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Abstract
An a priori analysis for generalized local projection stabilized finite element approxi-
mations for the solution of an advection–reaction equation is presented in this article.
The stability and a priori error estimates are derived for the conforming, and non-
conforming (Crouzeix–Raviart) approximations in the local projection streamline
derivative norm. Finally, the validation of the proposed stabilization scheme and verifi-
cation of the derived estimates are presented with appropriate numerical experiments.

Keywords Advection–reaction equation · Finite element method · Generalized local
projection stabilization · Stability and error estimates
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1 Introduction

Advection–reaction equations arise in many engineering and industrial applications.
The numerical solution of these equations has been of interest for several decades.
It is well-known that applying the standard Galerkin finite element method (FEM)
to the advection–reaction equations induces spurious oscillations in the numerical
solution. Nevertheless, the Galerkin approximation’s stability and accuracy can be
enhanced by employing a stabilization method. Over the years, several stabilization
methods such as the Streamline Upwind Petrov–Galerkin methods (SUPG), Least-
Squares methods, Residual–free Bubbles, Continuous Interior Penalty (CIP), Subgrid
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Viscosity, and Local Projection Stabilization (LPS) have been proposed. The relation
between the different approaches is also well-understood in most cases. The basic
idea of stabilization is to stabilize the Galerkin variational formulation so that the
discrete approximation is stable, the method is (weakly) consistent and, consequently,
convergent.

The essential idea in SUPG is to add a weighted residual to the Galerkin variational
formulation to make it globally stable and consistent. The SUPG method has been
well-established for conforming and nonconforming FEM [9, 21, 24–26, 28, 32, 33].
In the early 1970s, the Least-Square method has become popular within the numerical
analysis community [6, 7]. However, it has already been published inRussian literature
[19]. The Least-Square method is inspired by the minimal residual, a technique from
linear algebra [7, 30]. The Residual–free Bubble stabilization method is based on the
Galerkin FEM with an enriched basis on each element [8]. In a particular case, the
Galerkin variational formulation with an enriched basis can be shown equivalent to the
SUPG method with piecewise linear finite elements [1]. Continuous Interior Penalty
(CIP) is another efficient and well-studied stabilization technique. The basic idea in
CIP stabilization (also known as edge stabilization in the literature) is to penalize the
jump of the gradient across the cell interfaces [10, 11, 14]. CIP has also been studied
for the hp-finite elements [13] and the Friedrichs’ systems [12].

This article focuses on stabilization by local projection for the advection–reaction
equations. The local projection stabilizationmethodhas been introducedbyBecker and
Braack [3] and Braack and Burman [4]. The stabilization term in the local projection
method is based on a projection of the finite element space that approximates the
unknown into a course (discontinuous) space, see [3, 4]. This technique has been
initially studied for fluid flow problems with Stokes-like models. The macro grid
approach approximates pressure and velocity using the same finite element spaces
[3, 22, 31]. Later, the LPS method on a single mesh with enriched finite element
spaces was proposed and extended to various incompressible flow problems [4, 23,
29, 34]. Moreover, in a particular case, the SUPG method can be recovered from
the LPS method with piecewise linear functions enriched polynomial Bubble space
on triangles and with an appropriate SUPG-parameter, see [23]. LPS method adds
symmetric stabilization terms and contains fewer stabilization terms than residual-
based stabilization methods.

furthermore, a generalization of the local projection stabilization allows defining
local projection spaces on overlapping grids. Neither macro grid nor enrichment of
spaces is needed in generalized local projection stabilization (GLPS). This approach
has been introduced and studied for the convection–diffusion problem in [27] with
conformingfinite element space, recently in [18]with conforming, and nonconforming
finite element spaces, and for theOseen problem in [29]. This paper presents an a priori
analysis for the generalized local projection stabilization scheme with conforming
and nonconforming finite element spaces for an advection–reaction equation. In the
absence of the diffusion term in the advection–reaction equation, a different approach
is needed in the numerical analysis compared to the earlier studies. In particular, a
relatively stronger norm, the local projection streamline diffusion (LPSD) norm, is
used in our analysis. Since the LPDS norm contributes to the streamline derivative
term [27], it provides control with respect to streamline derivatives. Moreover, it has
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been shown that the LPSD norm is equivalent to the SUPG norm for an appropriate
choice of mesh-dependent parameter [14].

GLPS approach is further extended to the nonconforming discretization for the
advection-reaction equation. The standard nonconforming formulation together with
the GLP stabilization is not sufficient to have a coercive discrete formulation. To
achieve coercivity, additional weighted edge integrals with the jumps and the aver-
ages of the discrete solution at the interfaces need to be added to the GLPS bilinear
form in the nonconforming finite element formulation as in SUPG [25, 26]. Though
the nonconforming GLPS is challenging compared to the conforming scheme, it is
preferred in parallel computing. Since the nonconforming shape functions have local
support at most in two cells, the sparse matrix stencil will be smaller. Therefore, com-
munication across MPI processes in parallel computing is minimal, resulting in better
scalability. Moreover, numerical comparisons of the conforming and nonconforming
approaches demonstrate that the nonconforming approach is marginally more robust
with respect to the stabilization parameter than the conforming approach (see Fig. 4).

The article’s outline is as follows: Sect. 2 introduces the model problem and GLPS
formulation. In Sect. 3, we derive a stability estimate of the conforming GLPS scheme
and establish an optimal a priori error estimates. Section 4 focuses on the nonconform-
ing GLPS, in which we derive the stability results and obtain an optimal a priori error
estimates. Section 5 presents a set of numerical experiments to support our theoretical
estimates.

2 Finite elements for the advection–reaction equation

2.1 Themodel problem

Let Ω ⊂ R
2 be a bounded polygonal domain with boundary ∂Ω . Consider the fol-

lowing advection–reaction equation with a boundary condition:

μu + b · ∇u = f in Ω,

u = g on ∂Ω−.
(2.1)

Here, u is an unknown scalar function, b ∈ [W 1∞(Ω)]2 is the advective velocity,
μ ∈ L∞(Ω) the reaction coefficient, f ∈ L2(Ω) is the source term and g ∈ L2(∂Ω−)

is a boundary data and ∂Ω− denotes the inflow part of the boundary of Ω namely

∂Ω− := {x ∈ ∂Ω | b(x) · n(x) < 0 }.

Further, n is the unit outward normal to the boundary. We assume that there exist
α > 0 such that

μ0 :=
(

μ − 1

2
divb

)
≥ α > 0 a.e. in Ω. (2.2)
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2.2 Variational formulation

Let L2(Ω) and Hm(Ω), m > 0 be the standard Sobolev spaces and

V = {v ∈ L2(Ω) |b · ∇v ∈ L2(Ω) }.

Note that the functions in V have traces in L2(∂Ω; |b · n|) [11, 17], which can be
defined by

L2(∂Ω; |b · n|) :=
{
v is measuarable function on ∂Ω |

∫
∂Ω

|b · n|v2 ds < ∞
}

.

We now derive a variational form of the model problem in an usual way. Multiplying
the model problem with a test function v ∈ V and after integrating over Ω , the
variational form of the model problem (2.1) reads: Find u ∈ V such that

a(u, v) = l(v) for all v ∈ V , (2.3)

where,

a(u, v) := (b · ∇u, v) + (μu, v) +
∫

∂Ω

(b · n)�uv ds,

l(v) := ( f , v) +
∫

∂Ω−
(b · n)�gv ds. (2.4)

Here, (·, ·) is the L2(Ω) inner product, u� := 1
2 (|u|−u) and u⊕ := 1

2 (|u|+u), where
|u| is the modulus function of u. The Banach–Nečas–Babuška theorem [20, pp. 83]
guarantee that the model problem is well–posed with the space V , for more details;
see [20, pp. 230].

Remark 1 The analysis is presented for a two-dimensional case for simplicity. Nev-
ertheless, the study is independent of the dimension, whereas faces instead of edges
need to be used to extend to three-dimensions.

2.3 Finite element space

Let Th be a collection of non-overlapping quasi-uniform triangles obtained by a
decomposition of Ω . Let hK = diam(K) for all K ∈ Th and the mesh-size
h = maxK∈Th hK . Assume that the family of meshes Th is shape regular, i.e., there
exist cK such that for all h > 0 and for all K ∈ Th

hK
ρK

≤ cK ,

where ρK denotes the radius of the largest inscribed ball in K . Let Eh = E I
h ∪ E B

h be
the set of all edges in Th , where E I

h and E B
h are the sets of all interior and boundary
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Fig. 1 The edge E = ab is shared by two neighboring triangles K+ and K− and n is the unit outward
normal to K+, (left), edge patchME and node patch Ma (right)

edges respectively. Let hE be the length of any edge. Further, for each edge E in Eh , a
unit normal vector n is associated, this is taken to be the unit outward normal to Ω for
all E ∈ Eh . Suppose K+(E) and K−(E) are neighbours of the interior edge E ∈ E I

h ,
then the normal vector n is oriented from K+(E) and K−(E), (Fig. 1). The average
and jump of a function v on the edge E can be defined as

{v} = 1

2

(
v+|E + v−|E

)
, [v] := v+|E − v−|E ,

where v± := v|K± . Let Vh := V I
h ∪ V B

h be the set of all vertices in Vh , where V I
h

and V B
h are the sets of all interior and boundary vertices respectively. For any a ∈ Vh ,

Ma (patch of a) denotes the union of all cells that share the vertex a. Further, define
ha = diam(Ma) for all a ∈ Vh . Moreover, for any E ∈ Eh ,ME (patch of E) denotes
the union of all cells that share the edge E , (Fig. 1).

The following norm is used in the analysis. Let the piecewise constant function hT
is defined by hT |K = hK and s ∈ R and m ≥ 0

∥∥hsT u
∥∥
m =

⎛
⎝ ∑

K∈Th

h2sK ‖u‖2Hm(K )

⎞
⎠

1
2

for all u ∈ Hm(Th).

Suppose I (a) denotes the index set for all Kl elements, so that Kl ⊂ Ma . Then, the
local mesh-size associated to Ma is defined as

ĥa := 1

card(I (a))

∑
l∈I (a)

hl , for each a ∈ Vh,

where card(I (a)) denotes the number of elements in Ma .
We next define a piecewise polynomial space as

Pk(Th) :=
{
v ∈ L2(Ω) : v|K ∈ Pk(K ) ∀K ∈ Th

}
,
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where Pk(K ), k ≥ 0, is the space of polynomials of degree at most k over the element
K . Further, define a conforming finite element space of piecewise linear as

V c
h :=

{
v ∈ H1(Ω) : v|K ∈ P1(K ) ∀ K ∈ Th

}
,

and a nonconforming Crouzeix–Raviart finite element space of piecewise linear is
defined as

V nc
h :=

{
v ∈ L2(Ω) : v|K ∈ P1(K ),

∫
E
[v] ds = 0, for all E ∈ E I

h

}
.

Next, the following technical results of finite element analysis are recalled.

Lemma 1 Trace inequality [17, pp. 27]: Suppose E denotes an edge of K ∈ Th. For
v|K ∈ H1(K ) and vh ∈ Pk(Th), there holds,

‖v‖L2(E) ≤ C
(
h−1/2
K ‖v‖L2(K ) + h1/2K ‖∇v‖L2(K )

)
, (2.5)

‖vh‖L2(E) ≤ Ch−1/2
K ‖vh‖L2(K ). (2.6)

Lemma 2 Inverse inequality [17, pp. 26]: Let v ∈ Pk(Th) for all k ≥ 0. Then,

‖∇v‖L2(K ) ≤ Ch−1
K ‖v‖L2(K ) . (2.7)

Lemma 3 Poincaré inequality [35, pp. 91]: For a bounded and connected polygonal
domain M and for any v ∈ H1(M ),

∥∥∥∥v − 1

|M |
∫
M

v dx

∥∥∥∥
L2(Ω)

≤ C diam(M ) ‖∇v‖L2(M ) , (2.8)

where diam(M ) and |M | denote the diameter and measure of domain M .
In particular, for every vertex a ∈ Vh and every function v ∈ H1(Ma), it holds

[35, pp. 8, 91]

∥∥∥∥v − 1

|Ma |
∫
Ma

v dx

∥∥∥∥
L2(Ma)

≤ Cha ‖∇v‖L2(Ma)
, (2.9)

where ha is the diameter ofMa. Here, the constant C equals to 1/π for convex domain
Ma.

Lemma 4 [5, Lemma 5] Let (H,‖·‖H ) be a Hilbert space where the norm of y ∈ H
is defined by means of two semi-norms | · |a and | · |b as ‖y‖2H = | · |2a + | · |2b. For a
given bilinear form B : H × H → R, we assume

∀ y ∈ H : B(y, y) ≥ c0|y|2a (2.10)

∀ y ∈ H∃κ ∈ H : B(y, κ) ≥ c2|y|2b − c1|y|2a (2.11)
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and ‖κ‖H ≤ ‖y‖H with constants c0, c2 > 0 and c1 ≥ 0. Then, the bilinear form
fulfills the inf-sup condition

∀ y ∈ H ∃z ∈ H \ {0} : B(y, y) ≥ γ |y|H |z|H ,

with the constant

γ = min
{ c2
1 + σ

,
c2

1 + (c1 + c2)/c0

}
> 0,

where σ > 0 is arbitrary.

Note that throughout this paper, C (sometimes subscript) denotes a generic positive
constant, that may depend on the shape-regularity of the triangulation but is inde-
pendent of the mesh size. Moreover, the L2(Ω) and L∞(Ω) norms are respectively
denoted by ‖u‖ and ‖u‖∞.

3 Conforming finite element discretization

3.1 Discrete formulation

The conforming discrete solution of (2.3) is a function uh ∈ V c
h such that

a(uh, vh) = l(vh) for all vh ∈ V c
h . (3.12)

For any a ∈ Vh , define a fluctuation operator κa : V → L2(Ma) such that

κa(u) := b · ∇u − 1

|Ma |
∫
Ma

b · ∇u dx,

where |Ma | denotes the measure of Ma . For each a ∈ Vh , let βa := βha for some
β = 1

‖b‖W1,∞(M a )
+C where the constant C has the same unit as the velocity field, that

is m/s. We now define a conforming local projection stabilization term as

Sch(uh, vh) :=
∑
a∈Vh

βa
(
κa(uh), κa(vh)

)
L2(Ma)

. (3.13)

Using this stabilization, the conforming generalized local projection stabilized discrete
form of (2.3) reads as: Find uh ∈ V c

h such that

Ac
h(uh, vh) = l(vh) for all vh ∈ V c

h , (3.14)

where,

Ac
h(uh, vh) = a(uh, vh) + Sch(uh, vh). (3.15)
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Further, we introduce a local projection norm for vh ∈ V c
h as:

|||vh |||2LP = α ‖vh‖2 +
∫

∂Ω

|b · n|
2

v2h ds + Sch(vh, vh), (3.16)

and the local projection streamline derivative norm for vh ∈ V c
h is defined as:

|||vh |||2LPSD =
∥∥∥∥h

1
2
T (b · ∇vh)

∥∥∥∥
2

+ |||vh |||2LP . (3.17)

Further, the L2-orthogonal projection J ch : L2(Ω) → Vc
h satisfies the following

approximation properties [2].

Lemma 5 L2-orthogonal projections: [18, Lemma 7.1] The L2-projection J ch :
L2(Ω) → Vc

h satisfies

∥∥∥h−1
T (v − J ch v)

∥∥∥ + ∥∥∇(v − J ch v)
∥∥ ≤ C ‖hT v‖2 ∀ v ∈ H2(Ω), (3.18)

⎛
⎝ ∑

E∈Eh

∥∥v − J ch v
∥∥2
L2(E)

⎞
⎠

1/2

≤ C
∥∥∥h3/2T v

∥∥∥
2

∀ v ∈ H2(Ω), (3.19)

(v − J ch v, vh) = 0 ∀ vh ∈ V c
h . (3.20)

Further, the L2-orthogonal projection operator exhibits the following H1 and L2-
stability properties [2, Theorem 4.1,4.2]:

∥∥J ch v
∥∥ ≤ ‖v‖ ,

∥∥∥h−1
T J ch v

∥∥∥ ≤ C
∥∥∥h−1

T v

∥∥∥ ,
∥∥∇ J ch v

∥∥ ≤ C ‖∇v‖ . (3.21)

Moreover, the main result of this subsection is the following theorem, which ensures
that the discrete bilinear form is well–posed [20].

Theorem 1 (Stability) Assume βa = βha for some β|Ma = 1
‖b‖W1,∞(M a )

+C . Then, the

discrete bilinear form (3.15) satisfies the following inf-sup condition for some positive
constant γ , independent of h:

inf
uh∈V c

h

sup
zh∈V c

h \{0}
Ac
h(uh, zh)

|||uh |||LPSD |||zh |||LPSD ≥ γ > 0.

Proof Using Lemma 4, the inf-sup condition can be proved in three steps:

– Step 1: Ac
h(uh, uh) ≥ c0 |||uh |||2LP ,

– Step 2: ∀uh ∈ V c
h , ∃vh ∈ V c

h : A
c
h(uh, vh) ≥ c0

∥∥∥∥h
1
2
T (b · ∇uh)

∥∥∥∥
2

− c1 |||uh |||2LP ,

– Step 3: |||vh |||LPSD ≤ |||uh |||LPSD .
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First, consider the bilinear form in (3.15) with vh = uh . Applying an integration
by parts to the first term of the bilinear form and an application of (2.2) lead to,

Ac
h(uh, uh) ≥ α ‖uh‖2 +

∫
∂Ω

|b · n|
2

u2h ds + Sch(uh, uh) = |||uh |||2LP . (3.22)

Further, the control of

∥∥∥∥h
1
2
T (b · ∇vh)

∥∥∥∥
2

can be obtained by choosing vh = J ch (hT (b ·
∇uh)) in (3.15), that is,

Ac
h(uh, J

c
h (hT (b · ∇uh)))

=
∥∥∥∥h

1
2
T (b · ∇uh)

∥∥∥∥
2

+ (
b · ∇uh, J

c
h

(
hT (b · ∇uh)

) − hT (b · ∇uh)
)

+ (
μuh, J

c
h (hT (b · ∇uh))

)
+

∫
∂Ω

(b · n)�uh J
c
h (hT (b · ∇uh)) ds + Sch(uh, J

c
h (hT (b · ∇uh)))

=
∥∥∥∥h

1
2
T (b · ∇uh)

∥∥∥∥
2

+ (a) + (b) + (c) + (d). (3.23)

Let us now estimate these four terms. Using the canonical representation of the basis
function φa at the node a ∈ Vh for the mesh Th i.e.

∑
a∈Vh

φa = 1,

(a) =
∑
K∈Th

∫
K

⎛
⎝ ∑

a∈Vh

φa

⎞
⎠ (J ch (hT (b · ∇uh)) − hT (b · ∇uh))(b · ∇uh) dx

=
∑
a∈Vh

∫
Ma

(J ch (hT (b · ∇uh)) − hT (b · ∇uh))(b · ∇uh)φa dx.

Using the orthogonality property of L2-projection (3.20) with the test functionCaφa ∈
V c
h , where Ca is a constant and ‖φa‖∞ ≤ 1,

(a) ≤
∑
a∈Vh

∥∥J ch (hT (b · ∇uh)) − hT (b · ∇uh)
∥∥
L2(Ma)

‖b · ∇uh − Ca‖L2(Ma)
.

Choosing the constantCa = 1
|Ma |

∫
Ma

b · ∇uh dx, and applying theCauchy–Schwarz
inequality, (3.21) and Young’s inequality:

(a) ≤
⎛
⎝ ∑

a∈Vh

β−1
a

∥∥J ch (hT (b · ∇uh)) − hT (b · ∇uh)
∥∥2
L2(Ma)

⎞
⎠

1/2

⎛
⎝ ∑

a∈Vh

βa

∫
Ma

κ2
a (uh) dx

⎞
⎠

1/2
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≤ ‖b‖
1
2∞

⎛
⎝ ∑

a∈Vh

∥∥∥∥h
1
2
T (b · ∇uh)

∥∥∥∥
2

L2(Ma)

⎞
⎠

1/2

[Sch(uh, uh)]
1
2

≤ ‖b‖
1
2∞

∥∥∥∥h
1
2
T (b · ∇uh)

∥∥∥∥ [Sch(uh, uh)]
1
2

≤CSch(uh, uh) + 1

6

∥∥∥∥h
1
2
T (b · ∇uh)

∥∥∥∥
2

,

the constantC in the above estimate depends on ‖b‖
1
2∞. The second term is estimated by

applying the Cauchy–Schwarz inequality followed by (3.21) and an inverse inequality,

(b) ≤ ‖μuh‖
∥∥J ch (hT (b · ∇uh)

∥∥ ≤ Cα ‖uh‖2 . (3.24)

The constant C in (3.24) depends on ‖b‖∞ and α−1. The third term is handled by
applying the Cauchy–Schwarz inequality, trace inequality (2.6), (3.21) and Young’s
inequality,

(c) ≤
∑
E∈E B

h

∥∥(b · n)�uh
∥∥
L2(E)

∥∥J ch (hT (b · ∇uh))
∥∥
L2(E)

≤ C
∑
E∈E B

h

∫
E

|b · n|
2

u2h ds + 1

6

∥∥∥∥h
1
2
T (b · ∇uh)

∥∥∥∥
2

.

The constant C depends on ‖b‖∞. Next, applying the Cauchy–Schwarz inequality to
the fourth term to obtain,

(d) ≤ [Sch(uh, uh)]
1
2 [Sch

(
J ch (hT (b · ∇uh)), J

c
h (hT (b · ∇uh))

)] 12 . (3.25)

The second term of (3.25) is estimated by using the boundedness of local projection
operator, an inverse inequality (2.7), stability of the projection estimates (3.21), and
βa = βha with β = 1/(‖b‖W 1,∞(Ma)

+ C),

Sch(J
c
h (hT (b · ∇uh)), J

c
h (hT (b · ∇uh)))

≤
∑
a∈Vh

βa

∥∥∥∥b · ∇(J ch (hT (b · ∇uh))) − 1

|Ma |
∫
M a

b · ∇(J ch (hT (b · ∇uh)) dx

∥∥∥∥
2

L2(M a)

≤ C
∑
a∈Vh

∥∥∥∥h
1
2
T (b · ∇uh)

∥∥∥∥
2

L2(M a)

.

The constant C in the above estimates depends on ‖b‖∞. Then, it follows that,

Sch(uh, J
c
h (hT (b · ∇uh))) ≤ CSch(uh, uh) + 1

6

∥∥∥∥h
1
2
T (b · ∇uh)

∥∥∥∥
2

. (3.26)

123



Local projection stabilized finite element methods... Page 11 of 29    45 

The constant C in the above estimates depends on ‖b‖∞. Put together, (3.23) leads to,

Ac
h(uh, J

c
h (hT (b · ∇uh))) ≥ 1

2

∥∥∥∥h
1
2
T (b · ∇uh)

∥∥∥∥
2

− C |||uh |||2LP . (3.27)

The constant C in the estimates (3.27) depends on ‖b‖∞. Note that

∣∣∣∣∣∣J ch (hT (b · ∇uh))
∣∣∣∣∣∣
LPSD = α

∥∥J ch (hT (b · ∇uh))
∥∥2

+
∑
E∈E B

h

∫
E

|b · n|
2

(J ch (hT (b · ∇uh)))
2 ds

+ Sch(J
c
h (hT (b · ∇uh)), J

c
h (hT (b · ∇uh)))

+
∥∥∥∥h

1
2
T (b · ∇(J ch (hT (b · ∇uh))))

∥∥∥∥
2

. (3.28)

Now, estimate the four terms of (3.28) individually. Using the stability of the projection
operator (3.21) and an inverse inequality,

α
∥∥J ch (hT (b · ∇uh))

∥∥2 ≤ αC ‖b‖2∞ ‖uh‖2 ≤ C ‖b‖2∞ |||uh |||2LPSD .

The second term is estimated by using trace inequality and (3.21) ,

∑
E∈E B

h

∫
E

|b · n|
2

(J ch (hT (b · ∇uh)))
2 ds

≤ C ‖b‖∞
∥∥∥∥h

1
2
T (b · ∇uh)

∥∥∥∥
2

≤ C ‖b‖∞ |||uh |||2LPSD .

The last two terms are handled by using boundedness of the local projection operator,
an inverse inequality (2.7) and projection estimates (3.21), that is,

Sch(J
c
h (hT (b · ∇uh)), J

c
h (hT (b · ∇uh))) +

∥∥∥∥h
1
2
T (b · ∇(J ch (hT (b · ∇uh))))

∥∥∥∥
2

≤ C ‖b‖∞
∥∥∥∥h

1
2
T (b · ∇uh)

∥∥∥∥
2

≤ ‖b‖∞ |||uh |||2LPSD .

Finally, put together, we get,

∣∣∣∣∣∣J ch (hT (b · ∇uh))
∣∣∣∣∣∣
LPSD ≤ C |||uh |||LPSD . (3.29)

The constant C in (3.29) depends on ‖b‖∞. The selection of zh is

zh = uh + 1

C + 1
J ch (hT (b · ∇uh)),
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where J ch is as defined in Lemma 5. Finally, the result follows by Lemma 4. ��

3.2 A priori error estimates

Lemma 6 Suppose u ∈ H2(Ω) and βa = βha for some β|Ma = 1
‖b‖W1,∞(M a )

+C .

Then,

∣∣∣∣∣∣u − J ch u
∣∣∣∣∣∣
LPSD ≤ C

∥∥∥h3/2T u
∥∥∥
2
.

Proof Consider the terms in the LPSD norm defined in (3.17),

∣∣∣∣∣∣u − J ch u
∣∣∣∣∣∣2
LPSD = ∥∥u − J ch u

∥∥2 +
∥∥∥∥h

1
2
T (b · ∇(u − J ch u))

∥∥∥∥
2

+
∫

∂Ω

|b · n|
2

(u − J ch u)2 ds + Sch(u − J ch u, u − J ch u). (3.30)

Let us now estimate the terms on the right-hand side of (3.30) individually. The first
and second terms are estimated by using the approximation estimates (3.18),

‖u − J ch u‖ ≤ ∥∥h2T u
∥∥
2 and

∥∥∥∥h
1
2
T (b · ∇(u − J ch u))

∥∥∥∥ ≤ C

∥∥∥∥h
3
2
T u

∥∥∥∥
2
.

The constant C depends on ‖b‖∞. The third term of (3.30) is handled by using the
trace inequality (3.19) over each edge,

∫
∂Ω

|b · n|
2

(u − J ch u)2 ds ≤ C

∥∥∥∥h
3
2
T u

∥∥∥∥
2

2
.

Note that the constant C in the above estimates depends on the ‖b‖∞. The last term is
estimated by using boundedness of the local projection operator and βa = βha with
β = 1/(‖b‖W 1,∞(Ma)

+ C),

Sch(u − J ch u, u − J ch u) :=
∑
a∈Vh

βa

∥∥∥∥b · ∇(u − J ch u) − 1

|Ma |
∫
M a

b · ∇(u − J ch u) dx

∥∥∥∥
2

L2(M a )

≤
∑
a∈Vh

βha
∥∥b · ∇(u − J ch u)

∥∥2
L2(M a )

≤ C

∥∥∥∥h
1
2
T ∇(u − J ch u)

∥∥∥∥
2

≤ C
∥∥∥h3/2T u

∥∥∥2
2
.

The constant C depends on ‖b‖∞. The combination of the above estimates concludes
the proof. ��
Lemma 7 Suppose u ∈ H2(Ω) and βa = βha for some β|Ma = 1

‖b‖W1,∞(M a )
+C .

Then,

Ac
h(u − J ch u, vh) ≤ Ch

3
2 ‖u‖2 |||vh |||LPSD ∀ vh ∈ V c

h . (3.31)
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Proof Applying an integration by parts to the first term of the discrete bilinear form
in (3.15) to obtain,

Ac
h(u − J ch u, vh) = − (u − J ch u,b · ∇vh) + ((μ − divb)(u − J ch u), vh) + Sch(u − J ch u, vh)

+
∫

∂Ω

(b · n)(u − J ch u)vh ds +
∫

∂Ω

(b · n)�(u − J ch u)vh ds

= − (u − J ch u,b · ∇vh) + ((μ − divb)(u − J ch u), vh) + Sch(u − J ch u, vh)

+
∫

∂Ω

(b · n)⊕(u − J ch u)vh ds = (a) + (b) + (c) + (d).

The first term is estimated by using the Cauchy–Schwarz inequality and L2-projection
property (3.18),

(a) ≤ ∥∥u − J ch u
∥∥ ‖b · ∇vh‖ ≤

∥∥∥h2T u
∥∥∥
2
‖(b · ∇vh)‖ ≤

∥∥∥∥h
3
2
T u

∥∥∥∥
2

∥∥∥∥h
1
2
T (b · ∇vh)

∥∥∥∥
≤ C

∥∥∥h3/2T u
∥∥∥
2
|||vh |||LPSD .

and,

(b) ≤ ‖μ − divb‖∞√
α

∥∥u − J ch u
∥∥ √

α ‖vh‖ ≤ C
∥∥∥h2T u

∥∥∥
2
|||vh |||LPSD . (3.32)

The constant C in (3.32) depends on α−1/2. The third term is handled by applying
the Cauchy–Schwarz inequality, boundedness of the local projection, approximation
estimates (3.18) and βa = βha with β = 1/(‖b‖W 1,∞(Ma)

+ C),

(c) =
∑
a∈Vh

βa
(
κa(u − J ch u), κa(vh)

)
L2(Ma)

≤
⎛
⎝ ∑

a∈Vh

βa
∥∥κa(u − J ch u)

∥∥2
L2(Ma)

⎞
⎠

1/2

|||vh |||LPSD

≤
⎛
⎝ ∑

a∈Vh

βa
∥∥b · ∇(u − J ch u)

∥∥2
L2(Ma)

⎞
⎠

1/2

|||vh |||LPSD

≤ C
∥∥∥h3/2T u

∥∥∥
2
|||vh |||LPSD .

Applying the Cauchy–Schwarz inequality, trace inequality (2.5) and approximation
estimates (3.18),

123



   45 Page 14 of 29 D. Garg, S. Ganesan

(d) ≤ C

⎛
⎜⎝ ∑

E∈E B
h

∥∥u − J ch u
∥∥2
L2(E)

⎞
⎟⎠

1
2 (∫

∂Ω

|b · n|
2

v2h ds

) 1
2 ≤ C

∥∥∥h3/2T u
∥∥∥
2
|||vh |||LPSD .

Combining the above estimates leads to (3.31) and it concludes the proof. ��
Theorem 2 Let u ∈ H2(Ω) be the solution of (2.3) and uh ∈ V c

h be the discrete
solution of (3.14). Let βa = βha for some β|Ma = 1

‖b‖W1,∞(M a )
+C . Then,

|||u − uh |||LPSD ≤ C
∥∥∥h3/2T u

∥∥∥
2
.

Proof By adding and subtracting the interpolation operator J ch u, we decompose the
error as follows:

|||u − uh |||LPSD ≤ ∣∣∣∣∣∣u − J ch u
∣∣∣∣∣∣
LPSD + ∣∣∣∣∣∣J ch u − uh

∣∣∣∣∣∣
LPSD . (3.33)

In the second term of (3.33), using the estimate of Theorem 1,

c
∣∣∣∣∣∣uh − J ch u

∣∣∣∣∣∣
LPSD ≤ supwh∈V c

h

Ac
h(uh − J ch u, wh)

|||wh |||LPSD
= supwh∈V c

h

Ac
h(uh − u, wh) + Ac

h(u − J ch u, wh)

|||wh |||LPSD . (3.34)

The weak formulation (2.4) and (3.15) imply that

Ac
h(uh − u, wh) = −Sch(u, wh).

Moreover, the Cauchy–Schwarz inequality implies

Sch(u, wh) =
∑
a∈Vh

βa (κa(u), κa(wh))L2(Ma)

≤
⎛
⎝ ∑

a∈Vh

βa ‖κa(u)‖2L2(Ma)

⎞
⎠

1/2

|||wh |||LPSD .

Note that βa = βha with β|Ma = 1
‖b‖W1,∞(M a )

+C . Using the Poincaré inequality (2.9)

for every vertex a ∈ Vh ,

Sch(u, wh) ≤ C
( ∑
a∈V h

βah
2
a ‖∇(b · ∇u)‖2L2(M a )

)1/2 |||wh |||LPSD

≤ C

⎛
⎝ ∑

a∈V h

β

(
‖b‖2W 1,∞(M a )

∥∥∥h3/2a u
∥∥∥2
H2(M a )

+‖∇b‖2W 1,∞(M a )

∥∥∥h3/2a u
∥∥∥2
H1(M a )

)⎞
⎠

1
2

|||wh |||LPSD
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≤
⎛
⎝ ∑

a∈V h

β
(
‖b‖2W 1,∞(M a )

+ ‖∇b‖2W 1,∞(M a )

) ∥∥∥h3/2a u
∥∥∥2
H2(M a )

⎞
⎠

1
2

|||wh |||LPSD

≤ C
∥∥∥h3/2T u

∥∥∥
2
|||wh |||LPSD .

It follows that,

Ac
h(uh − u, wh) ≤ C

∥∥∥h3/2T u
∥∥∥
2
|||wh |||LPSD . (3.35)

Using the estimate (3.35) and Lemma 7 in (3.34), we obtain

∣∣∣∣∣∣uh − J ch u
∣∣∣∣∣∣
LPSD ≤

∥∥∥h3/2T u
∥∥∥
2
. (3.36)

Finally, Lemma 6 and (3.36) lead (3.33) to an a priori estimate. ��

4 Nonconforming finite element discretization

The nonconforming discrete solution of (2.3) is a function uh ∈ V nc
h such that

anch (uh, v) = l(v) ∀ v ∈ V nc
h , (4.37)

where,

anch (uh, v) : = (b · ∇huh, v) + (μuh, v) +
∫

∂Ω

(b · n)�uv ds

−
∑
E∈E I

h

∫
E
(b · n)[uh]{v} ds +

∑
E∈E I

h

∫
E

|b · n|
2

[uh][v] ds.

Here, ∇h denotes the piecewise (element-wise) gradient operator. For each E ∈ Eh ,
define the fluctuation operator κE : V + V nc

h → L2(ME ) such that

κE (uh) := b · ∇huh − 1

|ME |
∫
ME

b · ∇huh dx,

where, |ME | denotes the measure of ME . For each E ∈ Eh , let βE := βhE for
stabilization parameter β = 1/(‖b‖W 1,∞(ME ) + C), where the constant C has the
same unit as the velocity field, that is m/s. We now define a nonconforming local
projection stabilization term

Snch (uh, vh) :=
∑
E∈Eh

βE
(
κE (uh), κE (vh)

)
L2(ME )

, (4.38)
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using this term, the nonconforming generalized local projection stabilized discrete
form of (2.3) reads as: Find uh ∈ V nc

h such that

Anc
h (uh, vh) = l(vh) ∀ vh ∈ V nc

h , (4.39)

where,

Anc
h (uh, vh) = anch (uh, vh) + Snch (uh, vh). (4.40)

Further, we define a nonconforming local projection norm by

|||vh |||2NLP = α ‖vh‖2 +
∫

∂Ω

|b · n|
2

v2h ds + Snch (vh, vh) +
∑
E∈E I

h

∫
E

|b · n|
2

[vh]2 ds,

(4.41)

and nonconforming local projection streamline derivative norm by

|||vh |||2NLPSD = |||vh |||2NLP +
∥∥∥∥h

1
2
T (b · ∇hvh)

∥∥∥∥
2

, (4.42)

for all vh ∈ V nc
h . Moreover, the L2-projection Jnch : L2(Ω) → Vnc

h satisfies the
approximation properties stated in (3.18)–(3.21) for shape-regular triangulation, see
[16, Theorem 4], [18, Lemma 7.1].

Theorem 3 (Stability) Assume βE = βhE for some β|ME = 1
‖b‖W1,∞(M E )

+C . Then,

the discrete bilinear form (4.39) satisfies the following inf-sup condition for a positive
constant ν, independent of h:

inf
uh∈V nc

h

sup
zh∈V nc

h \{0}
Anc
h (uh, zh)

|||uh |||NLPSD |||zh |||NLPSD
≥ ν. (4.43)

Proof Using Lemma 4, the inf-sup condition can be proved in three steps:

– Step 1: Anc
h (uh, uh) ≥ c0 |||uh |||2NLP ,

– Step 2: ∀uh ∈ V nc
h , ∃vh ∈ V nc

h : Anc
h (uh, vh) ≥ c0

∥∥∥∥h
1
2
T (b · ∇huh)

∥∥∥∥
2

−
c1 |||uh |||2NLP ,

– Step 3: |||vh |||NLPSD ≤ |||uh |||NLPSD .

The key steps to derive the above estimates are as follows: Choosing first vh = uh
as a test function in (4.40),

Anc
h (uh,uh) ≥ α ‖uh‖2 +

∫
∂Ω

|b · n|
2

u2h ds +
∑
E∈E I

h

∫
E
(b · n)[uh]2 ds + Snch (uh, uh).
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Further, the control of

∥∥∥∥h
1
2
T (b · ∇hvh)

∥∥∥∥
2

is obtained by choosing vh = Jnch (hT (b ·

∇huh)) in (4.40), we have by adding and subtracting

∥∥∥∥h
1
2
T (b · ∇huh)

∥∥∥∥
2

,

Anc
h

(
uh, J

nc
h (hT (b · ∇huh)

) =
∥∥∥∥h

1
2
T (b · ∇huh)

∥∥∥∥
2

+ (b · ∇huh, J
nc
h (hT (b · ∇huh)) − hT (b · ∇huh))

+ (
μuh, J

nc
h (hT (b · ∇huh))

)
+

∫
∂Ω

(b · n)�uh J
nc
h (hT (b · ∇huh)) ds

+ Snch (uh, J
nc
h (hT (b · ∇huh))

+
∑
E∈E I

h

∫
E

|b · n|
2

[uh][Jnch (hT (b · ∇huh))] ds

−
∑
E∈E I

h

∫
E
(b · n)[uh]{Jnch (hT (b · ∇huh))} ds.

(4.44)

Most of the estimates of (4.44) can be derived in a similar way as shown in (3.23).

(b · ∇huh, J
nc
h (hT (b · ∇huh)) − hT (b · ∇huh))

≤ CSnch (uh, uh) + 1

10

∥∥∥∥h
1
2
T (b · ∇huh)

∥∥∥∥ ,

(μuh, J
nc
h (hT (b · ∇huh))) ≤ Cα ‖uh‖2 ,

Snch (uh, J
nc
h (hT (b · ∇huh))

≤ CSnch (uh, uh) + 1

10

∥∥∥∥h
1
2
T (b · ∇huh)

∥∥∥∥
2

,

∫
∂Ω

(b · n)�uh J
nc
h (hT (b · ∇huh)) ds

≤ C
∫

∂Ω

|b · n|
2

u2h ds + 1

10

∥∥∥∥h
1
2
T (b · ∇huh)

∥∥∥∥
2

.

The constant C in the above estimates depends on ‖b‖∞. Now, it is sufficient to
estimate the last two terms of (4.44). Using the Cauchy–Schwarz inequality,

123



   45 Page 18 of 29 D. Garg, S. Ganesan

∑
E∈E I

h

∫
E

|b · n|
2

[uh][Jnch (hT (b · ∇huh))] ds

≤ C

⎛
⎜⎝ ∑

E∈E I
h

∫
E

|b · n|
2

[uh]2 ds
⎞
⎟⎠

1
2
⎛
⎜⎝ ∑

E∈E I
h

∥∥[Jnch (hT (b · ∇huh))]
∥∥2
L2(E)

⎞
⎟⎠

1
2

.

At the edge E , the jump term contributes to both the triangles sharing that edge; using
the trace inequality (2.6) and (3.21),

∥∥[Jnch (hT (b · ∇huh))]
∥∥
L2(E)

≤ C
∥∥∥h−1/2

T Jnch (hT (b · ∇huh))
∥∥∥
L2(ME )

≤ C

∥∥∥∥h
1
2
T (b · ∇huh)

∥∥∥∥
2

L2(ME )

.

We then get,

∑
E∈E I

h

∫
E

|b · n|
2

[uh][Jnch (hT (b · ∇huh))] ds

≤ C

⎛
⎜⎝ ∑

E∈E I
h

∫
E

|b · n|
2

[uh]2 ds
⎞
⎟⎠

1
2

⎛
⎝ ∑

E∈Eh

∥∥∥∥h
1
2
T (b · ∇huh)

∥∥∥∥
2

L2(ME )

⎞
⎠

1
2

≤ C
∑
E∈E I

h

∫
E

|b · n|
2

[uh]2 ds + 1

10

∥∥∥∥h
1
2
T (b · ∇huh)

∥∥∥∥
2

.

Similarly, the next term is estimated as:

∑
E∈E I

h

∫
E
(b · n)[uh]{Jnch (hT (b · ∇huh))} ds

≤ C
∑
E∈E I

h

∫
E

|b · n|
2

[uh]2 ds + 1

10

∥∥∥∥h
1
2
T (b · ∇huh)

∥∥∥∥
2

.

Combining all these estimates and (4.44) lead to,

Anc
h (uh, J

nc
h (hT (b · ∇huh))) ≥ 1

2

∥∥∥∥h
1
2
T (b · ∇huh)

∥∥∥∥
2

− C |||uh |||2NLP . (4.45)
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The constant C in the above estimates depends on ‖b‖∞. In particular, the inequality
holds for

zh = uh + 1

C + 1
Jnch (hT (b · ∇huh)),

where Jnch is the projection operator and the constant C in the above equation depends
on the reaction coefficient, the constant in the inf-sup condition, L∞-norm of b. Rest
of the proof can be derived in a similar way as in the proof of (3.28)–(3.29). ��

4.1 A priori error estimates

Lemma 8 Suppose u ∈ H2(Ω) and βE = βhE for some β|Ma = 1
‖b‖W1,∞(M a )

+C .

Then,

∣∣∣∣∣∣u − Jnch u
∣∣∣∣∣∣
NLPSD ≤ C

∥∥∥h3/2T u
∥∥∥
2
. (4.46)

Proof Most of the estimates of the term (4.42) follow from Lemma 6; hence, we need
to handle the last term of (4.41),

∑
E∈E I

h

∫
E

|b · n|
2

[u − Jnch u]2 ds ≤ C
∑
E∈E I

h

∥∥[u − Jnch u]∥∥2L2(E)
.

The constant C depends on ‖b‖∞. At the edge E , the jump term contributes to both
the triangles sharing that edge; using the trace inequality (2.5),

∥∥[u − Jnch u]∥∥L2(E)
≤ C

(
h−1/2
K

∥∥u − Jnch u
∥∥
L2(ME )

+ h1/2K

∥∥∇h(u − Jnch u)
∥∥
L2(ME )

)
.

Squaring and summing up all the inner edges and using (3.18), we have

∑
E∈E I

h

∫
E

|b · n|
2

[u − Jnch u]2 ds ≤ C
∥∥∥h3/2T u

∥∥∥2
2
,

here, the constant C depends on ‖b‖∞. The result follows by combining all the above
estimates. ��
Lemma 9 Suppose u ∈ H2(Ω) and βE = βhE for some β|Ma = 1

‖b‖W1,∞(M a )
+C .

Then,

Anc
h (u − Jnch u, vh) ≤ C

∥∥∥∥h
3
2
T u

∥∥∥∥
2
|||vh |||NLPSD ∀ vh ∈ V nc

h . (4.47)
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Proof Using integration by parts in the first term of (4.40),

Anc
h (u − Jnch u, vh) = −(u − Jnch u,b · ∇hvh) + ((μ − divhb)(u − Jnch u), vh)

+ Snch (u − Jnch u, vh) +
∫

∂Ω

(b · n)⊕(u − Jnch u)vh ds

−
∑
E∈E I

h

∫
E
(b · n){u − Jnch u}[vh] ds

+
∑
E∈E I

h

∫
E

|b · n|
2

[u − Jnch u][vh] ds.

The first four terms of the bilinear form Anc
h (u − Jnch u, vh) can be estimated similarly

as in Lemma 7. Moreover, the last two terms are handled by applying the Cauchy–
Schwarz inequality,

∑
E∈E I

h

∫
E
(b · n){u − Jnch u}[vh] ds ≤ C

⎛
⎜⎝ ∑

E∈E I
h

∥∥{u − Jnch u}∥∥2L2(E)

⎞
⎟⎠

1/2

×
⎛
⎜⎝ ∑

E∈E I
h

∫
E

|b · n|
2

[vh]2 ds
⎞
⎟⎠

1/2

.

Since βE = βhE with β = 1/(‖b‖W 1,∞(ME ) + C), and at the edge E , the jump term
contributes to both the triangles sharing that edge; using the trace inequality (2.5),

∥∥{u − Jnch u}∥∥L2(E)
,
∥∥[u − Jnch u]∥∥L2(E)

≤ C
(
h−1/2
K

∥∥u − Jnch u
∥∥
L2(ME )

+ h1/2K

∥∥∇h(u − Jnch u)
∥∥
L2(ME )

)
.

Squaring and summing up all the inner edges and using (3.18),

∑
E∈E I

h

∫
E
(b · n){u − Jnch u}[vh] ds ≤ C

∥∥∥h3/2T u
∥∥∥
2
|||vh |||NLPSD .

Similarly,

∑
E∈E I

h

∫
E

|b · n|
2

[u − Jnch u][vh] ds ≤ C
∥∥∥h3/2T u

∥∥∥
2
|||vh |||NLPSD .

The constantC in the above estimates depends on ‖b‖∞. Combining all these estimates
leads to (4.47) and it concludes the proof. ��
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Theorem 4 Let u ∈ H2(Ω) be the solution of continuous problem (2.3) and uh ∈ V nc
h

be the solution of discrete problem (4.39). Further, let βE = βhE for some β|Ma =
1

‖b‖W1,∞(M a )
+C . Then,

|||u − uh |||NLPSD ≤ C
∥∥∥h3/2T u

∥∥∥
2
. (4.48)

Proof By adding and subtracting the interpolation operator Jnch u, we decompose the
error as follows:

|||u − uh |||NLPSD ≤ ∣∣∣∣∣∣u − Jnch u
∣∣∣∣∣∣
NLPSD + ∣∣∣∣∣∣Jnch u − uh

∣∣∣∣∣∣
NLPSD . (4.49)

Let wh := Jnch u − uh ∈ V nc
h . Consider the second term of (4.49) and using the

Theorem 3,

c
∣∣∣∣∣∣uh − Jnch u

∣∣∣∣∣∣
NLPSD ≤ supwh∈V nc

h

Anc
h (uh − Jnch u, wh)

|||wh |||NLPSD

= supwh∈V nc
h

Anc
h (uh − u, wh) + Anc

h (u − Jnch u, wh)

|||wh |||NLPSD
. (4.50)

The weak formulation (2.4) and (4.39) imply that

Anc
h (uh − u, wh) = −Snch (u, wh).

Moreover, the Cauchy–Schwarz inequality implies

Snch (u, wh) =
∑
E∈Eh

βE (κE (u), κE (wh))L2(ME )

≤
⎛
⎝ ∑

E∈Eh
βE ‖κE (u)‖2L2(ME )

⎞
⎠

1/2

|||wh |||NLPSD .

Note that βE = βhE with β|ME = 1
‖b‖W1,∞(M a )

+C . Using the Poincaré inequality

(2.9) for every vertex a ∈ Vh ,

Snch (u, wh) ≤ C
( ∑

E∈Eh
βEh

2
E ‖∇(b · ∇u)‖2L2(ME )

)1/2 |||wh |||NLPSD

≤ C
∥∥∥h3/2T u

∥∥∥
2
|||wh |||NLPSD .

It follows that,

Anc
h (uh − u, wh) ≤ C

∥∥∥h3/2T u
∥∥∥
2
|||wh |||NLPSD . (4.51)
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Table 1 Errors and convergence orders to the conforming FE solution of Example

h L2-error Order H1-error Order |||·|||LPSD Order

1/16 0.021496 1.91 0.320976 1.40 0.180366 1.98

1/32 0.004985 2.10 0.125672 1.35 0.054998 1.71

1/64 0.001214 2.03 0.056010 1.16 0.018152 1.59

1/128 0.000299 2.01 0.025754 1.12 0.006203 1.54

1/256 0.000074 2.00 0.012337 1.06 0.002159 1.52

Using the estimate (4.51) and Lemma 9 in (4.50), we obtain

∣∣∣∣∣∣uh − J ch u
∣∣∣∣∣∣
NLP ≤

∥∥∥h3/2T u
∥∥∥
2
. (4.52)

Finally, Lemma 8 and (4.52) lead (4.48) to an a priori estimate. ��

5 Numerical results

This section presents an array of numerical results to support the analysis presented in
the previous sections. Numerical solutions of all examples are computed on a hierarchy
of uniformly refined triangular meshes having 256, 1024, 4096, 16384, and 65536
elements, respectively. Triangulation used for computations in section 5 are shown in
Fig. 2.

Example 1 (Smooth solution)
Consider the model problem (2.1) withΩ = (0, 1)2, coefficients b = (3, 2),μ = 2

and homogeneous Dirichlet boundary condition. The source term f is chosen such
that the solution

u(x, y) = 100x2(1 − x)2y(1 − y)(1 − 2y),

satisfies the model problem. Further, the stabilization parameters for conforming and
nonconforming FEMs are chosen as βa = 0.1ha and βE = 0.1hE , respectively.

The right hand side of Fig. 2 depicts the nonconforming stabilized finite element
solution computed on a mesh with h = 2−6. The Tables 1 and 2 present the errors of
GLPS conforming and nonconforming finite element approximations respectively, in
L2−norm, H1−seminorm and the local projection streamline-derivative norm defined
in (3.17) and (4.42). A second-order convergence can be observed in L2- norm and
first-order convergence in H1-seminorm. Moreover, the convergence order 1.5 was
obtained in |||·|||LPSD norm. Also, the log-log plots of the errors in Fig. 3 show the con-
vergence behaviour of errors in the conforming and the nonconforming approximation,
and confirming our theoretical estimates.

Example 2 (Advection problem) Consider the model problem (2.1) with Ω = (0, 1)2,
coefficients b = (0, 1), μ = 1 and inflow boundary condition g(x) = 0. The source
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Table 2 Errors and convergence orders to the nonconforming FE solution of Example

h L2-error Order H1-error Order |||·|||NLPSD Order

1/16 0.013520 1.95 0.262326 1.20 0.037488 2.34

1/32 0.003466 1.96 0.114017 1.20 0.009396 1.99

1/64 0.000897 1.95 0.051673 1.14 0.002739 1.77

1/128 0.000219 2.03 0.021006 1.29 0.000835 1.71

1/256 0.000054 2.01 0.009480 1.14 0.000272 1.61

Fig. 2 Left: triangulation used for computations in Examples 1-4, right: nonconforming stabilized finite
element solution of the Example 1

Fig. 3 Convergence history of GLPS method; left conforming approximations; right: nonconforming
approximations of the Example (1)

term f is chosen such that the solution

u(x, y) = 1

2

(
tanh

(
y − .5

0.04

)
+ 1

)

satisfies the model problem.
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Fig. 4 Comparison of the GLPS conforming (dashed lines) and the non-conforming (solid lines) meth-
ods regarding the dependency of the error bounds on the problem parameters and the sensitivity to the
stabilization parameter of the Example 2

5.1 Sensitivity with respect to problem and stabilization parameter

Even though the convergence rates in Theorems 2 and 4 hold in principle for any finite
β > 0, optimizing the stabilizing parameters can have some impact on the quality of
the obtained numerical solution. The left plot of Fig. 4 shows that μ has almost no
influence on the error. We will set μ = 1 from now on. In centre Fig. 4, we observe
that the convection field significantly influences the error bound in both cases. The
convection term introduces significant numerical diffusion for ‖b‖∞ ≥ 10 (see (3.13),
(4.38)), which could affect the accuracy of the numerical solution and the error shoots
up for both the conforming and nonconforming FE approximations. Further, it can be
noticed from the right plot of Fig. 4 that the error in terms of β behaves like a well with
an approximationminimumatβ ∈ [0.1, 1] for the conforming and a broaderminimum
at β ∈ [0.001, 0.1] for the nonconforming finite element method. These numerical
experiments show that the nonconforming finite element method is slightly more
robust with respect to the stabilization parameter. Both FE approximations require
stabilization, so the error blows up as the β approaches zero.

Further, the stabilization parameters for conforming and nonconforming finite ele-
ment approximations are chosen as βa = 0.1ha and βE = 0.1hE , respectively.
The Figs. 5 (a) and (b) show the nonconforming Galerkin and GLPS finite element
solutions. We can observe that the spurious oscillation in the Galerkin solution is
suppressed in GLPS approximation. Further, the Tables 3 and 4 present the errors
and convergence behaviour of the conforming and nonconforming stabilized finite
element solutions respectively. Moreover, Fig. 6 depicts the obtained optimal order of
convergence in both the conforming and the nonconforming approximations.

Example 3 (Circular internal layer) Consider the model problem (2.1) with Ω =
(0, 1)2, coefficients b = (2, 3) andμ = 2. The source term f and the inflow boundary
condition are chosen such that the solution

u(x, y) = 16x(1 − x)y(1 − y)

(
1

2
+ tan−1

(
200

(
(0.25)2 − (x − .5)2 − (y − .5)2)

))
π

)

satisfies the model equation.
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Fig. 5 a Nonconforming Galerkin and b nonconforming stabilized finite element with βE = 0.1hE solu-
tions of the Example (2)

Table 3 Errors and orders of convergence of conforming FE solution of Example

h L2-error Order H1-error Order |||·|||LPSD Order

1/16 0.1677 2.3864 6.3194 1.0871 0.9101 1.9850

1/32 0.0223 2.9077 1.7178 1.8791 0.1878 2.2765

1/64 0.0042 2.3896 0.6164 1.4784 0.0565 1.7324

1/128 0.0010 2.0838 0.2921 1.0773 0.0155 1.8622

1/256 0.0002 2.0026 0.14534 1.0072 0.0048 1.6722

Table 4 Errors and orders of convergence of nonconforming FE solution of Example

h L2-error Order H1-error Order |||·|||NLPSD Order

1/16 0.0542 1.22 1.8829 0.83 0.2199 1.61

1/32 0.0179 1.59 0.9695 0.95 0.0419 2.38

1/64 0.0046 1.95 0.4700 1.04 0.0063 2.72

1/128 0.0011 1.99 0.2398 0.97 0.0012 2.33

1/256 0.0002 1.99 0.1211 0.98 0.0003 2.06

This solution possesses a circular internal layer on the circumference of the circle,
centered at (0.5,0.5) and radius 0.25, in the unit square domain. The conforming
and the nonconforming approximations are obtained with the stabilization parameters
βa = 0.06ha and βE = 0.05hE , respectively. The Fig. 7 depicts theGLPS conforming
stabilized finite element solution on a mesh with h = 2−7. We can observe that the
conforming stabilized scheme approximates the solution well and retains its inner
circular layer. A similar result is obtainedwith the nonconformingGLPSfinite element
approximation. Next, the Table 5 displays the errors and convergence behaviour in |||·|||
norm as defined in (3.17) and (4.42) for the GLPS conforming and nonconforming
finite approximations. Figure7 presents the convergence plots in the conforming and
nonconforming approximations and supports the theoretical estimates.
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Fig. 6 Convergence behaviour of the stabilized finite element solution of the Example 2

Table 5 Errors and convergence orders to the GLPS finite element approxomations of the Example 3

h 1/16 1/32 1/64 1/128 1/256

V c
h |||·|||LPSD 1.5967 0.91067 0.4164 0.1300 0.0330

Order 1.35 0.81 1.12 1.67 1.87

Vnc
h |||·|||NLPSD 0.8502 0.3660 0.1516 0.0275 0.0043

Order 1.65 1.21 1.27 2.46 2.65

Example 4 (Non-smooth solution)
Consider the model problem (2.1) withΩ = (−1, 1)2, coefficients b = (1, 0),μ = 0,
f = 0, the inflow boundary condition

g(x) =
{
1 y > 0
0 y < 0,

and the exact solution

u(x, y) =
{
1 y > 0
0 y < 0.

Even though discontinuous boundary data [15, Example 2] is not considered in our
numerical analysis, this example is considered to examine the robustness of the pro-
posed scheme. The stabilization parameters for the conforming and the nonconforming
approximations are chosen as βa = 0.7ha and βE = 0.7hE , respectively. The Fig. 8
depicts the conforming and the nonconforming stabilized finite element solutions on a
mesh with h = 2−6. Since the boundary conditions are imposed weakly in the current
scheme, boundary layers are not resolved in our computations. Nevertheless, the inte-
rior layer is captured well with the proposed GLPS method. Though small overshoots
and undershoots are observed near the interior layer, there are no oscillations in the
solution away from the layer. It shows the robustness of the proposed scheme.
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Fig. 7 The errors of GLPS finite element approximations and conforming stabilized finite element solution
of the example (3)

Fig. 8 Left side conforming stabilized solution and right side nonconforming stabilized solution of the
example 4 with h = 2−6

6 Summary

The stability and convergence estimates for generalized local projection stabilized
finite element scheme for the advection–reaction problem with conforming and non-
conforming spaces was derived in this paper. The GLPS allows projection spaces
on overlapping sets and avoids needing a two-level mesh or an enrichment of the
finite element space. In particular, optimal a priori error estimates were established
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for conforming and nonconforming approximations in the local projection stream-
line derivative norm. Furthermore, the numerical examination of the sensitivity of the
stabilization parameter indicated that the nonconforming approach was slightly more
robust with respect to the stabilization parameter. The accuracy and robustness of
the proposed scheme were shown numerically with suitable examples. Moreover, an
extension of this work to the flow problem is planned.
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