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a b s t r a c t

We present a visual analysis environment based on a multi-scale partitioning of a 2d domain into
regions bounded by cycles in weighted planar embedded graphs. The work has been inspired by an
application in granular materials research, where the question of scale plays a fundamental role in
the analysis of material properties. We propose an efficient algorithm to extract the hierarchical cycle
structure using persistent homology. The core of the algorithm is a filtration on a dual graph exploiting
Alexander’s duality. The resulting partitioning is the basis for the derivation of statistical properties that
can be explored in a visual environment. We demonstrate the proposed pipeline on a few synthetic
and one real-world dataset.

© 2023 The Authors. Published by Elsevier B.V. on behalf of ZhejiangUniversity and ZhejiangUniversity
Press Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In this paper, we present a visual analysis method for planar
raphs embedded in a 2d spatial domain. It is based on a hierar-
hical partitioning of the underlying space into regions bounded
y cycles in the graph serving as a basis for the aggregation of
ulti-level statistics of properties. The work has been motivated
y a collaboration with scientists studying granular materials.
hese are dense materials composed of discrete particles, such as
and or grains, that interact through interparticle contact forces
uilding force networks (Papadopoulos et al., 2018). One of the
riving questions in this research is to derive macro-scale prop-
rties from the particle interactions at the micro-scale structure,
.g., by averaging some local measures over a representative
olume element (RVE). However, the relationship between the
icro- and macro-scale interactions is complex and there is nei-

her clarity as to what good descriptive properties are nor the
cales of RVEs (Shahin et al., 2022). For two-dimensional granular
aterials, (Cambou et al., 2016) introduced a ‘‘meso-scale’’ to
ridge the gap between micro- and macro-scales. They proposed
ubdividing the domain into ‘‘meso-domains’’ defined by ‘‘loops’’
n the particle connectivity graph. The particles contained inside
hese loops, so-called ‘‘rattlers’’, do not directly contribute to force
ropagations in the material. Generalizing the ideas from this
ork, our first goal was to build a framework for a multi-scale
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468-502X/© 2023 The Authors. Published by Elsevier B.V. on behalf of Zhejiang Univer
C BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
decomposition of a 2d domain into areas bound by connectivity,
or force-loops, serving as a basis for the aggregation of summary
properties.

To address this problem, we formulate this task in a more
general and data-centric way. If one interprets the force networks
as two-dimensional, planar, weighted graphs embedded in a con-
tinuous, spatial domain, the loops can be defined as cycles in
the graph. The multi-scale aspect can be achieved by considering
a set of subgraphs restricted to edges with a weight greater
than a given threshold. This is a well-known topological problem
that can be addressed using persistent homology by applying
filtration over the edge weights. However, most algorithmic im-
plementations only keep track of the number of independent
cycles without providing an explicit set of generators (a basis) of
the cycle group. Because this set is not unique, various criteria
for selecting an appropriate basis have been proposed, often
employing a minimality criterion. In our case, the condition is
that the generator set provides a space partition. For an efficient
computation of the generators, we propose an algorithm that
applies dual filtering based on Alexander’s duality, exploiting the
spatial embedding of the graph. For the resulting hierarchical par-
titioning of the domain, a series of structural and shape measures
are aggregated across the spatial segments. An exploratory visu-
alization environment links the results for interactive analysis,
combining the representation of the partitions, the hierarchical
tree, and statistical plots of the aggregated metrics. An overview
of the pipeline is shown in Fig. 1. We demonstrate the method on
sity and Zhejiang University Press Co. Ltd. This is an open access article under the
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Fig. 1. Pipeline: The main steps in the computation of the hierarchical partitioning (Section 4) are illustrated in the first row. The method takes a weighted planar
graph as input. From this graph with boundary edges added, a constrained Delaunay triangulation is computed. Filtration on the dual graph generates a hierarchical
partition of the domain. For every hierarchy-level summary statistics are computed that visualized in an interactive environment combining abstract and spatial
renderings.
several analytical datasets and one dataset from granular materi-
als. While motivated by a specific application, the concept applies
more generally to embedded planar graphs such as transport
networks. Our contributions can be summarized as:

• Formulation of an application-specific scale problem as a
topological problem for embedded graphs.
• Efficient algorithm to solve this problem introducing a dual

filtration.
• Aggregation of statistical measures on multiple scales, and

integration of the analysis in a visualization environment.

The paper is structured as follows, it starts with an overview
of related work in Section 2, then summarizes the necessary
background from graph theory and topology in Section 3. Sec-
tion 4 describes the method and central algorithm, followed by
explaining the shape and structure measures in Section 5 used in
the visual analysis environment, Section 6. The paper ends with
a result section, Section 7, and a conclusion, Section 8.

2. Related work

We begin this short review with articles from the motivational
pplication and then refer to work that has used topological
ethods in similar applications.
Scales in granular materials — As giving a complete overview

of the work in this field goes well beyond this article, we are
confining ourselves here to articles that have motivated our work.
An overview of the network analysis of particles and grains can
be found in the review article (Papadopoulos et al., 2018). Scales
in granular systems play an increasingly important role in many
of these works. Camabou et al. introduced the concept of a
meso-scale to connect the macro-mechanical behavior of gran-
ular materials with the micro-scale grain interaction (Cambou
et al., 2016). The meso-scale is defined by elementary loops in
the contact network of grains. An idea that was then taken in
several publications. Yang and Qi have developed a loop detection
pipeline for contact network images (Yang and Qi, 2021). The
stability of contact loops in simulated packings has been studied
by Smart and Ottino, who compute loops in the network using a
breadth-first search algorithm (Smart and Ottino, 2008). Zhu et al.
50
investigated how macroscopic mechanical behavior can be linked
to the evolution of loops on the meso-scale (Zhu et al., 2017).
Shahin et al. presented a study that emphasized that there is a
hierarchy in the length scales for different properties of granu-
lar solids (Shahin et al., 2022). Going beyond contact networks,
the role of force networks was examined in Daniels (2017). To
quantify the local organization of the grains and the anisotropy in
the material a wide set of local measures have been introduced
including scalar and tensor valued measures (Kuhn et al., 2015;
Wan et al., 2005). We also use such tensors to aggregate material
properties at different scales.

Topological methods used for the analysis of granular materials
range from Morse theory-based methods for segmenting particles
in CT images (Pandey et al., 2022) to characterizing the ‘‘shape
of data’’ (Hiraoka, 2019). Persistent homology has also been used
to quantify structural changes in networks (Hajij et al., 2018). In
the context of granular materials, (Kramár et al., 2014b) define
chain complexes for the analysis and comparison of 2D particle
networks. This work was later extended to describe dynamic
properties in these networks using persistence diagrams for com-
parison (Kondic et al., 2017; Kramár et al., 2014a). These works
bear a certain resemblance to ours. However, their analysis is
restricted to networks and does not consider properties in the
embedding space.

Cycles generally play an important role in the analysis of
graphs and networks, and there are many advanced methods
for cycle extraction (Kavitha et al., 2009). However, due to the
specific requirements on cycles in our application to create spatial
partitioning, most of the methods cannot be applied directly.

3. Background

The method and algorithm presented in this work are based on
fundamental concepts from graph theory and topology are briefly
summarized below. Although the term loop is more commonly
used to refer to cycles in force networks in the material science
literature, we will use the term cycle following the terminology

used in the topology literature in the rest of the paper.
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.1. Graph theory, definitions, and notations

A graph G is defined as a pair (V , E) of a set of vertices V and
set of edges E (Jungnickel, 2012). An edge e = (u, v) ∈ E is
n unordered pair connecting its incident vertices, or endpoints
, v ∈ V . The degree of a vertex v is the number of edges incident
n v. We restrict our discussion to simple graphs that can have at
ost one edge between a pair of vertices. A weighted graph has
umerical weights assigned to its edges. That is, there is a scalar
unction defined on the set of edges, f : E → R.

A subgraph G′ = (V ′, E ′) of G is a graph such that V ′ ⊆ V and
′
⊆ E. A cycle C is a subgraph such that each vertex in C has an

ven degree. The sum of two cycles Ci + Cj can be defined as a
ubgraph such that the set of edges is the symmetric difference
f the edges in Ci and Cj. Note that the Ci + Cj is also a cycle. A
ircuit is a cycle that only has degree 2 nodes and forms a single
onnected component. A minimal set of cycles is called a cycle
asis if all the cycles in the graph can be written as a sum of some
f the cycles in the basis.
A spatial embedding of a graph in a plane maps each vertex

o a point (x, y) ∈ R2 while each edge is mapped to some curve
onnecting the locations of its endpoints. A graph is called planar
f it has a spatial embedding such that none of the edges intersect.
planar straight-line graph is a spatial embedding of a planar

raph such that edges are mapped to straight line segments
onnecting the vertices. It is known that such an embedding
lways exists for any planar graph. We assume our input graph
s a spatially embedded straight-line graph with positive edge
eights.

.2. Topology background

Topology deals with the study of properties of shapes that
re invariant under continuous deformations. Homotopy and ho-
ology provide algebraic tools to compare topological spaces
Hatcher, 2002). We focus our discussion on simplicial homology
hat provides a combinatorial computationally-friendly frame-
ork for representing topological spaces and computing their

nvariants.

.2.1. Simplicial homology
In simplicial homology, any topological space is represented

sing a combinatorial structure called a simplicial complex which
s composed of small building blocks called simplices (Edelsbrun-
er, 2006). A general d-dimensional simplex is the convex hull of
+ 1 affinely independent points. Restricting to 2D, the three

ypes of simplices of interest are vertices, edges, and triangles,
n increasing dimension from 0 to 2 respectively. A simplex τ is
face of another simplex σ if its constituent vertices are a non-
mpty proper subset of the vertices of σ . A simplicial complex K
s then defined as a finite collection of simplices such that two
onditions are satisfied: (i) if σ ∈ K , then all of its faces τ are
lso part of K ; and, (ii) any two simplices σ1 and σ2 either share
common face or their intersection is empty. A subcomplex of K

s a simplicial complex L ⊆ K .
Homology provides a robust framework for defining and com-

uting topological invariants for a simplicial complex using ho-
ology groups. To define homology groups, we first need to
efine a few key concepts such as chains, boundaries, and cycles.
d-chain is a subset of the d-simplices in K . Two d-chains can be
dded by taking their symmetric difference. The set of d-chains
ogether with this addition operation forms an algebraic group
alled chain group denoted as Cd. The boundary of a (d+1)-simplex
s the set of its d dimensional faces. A d-boundary of a (d + 1)-
hain is obtained by taking the sum of boundaries of the simplices

n the (d + 1)-chain. The set of d-boundaries form a subgroup b

51
Fig. 2. Chain complex for 2D simplicial complex.

alled boundary group Bd within Cd. A d-chain with zero boundary
s called a d-cycle. The set of d-cycles form a subgroup called cycle
group Zd of Cd. One of the fundamental theorems in homology
hows that any d-boundary is also a d-cycle. Therefore, we have
he following nesting relationship within the aforementioned
lgebraic groups: Bd ⊆ Zd ⊆ Cd.
The boundary homomorphism ∂d : Cd → Cd−1 maps a d-

chain to the sum of the boundaries of simplices in the d-chain.
In other words, ∂d is crucial in providing a connection between
these group structures across the dimensions. Fig. 2 illustrates
the relevant nesting of groups in various dimensions for a 2D
simplicial complex and how they are connected by boundary
homomorphism ∂d, this structure is also called the chain complex.
he dth homology group Hd is defined as the quotient group

Zd/Bd. The rank of Hd is also called the dth Betti number, βd of
. An intuitive way to understand Betti numbers is βd counts the
umber of d-dimensional holes in the simplicial complex. In low
imensions, β0 is equal to the number of connected components,

β1 corresponds to the number of an independent set of one-
dimensional cycles, while β2 captures the number of 2D cycles or
voids in the complex. The Betti numbers of a simplicial complex
are its topological invariants and can be used, for example, for de-
termining if two shapes are topologically similar. If the sequence
of Betti numbers of two spaces is the same, then they are also
called homologous to each other.

3.2.2. Persistent homology
Persistent homology studies the evolution of homology groups

as simplices are removed or added based on some parameter,
generating a filtration (Edelsbrunner and Harer, 2008). A filtration
on K is a finite sequence of nested subcomplexes K0 ⊆ K1 ⊆ ... ⊆

Km = K , where each Ki is a subcomplex of K . For each i, we can
ompute the dth homology group Hd(Ki). This gives us a sequence
f nested homology groups Hd(K0) ⊆ Hd(K1) ⊆ ... ⊆ Hd(Km).
n practice, the filtration is usually defined by assigning scalar
alues f : K → R to the simplices in K , such that Kα = {σ ∈

and f (σ ) > α} with the requirement that the scalar value of a
implex σ is less than the scalar values of all of its faces τ . Varying
he parameter α provides the subcomplexes in the filtration.

A filtration of K can also be seen as building the complex by
dding one simplex at a time in the decreasing order of scalar
alues. It then can be observed that the addition of a d-simplex to
he simplicial complex either creates a new d-cycle or it destroys
n existing (d − 1)-cycle, and therefore it affects the homology
roups Hd or Hd−1. The lifetime of any d-cycle can be tracked
rom its birth due to the insertion of some d-simplex σi over the
hole filtration during which it either dies due to the addition of
(d+ 1)-simplex σj providing a persistence pair (σi, σj), or it can
urvive till the end in which case it forms an essential cycle of K .
he set of persistence pairs is often recorded and represented in
he form of a scatter plot called persistence diagram or as a set of

ars called persistence barcodes.
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.3. A view of graphs through the lens of topology

Any general graph represents a topological space and can be
tudied using the ideas from topology and homology. In partic-
lar, a spatially embedded straight-line graph can be viewed as
one-dimensional simplicial complex, where the graph vertices
re its 0-simplices and the set of edges form its 1-simplices. The
raph-theoretic definition of a cycle, i.e. a graph with even degree
odes, corresponds to the definition of 1-cycles in homology. The
omology group H1 for a graph is then isomorphic to the cycle

group Z1 as B1 = 0 since there are no 2-simplices in a graph.
For weighted graphs the edge weights provide a natural way

to define filtration. After adding all the vertices, the edges can
be added either in descending (or ascending) order of their edge
weights to yield a filtration of the graph. A subgraph or a subcom-
plex Gα is obtained by restricting to edges with weight greater
than a given parameter value α. The concise and robust summary
of the evolution of 1-cycles provided by persistent homology
tools like persistence diagrams can be used for analysis and
comparison of weighted graphs.

3.4. Constrained Delaunay triangulation

For real-world data, geometric shapes are usually represented
as a set of points in a plane or 3D space. The Delaunay triangu-
lation, a concept from computational geometry (Aurenhammer
et al., 2013), triangulates such a point set into non-overlapping
triangles generating a simplicial complex (Edelsbrunner, 2006).

The constrained Delaunay triangulation (CDT) is a special case
of Delaunay triangulation, which enforces certain edges or seg-
ments to be part of the triangulation. The resulting triangulation
should be as close to a Delaunay triangulation as possible while
still satisfying the constraints.

4. Computation of the hierarchical partitioning

In the following, we describe our algorithm for the generation
of a multi-scale decomposition of a 2d domain into areas bound
by cycles of a weighted planar straight-line graph. The core of the
algorithm is a dual filtration of the embedding space, making use
of Alexander’s duality. The result is a spatial partitioning and a
set of generators forming a basis of the cycle group. An overview
of the main steps is shown in the first row of Fig. 1.

4.1. Alexander’s duality

We build our algorithm on one of the key results in homology
called Alexander’s duality. We reproduce the statement as given
in Hatcher (2002, Corollary 3.45).

Theorem 1. If K is a compact, locally contractible, non-empty,
proper subspace of n dimensional sphere Sn, then H̃d(Sn − K ) is
isomorphic to H̃n−d−1(K ) for all d.

Explaining all the intricacies and details of the theorem above
is beyond the scope of this paper. So, we will only explain the
relevant consequences of this theorem in the context of 2D sim-
plicial homology. Let S2 be a simplicial complex topologically
quivalent to a 2D sphere and let K be a subcomplex embedded
n it. Then, the theorem states that there is a relationship between
he homology groups of K and its complement S2−K . In fact, the
following pairs of reduced homology groups: (i) H̃0(S2 − K ) and
H̃1(K ), and (ii) H̃1(S2−K ) and H̃0(K ), are isomorphic. The reduced
homology groups are closely related to the homology groups
defined earlier in Section 3.2. For d > 0, the reduced homology
groups are the same as normal homology groups, i.e., H̃d = Hd.
However, for any non-empty complex, the rank of 0th reduced
homology group H̃ is 1 smaller than the rank of H .
0 0

52
4.2. Dual graph definition

To reiterate, the input to our pipeline is a weighted planar
straight line graph, G = (V , E). This graph can have vertices with
no incident edges. First, we compute the constrained Delaunay
triangulation D for the vertices V which ensures that edges E are
part of D. Both G and D can be considered as simplicial complexes.
Furthermore, D is topologically homologous to a 2D disk. We can
convert D to S2 (a 2D sphere) by adding an extra dummy point
and connecting this point to the convex hull of D with some
dummy edges and triangles. With this modification to D, we can
use Alexander’s duality to compute the cycles in G in a different
way. Instead of extracting the generators of H1(G) which provides
the cycle bases of the graph G, we compute the generators of
H0(D−G) which is simply the connected components of D−G. As
xplained earlier, the number of connected components in D− G

will be one greater than the number of 1-cycles in G.
However, the set of simplices D−G does not form a simplicial

complex, as it contains triangles whose boundary edges are part
of G and therefore not present in D − G. We remedy this issue
by instead considering the dual graph Ĝ = (V̂ , Ê) of D − G. The
vertex set V̂ corresponds to the triangles in D−G while the edges
are the edges in D that are not part of G. Now, Ĝ is a simplicial

complex such that H0(D − G) is isomorphic to H0 (̂G) or in other
words, both Ĝ and D − G has the same number of connected
omponents. Each connected component in Ĝ corresponds to a set
f connected triangles that defines a region in D whose boundary
dges form a cycle, which is part of the G. Thereby, considering
ll connected components in Ĝ partitions D into regions enclosed
y cycles in G.

.3. Filtration of G and Ĝ

The next step is to formulate the filtration at first over G and
then its dual inverse filtration over Ĝ.

To obtain a valid filtration of G, we need to extend the edge
weights of G consistently to all the simplices in G and D. There-
ore, let ω be the maximum weight of an edge in G. All the
ertices in D are then assigned a weight of ω + ε where ε is
negligibly small positive number and the edges e ∈ D − G
re assigned a weight of 0. Similarly, all the triangles in D are
ssigned the minimum weight, i.e. 0. Now, given a value α, we
an restrict G to a subcomplex Gα := {e ∈ G | w(e) > α},
ontaining edges with weight greater than α. Note that Gα is
valid simplicial complex as it will contain all the vertices in
considering they are assigned the maximum weight. As the

arameter α is decreased from ω + ε to 0, Gα becomes larger,
hile simultaneously D − Gα and therefore its dual graph Ĝα

educes in size. If we look at the parameter α increasing from the
alue 0 to ω + ε, we find that we obtain a filtration for the dual
raph Ĝα . In this dual setting, the filtration refers to the evolution
f connected components in Ĝ as the value of the parameter α

aries from 0 to ω + ε. The result of this filtration is a merge
ree representing the evolution of the components, the spatial
artitioning, and a set of cycle generators.

ome algorithmic notes: As we are not only interested in the
erge events when increasing the value of α but also the com-
onents and their boundaries we also keep track of the regions
hemselves and save their merge hierarchy. Starting with α = 0,
e compute the set of all connected components in Ĝ0, which
orrespond to all regions enclosed by cycles in G0. We then select
1 as the lowest edge weight in G. This entails removing edges
ith a weight less than or equal to α1 in G0. As a result, D−Gα1 has
ore edges than D−Gα0 , leading to the presence of edges in Ĝα1

hat are not part of Ĝ . We then determine whether these edges
α0
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ombine two or more disjoint components in Ĝα0 (being at the
oundary of two regions). If this is the case, then we label it as a
erge event and store the connected components as a level in the
ierarchy at α1 otherwise we move to the next α value. We then
ontinue with increasing values of α until ω + ε to capture the
ntire evolution of partitioning. Thus, the evolution of connected
omponents in Ĝα as the value of α changes can be computed
efficiently using the union-find data structure, and the resulting
hierarchy can be saved as a tree. The complexity of the algorithm
is dominated by two operations, the Delaunay computation, and
the union-find data structure. In our examples, the computation
is interactive.

4.4. Boundary treatment

Our input graph is a planar graph embedded in a finite 2-
dimensional space. The first step of computing the constrained
Delaunay triangulation, which is homologous to a disk. We, how-
ever, need a space equivalent to 2D sphere to apply Alexander’s
duality. As discussed before, we can do that by introducing a
dummy vertex and connecting it to the convex hull. In our im-
plementation, we chose to enclose the graph vertices with a box
slightly bigger than the bounding box of the vertices. This is
accomplished by adding four dummy vertices at the boundary
and the four boundary edges are assigned the highest weight.
Once the boundary is added, the partitioning of the entire domain
includes an extra cycle corresponding to the boundary, which
can be removed to obtain the cycles in the original graph. This
extra cycle also helps in elegantly taking care of the one extra
connected component in D − G compared to the number of
-cycles in the G according to Alexander’s duality.

5. Statistical property aggregation

In this section, we propose an exemplary set of local measures
that enable quantitative analysis of the hierarchical partitioning
and graph cycles. Most of the measures have been motivated by
the application in granular materials, adapting common measures
including scalar and tensorial entities.

Scalar measures — Scalar measures include network character-
istics, such as average node degrees or edge weights, as well as
spatial measures such as the enclosed area, or the perimeter of
cycles. In the context of granular materials, the count of particles
along the cycles or the number of enclosed particles is also
of interest. We offer an aggregation over the spatial segments,
all nodes enclosed by the cycle, or alternatively over the cycle
boundary. Given the information that is readily available through
our methods, all these values can be directly derived. The area
can be obtained by summing the areas of the triangles within the
cycles, while the lengths of boundary edges can be added together
to determine the perimeter.

Fabric tensor — Fabric generally refers to directional character-
istics of the microstructure of materials, e.g. in granular material.
The fabric tensor quantifies such characteristics in a tensorial
form. For granular materials different tensors summarizing dif-
ferent structural orientations represented by some vector ni have
been proposed, e.g. particle orientations, inter-particle contact
normal directions, or the orientations of void shapes (Fu and
Dafalias, 2015). A fabric tensor F is generally defined as

F =
1
N

N∑
i=1

ωini ⊗ ni

here ni is the normalized direction and ωi some weight. The
um iterates over a volume element or its boundary. From these
ensors, diverse anisotropy measures of the structure can be
erived.
53
Algorithm 1: Compute cycle hierarchy for a spatially
embedded weighted network

Input : G(V , E, w), w : E → R+
Output: T , Tree encoding multi-scale cycle hierarchy

1 ω←− maxw(e)e∈E ;
2 Determine the bounding box of V

(xmin, ymin), (xmax, , ymax);
3 Insert four dummy vertices to V :

v00 = (xmin − δ, ymin − δ)
v01 = (xmin − δ, ymin + δ)
v10 = (xmin + δ, ymin − δ)
v11 = (xmin + δ, ymin + δ);

4 Insert boundary edges in E with weight ω + ε:
el = (v00, v01)
er = (v10, v11)
eb = (v00, v10)
et = (v01, v11);

5 D←− ConstrainedDelaunay(V , E);
6 ∀⟨vi, vj⟩ ∈ D, with

w′(⟨vi, vj⟩) :=
{
w(⟨vi, vj⟩), if ⟨vi, vj⟩ ∈ G
0, otherwise

;

7 Construct dual graph Ĝ0 = (V̂ , Ê0)
∀△i ∈ D insert a vertex v△i in V̂
∀ edges ei ∈ D with w(ei) = 0 insert a dual edge in Ê0
connecting the two incident triangles on ei

8 Use Union-Find datastructure UF to find the set of
connected components C0 in Ĝ0

9 Insert leaf nodes corresponding to each component ci in
C0 in T and assign these leaf nodes a 0 weight

10 Initialize component to tree node index array MCT with
component MCT [ci] = ni

11 Sort E such that wk < wk+1;
12 foreach e ∈ E do
13 Let e be incident on triangles △i and △j;
14 ck ←− Find(UF , v△i );
15 cl ←− Find(UF , v△j );
16 if ck ̸= cl then
17 Union(UF , ck, cl);
18 Insert a node nkl in T with children

MCT [ck] and MCT [cl];
19 Assign weight w(e) to nkl;
20 Update MCT [ck] = MCT [cl] = nkl

21 end
22 end

We define two types of fabric tensors: loop tensor (SL) to quan-
tify the shape of extracted cycles, similar to the one proposed
in Cambou et al. (2016), and the force tensor (SF ) taking the forces
(weights) on the edges into account. For both tensors, we iterate
over the edges within a cycle. The mathematical expression for
both tensors is provided below:

SL =
N∑

k=1

(pk
i − pk

j )⊗
ˆ(pk
i − pk

j )

SF =
N∑

k=1

wk ˆ(pk
i − pk

j )⊗
ˆ(pk
i − pk

j )

where ˆ(pk
i − pk

j ) =
(pki −p

k
j )

|pki −p
k
j |
, pk

i is the spatial coordinates of vertex i

of edge k, while wk is the weight of edge k. N represents the total
number of edges forming the cycle. Fig. 3 illustrates an example
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Fig. 3. Example of a cycle generated by particles (pi) in a granular material. The
cycle is overlaid by the loop tensor along with the major and minor eigenvectors.

Fig. 4. A tree representation of the hierarchical evolution of regions enclosed
by cycles as the filtration value increases. The leaves in the figure represent
the cycles at a filtration value of zero, and the colors corresponds to the index
of cycle. As the filtration value is increased, the cycles merge and eventually
form a single component covering the whole domain. At merge, the cycle with
highest permeter retains its color while the other cycle dies. This representation
is equivalent to a merge tree but for cycles.

of a cycle enclosed by force network edges in a granular system
together with the its loop tensor.

Anisotropy — Anisotropy measures or quantifies the ‘‘direc-
ionality’’ of structures. One can find a large variety of explicit
efinitions of anisotropy for tensorial quantities in the literature.
hey are all based on the eigenvalues of the respective tensor us-
ng different normalizations. We define anisotropy as the absolute
ifference between the two eigenvalues which is inspired by the
efinition of shear stress in continuum mechanics

nisotropy = ∆λ = |λ1 − λ2|

here λi are the eigenvalues.

. Exploration and visualization

This section describes visualization components that facilitate
he exploratory analysis of partitions in planar networks. The
nteractive rendering of cycle-enclosed regions is linked with a
arallel coordinates plot displaying the cycle statistics. In addition,
e provide a tree structure to convey the complete multi-scale
ummary of partitions. Overall, the resulting visualization compo-
ents provide a powerful framework for exploring and analyzing
artitioning within complex planar graphs. The proposed interac-
ive visualization environment is implemented as a prototype in
nviwo (Jönsson et al., 2019).
 e

54
Partitions visualization — We provide the rendering of parti-
ions overlaid by input planar graph along with the possibility of
nteractively changing the filtration value. Each partitioned region
s assigned a unique color, while the edges in the planar graph
re color-coded based on their weight. The colors of the regions
re maintained throughout the filtration process; if two regions
erge, the resulting region take on the color of the larger region.
urther, we provide the possibility to overlay each region with
he ellipse computed from the fabric tensors to directly visualize
he orientation of the underlying region.

In the example of analyzing force networks in granular mate-
ials, the partitions are further overlaid on the granular system to
isually evaluate the arrangement of disks within each region.
Cycle statistics — We present a parallel coordinates plot as
visual component to explore the characteristics of different

egions in the partitioning. The properties of these regions, as
escribed in Section 5, are represented as different coordinates in
he plot. The parallel coordinates plot is linked with the rendering
f partitions, such that each line in the plot corresponds to a
nique region and gets the same color as its counterpart in the
endering. This feature facilitates easy comparison and selection
f regions. The parallel coordinates plot also serves as an interface
or filtering for specific regions in partitioning at some filtration
alue. Additionally, we provide brushing and linking capabilities,
llowing users to highlight corresponding loops in the rendering
y selecting lines in the parallel coordinates plot.
In addition to the visualization component that works on a

ingle filtration level at a time, we present a tree-based visu-
lization that provides an overview of the evolution of regions
nder varying filtration levels Fig. 4. The visualization enables
racking of regions’ appearance and merging at different filtration
alues. The leaf nodes of the tree represent the total number of
ycles in the system at zero filtration. The inner nodes indicate
he filtration values at which two regions merge. The height of
he tree is scaled by the minimum and maximum filtration values,
uch that the y-coordinate of each node represents the actual
iltration value.

When two cycles merge, one cycle dies, and we retain the
ycle with the highest perimeter. The colors used in the sys-
em rendering correspond to the colors in the visualization. The
roposed visualization technique provides an effective means
or filtering or selecting force thresholds to study interesting
tructures.

. Experimental results

In this section, we demonstrate our method in four different
cenarios: (1) a simple graph with different embeddings, two
ynthetic datasets with varying edge weights in a dense graph,
2) examining its behavior modulating the edge weights by a con-
entric oscillating scalar field, (3) then defining the edge weights
y a vector field with varying strength, and (4) finally applying
ur method to real-world data.

.1. Simple graph

We first demonstrate our method using a simple weighted
raph with different embeddings. Fig. 5 displays the input graphs,
heir constrained Delaunay triangulation, and their corresponding
hree hierarchical partitions. As the filtration threshold increases,
he number of connected components decreases from two to zero
or both graphs. As expected the result provides in both cases a
ierarchical partitioning of the domain, with one component for
≥ 2, 2 components for w = 1, and three components for
= 0. However, the enclosing cycles are different for the two
mbeddings. As shown in Fig. 5 (second row at w = 0), the shape
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Fig. 5. Example of two simple graph datasets, followed by their Delaunay and hierarchy levels (left to right). Importantly, The partitions colored green in the second
row at w = 0 exhibit a non-convex shape, where its boundary is not a minimal generator.
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Fig. 6. Regular mesh (right) with edges sampled from the respective
functions (left).

of the green partition is non-convex, which means its boundary
does not represent the minimal cycles for this partition, which
is frequently the criterion to define optimal cycle generators.
The minimal generators would not provide a partitioning of the
domain in non-overlapping regions.

7.2. Scalar field modulated edge weights

We designed this dataset in a way that we will obtain nested
ycles during the filtration. The basic structure of the graph is a
egular triangulation of a hexagonal mesh. The edge weights are
enerated by sampling a sinusoidal concentric using the following
quation:

⟨u, v⟩ = f (
ux + vx

,
uy + vy )
2 2
55
where f (x, y) := 2 + sin(
√
x2 + y2). Fig. 6 (top row) shows the

calar function and the resulting regular mesh.
Fig. 7 shows the results at four filtration levels. At the small

iltration level Fig. 7 (left), we obtained cycles including a lot
f small ‘‘triangular’’ cycles consisting of three edges. Together
hey form a ring-like structure that encloses a large homogeneous
ing component (light green) the boundary cycle of this compo-
ent consists of two disconnected parts. As the filtration level
ncreases, triangles with relatively less weight (triangles at the
oundary of the ring) start to disappear, and a new cycle (blue)
merges from the center, as expected since it is sampled from a
inusoidal field with small values at the center.

.3. Vector field modulated edge weights

We generate a dataset that is closer to our application. Here,
e used an underlying vector field to modulate the edge weights.
imilar to the previous example with the nested cycles, we use a
egular mesh as the domain. The edge weights are now sampled
rom a vector field oriented in the x-direction scaled by a scalar
unction shown in Fig. 6 bottom row, the y-direction of the
ectors is equal to zero. The edge weights result from a projection
f this vector field onto the edges.
We show the resulting partitions at three different filtration

evels for this mesh type Fig. 8. Due to the nature of edge weights,
he horizontal edges exhibit comparatively higher weights com-
ared to others. At low filtration levels, the patterns of the under-
ying vector field’s magnitude are still clearly visible. On increas-
ng the scale, however, the directional edge weights become more
ominant, resulting in rectangle-like partitions. Consequently,
hese partitions lead to anisotropic fabric tensors, which we visu-
lize through the overlay of ellipses encompassing the direction.
he evolution of the statistical measures during the filtration
s shown in Fig. 9 (right). It clearly emphasizes the increase of
nisotropy with the increasing filtration value.

.4. Photoelastic disks dataset

Our last dataset is a result of an experiment with photoelastic
isks, made of a material that changes color and intensity when
ubjected to mechanical stress. These materials are often used
o study stress and force propagation in granular materials. By
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Fig. 7. Results from synthetic datasets generated on the regular mesh at four filtration levels. This example shows that our method can correctly deal with nested

cycles in the graph.
Fig. 8. Synthetic datasets generated on the regular mesh at three filtration levels. This example highlights the correct extraction of cycles aligning with the underlying

vector field used for the generation of the edge weights. The fabric tensor represented as ellipses are overlaid on partitions.
Fig. 9. Aggregation of cycle characteristics, anisotropy, perimeter along with cycle count as filtration varies.
analyzing the changes in the polarization of light passing through
the photoelastic material, researchers can infer the force net-
work within the granular material. The resulting force network
is a perfect real-world example of planar graphs. Therefore, re-
searchers are interested in gaining insights into the organization
and force propagation within the granular material and studying
its dynamics in response to external stresses. The concept of
meso-scale based on particle contact cycles has been developed
in the context of such experiments.

We obtained the dataset from collaborating domain experts
which they generate by conducting experiments using photoe-
lastic disks under different loading conditions. We apply our
pipeline to the extracted force network for one loading condition
and present the results in Fig. 10. The evolution of the statistical
measures during the filtration is shown in Fig. 9 (left). It shows a
peak in anisotropy at an intermediate filtration level.

8. Discussion and conclusion

In this paper, we have presented a novel approach to generate
hierarchical sets of cycles in weighted spatially embedded graphs
56
using topological filtration. In contrast to previous approaches the
proposed algorithm simultaneously extracts the cycle hierarchy,
a set of cycle generators, and a spatial partitioning that serve
as a basis for multi-scale analysis. The proposed algorithm is
motivated by a collaboration with granular material scientists,
however, solves a much more general problem. In the current
version, we define our original filtration on the graph, a one-
dimensional simplicial complex. As a positive consequence, we
obtain uniquely defined cycle generators, however, this could also
lead to a large set of cycles consisting only of three edges at a
low filtration level. An extension of our algorithm excluding such
cycles would require a slight adaptation of the selection of the
set of cycle generators. In the long run, we consider extending
the basic concept to generate hierarchical partitioning in three
dimensions investigating hierarchical void structures.

We have demonstrated the method in a few synthetically de-
signed examples to verify its performance and properties. We also
applied the method to a dataset from the motivating application,
however, the visual analysis has not yet been fully explored and
utilized by our collaboration partners. Our environment provides
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c
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Fig. 10. Application to photoelastic data: System partitioning based on cycles in force network at four filtration levels (top). Each region gets its own color, while the
network edges are colored according to their weight. Visualization of statistical measures in parallel coordinates plot for a filtration value and selection of desired
cycles (bottom left). A hierarchical summary is provided by a tree (bottom right) with three hierarchy levels highlighted using red horizontal lines. The corresponding
partitioning of these three levels is shown in the top row. The colors in every visualization component are consistent.
now a solid basis to go deeper into the application. One obvi-
ous next step is to evaluate the already implemented statistical
measures and extend them with novel ideas from our part-
ners. However, we also expect that there will be other concep-
tional adaptations necessary for the final use to explore granular
materials.
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