascoli Theo-
rem there exists a subsequence (vnk) of (vn) converging uniformly on [1,m + 1] to some 
w ∈ C [1,m + 1]. As (pn (γ) γ) and 

(√
vnk

)
are uniformly convergent so 

(
v′nk

)
is uniformly 

convergent on [1,m + 1] (again from (2.3.5)). Then by standard Uniform Convergence 
Theory w is differentiable and satisfies the ODE IVP (2.3.5) for C = C0 on [1,m + 1). 
As inf vn (γ) = ε > 0 so inf w (γ) = ε̃ > 0 and so by Theorem 3.1.1, w
γ∈[1,m+1],n∈N γ∈[1,m+1)
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is differentiable and satisfies (2.3.5) on [1,m + 1], and hence the solution v0 exists on 
[1,m + 1] and by uniqueness, w = v0 and by definition, u0 = v0 as well. Thus (unk) → u0
uniformly on [1,m + 1].

Case. (2) The solution vn exists on [1,m + 1] for all n ∈ N and inf
γ∈[1,m+1],n∈N

vn (γ) = 0.

Here also un = vn for all n ∈ N. The Grönwall’s inequality argument as in Case (1) 
above will prove 0 ≤ vn (γ) ≤ K i.e. (vn) is uniformly norm bounded on [1,m + 1]. Once 
again by substituting this in (2.3.5) with C = Cn, (v′n) will be uniformly norm bounded 
on [1,m + 1] and so there will exist a subsequence (vnk) → w ∈ C [1,m + 1] uniformly 
on [1,m + 1]. By the same arguments as in Case (1), 

(
v′nk

)
is uniformly convergent on 

[1,m + 1] and w is differentiable and satisfies the ODE IVP (2.3.5) for C = C0 on 
[1,m + 1).

Claim. There exists an ε0 > 0 such that for any sequence (tn) where tn ∈ (1,m + 1) is a 
local minimum of vn we have vn (tn) ≥ ε0.

If the above Claim is false then there exists a sequence (tn) of respective local minima 
of vn such that lim

n→∞
vn (tn) = 0. Passing to a subsequence if necessary, let (tn) → t0 ∈

[1,m + 1]. Note also that v′n (tn) = 0. By the uniform norm boundedness of (v′n) let R > 0
be the uniform Lipschitz constant for (vn). For any n, j ∈ N considering the following 
estimates:

|vn (t0)| ≤ |vn (t0) − vn (tj)| + |vn (tj) − vn (tn)| + |vn (tn)|
≤ |vn (t0) − vn (tj)| + R|tj − tn| + |vn (tn)| (3.1.1)

we get lim
n→∞

vn (t0) = 0. Now as both 
(√

vn
)

and (pn (γ) γ) are uniformly equicontinuous 
so (v′n) is also uniformly equicontinuous on [1,m + 1] (from (2.3.5)). On similar lines as 
the estimates (3.1.1), considering the following estimates:

|v′n (t0)| ≤ |v′n (t0) − v′n (tj)| + |v′n (tj) − v′n (tn)| + |v′n (tn)|
= |v′n (t0) − v′n (tj)| + |v′n (tj) − v′n (tn)| (3.1.2)

we get lim
n→∞

v′n (t0) = 0. With both these limits, substituting γ = t0 in the ODE in (2.3.5)
with C = Cn and taking limits as n → ∞ will imply that t0 is a root of p0 (γ) γ and so 
t0 = γ0,0 ∈ (1,m + 1). Now as w is a subsequential uniform limit of (vn) and w satisfies 
the ODE IVP (2.3.5) with C = C0 on [1,m + 1), we will get w (γ0,0) = w (t0) = 0 and 
w′ (γ0,0) = w′ (t0) = 0 which contradicts Lemmas 3.1.2 and 3.1.3. Hence the Claim.

As inf
γ∈[1,m+1],n∈N

vn (γ) = 0, we must have inf
n∈N

vn (m + 1) = 0. As (vnk) → w uniformly 

on [1,m + 1] so w (m + 1) = 0 and hence by Theorem 3.1.1, [1,m + 1) is the maximal 
interval of existence of w as the smooth solution to (2.3.5) with C = C0, and so w =
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v0 = u0 on [1,m + 1) and w = u0 on [1,m + 1] by continuity. With this, (unk) → u0
uniformly on [1,m + 1].

Case. (3) The solution vn has maximal interval of existence [1, γ�,n) with γ�,n := γ�,Cn ∈
(1,m + 1] for all n ∈ N. W.l.o.g. (γ�,n) is a monotone sequence converging to some 
σ ∈ [1,m + 1].

Here un = vn on [1, γ�,n) and un = 0 on [γ�,n,m + 1] for all n ∈ N. As was noted in 
the beginning, the polynomials (pn (γ) γ) → p0 (γ) γ uniformly on [1,m + 1] and their 
respective roots γ0,n → γ0,0. By Lemmas 2.3.1 and 3.1.2, 1 < γ0,n < γ�,n ≤ m + 1 for 
all n ∈ N and taking limits as n → ∞ we get 1 < γ0,0 ≤ σ ≤ m + 1 (γ0,0 > 1 by 
Lemma 2.3.1) and specifically σ ∈ (1,m + 1].

Claim. There exists a K̃ > 0 such that for any n ∈ N and any local maximum t ∈ (1, γ�,n)
of vn we have vn (t) ≤ K̃.

For any n ∈ N if t ∈ (1, γ�,n) is a local maximum of vn then v′n (t) = 0 implies 
vn (t) = pn(t)2t2

8 (from (2.3.5) with C = Cn), and as (pn (γ) γ) is uniformly norm bounded 

on [1,m + 1] in all cases so there exists a K̃ > 0 such that vn (t) = pn(t)2t2
8 ≤ K̃ for all 

n ∈ N.
Looking at the definition of un in this case we will observe for each n ∈ N that 
max

γ∈[1,m+1]
un (γ) = sup

γ∈[1,γ�,n)
vn (γ) = vn (t) ≤ K̃ for some local maximum t ∈ (1, γ�,n) of 

vn. Note that the supremum of vn on [1, γ�,n) will be attained at an interior point only 
(which will then be a local maximum of vn), because vn (1) = 2 and v′n (1) = 6 and from 
Lemma 3.1.3, lim

γ→γ�,n
vn (γ) = 0 and lim

γ→γ�,n
v′n (γ) < 0. Thus we see 0 ≤ un (γ) ≤ K̃ for 

all γ ∈ [1,m + 1] and for all n ∈ N i.e. (un) is uniformly norm bounded on [1,m + 1]. 
By substituting the uniform norm bounds on 

(√
vn
)

and (pn (γ) γ) in the expression 
for v′n in (2.3.5) on [1, γ�,n) we get an R̃ > 0 such that for each n ∈ N, |v′n (γ)| ≤ R̃

for all γ ∈ [1, γ�,n), and so 

∣∣∣∣ lim
γ→γ�,n

v′n (γ)
∣∣∣∣ ≤ R̃. So by its definition, (un) is uniformly 

Lipschitz on [1,m + 1]. So we extract a subsequence (unk) → w ∈ C [1,m + 1] uniformly 
on [1,m + 1]. As unk ≥ 0 so w ≥ 0.

Claim. w (σ) = 0.

Note that un (γ�,n) = 0 for all n ∈ N. Then using the following estimates for j, k ∈ N:

|w (σ)| ≤ |w (σ) − unk (σ)| + |unk (σ) − unk

(
γ�,nj

)
|

+ |unk

(
γ�,nj

)
− unk (γ�,nk)| + |unk (γ�,nk)| (3.1.3)

≤ |w (σ) − unk (σ)| + |unk (σ) − unk

(
γ�,nj

)
| + R̃|γ�,nj − γ�,nk |

it can be easily seen that w (σ) = 0.
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After this the proof of w = u0 in Case (3) will depend upon whether (γ�,n) is increasing 
or decreasing.

Case. (3.1) (γ�,n) decreases to σ.

So [1, σ] =
⋂

k∈N
[1, γ�,nk) and so each vnk will satisfy the ODE IVP (2.3.5) with C =

Cnk on [1, σ]. But vnk = unk on [1, γ�,nk) and (unk) → w uniformly on [1,m + 1]. So (√
vnk

)
→ √

w uniformly on [1, σ] and this will imply (again from (2.3.5) with C = Cnk) 
that 

(
v′nk

)
is uniformly convergent on [1, σ]. Hence w is differentiable and satisfies (2.3.5)

for C = C0 on [1, σ). As w (σ) = 0, from Lemma 3.1.3 and Theorem 3.1.1, [1, σ) is the 
maximal interval of existence of the solution v0 and w = v0 on [1, σ) and σ = γ�,0. Now 
note that unk ≡ 0 on [γ�,nk ,m + 1] for each k ∈ N and so (the uniform limit) w ≡ 0 on 
(σ,m + 1] =

⋃
k∈N

[γ�,nk ,m + 1], as (γ�,n) is decreasing to σ. So by its definition, w = u0

on [1,m + 1].

Case. (3.2) (γ�,n) increases to σ.

So [1, σ) =
⋃

k∈N
[1, γ�,nk) and [1, γ�,nk) =

⋂
j≥k

[
1, γ�,nj

)
for each k ∈ N. So for a fixed 

k ∈ N, vnj satisfies the ODE IVP (2.3.5) with C = Cnj on [1, γ�,nk) for all j ≥ k. By 
using the same set of arguments as in Case (3.1) for the sequence 

(
vnj

)
j≥k converging 

uniformly to w on [1, γ�,nk) we will see that 
(
v′nj

)
j≥k

is uniformly convergent on [1, γ�,nk). 
So w is differentiable and satisfies (2.3.5) for C = C0 on [1, γ�,nk), and as this holds true 
for each k ∈ N so w satisfies (2.3.5) for C = C0 on [1, σ). After this, the same arguments 
as in Case (3.1) will give σ = γ�,0 and w = v0 on [1, σ) and w ≡ 0 on [σ,m + 1], thereby 
giving w = u0 on [1,m + 1].

In both the Cases (3.1) and (3.2), (unk) → u0 uniformly on [1,m + 1] and (γ�,nk) →
γ�,0.

Since our aim was to find only a subsequence of (un) which is uniformly convergent, 
the above Cases suffice. �
Remark 3.1.3. The Cases in Theorem 3.1.2 have given us a hint that R may be expressed 
as the disjoint set union of the set of all C ∈ R for which vC exists on [1,m + 1] with 
the set of all C ∈ R for which vC breaks down at γ�,C , and that the first set is an open 
interval and the second one is a closed interval.

3.2. Second part of the proof

We first do some calculations with the polynomial pC (γ) γ on [1,m + 1] (in the fol-
lowing 3 results) which will be needed further. The first one is from Pingali [18].
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Lemma 3.2.1 (Pingali). For each C ∈ R define PC (γ) := P (γ;C) :=
γ∫
1
pC (y) ydy, 

γ ∈ [1,m + 1]. Define L := L (m) and N := N (m) as follows:

L (m) := 3
10 (m + 1)2 − 1

20 (m + 1)4 − 1
4 − (m + 1)4 − 1

20m

[
1 − 1

(m + 1)2

]

N (m) := 1
10 (m + 1)4 − 2

5 (m + 1)2 − 1
2 + (m + 1)4 − 1

10m

[
1 + 1

(m + 1)2

] (3.2.1)

Then L < 0 and N > 0, and PC (m + 1) = LC + N and PC (γ) ≥ min {0, LC + N}.

Lemma 3.2.2. The polynomial q (γ) := d
dC (pC (γ) γ), γ ∈ [1,m + 1] is independent of C, 

and further q (γ) < 0 for γ ∈ (1,m + 1) and q (1) = q (m + 1) = 0.

Proof. d

dC
(A (C)) = 3 (m + 2)

(m + 1)2
,

d

dC
(B (C)) = −

2
(
m2 + 3m + 3

)
(m + 1)2

(3.2.2)

d

dC
(pC (γ) γ) = m + 2

(m + 1)2
γ4 − m2 + 3m + 3

(m + 1)2
γ3 + γ

=
(
γ −

(
−m + 1
m + 2

))
(γ − 0) (γ − 1) (γ − (m + 1)) (3.2.3)

So q (γ) = d
dC (pC (γ) γ) is independent of C, has its roots at 1 and m + 1, and does not 

change its sign in (1,m + 1). Evaluating q (γ) at γ = m+2
2 ∈ (1,m + 1):

q

(
m + 2

2

)
= (m + 2)5

16 (m + 1)2
−

(
m2 + 3m + 3

)
(m + 2)3

8 (m + 1)2
+ m + 2

2

= −
m2 (m + 2)

(
m2 + 6m + 6

)
16 (m + 1)2

(3.2.4)

< 0

So for any γ ∈ (1,m + 1), q (γ) < 0 and q (1) = q (m + 1) = 0. �
Corollary 3.2.1. Define Q (γ) :=

γ∫
1
q (y) dy, γ ∈ [1,m + 1]. Then Q (γ) < 0 for all γ ∈

(1,m + 1] and Q (γ) is strictly decreasing on [1,m + 1].

Motivation 3.2.1. The following calculations and estimates are going to give us that for 
each γ > 1, d

dC (vC (γ)) < 0 on appropriate intervals of C and γ i.e. v (γ;C) is strictly 
decreasing in C.
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Theorem 3.2.1. Let V be a non-degenerate interval in R and J be a non-degenerate subin-
terval of [1,m + 1] containing 1 such that the smooth solution vC to the ODE IVP 
(2.3.5) exists on J for every C ∈ V. Then for any C, D ∈ V with C < D we have 
v (γ;C) ≥ v (γ;D) − Q (γ) (D − C) ≥ v (γ;D) for all γ ∈ J, with the second inequality 
being strict if γ > 1.

Proof. Consider the following operations performed on (2.3.5) with ′ and d
dC denoting 

derivatives w.r.t. γ and C respectively for C ∈ V and γ ∈ J, and use q (γ) and Q (γ)
from Lemma 3.2.2 and Corollary 3.2.1 respectively:

v′C (γ) = 2
√

2
√
vC (γ) + pC (γ) γ , vC (1) = 2 (3.2.5)

d

dC
(v′C (γ)) =

√
2√

vC (γ)
d

dC
(vC (γ)) + q (γ) (3.2.6)

By Lemma 3.1.3, 
√

vC (γ) > 0 for all γ ∈ J. Multiplying by e
−

γ∫
1

√
2√

v(y;C)dy and using the 
equality of second order mixed partial derivatives:

(
d

dC
(vC (γ))

)′
e
−

γ∫
1

√
2√

v(y;C)dy + d

dC
(vC (γ))

(
e
−

γ∫
1

√
2√

v(y;C)dy

)′

= q (γ) e
−

γ∫
1

√
2√

v(y;C)dy

(3.2.7)
For γ ∈ J integrating on [1, γ]:

d

dC
(vC (γ)) e

−
γ∫
1

√
2√

v(y;C)dy =
γ∫

1

q (y) e
−

y∫
1

√
2√

v(x;C)dxdy (3.2.8)

d

dC
(vC (γ)) = e

γ∫
1

√
2√

v(y;C)dy
γ∫

1

q (y) e
−

y∫
1

√
2√

v(x;C)dxdy

≤ e

γ∫
1

√
2√

v(y;C)dy
γ∫

1

q (y) e
−

γ∫
1

√
2√

v(x;C)dxdy (3.2.9)

= Q (γ)

Now for any C, D ∈ V with C < D and any γ ∈ J we have (for some E ∈ (C,D)):

v (γ;D) − v (γ;C) = d

dC
(vE (γ)) (D − C) ≤ Q (γ) (D − C) ≤ 0 (3.2.10)

So v (γ;C) ≥ v (γ;D) −Q (γ) (D − C) ≥ v (γ;D) for all γ ∈ J and from Corollary 3.2.1, 
the second inequality here is strict if γ > 1. �
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Define C := {C ∈ R | vC exists on [1,m + 1]} ⊆ R.
We have the following result of Pingali [18] which along with Lemmas 2.3.1, 3.1.1 and 

3.2.1 was used by them in the proof of Theorem 2.3.1.

Lemma 3.2.3. (−∞, 2] ⊆ C and lim
C→−∞

v (m + 1;C) = ∞.

Proof. We just mention the highlights of the proof of Lemma 3.2.3 and the detailed 
calculations are given in [18]. For any C ≤ 2 by Lemma 3.1.2, the solution vC to (2.3.5)
a priori exists on some [1, γ̃) with γ̃ > 1. By using L and N of Lemma 3.2.1, it can 
be checked that if C ≤ 2 then LC + N > 0. Integrating (2.3.5) on [1, γ] for γ ∈ [1, γ̃)
and using Lemma 3.2.1 will give vC (γ) ≥ 2 + PC (γ) ≥ 2, and then by Lemma 3.1.1, 
vC can be continued beyond γ̃, and this will be true for every γ̃ > 1. So vC exists on 
[1,m + 1] if C ≤ 2 i.e. (−∞, 2] ⊆ C . Now as L < 0 and N > 0 so lim

C→−∞
(LC + N) = ∞. 

So lim
C→−∞

v (m + 1;C) ≥ 2 + lim
C→−∞

PC (m + 1) = ∞ (by Lemma 3.2.1). An important 

point to be noted here is that if C ≤ 2 then LC+N > 0 i.e. C < −N
L , and so −N

L > 2. �
Motivation 3.2.2. In the remainder of Subsection 3.2 we will prove that C = (−∞,M)
and lim

C→M−
v (m + 1;C) = 0 which will give us a C satisfying the required final boundary 

condition viz. v (m + 1;C) = 2 (m + 1)2.

Theorem 3.2.2. We have the following properties of C :

(1) C is an interval.
(2) C is open.
(3) C � R.
(4) There exists a unique M = M (m) > 2 such that C = (−∞,M).

Proof. (1) Let D1, D2 ∈ C with D1 < D2.

Claim. There exists a γ̃ ∈ (1,m + 1] such that vC exists at least on [1, γ̃) for all C ∈
[D1, D2].

If not true then there exists a sequence (Cn) in [D1, D2] such that vn exists maximally 
on [1, γ�,n) and (γ�,n) → 1. Passing to a subsequence if necessary, assume (Cn) → C0 ∈
[D1, D2]. By Theorem 3.1.2 Case (3), there exists a subsequence (unk) → u0 uniformly 
on [1,m + 1] with (γ�,nk) → γ�,0 where [1, γ�,0) is the maximal interval of existence of 
v0. By Lemma 3.1.2, γ�,0 > 1. So (γ�,nk) → γ�,0 and (γ�,n) → 1, a contradiction. Hence 
the Claim.

Take any γ̃ > 1 with the property mentioned in the Claim above. Applying Theo-
rem 3.2.1 with V = [D1, D2] and J = [1, γ̃) we will get for any C ∈ [D1, D2] and for 
all γ ∈ [1, γ̃), v (γ;C) ≥ v (γ;D2). Since D2 ∈ C so vD2 exists on [1,m + 1] and by 
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Theorem 3.1.1, there exists an ε > 0 (depending only on D2) such that v (γ;D2) ≥ ε

for all γ ∈ [1,m + 1] and hence in particular for all γ ∈ [1, γ̃). So v (γ;C) ≥ ε for all 
γ ∈ [1, γ̃) and so by Theorem 3.1.1, vC can be continued beyond γ̃ for all C ∈ [D1, D2]. 
Since this holds true for any γ̃ > 1 with the property mentioned in the Claim above and 
the lower bound ε > 0 on vC does not depend on C ∈ [D1, D2] as well as on γ̃ > 1 so vC
has to exist on [1,m + 1] for all C ∈ [D1, D2] i.e. [D1, D2] ⊆ C . So C is an interval.

(2) Take a sequence (Cn) → C0 ∈ R of points in C c := R � C . Then vn has maximal 
interval of existence [1, γ�,n) and we are in Theorem 3.1.2 Case (3). So there exists a 
subsequence (unk) → u0 uniformly on [1,m + 1] with (γ�,nk) → γ�,0. So [1, γ�,0) is the 
maximal interval of existence of v0 and so by definition, C0 ∈ C c. So C is open.

(3) Let if possible vC exist on [1,m + 1] for all C ∈ R. Taking V = R and J = [1,m + 1]
in Theorem 3.2.1 we get for a fixed C0 ∈ R and for any C > C0, and with γ = m + 1, 
v (m + 1;C) ≤ v (m + 1;C0) + Q (m + 1) (C − C0). Taking Cn := C0 + n for n ∈ N we 
get v (m + 1;Cn) ≤ v (m + 1;C0) + nQ (m + 1). Since v (m + 1;Cn) , v (m + 1;C0) > 0
and Q (m + 1) < 0 (from Lemma 3.1.3 and Corollary 3.2.1 respectively) we have n <
−v(m+1;C0)

Q(m+1) for all n ∈ N, a contradiction. So there exists a C ∈ R such that vC has 
maximal interval of existence [1, γ�,C) for some γ�,C ∈ (1,m + 1] i.e. C ∈ C c. So C � R.

(4) From Lemma 3.2.3 and (1), (2) and (3), there exists a unique M = M (m) > 2
such that C = (−∞,M). �

For each C ∈ R let IC ⊆ [1,m + 1] denote the maximal interval of existence of the 
solution vC to the ODE IVP (2.3.5). Let P ([1,m + 1]) denote the power set of [1,m + 1]. 
By Lemma 3.1.2 and Theorem 3.1.1 we get the set map R → P ([1,m + 1]), C �→ IC . 
Then using Theorems 3.1.2, 3.2.1 and 3.2.2 and the definitions of uC , Φ and C we get 
the following 2 results:

Corollary 3.2.2. The set map R → P ([1,m + 1]), C �→ IC and Φ are monotone decreas-
ing:

(1) If C1, C2 ∈ C c, C1 < C2 then [C1, C2] ⊆ C c and γ�,C2 < γ�,C1 i.e. IC2 � IC1 . In 
general if C1, C2 ∈ R, C1 < C2 then IC2 ⊆ IC1 , with the set containment being strict 
if C2 ∈ C c and it being set equality otherwise.

(2) If C1, C2 ∈ C , C1 < C2 then [C1, C2] ⊆ C and v (γ;C2) < v (γ;C1) i.e. u (γ;C2) <
u (γ;C1) for all γ ∈ (1,m + 1]. In general if C1, C2 ∈ R, C1 < C2 then u (γ;C2) ≤
u (γ;C1) for all γ ∈ (1,m + 1], with the inequality being strict if γ ∈ IC1 and it being 
equality otherwise.

Proof. (1) Given C1, C2 ∈ C c, C1 < C2 then as C c = [M,∞) so clearly [C1, C2] ⊆ C c. 
So for every C ∈ [C1, C2], IC = [1, γ�,C).

Claim. There exists a γ̃ ∈ (1,m + 1] such that vC exists at least on [1, γ̃) i.e. [1, γ̃) ⊆ IC
for all C ∈ [C1, C2].
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The proof of the above Claim is exactly the same as that of the Claim in Theorem 3.2.2
(1) with D1, D2 being replaced by C1, C2.

Take any γ̃ > 1 with the property mentioned in the above Claim. Then clearly γ̃ ≤
γ�,C2 . Taking any such γ̃ < γ�,C2 and applying Theorem 3.2.1 with V = [C1, C2] and 
J = [1, γ̃) we get v (γ;C) ≥ v (γ;C2) for all γ ∈ [1, γ̃) and for any C ∈ [C1, C2]. Since 
[1, γ̃) � IC2 so by Lemma 3.1.3 and Theorem 3.1.1, there exists an εγ̃ > 0 (depending 
only on γ̃ and C2) such that v (γ;C2) ≥ εγ̃ for all γ ∈ [1, γ̃). So for each C ∈ [C1, C2], 
v (γ;C) ≥ εγ̃ for all γ ∈ [1, γ̃) and so by Theorem 3.1.1, vC can be continued beyond 
γ̃ for all C ∈ [C1, C2]. Since this holds true for any 1 < γ̃ < γ�,C2 with the property 
mentioned in the above Claim and the lower bound εγ̃ > 0 on vC does not depend on 
C ∈ [C1, C2] so vC has to exist on [1, γ�,C2) i.e. IC2 ⊆ IC for all C ∈ [C1, C2].

So in particular IC2 ⊆ IC1 . Let if possible IC1 = IC2 i.e. γ�,C1 = γ�,C2 . So by 
Lemma 3.1.3 we have lim

γ→γ�,C2
v (γ;C2) = 0 = lim

γ→γ�,C1
v (γ;C1). Taking V = [C1, C2]

and J = [1, γ�,C2) in Theorem 3.2.1 we get v (γ;C1) ≥ v (γ;C2)−Q (γ) (C2 − C1) for all 
γ ∈ [1, γ�,C2). Applying limits as γ → γ�,C2 we get Q (γ�,C2) ≥ 0 where γ�,C2 > 1 which 
is a contradiction to Corollary 3.2.1. So IC2 � IC1 i.e. γ�,C2 < γ�,C1 .

If C2 ∈ C c and C1 ∈ C then C1 < C2 and IC2 = [1, γ�,C2) � [1,m + 1] = IC1 . 
If C1, C2 ∈ C , C1 < C2 then IC1 = [1,m + 1] = IC2 . Thus the general statement for 
C1, C2 ∈ R, C1 < C2 holds true.

(2) Given C1, C2 ∈ C , C1 < C2 then from Theorem 3.2.2 (1), [C1, C2] ⊆ C . So for 
every C ∈ [C1, C2], IC = [1,m + 1] and uC = vC on [1,m + 1]. Applying Theorem 3.2.1
with V = [C1, C2] and J = [1,m + 1] we get v (γ;C2) < v (γ;C1) i.e. u (γ;C2) < u (γ;C1)
for all γ ∈ (1,m + 1].

If C1 ∈ C and C2 ∈ C c then C1 < C2 and uC1 = vC1 on IC1 = [1,m + 1] and 
uC2 = vC2 on IC2 = [1, γ�,C2) and uC2 ≡ 0 on [γ�,C2 ,m + 1]. From (1), IC2 ⊆ IC
for all C ∈ [C1, C2] and so by Theorem 3.2.1 with V = [C1, C2] and J = [1, γ�,C2)
we get v (γ;C2) < v (γ;C1) for all γ ∈ [1, γ�,C2). On [γ�,C2 ,m + 1] by Lemma 3.1.3, 
uC2 = 0 < vC1 = uC1 .

If C1, C2 ∈ C c, C1 < C2 then by (1), uC = vC on IC = [1, γ�,C) and uC ≡ 0 on 
[γ�,C ,m + 1] for all C ∈ [C1, C2]. Also by (1), IC2 ⊆ IC for all C ∈ [C1, C2] and so again 
using Theorem 3.2.1 with V = [C1, C2] and J = [1, γ�,C2) we get v (γ;C2) < v (γ;C1) for 
all γ ∈ [1, γ�,C2). As γ�,C2 < γ�,C1 (again by (1)) so on [γ�,C2 , γ�,C1) by Lemma 3.1.3 and 
Theorem 3.1.1, uC2 = 0 < vC1 = uC1 . On [γ�,C1 ,m + 1], uC1 = 0 = uC2 as IC2 � IC1 .

Thus the general statement for C1, C2 ∈ R, C1 < C2 holds true. �

Because of monotonicity we can get the uniform convergence of the whole sequence 
(un) instead of just a subsequence (unk) in Theorem 3.1.2:

Corollary 3.2.3. If (Cn) ↑ C0 then (un) ↓ u0 and more generally if (Cn) → C0 then 
(un) → u0 uniformly on [1,m + 1]. Thus Φ is continuous.
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We now have the final result of Subsections 3.1 and 3.2 which will prove Theorem 2.3.2
and as a consequence Corollary 2.3.1:

Corollary 3.2.4. lim
C→M−

v (m + 1;C) = 0. There exists a unique C = C (m) ∈ (−∞,M)

such that v (m + 1;C) = 2 (m + 1)2 and the C with this property has to be strictly greater 
than 2.

Proof. By Theorem 3.2.2, C c = [M,∞). Let (Cn) ↓ M be a sequence of points in 
C c then from Corollary 3.2.3, (un) ↑ uM uniformly on [1,m + 1] and by definition, 
In := ICn = [1, γ�,n) and so by Theorem 3.1.2 Case (3.2) and Corollaries 3.2.2 and 3.2.3, 
IM = [1, γ�,M ) where (γ�,n) ↑ γ�,M i.e. (In) is monotone increasing in P ([1,m + 1]) and 
IM =

⋃
n∈N

In.

Let (En) ↑ M ∈ C c be a sequence of points in C = (−∞,M) then (uEn) ↓ uM

uniformly on [1,m + 1] and by definition, IEn = [1,m + 1] and uEn = vEn on [1,m + 1]
for all n ∈ N. So we will land up in either of the Cases (1) or (2) in Theorem 3.1.2. In 
Case (1), inf

γ∈[1,m+1],n∈N
uEn (γ) = ε > 0 and hence the uniform limit uM = vM ≥ ε > 0 on 

[1,m + 1], thereby implying (by Lemma 3.1.1) that M ∈ C , a contradiction. So we are in 
Theorem 3.1.2 Case (2) and hence IM = [1,m + 1) (i.e. γ�,M = m +1) and uM = vM > 0
(by Lemma 3.1.3) on [1,m + 1) and uM (m + 1) = 0. So by pointwise convergence, 
(uEn (m + 1)) ↓ uM (m + 1) i.e. (vEn (m + 1)) ↓ 0 and so we get lim

C→M−
v (m + 1;C) = 0.

From this and Lemma 3.2.3 there exists a C = C (m) ∈ C = (−∞,M) such that 
v (m + 1;C) = 2 (m + 1)2 and by the strictness of the inequalities in Theorem 3.2.1 and 
Corollary 3.2.2, this C has to be unique.

Now to show this C is strictly greater than 2 we recollect from Subsection 2.3 that if 
there exists a smooth solution vC to the ODE IVP (2.3.5) satisfying both the boundary 
conditions viz. vC (1) = 2 and vC (m + 1) = 2 (m + 1)2 then vC (γ) > 2γ2 for all γ ∈
(1,m + 1). Substituting all this and PC (m + 1) = LC+N (from Lemma 3.2.1) in (2.3.5)
and integrating it over [1,m + 1] we get 2 (m + 1)2 − 2 > 2 

(
(m + 1)2 − 1

)
+ LC + N

which implies LC + N < 0 i.e. C > −N
L . As was noted in the proof of Lemma 3.2.3, 

−N
L > 2. So if vC (m + 1) = 2 (m + 1)2 then C > 2. �

4. Bando-Futaki invariants and hcscK metrics

Let M be a compact Kähler n-manifold. Given a Kähler form ω on M there exists a 
λ ∈ C∞ (M,R) such that cn (ω) = λωn ∈ Ω(n,n) (M) = Ω2n (M) where cj (ω) is the jth

Chern form of ω, Ω(i,j) (M) is the set of all real (i, j)-forms on M and Ωr (M) is the set 
of all real r-forms on M. By using Hodge Theory (see Aubin [2]) we get:

cn (ω) − Hcn (ω) =
√
−1∂∂̄ϕ (4.1)
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where H denotes harmonic projection and ϕ ∈ Ω(n−1,n−1) (M) ⊆ Ω2n−2 (M). Furthermore 
Hcn (ω) = λ0ω

n for some λ0 ∈ R. So equation (4.1) becomes:
√
−1∂∂̄ϕ = (λ− λ0)ωn (4.2)

The nth Bando-Futaki invariant for the Kähler class [ω] on M is defined as (by Bando 
[3]):

Fn (Y, [ω]) :=
∫
M

LY ϕ ∧ ω , Y ∈ h (M) (4.3)

where LY denotes Lie derivative w.r.t. Y and h (M) is the set of all holomorphic 
vector fields on M. It has been proven by Bando [3] that Fn is a function of the 
Kähler class [ω] alone and does not depend on the choice of the Kähler metric ω
in [ω] and the (n− 1, n− 1)-form ϕ satisfying equation (4.1), so that we have Fn :
h (M)×H(1,1) (M,R)+ → R. The top Bando-Futaki invariant for a Kähler class provides 
an obstruction to the existence of hcscK metrics in it, as a Kähler metric is hcscK if and 
only if its top Chern form is harmonic ([3] and Pingali [18]).

Theorem 4.1 (Bando). If ω is hcscK then Fn (·, [ω]) ≡ 0 on h (M).

Now by using standard facts about Lie derivatives and harmonicity of differential 
forms, and equations (4.1), (4.2) and (4.3) we do the following computations for the top 
Bando-Futaki invariant of a general Kähler class [ω] on M:

Fn (Y, [ω]) =
∫
M

LY ϕ ∧ ω

= −
∫
M

ϕ ∧ LY ω

= −
∫
M

ϕ ∧ (d (ιY ω) + ιY (dω))
(

Where ιY denotes
interior product w.r.t. Y

)

= −
∫
M

ϕ ∧ d (ιY ω) (4.4)

= −
∫
M

ϕ ∧
√
−1∂∂̄f (For some f ∈ C∞ (M,R))

= −
∫
M

√
−1∂∂̄ϕ ∧ f

= −
∫

f (λ− λ0)ωn
M
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Actually we can make one more observation from equation (4.2) viz. that λ0 =
∫
M

λωn

∫
M

ωn is 

the average value of λ on M. We will do one more set of calculations before proceeding 
to prove our main result of this section:

Let J denote the almost complex structure induced by the complex structure on M, 
g denote the Kähler metric associated with the Kähler form ω, and � : X(1,0) (M) →
Ω(0,1) (M) and � : Ω(0,1) (M) → X(1,0) (M) be the ‘musical isomorphisms’ induced by g, 
where X(1,0) (M) denotes the set of all (1, 0)-vector fields on M. For any Y ∈ h (M) ⊆
X(1,0) (M) we have:

√
−1Y 
 (Z) = J (Y )
 (Z) = g (J (Y ) , Z) = ω (Y,Z) = ιY ω (Z) (4.5)

for all Z ∈ TM, the tangent bundle of M, so that ιY ω =
√
−1Y 
. Finally we can see 

that in a Kähler class where higher extremal Kähler metrics exist, the top Bando-Futaki 
invariant characterizes the obstruction to the existence of hcscK metrics:

Theorem 4.2. Let ω be a higher extremal Kähler metric on M. Then ω is hcscK if and 
only if Fn (·, [ω]) ≡ 0 on h (M). Furthermore let ω be hcscK. Then every higher extremal 
Kähler metric in the Kähler class [ω] is hcscK.

Proof. Since ω is higher extremal Kähler, ∇1,0λ =
(
∂̄λ

)� ∈ h (X). Substituting Y =(
∂̄λ

)� in the calculations (4.4) and (4.5) and using equation (4.2) we get f = (λ− λ0)
as follows:

ιY ω =
√
−1∂̄λ (4.6)

LY ω = d (ιY ω) = d
(√

−1∂̄λ
)

=
√
−1∂∂̄λ =

√
−1∂∂̄ (λ− λ0) (4.7)

Fn (Y, [ω]) = −
∫
M

ϕ ∧ LY ω

= −
∫
M

ϕ ∧
√
−1∂∂̄ (λ− λ0)

= −
∫
M

√
−1∂∂̄ϕ ∧ (λ− λ0) (4.8)

= −
∫
M

(λ− λ0)2 ωn

=: −‖λ− λ0‖2
L2(M,ω)

Now if ω is higher extremal Kähler and Fn (·, [ω]) ≡ 0 then 0 = Fn

((
∂̄λ

)�
, [ω]

)
=

−‖λ − λ0‖2
2 , and hence λ = λ0 i.e. ω is hcscK. The converse was already done by 
L (M,ω)
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Bando [3] in Theorem 4.1. The second assertion of Theorem 4.2 follows directly from the 
first assertion. �

Now returning back to the example of our surface X we state the following result 
of Pingali [18] saying that the higher extremal Kähler metric on X, obtained by the 
momentum construction method in Subsections 2.2 and 2.3, cannot be hcscK:

Theorem 4.3 (Pingali). For any m > 0 if there exists a higher extremal Kähler metric ω
in the Kähler class 2π (C + mS∞) on X satisfying the ansatz (2.2.1) and the conditions 
(2.3.6) with its momentum profile φ (γ) satisfying the ODE (2.2.10) on [1,m + 1] with 
the boundary conditions (2.2.11) and with φ (γ) > 0 on (1,m + 1), then ∇1,0λ 
= 0 i.e. 
ω is not hcscK.

Remark 4.1. Note that even though the existence of a higher extremal Kähler metric by 
the momentum construction method in the Kähler class 2π (C + mS∞) was not proven 
by Pingali [18] for a general m, but the fact, that such a metric if it exists is not hcscK, 
was proven by them for a general m.

Now just like being a higher extremal Kähler metric is a scale-invariant property, in 
exactly the same way being an hcscK metric is also a scale-invariant property. Indeed 
from the rescaling arguments in Subsection 2.3, on a compact Kähler n-manifold M if ω
satisfying equation (1.1.1) is an hcscK metric then so is kω for any k > 0, as seen from 
equation (2.3.7).

Thus on our surface X for any k, m > 0 if ω ∈ 2π (C + mS∞) is higher extremal 
Kähler but not hcscK and satisfies the equations (2.3.6) then η := k

2πω ∈ k (C + mS∞)
is also higher extremal Kähler but not hcscK and satisfies the equation c2 (η) = λ

2k2 η
2. 

From this and from Theorem 4.3 and Corollaries 2.3.1 and 2.3.2 we get the following 
result:

Corollary 4.1. For all a, b > 0 there exists a Kähler metric η on X, which is higher 
extremal Kähler but not hcscK, satisfying the following:

[η] = aC + bS∞ , c2 (η) = λ

2a2 η
2 , ∇1,0λ 
= 0 ∈ h (X) (4.9)

We finally conclude the non-existence of any hcscK metrics on X from Theorem 4.2
and Corollary 4.1:

Corollary 4.2. For all a, b > 0 there does not exist an hcscK metric in the Kähler class 
aC + bS∞ on X. Thus there do not exist any hcscK metrics on X.
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5. Generalization of the results to all pseudo-Hirzebruch surfaces

5.1. The Kähler cone of a pseudo-Hirzebruch surface

Following the terminology of Tønnesen-Friedman [21] we define a pseudo-Hirzebruch 
surface to be a compact complex surface of the form X := P (L ⊕O) where L is a 
holomorphic line bundle of degree d 
= 0 on a (compact) Riemann surface Σ of genus 
g ≥ 2. Note that X is a minimal ruled (complex) surface. We equip Σ with a Kähler 
metric ωΣ of constant scalar curvature SΣ := −2 (g− 1) and we equip L with a Hermitian 
metric h of curvature form F (h) := dωΣ so that the area of Σ w.r.t. ωΣ and the Ricci 
curvature form of ωΣ are respectively the following (where χ = −2 (g− 1) is the Euler 
characteristic of Σ):

AΣ =
∫
Σ

ωΣ = 2π χ

SΣ
= 2π , ρΣ = SΣωΣ = −2 (g− 1)ωΣ (5.1.1)

As in Subsection 2.1 let C be the Poincaré dual of a typical fibre of X, S∞ =
P (L ⊕ {0}) ⊆ P (L ⊕O) = X be the infinity divisor of X and S0 = P ({0} ⊕ O) ⊆
P (L ⊕O) = X be the zero divisor of X (and Σ be identified with S0 as a (complex) 
curve in X), and further let c1 (L) be the first Chern class of L, [ωΣ] be the Kähler class 
of ωΣ and [Σ] be the fundamental class of Σ (and [Σ] be identified with S0 in H2 (X,R)). 
In this general case we have the following intersection formulae similar to the intersection 
formulae (2.1.1) and (2.1.2) in the special case in Subsection 2.1 (Barth, Hulek et al. [4], 
Székelyhidi [19] and Tønnesen-Friedman [21]):

C2 = 0 , S2
∞ = −d , S2

0 = d , C · S∞ = 1 , C · S0 = 1 , S∞ · S0 = 0 (5.1.2)

c1 (L) · [Σ] = d , [ωΣ] · [Σ] = 2π , C · [Σ] = 1 , S∞ · [Σ] = 0 , S0 · [Σ] = d (5.1.3)

Now let us first assume that d < 0 which will be the case in the remainder of Subsection 
5.1 as well as in Subsection 5.2. By using the Leray-Hirsch Theorem and the Nakai-
Moishezon Criterion in the real cohomology case (Fujiki [8], Lamari [13], LeBrun-Singer 
[16] and Tønnesen-Friedman [21]) we compute the Kähler cone of X as follows (attributed 
to Fujiki [8] and given in Tønnesen-Friedman [21]):

H2 (X,R) = RC ⊕RS∞

H(1,1) (X,R)+ =
{
aC + bS∞ | 2ab− db2 > 0 , b > 0 , a− db > 0 , a > 0 , a > 0

}
(5.1.4)

= {aC + bS∞ | a, b > 0}

where the inequalities characterizing a general Kähler class aC + bS∞ on X are obtained 
by substituting the intersection formulae (5.1.2) and (5.1.3) in Corollary 2.1.1 which 
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follows from Theorem 2.1.1, both of which are applicable in this general setting of the 
pseudo-Hirzebruch surface X = P (L ⊕O) as well (see [8] and [21]).

Over here also we consider the Kähler classes 2π (C + mS∞) where m > 0 only and 
obtain the expected results on higher extremal Kähler and hcscK metrics in these Käh-
ler classes, and since being a higher extremal Kähler metric (and an hcscK metric 
respectively) is a scale-invariant property as seen in Subsection 2.3 (and in Section 4
respectively), we can rescale the constructed metrics and generalize the results to all the 
Kähler classes aC + bS∞ where a, b > 0.

5.2. The momentum construction method applied to a pseudo-Hirzebruch surface

We now use the momentum construction method attributed to Hwang-Singer [12]
(described briefly in Subsection 2.2) to construct a higher extremal Kähler metric ω in 
the Kähler class 2π (C + mS∞) with m > 0 whose top Chern form c2 (ω) satisfies the 
following equation:

c2 (ω) = d2λ

2 (2π)2
ω2 (5.2.1)

where ∇1,0λ is a holomorphic vector field.
We carefully go through the calculations involving holomorphic coordinates on the 

surface X done in Pingali [18] and Székelyhidi [19] by following all their conventions 
and observe where the factors containing the genus g and the degree d appear in the 
expressions of ω, ω2, the curvature form matrix Θ (ω) and c2 (ω). Note that d < 0
throughout this discussion.

As in Subsection 2.2 let p : X → Σ be the fibre bundle projection, z be a local 
holomorphic coordinate on Σ, w be a holomorphic fibre coordinate on L corresponding 
to a local holomorphic trivialization around z, s := ln |(z, w)|2h = ln |w|2 + ln h (z) be 
the fibrewise coordinate on the total space of L minus the zero section, f (s) be strictly 
convex and s − df (s) be strictly increasing, and let ω satisfy the following ansatz (as in 
[18] and [19]):

ω = p∗ωΣ +
√
−1∂∂̄f (s) (5.2.2)

We have the following coordinate equations ([18] and [19]):
√
−1∂∂̄s =

√
−1∂∂̄ ln h (z) (5.2.3)

= −dp∗ωΣ

√
−1∂∂̄f (s) = f ′ (s)

√
−1∂∂̄ ln h (z) + f ′′ (s)

√
−1dw ∧ dw̄

|w|2
(5.2.4)

= −df ′ (s) p∗ωΣ + f ′′ (s)
√
−1dw ∧ dw̄

|w|2
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where we are using the facts that F (h) = −
√
−1∂∂̄ ln h (z) and F (h) = dp∗ωΣ (as defined 

in Subsection 5.1).
We write down the expression for ω as follows:

ω = (1 − df ′ (s)) p∗ωΣ + f ′′ (s)
√
−1dw ∧ dw̄

|w|2
(5.2.5)

We want [ω] = 2π (C + mS∞) and the intersection formulae (5.1.2) and (5.1.3) and 
equation (5.2.5) help us in computing the following integrals:

2πm = [ω] · C :=
∫
C

ω =
∫

C\{0}

f ′′ (s)
√
−1dw ∧ dw̄

|w|2
(5.2.6)

= 2π
(

lim
s→∞

f ′ (s) − lim
s→−∞

f ′ (s)
)

2π (1 − dm) = [ω] · S∞ :=
∫
S∞

ω =
∫
Σ

lim
s→∞

(1 − df ′ (s))ωΣ (5.2.7)

= 2π
(
1 − d lim

s→∞
f ′ (s)

)

which give us 0 ≤ f ′ (s) ≤ m.
We then compute the curvature form matrix Θ (ω) as follows:

ω2 = 2 (1 − df ′ (s)) f ′′ (s) p∗ωΣ
√
−1dw ∧ dw̄

|w|2
(5.2.8)

Θ (ω) =
[
−∂∂̄ ln (1 − df ′ (s)) + 2 (g− 1)

√
−1p∗ωΣ 0

0 −∂∂̄ ln (f ′′ (s))

]
(5.2.9)

where we are using ρΣ = −2 (g− 1)ωΣ from the equations (5.1.1), ρΣ being the Ricci 
curvature form of ωΣ.

Again as in Subsection 2.2 we take the Legendre Transform F (τ) in the variable 
τ := f ′ (s) ∈ [0,m] as f (s) + F (τ) = sτ . Then the momentum profile of ω is φ (τ) :=

1
F ′′(τ) = f ′′ (s). We further have f ′′′ (s) = φ′ (τ)φ (τ) ([18]). We take the new variable 
γ := −dτ + 1 ∈ [1,−dm + 1] after which we get γ = 1 − df ′ (s), φ (γ) = f ′′ (s) and 
f ′′′ (s) = −dφ′ (γ)φ (γ). We will also need the following coordinate equation ([18] and 
[19]):

√
−1∂s∂̄s =

√
−1dw ∧ dw̄

|w|2
(5.2.10)

Using the coordinate equations (5.2.3), (5.2.4) and (5.2.10) we write down the curva-
ture form matrix 

√
−1Θ (ω) in terms of φ (γ) as follows ([18]):
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√
−1Θ (ω) =

[
−
√
−1∂∂̄ ln (γ) − 2 (g− 1) p∗ωΣ 0

0 −
√
−1∂∂̄ ln (φ)

]
(5.2.11)

=
[√

−1∂γ∂̄γ
γ2 − 1

γ

√
−1∂∂̄γ − 2 (g− 1) p∗ωΣ 0

0
(
φ′)2−φφ′′

φ2

√
−1∂γ∂̄γ − φ′

φ

√
−1∂∂̄γ

]

=
[
d2 φ

γ

(
φ
γ − φ′

)√
−1dw∧dw̄

|w|2 −
(
d2 φ

γ+2 (g− 1)
)
p∗ωΣ 0

0 −d2φ′′φ
√
−1dw∧dw̄

|w|2 − d2φ′p∗ωΣ

]

The top Chern form of ω is given in terms of φ (γ) by:

c2 (ω) = 1
(2π)2

p∗ωΣ
√
−1dw ∧ dw̄

|w|2
d2 φ

γ2

(
γ
(
d2φ + 2 (g− 1) γ

)
φ′′ + d2φ′ (φ′γ − φ)

)
(5.2.12)

Comparing equations (5.2.1), (5.2.8) and (5.2.12) and since ∇1,0λ = −dλ′w ∂
∂w (from 

equation (2.2.9)) is a holomorphic vector field if and only if λ = Aγ + B for some 
A, B ∈ R, we derive the following ODE for φ (γ) on [1,−dm + 1] (for some C ∈ R):

γ
(
d2φ + 2 (g− 1) γ

)
φ′′ + d2φ′ (φ′γ − φ) = (Aγ + B) γ3

2 (g− 1)φ′′ + d2
(
φφ′

γ

)′
= Aγ2 + Bγ

2 (g− 1)φ′ + d2φφ
′

γ
= A

γ3

3 + B
γ2

2 + C

(
2 (g− 1) γ + d2φ

)
φ′ = A

γ4

3 + B
γ3

2 + Cγ (5.2.13)

As explained in [19], for ω to extend smoothly across the zero and infinity divisors of 
X we should have the following boundary conditions on φ:

φ (1) = lim
γ→1

φ (γ) = lim
s→−∞

f ′′ (s) = 0

φ′ (1) = −1
d

lim
γ→1

(−dφ′ (γ)) = −1
d

lim
s→−∞

f ′′′ (s)
f ′′ (s) = −1

d

(5.2.14)

φ (−dm + 1) = lim
γ→−dm+1

φ (γ) = lim
s→∞

f ′′ (s) = 0

φ′ (−dm + 1) = −1
d

lim
γ→−dm+1

(−dφ′ (γ)) = −1
d

lim
s→∞

f ′′′ (s)
f ′′ (s) = 1

d

(5.2.15)

where we are using the relations between φ (γ) and f (s) ([18]). Also as f was required 
to be strictly convex we must have φ > 0 on (1,−dm + 1) in addition to the boundary 
conditions (5.2.14) and (5.2.15).

Now as in Subsection 2.3 we define p (γ) := d2
(
Aγ3

3 + B γ2

2 + C
)

and do the change 

of variables v :=
(
2(g−1)γ+d2φ

)2
, γ ∈ [1,−dm + 1] and obtain the following ODE BVP:
2
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v′ = 2 (g− 1)
√

2
√
v + p (γ) γ on [1,−dm + 1]

v (1) = 2 (g− 1)2 , v (−dm + 1) = 2 (g− 1)2 (−dm + 1)2

v′ (1) = 2 (g− 1) [2 (g− 1) − d] , v′ (−dm + 1) = 2 (g− 1) (−dm + 1) [2 (g− 1) + d]

v (γ) > 2 (g− 1)2 γ2 on (1,−dm + 1)
(5.2.16)

After this point the entire analysis developed in Subsections 2.3, 3.1 and 3.2 with all 
the bounds and estimates can be worked out in this general setting as well and in exactly 
the same way it can be proven that for each m > 0 there exist unique A, B, C ∈ R such 
that there exists a unique smooth solution v to the ODE BVP (5.2.16) on [1,−dm + 1]
satisfying all the required conditions.

Hence given a pseudo-Hirzebruch surface X of genus g ≥ 2 and degree d < 0 we 
can construct higher extremal Kähler metrics ω satisfying equation (5.2.1) in the Kähler 
classes 2π (C + mS∞) for all m > 0, and by rescaling these constructed metrics we will 
get higher extremal Kähler metrics in all the Kähler classes on X. Then we can verify 
that these constructed metrics ω cannot be hcscK i.e. ∇1,0λ 
= 0 just like Pingali [18]
did in the proof of Theorem 4.3 and by the arguments in Section 4 it will follow that 
hcscK metrics do not exist on the surface X.

5.3. The case of positive degree

Now we will see what happens when d > 0. All the other things about X = P (L ⊕O)
are exactly the same as in Subsections 5.1 and 5.2. Let us first observe that if L has degree 
d over Σ then the dual vector bundle L∗ is a holomorphic line bundle of degree −d over 
Σ and there is a canonical isomorphism of complex manifolds P (L ⊕O) ∼= P (L∗ ⊕O)
given in local holomorphic coordinates as (z, w) �→

(
z, w−1) which maps the zero and 

infinity divisors of P (L ⊕O) to the infinity and zero divisors of P (L∗ ⊕O) respectively. 
Just as in Subsection 5.1 we use Theorem 2.1.1 and Corollary 2.1.1 and the intersection 
formulae (5.1.2) and (5.1.3) and describe the Kähler cone of X as follows (Fujiki [8] and 
Tønnesen-Friedman [21]):

H2 (X,R) = RC ⊕RS0

H(1,1) (X,R)+ =
{
aC + bS0 | 2ab + db2 > 0 , b > 0 , a + db > 0 , a > 0 , a + db > 0

}
(5.3.1)

= {aC + bS0 | a, b > 0}

Note that in the description of the Kähler cone over here we are using the zero divisor 
of X instead of the infinity divisor.

We want to construct a higher extremal Kähler metric ω in the Kähler class 
2π (C + mS0) with m > 0 satisfying the equation (5.2.1). Following the calculations 
done in Subsection 5.2 we write the ansatz (5.2.2), and then the expression (5.2.5) holds 
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true in this case as well along with all the coordinate equations. Only the computation 
of the integrals in equations (5.2.6) and (5.2.7) changes in the following way:

2πm = [ω] · C :=
∫
C

ω =
∫

C\{0}

f ′′ (s)
√
−1dw ∧ dw̄

|w|2
(5.3.2)

= 2π
(

lim
s→∞

f ′ (s) − lim
s→−∞

f ′ (s)
)

2π (1 + dm) = [ω] · S0 :=
∫
S0

ω =
∫
Σ

lim
s→−∞

(1 − df ′ (s))ωΣ (5.3.3)

= 2π
(

1 − d lim
s→−∞

f ′ (s)
)

which gives us −m ≤ f ′ (s) ≤ 0. We take the variable of the Legendre Transform as 
τ := f ′ (s) ∈ [−m, 0] and the new variable as γ := −dτ + 1 ∈ [1, dm + 1] while F and φ
remain the same as in Subsection 5.2. The expressions for Θ (ω) and c2 (ω) also remain 
unchanged and hence we will obtain the following ODE for φ (γ), γ ∈ [1, dm + 1]:

(
2 (g− 1) γ + d2φ

)
φ′ = A

γ4

3 + B
γ3

2 + Cγ (5.3.4)

The appropriate boundary conditions for φ in this case are the following (Pingali [18]
and Székelyhidi [19]):

φ (1) = lim
s→∞

f ′′ (s) = 0

φ′ (1) = −1
d

lim
s→∞

f ′′′ (s)
f ′′ (s) = 1

d

(5.3.5)

φ (dm + 1) = lim
s→−∞

f ′′ (s) = 0

φ′ (dm + 1) = −1
d

lim
s→−∞

f ′′′ (s)
f ′′ (s) = −1

d

(5.3.6)

Again as in Subsection 5.2, φ > 0 on (1, dm + 1).
Comparing the equations (5.3.4), (5.3.5) and (5.3.6) with the equations (5.2.13), 

(5.2.14) and (5.2.15) we observe that in the case when d > 0 we get the same ODE 
BVP for the momentum profile φ of the Kähler metric ω as we would have gotten for a 
holomorphic line bundle of degree −d over Σ, except that the to be constructed metric 
ω now belongs to the Kähler class 2π (C + mS0) on X = P (L ⊕O).

So for this case as well we obtain the same results on the existence of higher extremal 
Kähler metrics and the non-existence of hcscK metrics as those gotten in Subsection 5.2.

We finally summarize the work done in Subsections 5.1, 5.2 and 5.3 in the following 
result:
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Theorem 5.3.1. Given a pseudo-Hirzebruch surface X := P (L ⊕O) where L is a holo-
morphic line bundle of degree d 
= 0 on a compact Riemann surface Σ of genus g ≥ 2, 
for all a, b > 0 there exists a Kähler metric η on X, which is higher extremal Kähler but 
not hcscK, satisfying the following:

[η] = aC + bS∞ , c2 (η) = d2λ

2a2 η
2 , ∇1,0λ 
= 0 ∈ h (X) (If d < 0) (5.3.7)

[η] = aC + bS0 , c2 (η) = d2λ

2a2 η
2 , ∇1,0λ 
= 0 ∈ h (X) (If d > 0) (5.3.8)

Further hcscK metrics do not exist in any Kähler class on X.

6. Analogy with the extremal Kähler setup

In Tønnesen-Friedman [21] and Hwang-Singer [12] where the usual extremal Kähler 
analogue of this problem was studied, the following 2 questions were asked regarding the 
existence and uniqueness of extremal Kähler metrics:

Question 6.1. Given a compact Kähler manifold having an extremal Kähler metric in a 
given Kähler class, does it have an extremal Kähler metric in each Kähler class?

Question 6.2. Given a compact Kähler manifold having an extremal Kähler metric in a 
given Kähler class, is this extremal Kähler metric unique in its Kähler class modulo the 
group action of the maximal connected group of automorphisms of the Kähler manifold?

Tønnesen-Friedman [21] had proven that for a general pseudo-Hirzebruch surface X
of genus g ≥ 2 and degree d 
= 0, both Question 6.1 and Question 6.2 cannot have an 
affirmative answer simultaneously i.e. if every Kähler class on X has an extremal Kähler 
metric then there exists a Kähler class in which the uniqueness condition of extremal 
Kähler metrics (even up to automorphisms of X) fails, and vice versa if every Kähler 
class on X, which can be represented by an extremal Kähler metric, has a unique such 
extremal Kähler representative (up to automorphisms of X) then there exists a Kähler 
class in which extremal Kähler metrics do not exist (see [21] for the details). Specifically 
from the work of Tønnesen-Friedman [21] it followed that the momentum construction 
method of Hwang-Singer [12] yields extremal Kähler metrics which are not cscK only in 
the Kähler classes aC + bS∞ if d < 0 (and aC + bS0 if d > 0) with 0 < b

a < k1 for a 
unique k1 = k1 (g, d) = k1 (g,−d) ∈ R>0. It later followed from the work of Apostolov, 
Calderbank et al. [1] that there do not exist extremal Kähler metrics (even without the 
symmetries of the momentum construction method) in the Kähler classes aC + bS∞ if 
d < 0 (and aC + bS0 if d > 0) with ba ≥ k1. In the special case where g = 2 and d = −1
whose exposition is given in Székelyhidi [19] (and whose higher extremal Kähler analogue 
is studied in Pingali [18] and in this paper), it is seen that k1 = k1 (2,−1) ≈ 18.889
([19]). But in complete contrast to that, we have been able to construct higher extremal 
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Kähler metrics which are not hcscK in all the Kähler classes aC + bS∞ if d < 0 (and 
aC + bS0 if d > 0) with a, b > 0, which precisely constitute the Kähler cone of X (Fujiki 
[8] and Tønnesen-Friedman [21]). So Question 6.1 has negative answer for all pseudo-
Hirzebruch surfaces whereas we have answered the higher extremal Kähler version of 
Question 6.1 affirmatively for all pseudo-Hirzebruch surfaces. Regarding Question 6.2, 
it was only recently proved by Berman-Berndtsson [5] that on any compact Kähler n-
manifold M, cscK metrics (and even extremal Kähler metrics) in a given Kähler class 
are unique modulo the group action of Aut0 (M) (if they exist at all) where Aut0 (M)
denotes the maximal connected group of automorphisms of M. We hope to explore the 
higher extremal Kähler version of Question 6.2 at least for pseudo-Hirzebruch surfaces 
in our future works.

Besides these, Tønnesen-Friedman [21] had already proven that cscK metrics do not 
exist on a general pseudo-Hirzebruch surface by actually computing the Futaki invariant 
on an arbitrary Kähler class and for a specific holomorphic vector field using a certain 
formula proven by LeBrun-Simanca [14], and observing that it turns out to be non-zero. 
But for proving the non-existence of hcscK metrics on pseudo-Hirzebruch surfaces we 
have instead proven a result about the top Bando-Futaki invariant (viz. Theorem 4.2) 
analogous to the following result about the Futaki invariant proven by Calabi [7] and 
LeBrun-Simanca [14] (and mentioned in [19] and [21]) and then used the fact that the 
momentum construction method in our higher extremal Kähler case yields a higher 
extremal Kähler metric which is not hcscK in each Kähler class on the surface.

Theorem 6.1 (Calabi, LeBrun-Simanca). Let M be a compact Kähler n-manifold. Let 
F1 : h (M) × H(1,1) (M,R)+ → R be the Futaki invariant on M. Let ω be an extremal 
Kähler metric on M. Then ω is cscK if and only if F1 (·, [ω]) ≡ 0 on h (M). Furthermore 
let ω be cscK. Then every extremal Kähler metric in the Kähler class [ω] is cscK.

We hope to work out in the future a formula for the calculation of the top Bando-
Futaki invariant on a compact Kähler surface with some nice properties which would be 
analogous to the formula of LeBrun-Simanca [14] (used by Tønnesen-Friedman [21]) for 
the calculation of the Futaki invariant on such a surface, as it seems to be an exercise of 
independent importance.

Finally coming to the case when the Riemann surface Σ has genus g = 0 i.e. Σ ∼= CP 1

and the holomorphic line bundle L has degree d 
= 0 i.e. L ∼= O (d), then the ruled 
surface X ∼= P (O (d) ⊕O) i.e. X is a Hirzebruch surface. Calabi [6] had constructed an 
extremal Kähler metric which is not cscK in each Kähler class on X and then Theorem 6.1
gave the non-existence of any cscK metrics on X (see [21]). The analogous problem of 
constructing higher extremal Kähler metrics on Hirzebruch surfaces would be interesting 
but is completely out of the scope of this paper. In the case when g = 1 i.e. Σ is a 
complex elliptic curve representing an embedding of the complex torus S1 × S1 into 
CP 2, the questions about the existence of higher extremal Kähler and hcscK metrics on 
X := P (L ⊕O) seem to be even intriguing and mysterious.
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It would also be interesting to see in the future if there are some nice properties of 
the set of all Kähler classes of higher extremal Kähler metrics (along with the subset of 
all Kähler classes of hcscK metrics) analogous to those of the set of all Kähler classes 
of extremal Kähler metrics (along with the subset of all Kähler classes of cscK metrics) 
proven by LeBrun-Simanca [14,15], and if a ‘Deformation Theory’ can be developed for 
higher extremal Kähler and hcscK metrics analogous to the one for extremal Kähler and 
cscK metrics developed by LeBrun-Simanca [14,15]. In a different direction, writing down 
a ‘higher Calabi functional’ and a ‘higher Mabuchi functional’, which can characterize 
higher extremal Kähler and hcscK metrics in ways analogous to the characterization of 
extremal Kähler and cscK metrics by the Calabi functional and the Mabuchi functional, 
will be an important area of exploration in our future works. Understanding the prop-
erties of these functionals on the space of all Kähler metrics in a given Kähler class on 
a compact Kähler manifold may possibly yield us some results about the uniqueness 
of hcscK (and even higher extremal Kähler) metrics modulo automorphisms similar to 
those about the uniqueness of cscK (and also extremal Kähler) metrics modulo auto-
morphisms recently obtained in Berman-Berndtsson [5]. More generally we would be 
interested in building a theory of higher extremal Kähler metrics in our future works by 
looking at analogous results from the theory of extremal Kähler metrics given in Calabi 
[6,7], Székelyhidi [19] and Tian [20] and the relatively recent work of Berman-Berndtsson 
[5].

Just like Pingali’s higher extremal Kähler and hcscK metrics [18] are a generalization 
(or an extension) of extremal Kähler and cscK metrics to the level of the top cohomology 
of a compact Kähler manifold, along a similar way but in a different direction one 
can view Maschler’s ‘central Kähler metrics’ whose special cases are ‘constant central 
curvature Kähler metrics’ [17]. The definitions of these metrics mimic those of extremal 
Kähler and cscK metrics with scalar curvature being replaced by something called as 
‘central curvature’ [17]. Even these metrics involve going up to the top cohomology and 
their theory was built by Maschler [17] by treating central curvature as analogous to 
the usual scalar curvature and then trying to find the counterparts of analogous results 
from the theory of the usual extremal Kähler and cscK metrics. Even we hope to do 
something along similar lines for higher extremal Kähler and hcscK metrics.
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