Ghosh, S (2020) Cutoff for the warp-transpose top with random shuffle. In: Seminaire Lotharingien de Combinatoire (84).
PDF
sem_lot_de_Com_84-B_2020.pdf - Published Version Restricted to Registered users only Download (179kB) | Request a copy |
Official URL: https://www.mat.univie.ac.at/~slc/
Abstract
We consider a random walk on the complete monomial group Gn � Sn generated by the elements of the forms (e,�, e, g; id) and (e,�, e, g-1, e,�, e, g; (i, n)) for g � Gn, 1 � i < n. We call this the warp-transpose top with random shuffle on Gn � Sn. We find the spectrum of the transition probability matrix for this shuffle. We prove that the mixing time for this shuffle is of order (Formula presented.) and under some condition on |Gn|, this shuffle exhibits the cutoff phenomenon. © (), (). All Rights Reserved.
Item Type: | Journal Article |
---|---|
Publication: | Seminaire Lotharingien de Combinatoire |
Publisher: | Universitat Wien, Fakultat fur Mathematik |
Additional Information: | The copyright for this article belongs to the Universitat Wien, Fakultat fur Mathematik. |
Department/Centre: | Division of Physical & Mathematical Sciences > Mathematics |
Date Deposited: | 28 Oct 2023 05:02 |
Last Modified: | 28 Oct 2023 05:02 |
URI: | https://eprints.iisc.ac.in/id/eprint/83178 |
Actions (login required)
View Item |