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Abstract

Motivated by the foundational work of Tarasov, who pointed out that the algebraic relations of the type 
considered here can lead to functional reduction of Feynman integrals, we suitably modify the original 
method to be able to implement and automatize it and present a MATHEMATICA package AlgRel.wl. The 
purpose of this package is to help derive the algebraic relations with arbitrary kinematic quantities, for the 
product of propagators. Under specific choices of the arbitrary parameters that appear in these relations, we 
can write the original integral with all massive propagators in general, as a sum of integrals which have fewer 
massive propagators. The resulting integrals are of reduced complexity for computational purposes. For the 
one-loop cases, with all different and non-zero masses, this would result in integrals with one massive 
propagator. We also devise a strategy so that the method can also be applied to higher-loop integrals. We 
demonstrate the procedure and the results obtained using the package for various one-loop and higher-loop 
examples. Due to the fact that the Feynman integrals are intimately related to the hypergeometric functions, 
a useful consequence of these algebraic relations is in deriving the sets of non-trivial reduction formulae. 
We present various such reduction formulae and further discuss how, more such formulae can be obtained 
apart from the ones described here. The AlgRel.wl package and an example notebook Examples.nb
can be found at GitHub.
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1. Introduction

In this work, we consider the formalism first proposed by Tarasov to derive algebraic relations 
for the product of propagators for functional reduction [1]. We systematically develop an algo-
rithm inspired by the original work and present a realization in MATHEMATICA for the same, 
which is provided for the user as a package called AlgRel.wl. We have used the package to 
simplify and analyze many important and interesting Feynman Integrals that are amenable to 
treatment using this formalism.

Feynman integrals play an important role in precision calculations in quantum field theory. 
There are various methods to evaluate them [2,3]. Even with all these methods, it is at times still 
challenging to compute Feynman integrals. More often, other techniques are used to facilitate this 
computation. In [4] the method of functional reduction is introduced to derive functional relations 
between Feynman integrals. These relations reduce the original integral into a sum of integrals 
which are easier to evaluate. The focus of the present work is this new way to obtain functional 
relations by deriving the algebraic relations for the product of propagators. This method in turn 
then leaves some undetermined free parameters which can be chosen at will. Appropriate choices 
of these parameters result in various functional equations for Feynman integrals [5–9].

The method can be applied to any one-loop diagram, indeed as already pointed out in detail 
by Tarasov. Despite this, no working code has been provided in the past. In the present work, we 
provide an automated MATHEMATICA package AlgRel.wl to derive the algebraic relation for 
the product of propagators. Our code here fills this gap in the possibility of finding widespread 
use of formalism. Since our goal is an efficient algorithmic implementation to find the algebraic 
relation, we introduce a recursive way of method. The free parameters in the resulting relation 
can then be chosen in an appropriate manner to derive the functional equations for the Feynman 
integrals. More specifically, for presentation purposes, we focus on the cases when all these free 
parameters are zero and the original Feynman integral with many massive propagators can be 
written as a sum of integrals with fewer massive propagators, which was also pointed out in 
[10].1 For the one-loop integrals, with all different and non-zero masses, this procedure can be 
used to reduce the original integral to a sum of integrals with one massive propagator. We apply 
the method for up to 6-point, one-loop integrals and show that the N -point one loop integral with 
all massive propagators and general external momenta can be written as a sum of 2N−1 integrals 
with just one massive propagator. Though the method is not readily generalizable to the higher 
loops we yet extend the uses to cover certain cases of 2- and even 3-loop Feynman integrals. 
In a similar manner, this approach is also applicable to higher loops. Our findings show that we 
require at least 4 propagators in order for the formalism to be viable and to be of utility as far as 
the simplification is concerned. We explain this feature in some detail.

We, however, notice that such functional reduction is one of the many possibilities obtained 
after choosing the free parameters obtained from the algebraic relation [11]. In view of the pro-
posed method of functional reduction of Feynman integrals, the package has been built in such 
a way that the final result still has arbitrary parameters which can be chosen suitably for the 
functional reduction procedure. Using a few of the analytical results available for the one-loop 
integrals, we explicitly show how the complexity in the evaluation of these integrals can be re-
duced. Whenever the Feynman integrals can be expressed in terms of hypergeometric functions 
[12–15] this reduction in complexity gives rise to reduction formulae for the hypergeometric 

1 We also briefly discuss a case when we choose a non-zero parameter in Appendix A.
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Fig. 1. Bubble diagram.

functions. Thus it can be used to establish new relations between multi-variable hypergeometric 
functions. We discover many new reduction formulae for such hypergeometric functions, which, 
to the best of our knowledge, have not appeared anywhere in the literature. We also discuss in 
detail how further reduction formulae can be obtained from already available results for the one-
loop cases. Such relations between hypergeometric functions are also obtained in [16], where 
explicit relations between hypergeometric functions are derived via the evaluation of Feynman 
integrals. In order to make the results accessible, we provide several examples in a single MATH-
EMATICA notebook that allows the reader to appreciate the power of the formalism, based on the 
code that is provided along with it.

The article is organized as follows. In section 2 we discuss the method in detail with one loop 
bubble integral as an example and explicitly present how the reduction in complexity has been 
achieved for the integral. In section 3, we present the algorithm of the AlgRel.wl package and 
discuss its usage in detail. In section 4, various results obtained for one, two, and three-loop inte-
grals are presented. In section 5, we discuss the various analytic results in terms of multi-variable 
hypergeometric functions already derived for the one-loop N -point integrals [17,18] and show 
how the present work helps in deriving the reduction formulae for the multi-variable hypergeo-
metric functions using them. Finally, we conclude the paper with summary and discussions in 
section 6. In Appendix B, we provide a list of various reduction formulae that we derive, along 
with some details on how to further extend the list given there.

The package AlgRel.wl along with a MATHEMATICA notebook Examples.nb, that con-
tains all the examples discussed in the paper can be found in the GitHub repository.

2. The method

We now explain the method to find the algebraic relation of the product of propagators with 
the help of the one-loop bubble integral. For this example and all the following examples we 
consider the integrals in d dimensions. Consider the one-loop bubble integral corresponding to 
bubble diagram Fig. 1,

I2(p
2,m1,m2) =

ˆ
ddk

(k2 − m2
1)((k − p)2 − m2

2)
(2.1)

To find the algebraic relation for the product of propagators, we instead consider a more general 
propagator, depending on only one loop-momenta, of the following form

di = (k + qi)
2 − m2

i (2.2)

where k is the loop-momentum, qi’s are dependent on external momenta and can be zero as well 
and mi is the mass of the propagator.
3
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With the general propagators, we now have

I2((q1 − q2)
2,m1,m2) =

ˆ
ddk

d1d2
(2.3)

where substituting q1 = 0 and q2 = −p we recover Eq. (2.1).
We seek the algebraic relation for the integrand, by introducing a new denominator D1 along 

with coefficients x1 and x2, of the following form

1

d1d2
= x1

D1d1
+ x2

D1d2
(2.4)

where Di = (k + Pi)
2 − M2

i is defined similar to Eq. (2.2).
The unknowns that are introduced can be fixed using the above equation, while the remaining 

parameters are arbitrary and can be fixed at will in such a way that the resulting relationship gives 
rise to integrals which are easier to compute.

Using Eq. (2.4) we get

D1 = x1d2 + x2d1 (2.5)

Comparing the coefficients of k2, k and the remaining k independent term we get

x1 + x2 = 1

x1q2 + x2q1 = P1

− M2
1 + P 2

1 − (−m2
2 + q2

2 )x1 − (−m2
1 + q2

1 )x2 = 0 (2.6)

Solving for x1, x2 and P1 we get following two sets of solutions

x1 =
√(

m2
1 − m2

2 + (q1 − q2) 2
)

2 − 4 (q1 − q2) 2
(
m2

1 − M2
1

) + m2
1 − m2

2 + q2
1 + q2

2 − 2q1q2

2 (q1 − q2) 2

x2 = −
√(

m2
1 − m2

2 + (q1 − q2) 2
)

2 − 4 (q1 − q2) 2
(
m2

1 − M2
1

) − m2
1 + m2

2 + q2
1 + q2

2 − 2q1q2

2 (q1 − q2) 2

P1 = (q1 − q2)(−
√

(m2
1 − m2

2 + (q1 − q2)2)2 − 4(q1 − q2)2(m2
1 − M2

1 ) − m2
1 + m2

2 + q2
1 + q2

2 − 2q1q2)

2(q1 − q2)2

+ q2 (2.7)

and

x1 = −
√(

m2
1 − m2

2 + (q1 − q2) 2
)

2 − 4 (q1 − q2) 2
(
m2

1 − M2
1

) + m2
1 − m2

2 + q2
1 + q2

2 − 2q1q2

2 (q1 − q2) 2

x2 =
√(

m2
1 − m2

2 + (q1 − q2) 2
)

2 − 4 (q1 − q2) 2
(
m2

1 − M2
1

) − m2
1 + m2

2 + q2
1 + q2

2 − 2q1q2

2 (q1 − q2) 2

P1 = (q1 − q2)(

√
(m2

1 − m2
2 + (q1 − q2)2)2 − 4(q1 − q2)2(m2

1 − M2
1 ) − m2

1 + m2
2 + q2

1 + q2
2 − 2q1q2)

2(q1 − q2)2

+ q2 (2.8)

We remark that both of the above sets can be used for the purpose of finding the algebraic 
relation. However, for convenience, we would use the set given by Eq. (2.7). For the purpose of 
4
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Fig. 2. Diagrammatic representation of Eq. (2.9).

the algebraic relations, both of the choices are equivalent. One can use either of the solutions and 
can check that it satisfies the algebraic relation that we seek to find. In the above equation, M1
is still an arbitrary variable that can be chosen at will. Choosing various values of M1 results in 
different functional equations [11] for the bubble integral. For the present work, we focus on one 
of the simple choices i.e. M1 = 0. Integrating Eq. (2.4) and substituting q1 = 0 and q2 = −p we 
have

I2(p
2,m1,m2) = x2I2((P1 + p)2,0,m2) + x1I2(P

2
1 ,m1,0) (2.9)

Hence we see that the general two-point bubble integral with non-zero masses can be written in 
terms of two integrals with just one mass. Diagrammatically Eq. (2.9) can be represented as in 
Fig. 2.

To see how the complexity in the computation has been reduced in the Eq. (2.9), we refer to 
a few analytic results. The general result for the massive bubble diagram can be written in terms 
of the Appell F4 function [19].

I2(p,m1,m2) = (m2
2)

d
2 −2�(d

2 − 1)�(2 − d
2 )

�(d
2 )

F4

(
2 − d

2
,1; d

2
,2 − d

2
; p2

m2
2

,
m2

1

m2
2

)

+ (m2
1)

d
2 −1�(1 − d

2 )

m2
2

F4

(d

2
,1; d

2
,
d

2
; p2

m2
2

,
m2

1

m2
2

)
(2.10)

where,

F4(a, b, c, d, x, y) =
∞∑

m,n=0

(a)m+n(b)m+n

(c)m(d)nm!n! xmyn (2.11)

is the Appell F4 hypergeometric series with region of convergence (ROC) given by 
√|x| +√|y| < 1.

The analytic expression result for I2(p, m, 0) is readily available in [20,21].

I
(d)
2 (p2;m2,0) = −�(1 − d

2
)md−4

2F1

[
1,2 − d

2 ;
d
2 ;

p2

m2

]
(2.12)

Using the above relation in Eq. (2.9), we get the following for the right-hand side

−
md−4

1 �(1 − d
2 )(+

√
(−m2

1 + m2
2 + p2)2 − 4m2

1p
2 + m2

1 − m2
2 + p2)

2p2

×2F1

⎡
⎢⎣ 1,2 − d

2 ;
d
2 ;

(p2 + m2
1 − m2

2 +
√

(p2 − m2
1 + m2

2)
2 − 4p2m2

1)
2

4p2m2
1

⎤
⎥⎦ − md−4

2 �(1 − d
2 )

2p2

(

√
(−m2 + m2 + p2)2 − 4m2p2 + m2 − m2 + p2)2F1
1 2 1 1 2

5



B. Ananthanarayan, S. Bera and T. Pathak Nuclear Physics B 995 (2023) 116345
×

⎡
⎢⎢⎣ 1,2 − d

2 ;
d
2 ;

(
−p2+m2

1−m2
2+

√
(p2−m2

1+m2
2)

2−4p2m2
1

4p2 )

m2
2

⎤
⎥⎥⎦ (2.13)

The above relation can be viewed as a reduction formula without making reference to the under-
lying Feynman integral and the result is shown in Eq. (5.4) and Eq. (5.6). In a similar manner, 
evaluation of other Feynman integrals can be used to obtain the relationship between hyperge-
ometric functions [16]. Such a reduction of hypergeometric functions with a higher number of 
variables to those with a lesser number of variables also helps when the analytic continuation 
has to be done to reach a certain kinematical region. For the case of Appell F4 the elaborate an-
alytic continuation has been performed explicitly in [22] or one can use automatized algorithms 
[23] for more general multi-variable hypergeometric functions. This whole process still does not 
guarantee convergence for all the values of the parameter space [24]. Though for the case of 
2F1 complete table of analytic continuations is available [25]. The procedure to find the analytic 
continuations also gets more complicated with the increase in the number of variables even with 
the use of automatized packages.

3. AlgRel.wl package : algorithm and usage

3.1. Algorithm

We now present a general algorithm for the case when we have N denominators to find alge-
braic relation recursively.

Consider the general situation with product of N denominators as 
1

d1 · · ·dN

.

1. We first find the algebraic relation by taking d1 and d2

1

d1d2
= x1

D1d1
+ x2

D1d2
(3.1)

2. We then multiply the above equation by 
1

d3

1

d1d2d3
= x1

D1d1d3
+ x2

D1d2d3
(3.2)

3. We then find the algebraic relation of each pair of dis again using Eq. (3.1).
4. Then in the resulting relation, we repeat this process until all the denominators are exhausted.

The final result is a sum of 2N−1 terms where N is the total number of denominators we 
started with.

It is to be noted that the above procedure is a slight modification of the original method [1]. 
In [1], we start by seeking the following algebraic relation for the product of N propagators

1

d1 · · ·dN

= x1

D1d1 · · ·dN−1
+ · · · + xN

d2 · · ·dND1
(3.3)

Comparing the coefficients of k2, k and using the constant term we get an over-determined set 
of equations. Such a system leaves x3, x4 · · ·xN undetermined. Such procedure when used re-
cursively with each term on the RHS of the above equation finally results in N ! total number of 
6
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terms, unlike 2N−1 terms using the procedure presented here. Also, the arbitrariness in the choice 
of coefficients xis in the original algorithm is now present in the choice of parameters Mis.

3.2. Usage

The recursive algorithm presented previously has been automatized in the accompanying
MATHEMATICA package AlgRel.wl. Below we demonstrate the usage of the package Al-
gRel.wl. After downloading the package and putting it in the same directory as the notebook 
we can call the package as follows:

In[1]:= SetDirectory[NotebookDirectory[]];

In[2]:= <<AlgRel.wl

AlgRel.wl v1.0
Authors : B. Ananthanarayan, Souvik Bera, Tanay Pathak

The package has been made assuming the form di = (k +pi)
2 −m2

i for the propagator, where 
k, p and m can be changed as per the convenience of the user. The only command of the package 
is AlgRel.wl, which can be called as follows

In[3]:= AlgRel[{Propagator’s number},{k,q,m},{P,M},x,
Substitutions]

Out[3]= {{Algebraic relation},{Values}}

The various elements of the input are as follows

• {Propagator’s number}: It is a list of numbers to denote various propagators. It need 
not necessarily be serial and to ease the use of the package in case of many propagators (see
Section 4.6 for an example).

• {k,q,m}: It is a list containing three variables corresponding to the general propagator 
di = (k + qi)

2 − m2
i . k denotes the loop momenta, q denotes the combination of external 

momenta and can be zero too and m denotes the mass of the propagator.
• {P,M}: It is a list containing two variables. They are used to set the variables for the aux-

iliary propagator introduced for obtaining the algebraic relation, Di = (k + Pi)
2 − M2

i . It 
automatically takes the k from the previous list.

• x: It is used to denote the variable for the coefficients in the algebraic relation, Eq. (3.3).
• Substitutions: It is a list of substitution for qi and Mi .

The output of the above command is a nested list with two sub-lists with the following two 
sub-lists

• {Algebraic relation}: It gives the algebraic relation for the product of propagators, 
Eq. (3.3).
7
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• {Values}: It is a list of the values obtained for Pi and xi .

Consider the example of Bubble integral. To obtain the result for it we can use the following 
command

In[4]:= AlgRel[{1, 2},{k,q,m},{P, M}, x,{q[1]-> 0,q[2]->-p,M[1]
->0}]

Out[4]= {{
x[1]

((k+P[1])2)(-m[1]2+(k)2)
+

x[2]

((k+P[1])2)(-m[2]2+(k-p)2)
},

{x[1]->
p2+m[1]2-m[2]2+

√
(p2+m[1]2- m[2]2)2-4p2(m[1]2)

p2
,

...}}

Due to its length, the second element of the output (i.e., the substitution list) is not shown 
fully. It contains the values of the x[1],x[2] and P[1] as given in Eq. (2.7). We remark that 
in the output all the vectors such as P[1], q[1] and q[2] appears in bold. The scalar product
q[1].q[2] appears q[1]q[2]. So care must be taken while doing the numerical checks for 
the same.

In the next section, we look at a few one-loop and two-loop examples where such a procedure 
is helpful. For cases where it was feasible to perform numerical checks using the integration we 
perform them using FIESTA5[26] and the corresponding results are given in appendix C.

4. Results

We now look at results for one loop and higher loop cases that are obtained with the help of 
the AlgRel.wl package. All the results are also presented in the MATHEMATICA file Exam-
ple.nb.

4.1. One-loop vertex integral

We consider the reduction of the one-loop vertex integral corresponding to Fig. 3, which is 
given by

I3 =
ˆ

ddk

(k2 − m2
1)((k + p1)2 − m2

2)((k + p1 + p2)2 − m2
3)

(4.1)

We proceed as described in the previous section. We use the generalized propagators and do the 
substitutions accordingly so the result reduces to Eq. (4.1). This can be done using following 
command

In[5]:= AlgRel[{1,2,3},{k,q,m},{P,M},x,{q[1]->0,q[2]->p1,q[3]
->p1+p2}]

The result is a relation which is a sum of 4 terms, as follows
8
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Fig. 3. Triangle diagram.

x1x3

(k2 − m2
1)(k + P1)2(k + P2)2

+ x1x4

(k + P1)2(k + P2)2((k + p1 + p2)2 − m2
3)

+ x2x5

(k + P1)2(k + P3)2((k + p1)2 − m2
2)

+ x2x6

(k + P1)2(k + P3)2((k + p1 + p2)2 − m2
3)

(4.2)

where

x1 =
√

(m2
1 − m2

2 + p2
1)

2 − 4m2
1p

2
1 + m2

1 − m2
2 + p2

1

2p2
1

,

x2 =
−

√
(m2

1 − m2
2 + p2

1)
2 − 4m2

1p
2
1 − m2

1 + m2
2 + p2

1

2p2
1

,

P1 = p1 −
p1

(
−

√(
m2

1 − m2
2 + p2

1

)
2 − 4m2

1p
2
1 − m2

1 + m2
2 + p2

1

)
2p2

1

,

x3 =
√

(m2
1 − m2

3 + (−p1 − p2)2)2 − 4m2
1(−p1 − p2)2 + m2

1 − m2
3 + (p1 + p2)

2

2(−p1 − p2)2 ,

x4 =
−

√
(m2

1 − m2
3 + (−p1 − p2)2)2 − 4m2

1(−p1 − p2)2 − m2
1 + m2

3 + (p1 + p2)
2

2(−p1 − p2)2 ,

P2 = (−p1 − p2)

(
−

√(
m2

1 − m2
3 + (p1 + p2) 2

)
2 − 4m2

1 (p1 + p2) 2 − m2
1 + m2

3 + (p1 + p2)
2
)

2 (p1 + p2) 2

+ (p1 + p2) ,

x5 =
√

(m2
2 − m2

3 + p2
2)

2 − 4m2
2p

2
2 + m2

2 − m2
3 + p2

1 + (p1 + p2)
2 − 2p1(p1 + p2)

2p2
2

,

x6 =
−

√
(m2

2 − m2
3 + p2

2)
2 − 4m2

2p
2
2 − m2

2 + m2
3 + p2

1 + (p1 + p2)
2 − 2p1(p1 + p2)

2 ,

2p2

9
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Fig. 4. Box diagram.

P3 = (p1 + p2) −
p2

(
−

√
−2

(
m2

2 + m2
3

)
p2

2 + (
m2

2 − m2
3

)
2 + p4

2 − m2
2 + m2

3 + p2
2

)
2p2

2

Integrating Eq. (4.2) over loop momenta k we get vertex integral written as a sum of vertex 
integrals but with just one massive propagator.

4.2. One loop box integral

We now consider one loop box integral corresponding to Fig. 4 which can be written as

I4 =
ˆ

ddk

(k2 − m2
1)((k + p1)2 − m2

2)((k + p1 + p2)2 − m2
3)((k + p1 + p2 + p3)2 − m2

4)

(4.3)

We can get the algebraic relation using the following command

In[6]:= AlgRel[{1,2,3,4},{k,q,m},{P,M},x,{q[1]->0,q[2]->p1,q[3]
->p1+p2,q[4]-> p1+p2+p3}]

Substitute q1 = 0, q2 = p1, q3 = p1 + p2, q4 = p1 + p2 + p3 and Mi = 0, i = 1 · · ·7 and 
simplifying we get

1

(k2 − m2
1)((k + p2)2 − m2

2)((k + p2 + p3)2 − m2
3)((k + p2 + p3 + p4)2 − m2

3)
=

x1x3x7

(k2 − m2
1)(k + P1)2(k + P2)2(k + P4)2

+ x1x3x8

(k + P1)2(k + P2)2(k + P4)2((k + p1 + p2 + p3)2 − m2
4)

+ x1x4x9

(k + P1)2(k + P2)2(k + P5)2((k + p1 + p2)2 − m2
3)

+ x1x4x10
2 2 2 2 2
(k + P1) (k + P2) (k + P5) ((k + p1 + p2 + p3) − m4)

10
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Fig. 5. Pentagon diagram.

+ x2x5x11

(k + P1)2(k + P3)2(k + P6)2((k + p1)2 − m2
2)

+ x2x5x12

(k + P1)2(k + P3)2(k + P6)2((k + p1 + p2 + p3)2 − m2
4)

+ x2x6x13

(k + P1)2(k + P3)2(k + P7)2((k + p1 + p2)2 − m2
3)

+
x2x6x14

(k + P1)2(k + P3)2(k + P7)2((k + p1 + p2 + p3)2 − m2
4)

(4.4)

where the value of unknowns can be obtained from the MATHEMATICA notebook Exam-
ples.nb. Integrating Eq. (4.4) over loop momenta k we get box integral written as a sum 
of 8 box integrals but with just one massive propagator.

4.3. One-loop pentagon integral

The one-loop pentagon integral corresponding to Fig. 5 is given by2

I5 =
ˆ

ddk

(k2 − m2
1)((k + p1)2 − m2

2)((k + p12)2 − m2
3)((k + p123)2 − m2

4)((k + p1234)2 − m2
5)

(4.5)

We can get the algebraic relation using the following command

In[7]:= AlgRel[{1,2,3,4,5},{k,q,m},{P,M},x,{q[1]->0,q[2]->p1,
q[3]->p1+p2,q[4]->p1+p2+p3,q[5]->p1+p2+p3+p4}]

Doing the substitution as before and simplifying we get

1

(k2 − m2
1)((k + p1)2 − m2

2)((k + p12)2 − m2
3)((k + p123)2 − m2

4)((k + p1234)2 − m2
5)

= x1x3x7x15

(k2 − m2
1)(k + P1)2(k + P2)2(k + P4)2(k + P8)2

+ x1x3x7x16

(k + P1)2(k + P2)2(k + P4)2(k + P8)2((k + p1234)2 − m2
5)

2 For this and the subsequent subsection we use the shorthand notation pi1 + pi2 + · · · = pi1i2···, so as to avoid very 
lengthy expressions.
11
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+ x1x3x8x17

(k + P1)2(k + P2)2(k + P4)2(k + P9)2((k + p123)2 − m2
4)

+ x1x3x8x18

(k + P1)2(k + P2)2(k + P4)2(k + P9)2((k + p1234)2 − m2
5)

+ x1x4x9x19

(k + P1)2(k + P2)2(k + P5)2(k + P10)2((k + p12)2 − m2
3)

+ x1x4x9x20

(k + P1)2(k + P2)2(k + P5)2(k + P10)2((k + p1234)2 − m2
5)

+ x1x4x10x21

(k + P1)2(k + P2)2(k + P5)2(k + P11)2((k + p123)2 − m2
4)

+ x1x4x10x22

(k + P1)2(k + P2)2(k + P5)2(k + P11)2((k + p1234)2 − m2
5)

+ x2x5x11x23

(k + P1)2(k + P3)2(k + P6)2(k + P12)2((k + p1)2 − m2
2)

+ x2x5x11x24

(k + P1)2(k + P3)2(k + P6)2(k + P12)2((k + p1234)2 − m2
5)

+ x2x5x12x25

(k + P1)2(k + P3)2(k + P6)2(k + P13)2((k + p123)2 − m2
4)

+ x2x5x12x26

(k + P1)2(k + P3)2(k + P6)2(k + P13)2((k + p1234)2 − m2
5)

+ x2x6x13x27

(k + P1)2(k + P3)2(k + P7)2(k + P14)2((k + p12)2 − m2
3)

+ x2x6x13x28

(k + P1)2(k + P3)2(k + P7)2(k + P14)2((k + p1234)2 − m2
5)

+ x2x6x14x29

(k + P1)2(k + P3)2(k + P7)2(k + P15)2((k + p123)2 − m2
4)

+
x2x6x14x30

(k + P1)2(k + P3)2(k + P7)2(k + P15)2((k + p1234)2 − m2
5)

(4.6)

where the values of xi and Pi can be obtained from the MATHEMATICA notebook Exam-
ples.nb. Integrating Eq. (4.6) over loop momenta k we get pentagon integral written as a 
sum of 16 pentagon integrals but with just one massive propagator.

4.4. One loop six-point integral

The six-point integral corresponding to Fig. 6, is

I6 =
ˆ

ddk

(k2 − m2
1)((k + p1)2 − m2

2)((k + p1 + p2)2 − m2
3)((k + p123)2 − m2

4)

× 1

((k + p1234)2 − m2
5)((k + p12345)2 − m2

6)
(4.7)

As in the previous examples we use the following command to obtain the algebraic relations
12
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Fig. 6. Six point diagram.

In[8]:= AlgRel[{1,2,3,4,5,6},{k,q,m},{P,M},x,{q[1]->0,q[2]->p1,
q[3]->p1+p2,q[4]->p1+p2+p3,q[5]->p1+p2+p3+p4,q[6]->p1+p2
+p3+p4+p5}]

We omit the result as it is lengthy. The full result can be obtained from the MATHEMATICA

notebook Examples.nb.

4.5. Two-loop box integral

Fig. 7. Two loop Box diagram.

To illustrate the method for higher loop integrals let us consider an example of the two-loop 
box integral, corresponding to Fig. 7. The integral is as follows

I4,2 =
¨

ddk1d
dk2

(k2
1 − m2

1)((k1 + p1)2 − m2
2)(k

2
2 − m2

3)((k2 + p3)2 − m2
4)((k1 − k2 + p1 + p2)2 − m2

5)

(4.8)

The propagators are numbered such that i represents the propagator di .
Firstly we find the algebraic relation for the product of propagators numbered 1 and 2, which 

has only the loop-momenta k1 we can use the following command

In[9]:= AlgRel[{1,2},{k1,q,m},{P,M},x,{q[1]->0,q[2]->p1}]

Similarly, for propagators numbered 3 and 4 we can use the following command

In[10]:= AlgRel[{3,4},{k2,q,m},{Q,M},y,{q[3]->0,q[4]->p3}]
13
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The final relation that we obtain, with Mi = 0 is (see Examples.nb)

1

(k2
1 − m2

1)((k + p1)2 − m2
2)(k

2
2 − m2

3)((k2 + p3)2 − m2
3)

= x1y1

(k2
1 − m2

1)(k
2
2 − m2

3)(k1 + P1)2(k2 + Q1)2

+ x2y1

(k2
2 − m2

3)(k1 + P1)2(k2 + Q1)2((k1 + p1)2 − m2
2)

+ x1y2

(k2
1 − m2

1)(k1 + P1)2(k2 + Q1)2((k2 + p3)2 − m2
4)

+ x2y2

(k1 + P1)2(k2 + Q1)2((k1 + p1)2 − m2
2)((k2 + p3)2 − m2

4)
(4.9)

where

x1 =
√

(m2
1 − m2

2 + p2
1)

2 − 4m2
1p

2
1 + m2

1 − m2
2 + p2

1

2p2
1

,

x2 =
−

√
(m2

1 − m2
2 + p2

1)
2 − 4m2

1p
2
1 − m2

1 + m2
2 + p2

1

2p2
1

P1 = p1 −
p1

(
−

√(
m2

1 − m2
2 + p2

1

)
2 − 4m2

1p
2
1 − m2

1 + m2
2 + p2

1

)
2p2

1

,

y1 =
√

(m2
3 − m2

4 + p2
3)

2 − 4m2
3p

2
3 + m2

3 − m2
4 + p2

3

2p2
3

,

y2 =
−

√
(m2

3 − m2
4 + p2

3)
2 − 4m2

3p
2
3 − m2

3 + m2
4 + p2

3

2p2
3

,

Q1 = p3 −
p3

(
−

√(
m2

3 − m2
4 + p2

3

)
2 − 4m2

3p
2
3 − m2

3 + m2
4 + p2

3

)
2p2

3

(4.10)

Multiplying both sides of Eq. (4.9) by 1
((k1−k2+p1+p2)

2−m2
5)

gives the required algebraic relation 

for the two-loop box integral.

4.6. Two-loop double box integral

Next, we consider the two-loop double-box integral corresponding to Fig. 8. The integral is 
as follows

I4,2 =
¨

ddk1d
dk2

(k2
1 − m2

1)(k
2
2 − m2

2)((k2 + p2)2 − m2
3)((k2 + p23)2 − m2

4)((k1 + p23)2 − m2
5)

× 1

((k1 + p234)2 − m2
6)((k1 − k2)2 − m2

7)

(4.11)
14
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Fig. 8. Two loop Box diagram.

The propagators are numbered such that i represents the propagator di .
To find the algebraic relation for the product of propagators numbered 1,5 and 6 we can use 

the following command

In[11]:= AlgRel[{1,5,6},{k1,q,m},{P,M},x,{q[1]->0,q[5]->p2+p3,
q[6]->p2+p3+p4}]

Substituting value of q1, q5 and q6 corresponding to the Feynman integral we get
x1x4

(k1 + P1)2(k1 + P2)2((k1 + p234)2 − m2
6)

+ x2x5

(k1 + P1)2(k1 + P3)2((k1 + p23)2 − m2
5)

+ x1x3

(k2
1 − m2

1)(k1 + P1)2(k1 + P2)2
+ x2x6

(k1 + P1)2(k1 + P3)2((k1 + p234)2 − m2
6)

(4.12)

Similarly, for propagators numbered 2,3 and 4, we can use the following command

In[12]:= AlgRel[{2,3,4},{k2,q,m},{Q,M},y,{q[2]->0,q[3]->p2,q[4]
->p2+p3}]

which gives the following result after substituting the value of q2, q3 and q4 corresponding to 
the Feynman integral

y1y4

(k2 + Q1) 2 (k2 + Q2) 2
(
(k2 + p23) 2 − m2

4

) + y1y3(
k2

2 − m2
2

)
(k2 + Q1) 2 (k2 + Q2) 2

+ y2y5

(k2 + Q1) 2 (k2 + Q3) 2
(
(k2 + p2) 2 − m2

3

)
+ y2y6

(k2 + Q1) 2 (k2 + Q3) 2
(
(k2 + p23) 2 − m2

4

) (4.13)

All the values of the parameters Pi , Qi , xi and yi can be obtained from the MATHEMAT-
ICA notebook Examples.nb. To get the algebraic relation for the integrand in Eq. (4.11)
we multiply Eq. (4.12) and (4.13) together and then multiply both the sides of the equation 

by 
1

(k1 − k2)2 − m2
7

.

We see that, unlike the one-loop case, we now have 3 massive propagators in each term. In 
fact with the present procedure to find the algebraic relation for any two-loop integral with all 
non-zero different masses, we have at least 3-massive propagators in each integral. Due to this 
reason, the present procedure won’t be helpful for the case of integrals like the sunset integral 
where there are only 3-propagators.
15
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4.7. Three-loop ladder integral

Fig. 9. Three-loop ladder diagram.

The three-loop ladder integral corresponding to Fig. 9.

I4,3 =
˚

ddk1 ddk2 ddk3

(k2
1 − m2

1)(k
2
2 − m2

2)(k
2
3 − m2

3)((k3 + p2)2 − m2
4)((k3 + p23)2 − m2

5)((k2 + p23)2 − m2
6)

× 1

((k1 + p23)2 − m2
7)((k1 + p234)2 − m2

8)((k1 − k2)2 − m2
9)((k2 − k3)2 − m2

10)
(4.14)

We use a similar strategy as before for this case too, to obtain the algebraic relation. The result 
contains 32 terms and is presented in the MATHEMATICA file Examples.nb.

4.8. Limitation at higher loops

Fig. 10. Sunset diagram.

Using sunset as an example we now demonstrate the limitation of the method for higher loop 
integrals. As a demonstrative example we consider the two-loop sunset integral as a starting 
point. The corresponding diagram is shown in Fig. 10. The integral is given by

Is =
¨

ddk1d
dk2

(k2
1 − m2

1)(k
2
2 − m2

2)((k1 − k2 + p)2 − m2
3))

(4.15)

Using the package we find the algebraic relation between the propagators d1 and d3. For this 
case, we obtain the following values of the coefficients x1 and x2.

x1 =
√

4 (p − k2) 2
(
M2

1 − m2
1

) + (
(p − k2) 2 + m2

1 − m2
3

)
2 − 2k2p + k2

2 + m2
1 − m2

3 + p2

2
2 (p − k2)

16
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x2 = −
√

4 (p − k2) 2
(
M2

1 − m2
1

) + (
(p − k2) 2 + m2

1 − m2
3

)
2 − 2k2p + k2

2 − m2
1 + m2

3 + p2

2 (p − k2) 2

(4.16)

We notice that for the case of sunset q1 = 0 and q3 = p − k2. Because of the fact that the co-
efficients x1 and x2 are dependent on loop momenta k2, the final expression after finding the 
algebraic relation include x1 and x2 in the integral. However, we can still consider the higher 
loops cases by taking together only the propagators which are dependent on single loop mo-
menta and the propagators which are dependent on more than one loop momenta are excluded.

5. Reduction of hypergeometric functions

In this section we study the examples when the Feynman integral evaluation gives results in 
terms of hypergeometric functions. The formalism to find algebraic relation for the product of 
propagators of Feynman integrals can be employed to find relations between hypergeometric 
functions [16,27–29]. In this section, we point out some analytic results on N -point function 
[17,18] and various hypergeometric relations that can be obtained from them with the present 
analysis.

It is well-known that the general one-loop N -point function with zero external momenta and 
different masses (mi, i = 1, . . . , N), with unit powers of propagators, can be expressed in terms 
of Lauricella FD function [17]

I (N)(m1, . . . ,mN) = πd/2i1−d(−m2
N)d/2−N �(N − d/2)

�(N)

× F
(N−1)
D (N − d

2
,1, . . . ,1;N | 1 − m2

1

m2
N

, . . . ,1 − m2
N−1

m2
N

) (5.1)

where F (L)
D represents the Lauricella function of L-variables given by

F
(L)
D (a, b1, . . . , bL; c | z1, . . . , zL) =

∞∑
j1=0

· · ·
∞∑

jL=0

(a)j1+···+jL
(b1)j1 · · · (bL)jL

(c)j1+···+jL

× z
j1
1 · · · zjL

L

j1! · · · jL! ,

(5.2)

and d is the dimension. The general result (i.e., Eq. (5.1)) is a N − 1 summation fold hypergeo-
metric series. If one of the masses m1, m2 · · · , mN−1 vanishes then the function F (N−1)

D reduces 

to F (N−2)
D , using the following relation

F
(L)
D (a, b1, . . . , bL−1, bL; c | z1, . . . , zL−1,1)

= �(c)� (c − a − bL)

�(c − a)� (c − bL)
F

(L−1)
D (a, b1, . . . , bL−1; c − bL | z1, . . . , zL−1) (5.3)

Using the method presented, we can write the N -mass integral as a sum of integrals with just 
one mass, thus N − 1 masses vanish. Then using Eq. (5.1) and (5.3) we can write each of these 
integrals as a term dependent only on mass mi . The whole result can be then expressed as a sum 
of terms each dependent on some mi . To evaluate the result of Eq. (5.1), outside its associated 
region of convergence, one has to explicitly perform analytic continuation which is difficult to 
obtain at times for multi-variable hypergeometric functions. Such a reduction of the result is 
helpful when the analytic continuation of the Eq. (5.1) is required. Such a result should also be 
17
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viewed as a reduction formula for the Lauricella F (L)
D , obtained using a physical problem [16]

which can otherwise be hard to obtain.
For a general one-loop N− point function with non-zero external momenta, the general result 

can be written as a generalized Lauricella hypergeometric function with (N−1)(N+2)
2 variables 

[18]. For the case of general vertex integral, the result is a generalized Lauricella function with 5 
variables [18]. On the other hand, using Eq. (4.2) the result can be written in terms of a hyperge-
ometric function of 3-variables [18]. Comparing Eq. (2.13) and (2.10) we see that the evaluation 
of bubble integral has reduced from the evaluation of Appell F4 which has two variables to that 
of hypergeometric 2F1 with one variable. Such a result can be viewed as a general reduction 
formula without any explicit relation to the Feynman integrals it has been obtained from. Substi-

tuting a = d
2 , p

2

m2
2

= x and 
m2

1
m2

2
= y, we get the following relation

ya−1F4(a,1, a, a, x, y) − F4(2 − a,1, a,2 − a, x, y)

= 1

2x

(
(−x + y − 1) +

√
−2(x + 1)y + (x − 1)2 + y2

)

× 2F1

[
1,2 − a;

a;
((−x + y − 1) + √

(x − 1)2 + y2 − 2(x + 1)y)2

4x

]
+ ((1 − x − y)

−
√

−2(x + 1)y + (x − 1)2 + y2)

× ya−2
2F1

[
1,2 − a;

a;
(
√

(x − 1)2 + y2 − 2(x + 1)y + (x + y − 1))2

4xy

])
(5.4)

Here a can take any value except negative integers and positive integers greater than 2.
We can further simplify the above relation by using the following relation of F4 [30]

F4

(
α,β;β,β;− x

(1 − x)(1 − y)
,− y

(1 − x)(1 − y)

)

= (1 − x)α(1 − y)α2F1

[
α,α − β + 1

β; xy

]
. (5.5)

For our case α = 1, β = a. Thus we get

F4(2 − a,1, a,2 − a, x, y) = 1

2x

(
(−x + y − 1) +

√
−2(x + 1)y + (x − 1)2 + y2

)

× 2F1

[
1,2 − a;

a;
((−x + y − 1) + √

(x − 1)2 + y2 − 2(x + 1)y)2

4x

]
+ ((1 − x − y)

−
√

−2(x + 1)y + (x − 1)2 + y2)

× ya−2
2F1

[
1,2 − a;

a;
(
√

(x − 1)2 + y2 − 2(x + 1)y + (x + y − 1))2

4xy

])

+ ya−1

(
1 − x − y − √

x2 − 2x(y + 1) + (y − 1)2

2xy

)

× 2F1

[
1,2 − a;

a;
(
√

(x + y − 1)2 − 4xy + x + y − 1)2

4xy

]
(5.6)
18
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As a consequence of this we get F4(1, 1; 1, 1; x, y)

F4(1,1;1,1;x, y) = 1√
(x + y − 1)2 − 4xy

(5.7)

We can also consider the result for the bubble integral with general masses and unit power of 
propagators, for which the result is given as follows [18]

I2 =(m2
2)

a−2�(2 − a) ×
∞∑

j=0

∞∑
l=0

1

j !l! (x)j (1 − y)l × (2 − a)j+l (1)j+l (1)j

(2)2j+l

(5.8)

With the help of the reduction procedure, the result for bubble integral is given by Eq. (2.13). 
This equality of Eq. (5.8) and (2.13) thus provides a reduction formula for the hypergeometric 
series in Eq. (5.8), which can be written as follows

∞∑
j=0

∞∑
l=0

(2 − a)j+l (1)j+l (1)j

(2)2j+l

(x)j

j !
(1 − y)l

l!

= 1

2x

(
(−x + y − 1) +

√
−2(x + 1)y + (x − 1)2 + y2

)

× 2F1

[
1,2 − a;

a;
((−x + y − 1) + √

(x − 1)2 + y2 − 2(x + 1)y)2

4x

]
+ ((1 − x − y)

−
√

−2(x + 1)y + (x − 1)2 + y2)

× ya−2
2F1

[
1,2 − a;

a;
(
√

(x − 1)2 + y2 − 2(x + 1)y + (x + y − 1))2

4xy

])
(5.9)

We can also obtain new hypergeometric relations by deriving other functional equations for 
the Feynman integrals (see appendix A). Using Eq. (A.3), (A.4) and we get

ya−1F4(a,1;a, a;x, y) − F4(2 − a,1;a,2 − a;x, y) =
(a − 1)

2x

(
ya−2(x + y − 1)2F1

[
1,2 − a

3
2 ;

(x + y − 1)2

4xy
;
]

+ (x − y + 1)2F1

[
1,2 − a

3
2 ;

(x − y + 1)2

4x
;
]

(5.10)

We further obtain

F4(2 − a,1;a,2 − a;x, y) =
(a − 1)

2x

(
ya−2(x + y − 1)2F1

[
1,2 − a

3
2 ;

(x + y − 1)2

4xy
;
]

+

(x − y + 1)2F1

[
1,2 − a

3
2 ;

(x − y + 1)2

4x
;
]

+

ya−1(
1 − x − y − √

x2 − 2x(y + 1) + (y − 1)2

2xy
)×

2F1

[ 1,2 − a;
a;

(
√

(x + y − 1)2 − 4xy + x + y − 1)2

4xy

]
(5.11)
19



B. Ananthanarayan, S. Bera and T. Pathak Nuclear Physics B 995 (2023) 116345
We provide a list of various reduction formulae that can be derived using Eq. (5.4) and (5.11) in 
the appendix B. The right-hand side of Eq. (5.4) and (5.11) can further be equated to give the 
relation between the sum of hypergeometric 2F1 functions. An interesting consequence of this 
relation can be obtained with a = 3

2

−
tanh−1(

x−y+1
2
√

x
) + coth−1(

2
√

x
√

y

x+y−1 )

2

= coth−1(
2
√

x
√

y√
x2 − 2x(y + 1) + (y − 1)2 − x − y + 1

)

− tanh−1(

√−2(x + 1)y + (x − 1)2 + y2 + x − y + 1

2
√

x
) (5.12)

As before, such a reduction also helps if the analytic continuation has to be performed to reach a 
certain kinematical region. We can find the analytic continuations for the series in Eq. (5.8) using 
automated tools [23], but it still does not guarantee that the parameter space has been covered. In 
contrast, the complete list of analytic continuations for the hypergeometric 2F1 [25] is available 
and well implemented in software like MATHEMATICA. The complexity of the analytic continu-
ation procedure also increases with the increase in the number of variables of the hypergeometric 
function due to the increase in difficulty to find the ROC of the resulting series.

We notice that the procedure is sufficiently general and one can obtain a large number of 
reduction formulae using it by doing the following steps

• We take the Eq. (5.1) or any other general result for N -point integral from [17,18].
• For a N− point function we have a product of N− propagators. We take any two propagators 

and find the algebraic relation. This results in a sum of 2 terms, for which the number of 
variables in the result, as in Eq. (5.1), is reduced by one. This yields a reduction formula 
between, say L (which is a function of N ) variable hypergeometric function and (L − 1)

variable hypergeometric function.
• We apply the previous step again, thus resulting in a relation between L variable hypergeo-

metric function and (L − 2) variable hypergeometric function. Also using the previous step 
it gives a relation between (L − 1) variable hypergeometric function and (L − 2) variable 
hypergeometric function.

• We apply the procedure recursively until we have an algebraic relation for the product of 
N massive propagators as sum of 2N−1 terms, such that each term contains product of N -
propagators with just one massive propagator.

• The final result of the procedure would be a collection of relations between L, (L − 1), ...1
variable hypergeometric functions.

6. Summary and discussion

We have presented an automatized package AlgRel.wl for finding the algebraic relation for 
the product of propagators. These relations were used by Tarasov [1,4,10,11] to derive the Func-
tional relations for Feynman integrals. The results obtained using the package are also sufficiently 
general and can be used further to obtain the functional relations for the Feynman integrals by 
appropriately choosing the arbitrary parameters. In the present work we focused on automatizing 
the method to derive algebraic relation for the propagators by suitably implementing a recursive 
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algorithm (a slight modification to the Tarasov’s algorithm [1]). Furthermore, we provided a sys-
tematic way to use these relations for higher loop integrals too. These relations occur with free 
parameters which can be chosen suitably. Using various examples up to three-loops, we focused 
on how with a simple choice of these free parameters we can reduce integrals with large numbers 
of massive propagators into integrals with fewer massive propagators [10], which can thus be 
computed easily. For the one-loop case, we obtained results for up to 6-point integral with the 
procedure and wrote them as a sum of 2N−1 (for N− point integral) integrals with one massive 
propagator. We also showed how the procedure can be used for higher-loop integrals too where 
a different strategy has been applied for finding the relations.

Since the general results for the one-loop N -points integral are explicitly known for various 
cases in terms of multi-variable hypergeometric functions, we show how the present work can 
be used to obtain a large list of reduction formulae for these functions. As a demonstrative ex-
ample of the same, we used the one-loop bubble integral where the reduction of the Appell F4 to 
hypergeometric 2F1 can be obtained. We also derive another reduction formula for a 2-variable 
hypergeometric series, Eq. (5.8) in terms of hypergeometric 2F1. The relations thus obtained, 
can be treated as general reduction formulae for these functions without making reference to the 
Feynman integral they were derived from. These relations hence provide a way to derive non-
trivial reduction formulae for multi-variable hypergeometric function using physical problems. 
They are also helpful, especially for situations where the analytic continuation of multi-variable 
hypergeometric functions has to be obtained to evaluate them outside their ROC, which is not 
easy to derive otherwise.

The present procedure of finding algebraic relation for the product of propagators can be used 
only if the propagators are dependent on just one loop-momenta. For this reason, the procedure 
cannot be applied with full generality to multi-loop integrals and a different strategy has to be 
adopted. Hence the procedure is not helpful for integrals such as the sunset integral or in the 
cases where for each loop momenta ki there is just one propagator. To apply such a procedure 
to sunset-like integrals, a generalization of the procedure for the multi-variable case, when the 
propagators can depend on more than one loop momenta has to be developed.

As we have seen that the algebraic relation obtained reduces the complexity of the Feynman 
integral. Specifically for the simple case of one loop bubble (in Section 2), we saw that the result 
for general bubble integral, which was expressed in terms of double variable hypergeometric 
function Appell F4, was reduced to 2F1 which is a single variable hypergeometric function. It 
would be worth studying such reduction in complexity for other non-trivial cases of Feynman 
integrals which result in multi-variable hypergeometric functions of even higher variables. Since 
obtaining analytic expressions might not be feasible for such cases, a detailed numerical study for 
the same would be an important application of these algebraic relations after the proper function 
relations have been obtained by the proper choice of arbitrary variables. We would also like to 
point out to the possibility of using Lemma B.3., given in [31], to find the similar relations as 
presented here.3
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Appendix A. Functional reduction with Mi �= 0

In this appendix, we point out other possibilities for the choice of arbitrary parameters Mi

[11]. This choice leads to different functional reduction equations than already presented. Also, 
this gives rise to different reduction formulae as has been done in section 5. Consider the bubble 
integral considered in section 3. This time we choose a different non-zero value of M1. Since 
the Feynman integrals are relatively easier to compute with equal masses a suitable choice is 
M1 = m1. With this choice, we get, similar to Eq. (2.9), the following relation

I2(p
2,m1,m2) = x2I2((P1 + p)2,m1,m2) + x1I2(P

2
1 ,m1,m1) (A.1)

with

x1 = m2
1 − m2

2 + p2

p2 , x2 = m2
2 − m2

1

p2 , P1 = p
(
m2

2 − m2
1

)
p2 − p (A.2)

We see that on the right-hand side of Eq. (A.1), we have a partial simplification. We do the 
exchange m1 ↔ m2 in Eq. (A.1) and add the resulting equation with it. Simplifying we get

I2(p
2,m1,m2) = p2 + m2

1 − m2
2

2p2 I2

((
p2 + m2

1 − m2
2

)2

p2 ,m1,m1

)
+

p2 − m2
1 + m2

2

2p2 I2

((
p2 + m2

2 − m2
1

)2

p2 ,m2,m2

)
(A.3)

The value of I2(p
2, m, m) is [21]

I2(p
2,m,m) = md−4�

(
2 − d

2

)
2F1

[
1,2 − d

2
3
2 ;

p2

4m2 ;
]

(A.4)

Substituting this in Eq. (A.3) we can get another functional equation for the bubble Feynman 
integral.

Appendix B. Reduction formulae

F4(1,1;1,1;x, y) = 1√
2

(B.1)

(x + y − 1) − 4xy
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F4

(
3

2
,1; 1

2
,

3

2
;x, y

)
= x − y + 1

x2 − 2x(y + 1) + (y − 1)2 (B.2)

F4

(
5

2
,1;−1

2
,

5

2
;x, y

)
= (x − y + 1)

(
x2 − 2x(y + 5) + (y − 1)2

)
(
x2 − 2x(y + 1) + (y − 1)2

)2 (B.3)

F4

(
1

2
,1; 3

2
,

1

2
;x, y

)
= − 1√

x

(
− tanh−1

(√
x2 − 2x(y + 1) + (y − 1)2 + x − y + 1

2
√

x

)
+

coth−1

(
2
√

x
√

y√
x2 − 2x(y + 1) + (y − 1)2 − x − y + 1

)
+

coth−1

(
2
√

x
√

y√
(x + y − 1)2 − 4xy + x + y − 1

))
(B.4)

F4

(
1

2
,1,

3

2
; 1

2
;x, y

)
= 1

2
√

x
(tanh−1

(
x − y + 1

2
√

x

)

− 2 coth−1

(
2
√

x
√

y√
(x + y − 1)2 − 4xy + x + y − 1

)

+ coth−1
(

2
√

x
√

y

x + y − 1

)
) (B.5)

F4(0,1;2,0;x, y) =
√−2(x + 1)y + (x − 1)2 + y2 + x − y + 1

2x

F4(2 − a,1, a,2 − a,1,1) = 1

2

(
1 − i

√
3
)

2F1

[
1,2 − a

a; − 3
√−1

]
(B.6)

2F1

[
1,2 − a

3
2 ;

(x − y + 1)2

4x

]

=
(√−2(x + 1)y + (x − 1)2 + y2 + (y − x − 1)

)
(1 − a)(x − y + 1)

2F1

⎡
⎢⎣ 1,2 − a

a;

(
(x − y + 1) + √

(x − 1)2 + y2 − 2(x + 1)y
)2

4x

⎤
⎥⎦ (B.7)

2F1

[
1,2 − a

3
2 ;

(x + y − 1)2

4xy

]

=
√−2(x + 1)y + (x − 1)2 + y2 − (x + y − 1)

(1 − a)(x + y − 1)

2F1

⎡
⎢⎣ 1,2 − a

a;

(√
(x − 1)2 + y2 − 2(x + 1)y − (x + y − 1)

)2

4xy

⎤
⎥⎦ (B.8)

We can use the following relation as given in [30] and obtain formulae for F1

F4

(
α,β;γ,β;− x

,− y
)

(1 − x)(1 − y) (1 − x)(1 − y)
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= (1 − x)α(1 − y)αF1(α, γ − β,α − γ + 1;γ ;x, xy) (B.9)

We can further exploit the relation between F1 and F2 to derive reduction formulae for F2. 
Wherever possible exploiting such relations amongst various hypergeometric function we can 
derive reduction formulae for other hypergeometric functions.

In a similar manner using the following relation [30] we can obtain formulae for H3

F4(α,β;γ,β;x, y) = (1 − x − y)−αH3

(
α,γ − β;γ ; xy

(x + y − 1)2 ,
x

x + y − 1

)

(B.10)

Appendix C. Numerical results

In this appendix, we present the results of the numerical checks using FIESTA5 [26]. We 
use the AlgRel.wl package to obtain the algebraic relation and then perform the numerical 
integration of both the left-hand side, which is the original integral and the right-hand side which 
is the sum of integrals obtained using the algebraic relation. We give the results with 5 significant 
digits and up to O(ε) in the Laurent expansion, where ε = 4−d

2 .

1. Bubble integral
Parameters: m2

1 = 1, m2
2 = 4, p2 = 9.

LHS: 1.0758 + 3.61468ε + 1.
ε

.
RHS: 1.0758 + 3.61466ε + 1.

ε
.

2. Vertex integral
Parameters: m2

1 = 1
2 , m2

2 = 1
3 , m2

3 = 1
5 , p1p2 = 0, p2

1 = 4, p2
2 = 5.

LHS: (−0.54587 + 0.13235i) − (0.43590 + 1.4360i)ε.
RHS: (−0.54587 + 0.13235i) − (0.43590 + 1.4360i)ε.

3. Box integral
Parameters: m2

1 = 1
10 , m2

2 = 2
10 , m2

3 = 3
10 , m2

4 = 5
10 , p1p2 = 0, p1p3 = 0, p2p3 = 0, p2

1 =
4, p2

2 = 5, p2
3 = 6.

LHS: (0.06170 + 0.14437i)ε + (0.053719 − 0.010142i).
RHS: (0.06169 + 0.14437i)ε + (0.053719 − 0.010140i).

4. Pentagon integral
Parameters: m2

1 = 1
10 , m2

2 = 2
10 , m2

3 = 3
10 , m2

4 = 5
10 , m2

5 = 6
10 , p1p2 = 0, p1p3 = 0, p1p4 =

0, p2p3 = 0, p2p4 = 0, p3p4 = 0, p2
1 = 1, p2

2 = 2, p2
3 = 3, p2

4 = 4.
LHS: (−0.082297 + 0.039722i) − (0.24830 + 0.15504i)ε.
RHS: (−0.082298 + 0.039711i) − (0.24830 + 0.15507i)ε.

5. Two-loop box integral
Parameters: m2

1 = 1
400 , m2

2 = 9
400 , m2

3 = 1
25 , m2

4 = 1
10 , m2

5 = 1
5 , p2

1 = 2, p2
2 = 4, p2

3 = 3,

p1p2 = 1, p1p3 = 2, p2p3 = 3.
LHS: (−0.58821 + 0.79539i) − (2.8199 + 3.9363i)ε.
RHS: (−0.58820 + 0.79537i) − (2.8202 + 3.9361i)ε.

We find that the results obtained using the algebraic relations are numerically consistent.
24



B. Ananthanarayan, S. Bera and T. Pathak Nuclear Physics B 995 (2023) 116345
References

[1] O.V. Tarasov, Derivation of functional equations for Feynman integrals from algebraic relations, J. High Energy 
Phys. 11 (2017) 038, arXiv :1512 .09024.

[2] V.A. Smirnov, V.A. Smirnov, Feynman Integral Calculus, vol. 10, Springer, 2006.
[3] S. Weinzierl, Feynman Integrals, 1, 2022, arXiv :2201 .03593.
[4] O.V. Tarasov, New relationships between Feynman integrals, Phys. Lett. B 670 (2008) 67, arXiv :0809 .3028.
[5] O.V. Tarasov, Calculation of one-loop integrals for four-photon amplitudes by functional reduction method, arXiv :

2211 .15535.
[6] O.V. Tarasov, Using functional equations to calculate Feynman integrals, Theor. Math. Phys. 200 (2019) 1205.
[7] O.V. Tarasov, Functional reduction of Feynman integrals, J. High Energy Phys. 02 (2019) 173, arXiv :1901 .09442.
[8] O.V. Tarasov, Methods for deriving functional equations for Feynman integrals, J. Phys. Conf. Ser. 920 (2017) 

012004, arXiv :1709 .07058.
[9] B.A. Kniehl, O.V. Tarasov, Counting master integrals: integration by parts vs. functional equations, arXiv :1602 .

00115.
[10] O.V. Tarasov, Functional equations for Feynman integrals, Phys. Part. Nucl. Lett. 8 (2011) 419.
[11] O.V. Tarasov, Functional reduction of one-loop Feynman integrals with arbitrary masses, J. High Energy Phys. 06 

(2022) 155, arXiv :2203 .00143.
[12] L. de la Cruz, Feynman integrals as A-hypergeometric functions, J. High Energy Phys. 12 (2019) 123, arXiv :

1907 .00507.
[13] R.P. Klausen, Hypergeometric series representations of Feynman integrals by GKZ hypergeometric systems, J. High 

Energy Phys. 04 (2020) 121, arXiv :1910 .08651.
[14] B. Ananthanarayan, S. Banik, S. Bera, S. Datta, FeynGKZ: a mathematica package for solving Feynman integrals 

using GKZ hypergeometric systems, Comput. Phys. Commun. 287 (2023) 108699, arXiv :2211 .01285.
[15] J. Blümlein, M. Saragnese, C. Schneider, Hypergeometric structures in Feynman integrals, arXiv :2111 .15501.
[16] B.A. Kniehl, O.V. Tarasov, Finding new relationships between hypergeometric functions by evaluating Feynman 

integrals, Nucl. Phys. B 854 (2012) 841, arXiv :1108 .6019.
[17] A.I. Davydychev, Some exact results for n-point massive Feynman integrals, J. Math. Phys. 32 (1991) 1052.
[18] A.I. Davydychev, General results for massive n-point Feynman diagrams with different masses, J. Math. Phys. 33 

(1992) 358.
[19] I. Gonzalez, V.H. Moll, Definite integrals by the method of brackets-part 1, Adv. Appl. Math. 45 (2010) 50.
[20] C. Bollini, J. Giambiagi, Lowest order “divergent” graphs in v-dimensional space, Phys. Lett. B 40 (1972) 566.
[21] E.E. Boos, A.I. Davydychev, A method of evaluating massive Feynman integrals, Theor. Math. Phys. 89 (1991) 

1052.
[22] H. Exton, On the system of partial differential equations associated with Appell’s function f4, J. Phys. A, Math. 

Gen. 28 (1995) 631.
[23] B. Ananthanarayan, S. Bera, S. Friot, T. Pathak, Olsson.wl: a Mathematica package for the computation of linear 

transformations of multivariable hypergeometric functions, arXiv :2201 .01189.
[24] S. Bera, T. Pathak, Analytic continuations of the Horn H1 and H5 functions, arXiv :2210 .17370.
[25] W. Becken, P. Schmelcher, The analytic continuation of the Gaussian hypergeometric function 2f1 (a, b; c; z) for 

arbitrary parameters, J. Comput. Appl. Math. 126 (2000) 449.
[26] A.V. Smirnov, N.D. Shapurov, L.I. Vysotsky, FIESTA5: numerical high-performance Feynman integral evaluation, 

Comput. Phys. Commun. 277 (2022) 108386, arXiv :2110 .11660.
[27] A. Inayat-Hussain, New properties of hypergeometric series derivable from Feynman integrals. I. Transformation 

and reduction formulae, J. Phys. A, Math. Gen. 20 (1987) 4109.
[28] A.A. Inayat-Hussain, New properties of hypergeometric series derivable from Feynman integrals II. A generalisation 

of the H function, J. Phys. A, Math. Gen. 20 (1987) 4119.
[29] M.A. Shpot, A massive Feynman integral and some reduction relations for Appell functions, J. Math. Phys. 48 

(2007) 123512, arXiv :0711 .2742.
[30] H.M. Srivastava, P.W. Karlsson, Multiple Gaussian Hypergeometric Series, E. Horwood, 1985.
[31] W. Flieger, W.J. Torres Bobadilla, Landau and leading singularities in arbitrary space-time dimensions, arXiv :2210 .

09872.
25

http://refhub.elsevier.com/S0550-3213(23)00274-2/bib6155811A59E9DDE7C215BA0A50E4F862s1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bib6155811A59E9DDE7C215BA0A50E4F862s1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bib655D66DE8E495CEB7102165D0E90617Ds1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bib63C2E56970608DACC9E8A3C52E4B9BCFs1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bibF727CAF0C87A33C71A975F91EE3DA0F9s1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bibDBD56E73CB881A0AB6DE1CBCCA18E900s1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bibDBD56E73CB881A0AB6DE1CBCCA18E900s1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bibBE5ED14F7459F30CB9676701F93AAB73s1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bib0C7FBE5408E6B28FAA46B8B31C2E3A0As1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bib07DE7920C569374A48BB18D5A89D3D5Es1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bib07DE7920C569374A48BB18D5A89D3D5Es1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bibBE2BA693501C134A3D72E73550F9271As1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bibBE2BA693501C134A3D72E73550F9271As1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bib534C1F9E5FEB4FA36DD503CE905EFC56s1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bibE936E1B999F3A1FF3F7EF4E2E907B2C2s1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bibE936E1B999F3A1FF3F7EF4E2E907B2C2s1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bibC798A1E8DC5729281CB9D9139B2CDC6Ds1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bibC798A1E8DC5729281CB9D9139B2CDC6Ds1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bibEAE97DF37E90763F500CC0D8FE42E93Cs1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bibEAE97DF37E90763F500CC0D8FE42E93Cs1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bib374440D0D3A793B3689241FA995B71BEs1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bib374440D0D3A793B3689241FA995B71BEs1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bibB4BC6B345411FF11C1333D46E1D5A9EEs1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bib0F4B6A30E2F38DDCE5901FC251634C0Es1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bib0F4B6A30E2F38DDCE5901FC251634C0Es1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bib355D3D4F4493383D5D9EE7CD4C59141Bs1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bib7F1A25454C3364479BD9903A0FA83CF2s1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bib7F1A25454C3364479BD9903A0FA83CF2s1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bibADE6313E0793865337344C84CCAD93F5s1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bibAF2902DC5AACB32B50316BEEF3CC646As1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bib671260B2957D8CEA60ECF8C91897485Fs1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bib671260B2957D8CEA60ECF8C91897485Fs1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bib97E08CAB625933B7C5A9B9817F982DFAs1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bib97E08CAB625933B7C5A9B9817F982DFAs1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bib588814F5C6E61B46A28ED817422C5386s1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bib588814F5C6E61B46A28ED817422C5386s1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bib3A0226C3A58696F1889953336395EEB6s1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bibCA678988EA02650A717B65F0D1D02951s1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bibCA678988EA02650A717B65F0D1D02951s1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bibFE3674CCA6F6E09D42C8CD7345063CCAs1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bibFE3674CCA6F6E09D42C8CD7345063CCAs1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bib9797DCD2DB0827D564A2244F6129C1A1s1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bib9797DCD2DB0827D564A2244F6129C1A1s1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bibF712B5B26E0A332541442916AADAA746s1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bibF712B5B26E0A332541442916AADAA746s1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bibF77EB007FB24EFBFB69593B29F59699Bs1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bibF77EB007FB24EFBFB69593B29F59699Bs1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bib193B27EBD14C73A9014651A901B50BB3s1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bibFDD49FC5D26572586F7894F26AF8543As1
http://refhub.elsevier.com/S0550-3213(23)00274-2/bibFDD49FC5D26572586F7894F26AF8543As1

	AlgRel.wl: Algebraic relations for the product of propagators in Feynman integrals
	1 Introduction
	2 The method
	3 AlgRel.wl package : algorithm and usage
	3.1 Algorithm
	3.2 Usage

	4 Results
	4.1 One-loop vertex integral
	4.2 One loop box integral
	4.3 One-loop pentagon integral
	4.4 One loop six-point integral
	4.5 Two-loop box integral
	4.6 Two-loop double box integral
	4.7 Three-loop ladder integral
	4.8 Limitation at higher loops

	5 Reduction of hypergeometric functions
	6 Summary and discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix A Functional reduction with Mi∕=0
	Appendix B Reduction formulae
	Appendix C Numerical results
	References


