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Abstract—Golay complementary set (GCS) plays a vital role
in reducing peak-to-mean envelope power ratio (PMEPR) in
orthogonal frequency division multiplexing (OFDM). A more
general version of GCS is a multiple shift complementary set
(MSCS), where by relaxing the condition of zero auto-correlation
sum throughout all the non-zero time shifts to the integer
multiples of some fixed time shift, more sequence sets can be
made available. In this paper, we propose direct constructions of
MSCSs with flexible and arbitrary lengths and flexible set sizes,
by using multivariable functions, which have not been reported
before.

Index Terms—Golay complementary set (GCS), orthogonal
frequency division multiplexing (OFDM), multiple shift com-
plementary set (MSCS), multivariable function, peak-to-mean
envelope power ratio (PMEPR).

I. INTRODUCTION

Golay complementary pair (GCP) was first conceptualized
in 1951 by Marcel J. E. Golay [1]. It is a pair of sequences
which has zero aperiodic auto-correlation function (AACF)
sum for all non-zero time shifts. Because of its ideal AACF
property, it has been widely used in orthogonal frequency
division multiplexing (OFDM) [2], [3], radar [4], channel
estimation [5] etc. In OFDM system, GCP carries out the role
of reducing peak-to-mean envelope power ratio (PMEPR) [6].
The first direct construction of GCP appears in [6], where
2h-ary (h ≥ 1 is an integer) GCPs were constructed by
generalized Boolean functions (GBFs). The idea of GCP was
extended to Golay complementary set (GCS) which is a set of
more than two sequences having zero AACF sum for all non-
zero time shifts [7]. Although there are many constructions of
GCS in the literature [8]–[13], Paterson et al. first proposed
a direct construction of GCS using GBFs [14]. Like GCPs,
GCSs are also used in OFDM system to reduce PMEPR, where
it is upper bounded by the number of sequences in the GCS.

The multiple shift complementary set (MSCS) is a more
general version of GCS, where the AACF sum is zero for
multiples of some fixed time shift. It was first introduced by
Xin and Fair as an alternative to GCS [15]. Later Chen et
al. provided a direct construction of MSCS using GBFs [16]
with sequence length of the form of power-of-two. In [17],
the authors studied even-shift complementary pairs, which is a
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special case of MSCS, where AACF sum equals zero when the
time shift is even. Also, in this case the number of constituent
sequences in the set or the set size is 2. Recently, Chen et
al. proposed a direct construction of MSCS of non-power-of-
two length by using GBFs [18]. But the length is of the form
2m−1 + 2t, where m ≥ 2 and 1 ≤ t ≤ m− 1. To the best of
authors’ knowledge, there is no direct construction of MSCS
of arbitrary lengths and set sizes.

Motivated by this, in this paper, we propose constructions of
MSCSs with flexible and arbitrary lengths by using multivari-
able functions. The lengths of the proposed MSCSs are of the
form pm1

1 pm2
2 . . . pmk

k and pm1
1 pm2

2 . . . pmk

k pk+1, where pi’s
are prime numbers and mi ≥ 1 are integers ∀i = 1, 2, . . . , k.
The set sizes of the MSCSs are of the form p1p2 . . . pk and
pk+1.

The rest of the paper is organized as follows. In Section II,
some definitions are provided. Later in Section III, the main
construction of the MSCSs are proposed. The PMEPRs of the
proposed constructions are also investigated in this section.
Finally, in Section IV, concluding remarks have been given.

II. PRELIMINARIES

Definition 1: Let a = (a0, a1, . . . , aL−1) and b =
(b0, b1, . . . , bL−1) be two complex-valued sequence of length
L. Then the aperiodic cross-correlation function (ACCF) at
time shift τ is defined by

ρ(a,b)(τ) =

{∑L−1−τ
i=0 aib

∗
i+τ , 0 ≤ τ < L;∑L−1+τ

i=0 ai−τ b
∗
i , −L < τ < 0,

(1)

where (·)∗ denotes the complex conjugate. When a = b, then
it is called AACF and denoted by ρ(a)(τ).

Definition 2 (GCS): A set of sequences {a0,a1, . . . ,aM−1}
with length L is called a GCS if they satisfy

M−1∑
i=0

ρ(ai)(τ) = 0,∀τ ̸= 0. (2)

If M = 2, then it is called a GCP.
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Definition 3 (MSCS): A set of sequences
{a0,a1, . . . ,aM−1} with length L is called a MSCS if
for some positive number S they satisfy

M−1∑
i=0

ρ(ai)(τ) = 0, τ ̸= 0 & τ mod S = 0. (3)

It is denoted by (M,L, S)-MSCS, where M is called the set
size. It should be noted that when S = 1, then it becomes a
GCS.

Definition 4 (Type-II ZCS): A set of sequences
{a0,a1, . . . ,aM−1} with length L is called a type-II Z-
complementary set (ZCS) if for some positive number Z they
satisfy

M−1∑
i=0

ρ(ai)(τ) = 0, L− Z < |τ | < L. (4)

Here Z is called the zero correlation zone (ZCZ) width. The
set may be denoted as type-II (M,L,Z)-ZCS.

A. Multivariable Function

Let Zp = {0, 1, . . . , p− 1} be the set of integers modulo p.
A multivariable function can be defined as

f : Zm1
p1

× Zm2
p2

× · · · × Zmk
pk

→ Zλ

where p1, p2, . . . , pk are prime numbers, mi ≥ 1, ∀i =
1, 2, . . . , k and λ is a positive integer. vpα,1, vpα,2, . . . , vpα,mα

are the mα variables which takes values from Zpα
for α =

1, 2, . . . , k. The set of monomials of degree at most r is given
by Ar =

{∏k
α=1

∏mα

β=1 v
jαβ
pα,β : 0 ≤

∑k
α=1

∑mα

β=1 j
α
β ≤ r

}
.

A multivariable function of order r is a Zλ-linear com-
bination of the monomials from Ar. Let upα,iα be the
vector representation of iα with base pα, i.e., upα,iα =
(iα,1, iα,2, . . . , iα,mα) where iα =

∑mα

γ=1 p
γ−1
α iα,γ . The

function rule for a multivariable function is defined as
(up1,i1 ,up2,i2 , . . . ,upk,ik) 7−→ f(up1,i1 ,up2,i2 , . . . ,upk,ik)
mod λ. One can associate a Zλ-valued sequence of length
pm1
1 pm2

2 . . . pmk

k corresponding to a multivariable function f

as f =

(
f(up1,i1 ,up2,i2 , . . . ,upk,ik) : i1 = 0, 1, . . . , pm1

1 −

1; . . . ; ik = 0, 1, . . . , pmk

k − 1

)
. Also, one can associate

a complex-valued sequence of length pm1
1 pm2

2 . . . pmk

k in a

similar manner as ψ(f) =

(
ω
f(up1,i1

,up2,i2
,...,upk,ik

)

λ : i1 =

0, 1, . . . , pm1
1 − 1; . . . ; ik = 0, 1, . . . , pmk

k − 1

)
, where ωλ =

exp(2π
√
−1/λ).

.

III. CONSTRUCTION

In this section, we propose constructions of MSCSs by using
multivariable functions.

Theorem 1: Let π be a permutation on the set {s, s +
1, . . . ,m} for integers m ≥ 1 and s ≥ 1. Let p be a prime

and λ be a positive integer such that p | λ. Let f : Zm
p → Zλ

be defined such that

f(v1, v2, . . . , vm) =
λ

p

m−1∑
i=s

vπ(i)vπ(i+1) +

m∑
i=1

givi + g

+ h(v1, v2, . . . , vs−1),

(5)

where gi, g ∈ Zλ and h(v1, v2, . . . , vs−1) is any function h :
Zs−1
p → Zλ. For s = 1, we define h = 0. Define aγ : Zm

p →
Zλ such that

aγ = f(v1, v2, . . . , vm) +
λ

p
vπ(s)γ.

Then {ωaγ

λ : γ ∈ Zp} is a (p, pm, ps−1)-MSCS.
Proof: As, ρ(a)(−τ) = ρ∗(a)(τ), we shall only prove

for τ ≥ 0. We have to show that

p−1∑
γ=0

pm−1−τ∑
i=0

ω
(aγ)i−(aγ)i+τ

λ = 0, (6)

whenever τ mod ps−1 = 0, where (aγ)i =
aγ(i1, i2, . . . , im), and (i1, i2, . . . , im) is the p-ary vector
representation of i. Let j = i + τ , where τ mod ps−1 = 0,
i.e., τ is a multiple of ps−1. We have

(aγ)i − (aγ)j = (fi − fj) +
λ

p

(
iπ(s) − jπ(s)

)
γ. (7)

Now, we have two cases.
Case I: Let, iπ(s) ̸= jπ(s). In this case, we have

p−1∑
γ=0

ω
λ
p (iπ(s)−jπ(s))γ

λ =

p−1∑
γ=0

ω
(iπ(s)−jπ(s))γ
p = 0, (8)

as ω
(iπ(s)−jπ(s))γ
p are the p-th roots of 1 for γ = 0, 1, . . . , p−1.

So, we have
p−1∑
γ=0

ω
(aγ)i−(aγ)j
λ = 0. (9)

Case II: Let, iπ(s) = jπ(s). But i ̸= j and j = i +
τ , where τ is a multiple of ps−1, i.e., τ = kps−1 for
some 1 ≤ k ≤ pm−s+1 − 1. Any k in this range
can be written as a (m − s + 1)-tuple vector representa-
tion form (k1, k2, . . . , km−s+1) with base p, where k =∑m−s+1

i=1 kip
i−1. So, τ =

∑m−s+1
i=1 kip

i+s−2, which implies
il = jl for l = 1, 2, . . . , s−1. Now, i ̸= j implies that ∃ some
l ∈ {s, s+ 1, . . . ,m} such that il ̸= jl. Let ϕ be the smallest
number such that iπ(ϕ) ̸= jπ(ϕ). Let iδ be the integer whose
p-ary vector representation is

(i1, i2, . . . , iπ(ϕ−1) − δ, . . . , im), if iπ(ϕ−1) − δ ≥ 0

and

(i1, i2, . . . , p+ iπ(ϕ−1) − δ, . . . , im), if iπ(ϕ−1) − δ < 0,

where δ ∈ {1, 2, . . . , p−1} and it differs form the p-ary vector
representation of i only in the π(ϕ− 1)-th position. Similarly,
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we take jδ . Now, for iπ(ϕ−1) − δ ≥ 0 and jπ(ϕ−1) − δ ≥ 0,
we have

(aγ)iδ − (aγ)i = −δ
(
λ

p
iπ(ϕ−2) +

λ

p
iπ(ϕ) + gπ(ϕ−1)

)
(10)

and

(aγ)jδ −(aγ)j = −δ
(
λ

p
jπ(ϕ−2) +

λ

p
jπ(ϕ) + gπ(ϕ−1)

)
. (11)

But, we have(
(aγ)iδ − (aγ)jδ

)
− ((aγ)i − (aγ)j)

= ((aγ)iδ − (aγ)i)−
(
(aγ)jδ − (aγ)j

)
= −δ λ

p

(
iπ(ϕ) − jπ(ϕ)

)
.

(12)

Also, for iπ(ϕ−1) − δ < 0 and jπ(ϕ−1) − δ < 0, we have(
(aγ)iδ − (aγ)jδ

)
− ((aγ)i − (aγ)j)

= (p− δ)
λ

p

(
iπ(ϕ) − jπ(ϕ)

)
.

(13)

But ω
(p−δ)λ

p (iπ(ϕ)−jπ(ϕ))
λ = ω

−δ λ
p (iπ(ϕ)−jπ(ϕ))

λ . So, consider-
ing all the possibilities, we have

p−1∑
δ=1

ω
((aγ)

iδ
−(aγ)

jδ)−((aγ)i−(aγ)j)

λ =

p−1∑
δ=1

ω
δ(jπ(ϕ)−iπ(ϕ))
p

=⇒
p−1∑
δ=1

ω
((aγ)

iδ
−(aγ)

jδ)−((aγ)i−(aγ)j)

λ = −1

=⇒
p−1∑
δ=1

ω
((aγ)

iδ
−(aγ)

jδ)
λ + ω

((aγ)i−(aγ)j)
λ = 0.

(14)

Hence, we have the result.

In the following example, we illustrate the Theorem 1.
Example 1: Let, p = 3, m = 3, s = 2, q = 6 and π

be a permutation on {2, 3} such that π(2) = 2, π(3) = 3.
From Theorem 1, we can construct the function f : Z3

3 → Z6,
where f(v1, v2, v3) = 2v2v3 + 5. Then {ωaγ

3 : γ ∈ Z3} is a
(3, 27, 3)-MSCS, where aγ = f + 2v2γ.

We can show that the set {ωaγ

λ : γ = 0, 1, . . . , p − 1}
constructed in Theorem 1 has some interesting property which
is pretty straightforward and we show it in the next corollary.

Corollary 1: Let aγ be the function defined in Theorem 1.
Then we have

p−1∑
γ=0

ρ(ωaγ

λ )(τ) = 0, (15)

when |τ | > ps−1.
Proof: We shall prove for τ > 0 as ρ(a)(−τ) = ρ∗(a)(τ).

For τ > ps−1, let j = i + τ . As τ > ps−1, it is not possible
that ik = jk,∀k ∈ {s, s + 1, . . . ,m}. Now, (aγ)i − (aγ)j =
(fi − fj) +

λ
p

(
iπ(s) − jπ(s)

)
γ. So, if iπ(s) ̸= jπ(s), then we

have
p−1∑
γ=0

ω
(aγ)i−(aγ)j
λ = ω

fi−fj
λ

p−1∑
γ=0

ω
λ
p (iπ(s)−jπ(s))γ
λ = 0. (16)

If iπ(s) = jπ(s), then in a similar manner described in Theorem
1, we find iδ and jδ for δ = 1, 2, . . . , p − 1. Now, arguing
similar to Theorem 1, we have

p−1∑
γ=0

(
p−1∑
δ=1

ω
((aγ)

iδ
−(aγ)

jδ)
λ + ω

((aγ)i−(aγ)j)
λ

)
= 0. (17)

Hence, the result.
Remark 1: Corollary 1 shows that the set {aγ : γ =

0, 1, . . . , p − 1} is in fact a type-II (p, pm, pm − ps−1)-
ZCS. Type-II ZCS has application in wireless communication.
For example, it can be applied in wideband wireless com-
munication system having large minimum interfering signal
delay (ISD) for removing asynchronous interference [19],
[20]. Type-II ZCSs are preferable than type-I ZCSs in these
scenarios to mitigate inter-symbol interference [21]. Although,
there are some indirect [22] and direct [20] constructions of
type-II ZCS in the literature, the proposed construction is
direct, as well as provides flexible ZCZ width when the length
is power-of-prime.

Next, we generalize the Theorem 1 for MSCS.
Theorem 2: Let p1, p2, . . . , pk be k primes and λ be a

positive integer such that pα | λ, ∀α = 1, 2, . . . , k; and πα be
permutations on the sets Iα = {sα, sα+1, . . . ,mα} for sα ≥ 1
and mα ≥ 1, where α = 1, 2, . . . , k. Let fα : Zmα

pα
→ Zλ be

defined by

fα(vpα,1, vpα,2, . . . , vpα,mα
)

=
λ

pα

mα−1∑
i=sα

vpα,πα(i)vpα,πα(i+1) +

mα∑
i=sα

gpα,ivpα,i + gpα

+ hα(vpα,1vpα,2, . . . , vpα,sα−1),
(18)

where gpα,i, gpα ∈ Zλ, hα(vpα,1vpα,2, . . . , vpα,sα−1) is any
function hα : Zsα−1

pα
→ Zλ and hα = 0 when sα = 1. We

define
aγ : Zm1

p1
× Zm2

p2
× · · · × Zmk

pk
→ Zλ,

for γ = (γ1, γ2, . . . , γk) ∈ Zp1 × Zp2 × · · · × Zpk
such that

aγ =

k∑
α=1

fα +

k∑
α=1

λ

pα
vpα,πα(sα)γα. (19)

Then the set {ωaγ

λ : γ ∈ Zp1
× Zp2

× · · · × Zpk
} is a(∏k

α=1 pα,
∏k

α=1 p
mα
α ,

∏k
α=1 p

sα−1
α

)
-MSCS.

Proof: We prove this by induction. From Theorem 1, it
is evident that the statement is true for k = 1. We assume that
the statement is true for k = n. Then we have to prove that it
is true for k = n+ 1. For k = n+ 1, we have

aγ =

n+1∑
α=1

fα +

n+1∑
α=1

λ

pα
vpα,πα(sα)γα

=

(
n∑

α=1

fα +

n∑
α=1

λ

pα
vpα,πα(sα)γα

)

+

(
fn+1 +

λ

pn+1
vpn+1,πn+1(sn+1)γn+1

)
=R+ S

(20)

2023 IEEE International Symposium on Information Theory (ISIT)

2442
Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 15,2023 at 11:03:36 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
COMPARISON TABLE FOR PARAMETERS

Construction Method Length Set Size Value of S Constraints

[16] GBF 2m 2 2d m ≥ 1, 0 ≤ d < m

[17] Matrix operation
2N + 1, 2N + 2,

2N1, N1N ,
N1 +N2

2 2
N is length of existing GCP, N1 and N2 are lengths

of existing MSCS

[18] GBF 2m−1 + 2t 2k−s+1 2s m ≥ 2, 1 ≤ t ≤ m− 1, k ≤ m− 1, 1 ≤ s ≤ k′ ≤ k
Proposed,
Theorem 2

Multivariable
function

∏k
α=1 p

mα
α

∏k
α=1 pα

∏k
α=1 p

sα−1
α

pα’s are prime ∀α, mα ≥ 1, ∀α,
1 ≤ sα ≤ mα, ∀α.

Proposed,
Theorem 3

Multivariable
function pk+1

∏k
α=1 p

mα
α

∏k
α=1 pα pk+1

pα’s are prime ∀α, mα ≥ 1, ∀α = 1, 2, . . . , k,
sα = 1, ∀α = 1, 2, . . . , k.

where

R =

n∑
α=1

fα +

n∑
α=1

λ

pα
vpα,πα(sα)γα, (21)

and

S = fn+1 +
λ

pn+1
vpn+1,πn+1(sn+1)γn+1

. (22)

Now, ωaγ

λ = ωS
λ ⊗ ωR

λ , where ⊗ denotes the Kronecker
product. It is easy to observe that the length of each sequence
in {ωaγ

λ : γ ∈ Zp1
×Zp2

× · · · ×Zpk
} is L =

∏n+1
α=1 p

mα
α and

number of sequence is M =
∏n+1

α=1 pα. We need to show that∑
γ∈Zp1

×Zp2
×···×Zpn+1

ρ(ωaγ

λ )(τ) = 0 (23)

when τ mod
∏n+1

α=1 p
sα−1 = 0. We note that for two se-

quences a and b having length L1 and L2, respectively, we
have

ρ(a⊗ b)(τ) =ρ(a)

(⌊
τ

L2

⌋)
ρ(b)(τ mod L2)

+∆L2ρ(a)

(⌊
τ

L2

⌋
+ 1

)
ρ(b)(τ mod L2 − L2),

(24)

where

∆L2
=

{
0, τ mod L2 = 0;

1, otherwise,
(25)

and ⌊·⌋ is the floor function. So, we can write∑
γ∈Zp1

×Zp2
×···×Zpn+1

ρ(ωaγ

λ )(τ)

=

[ ∑
γn+1∈Zpn+1

ρ(ωS
λ )

(⌊
τ

L2

⌋)

×
∑

γ′∈Zp1×···×Zpn

ρ(ωR
λ )(τ mod L2)

]

+

[
∆L2

×
∑

γn+1∈Zpn+1

ρ(ωS
λ )

(⌊
τ

L2

⌋
+ 1

)

×
∑

γ′∈Zp1
×···×Zpn

ρ(ωR
λ )(τ mod L2 − L2)

]

(26)

where γ = (γ′, γn+1),γ′ = (γ1, γ2, . . . , γn) and L2 =∏n
α=1 p

mα
α . Now, let τ mod

∏n+1
α=1 p

sα−1
α = 0, i.e., τ =

β
∏n+1

α=1 p
sα−1
α for some β ∈ {1, 2, . . . ,

∏n+1
α=1 p

mα−sα+1
α −1}.

But either β = β0
∏n

α=1 p
mα−sα+1
α for some integer β0, or∏n

α=1 p
mα−sα+1
α ∤ β. Now, we have two cases.

Case I: Let, β = β0
∏n

α=1 p
mα−sα+1
α for some integer β0.

Then τ mod L2 = 0 and ∆L2
= 0. Also, in this case,⌊

τ
L2

⌋
= β0p

sn+1−1
n+1 , i.e.,

⌊
τ
L2

⌋
mod p

sn+1−1
n+1 = 0. So, from

our assumption, we have∑
γn+1∈Zpn+1

ρ(ωS
λ )

(⌊
τ

L2

⌋)
= 0. (27)

Case II: Let,
∏n

α=1 p
mα−sα+1
α does not divide β. Then

τ mod L2 ̸= 0 and ∆L2
= 1. Let τ mod L2 =

τ1, where τ1 = τ − β1L2 for some integer β1 and
0 < τ1 < L2. But

∏n
α=1 p

sα−1
α divides both τ and

L2. Hence τ1 mod
∏n

α=1 p
sα−1
α = 0, i.e., (τ mod L2)

mod
∏n

α=1 p
sα−1
α = 0. But from our assumption, we have∑

γ′∈Zp1
×···×Zpn

ρ(ωR
λ )(τ mod L2) = 0. (28)

Arguing in a similar manner, we can say∑
γ′∈Zp1×···×Zpn

ρ(ωR
λ )(τ mod L2 − L2) = 0. (29)

Hence, the case for k = n + 1 is proved and we have the
result.

Remark 2: If sα = 1,∀α = 1, 2, . . . , k, then the set {ωaγ

λ :
γ ∈ Zp1 × Zp2 × · · · × Zpk

} becomes a GCS of length L =
pm1
1 pm2

2 . . . pmk

k and set size M = p1p2 . . . pk, which is given
in [13]. So, the construction of GCS in [13] is a special case
of the proposed construction.

Now, we propose another construction of MSCS.
Theorem 3: Let p1, p2, . . . , pk, pk+1 be (k + 1) distinct

primes and λ be a positive integer such that pα|λ,∀α. Let
aγ : Zm1

p1
× Zm2

p2
× · · · × Zmk

pk
→ Zλ be the same func-

tion given in Theorem 2 for sα = 1, ∀α = {1, 2, . . . , k}.
Then the set {bγ : γ ∈ Zp1

× Zp2
× · · · × Zpk

} is an
(
∏k

α=1 pα, pk+1

∏k
α=1 p

mα
α , pk+1)-MSCS, where bγ : Zm1

p1
×

Zm2
p2

× · · · × Zmk+1
pk+1 → Zλ is defined by bγ = aγ +

gpk+1,1vpk+1,1 + gpk+1
, where gpk+1,1, gpk+1

∈ Zλ.
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Proof: The proof follows form the fact that bγ = fpk+1
⊗

aγ , where fpk+1
= gpk+1,1vpk+1,1+gpk+1

, and using (24) and
Remark 2, we can get∑

γ∈Zp1
×Zp2

×···×Zpk

ρ(ωaγ

λ )(τ mod L2) =0,

∑
γ∈Zp1

×Zp2
×···×Zpk

ρ(ωaγ

λ )(τ mod L2 − L2) =0,

(30)

when τ mod pk+1 = 0 and L2 =
∏k

α=1 p
mα
α .

A. Peak-to-Mean Envelope Power Ratio (PMEPR)

Let x = (x0, x1, . . . , xL−1) be a Zλ-valued sequence. Then
the OFDM signal is the real part of the complex envelope

Px(t) =

L−1∑
i=0

ωxi+λfit
λ (31)

where fi = f + i∆f , f is a constant frequency, ∆f is a
integer multiple of OFDM symbol rate. The term |Px(t)|2

L is
called instantaneous-to-average power ratio (IAPR). PMEPR
of the sequence x is defined as

PMEPR(x) = sup
0≤∆ft≤1

|Px(t)|2

L
. (32)

We shall use PMEPR(x) and PMEPR(ψ(x)) invariably
whenever the context is clear. Similarly, for a set A =
{x0,x1, . . . ,xM−1} of sequences PMEPR can be defined as

PMEPR(A) = max{PMEPR(xi) : i = 0, 1, . . . ,M − 1}.
(33)

B. Bound for PMEPR

In this subsection, we calculate the PMEPR of the con-
structed MSCS. First we state a result regarding the PMEPR
which is available in the literature.

Lemma 1 ( [15]): If x is a sequence of a (2, L, S)-MSCS,
then PMEPR(x) is upper bounded by 2S.
A similar statement can be made for a (M,L, S)-MSCS using
methods similar to [16], which we provide in the following
lemma.

Lemma 2: If x is a sequence of a (M,L, S)-MSCS, then
PMEPR(x) is upper bounded by MS.

Proof: We briefly sketch the proof here. Let
{a0,a1, . . . ,aM−1} be an (M,L, S)-MSCS, where
ai = (ai,0ai,1, . . . , ai,L−1) for all i. We let ζ = exp

(
2π

√
−1

S

)
be the S-th primitive root of 1. We define the set of
sequences aui =

(
ai,0ζ

0u, ai,1ζ
1u, . . . , ai,(L−1)ζ

(L−1)u
)

for
u = 0, 1, . . . , S − 1 and i = 0, 1, . . . ,M − 1. Then we have

S−1∑
u=0

∣∣Pau
i
(t)
∣∣2 =

S−1∑
u=0

∣∣∣∣∣
L−1∑
k=0

ai,kζ
kuzfk

∣∣∣∣∣
2

=LS + 2R

(
L−1∑
k=0

ρ(ai)(k)z
fk

S−1∑
u=0

ζku

)
,

(34)

where z = exp
(
2πt

√
−1
)

and R(·) is the real part of a
complex number. As

∑S−1
u=0 ζ

ku equals 0, when kmod S ̸= 0
and it equals S, otherwise, we have

M−1∑
i=0

S−1∑
u=0

∣∣Pau
i
(t)
∣∣2 =MLS. (35)

Hence, PMEPR(aui ) ≤MS. For u = 0, we have aui = ai and
it implies PMEPR(ai) is upper bounded by MS.

Example 2: Let k = 2, p1 = 3, p2 = 2, m1 = 3, m2 = 1,
s1 = 1. Then, using Theorem 3, we can directly construct a
(3, 54, 2)-MSCS which has not been reported before. We take
f : Z3

3×Z2 → Z6, where f1 = 2(v3,2v3,3+v3,3v3,1)+2v3,1+
5v3,2 + v3,3 and f2 = 3v2,1. In Fig. 1, we have shown plot
of IAPR with respect to ∆ft for all sequences of the MSCS.
The PMEPR value is 5.9465 which agree to the theoretical
upper bound 6 from Lemma 2.
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Fig. 1. IAPRs of constituent sequences of MSCS having length 54

C. Comparison with existing works

In the TABLE I, we have compared the proposed construc-
tion with the existing ones [16]–[18] with respect to their
parameters. It can be seen from TABLE I that the proposed
constructions provide flexible lengths and set sizes compared
to the existing constructions.

IV. CONCLUSION

In this paper, we have proposed new constructions of
MSCSs, which can be used as alternatives to the conventional
GCSs in OFDM. Although there are several direct construc-
tions of MSCSs in the literature, the sequence lengths and set
sizes are limited in those. The proposed constructions provide
flexible as well as arbitrary sequence lengths and flexible set
sizes. For k = 1, one of the constructed MSCS reduces to
type-II ZCS, which has applications in wideband wireless
communication systems.
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