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Abstract—Federated learning (FL) has evolved as a promi-
nent method for edge devices to cooperatively create a unified
prediction model while securing their sensitive training data
local to the device. Despite the existence of numerous research
frameworks for simulating FL algorithms, they do not facilitate
comprehensive deployment for automatic speech recognition
tasks on heterogeneous edge devices. This is where Ed-Fed,
a comprehensive and generic FL framework, comes in as a
foundation for future practical FL system research. We also
propose a novel resource-aware client selection algorithm to
optimise the waiting time in the FL settings. We show that
our approach can handle the straggler devices and dynamically
set the training time for the selected devices in a round. Our
evaluation has shown that the proposed approach significantly
optimises waiting time in FL compared to conventional random
client selection methods.

I. INTRODUCTION

With the advances in hardware and software technologies,
edge devices are becoming increasingly powerful and intel-
ligent. This enables the researchers to bring machine intelli-
gence from cloud-based data centres to edge devices such as
mobile phones. For instance, Google Pixel’s “Now Playing”
option which allows us to recognise any song without internet
and “recorder” app with on-device speaker diarization show
how powerful the mobile phones are becoming. Federated
learning (FL) [1] introduces an additional dimension in the
machine learning community in which models are collabora-
tively trained on edge devices, with the data remaining local
to the device, in contrast to the centralised training approach,
and hence ensures the data privacy of the users. A general FL
setting consists of a set of clients (edge devices) and a server.
The server randomly chooses a subset of the devices from the
available ones that want to take part in the FL round. A copy
of the global model, which the server maintains, is first sent to
this subset of clients. These clients use their data in the device
to train models locally, and then send the updated weights
back to the server. In conventional FL, the server cannot
move on to the next step until it has received updates from
every client. As a result, FL performance is constrained by the
variability in waiting time experienced by each client due to
model training on the device or communication delay during
the transfer of model weights to the server. These slowdowns
caused by the clients with weaker network connections or

limited computation capabilities is known as “straggler effect”.
Once the server gets the updates from all the selected clients,
the weights are aggregated using a strategy. This process is
repeated for several rounds until the global model achieves
the desired accuracy.

The random client selection approach for FL works well
when there are no straggler devices. Prioritising for resource
rich devices every time will result in the inability of straggler
devices to participate in the FL process, and can lead to a
loss of generalisation in the global model and fairness in
the learning process. To address this challenge, a more so-
phisticated client selection algorithm is needed that considers
the presence of stragglers while minimising waiting time.
Hence the algorithm should aim to balance the participation
of straggler devices with less waiting time and fairness in the
FL process. Current FL frameworks face several challenges
when it comes to deployment on edge devices such as mo-
bile phones. These devices often have limited memory and
computational resources, which makes it difficult to store and
execute complex models. To overcome the existing challenges
and make FL a practical and scalable solution for edge
devices, it is important to develop FL frameworks that are
designed specifically for these devices, taking into account
their computational, privacy, and power constraints.

We provide a methodology for training the models on the
device, along with an efficient client selection algorithm to
handle straggler devices and FL functionalities, allowing them
to be deployed on edge devices for FL settings. We also mon-
itor the client devices’ resources to ensure that they continue
to function seamlessly even in dynamic environments. Since
this work is related to client selection, we do not consider
asynchronous federated learning approaches. In this paper, we
focus on the use case of automatic speech recognition (ASR),
demonstrating how our FL framework can be used to improve
the accuracy and robustness of speech recognition models. We
summarise our contributions as follows:

• We present Ed-Fed, an end-to-end FL framework for
edge devices with a resource-aware time-optimised client
selection algorithm.

• We provide a complete methodology for training entire
or fine tuned models on mobile phones with support for
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FL related functionalities.
• We formulate a client selection algorithm by considering

the computation, storage, power, and phone-specific ca-
pabilities of the client devices with ability to handle strag-
glers, optimise the waiting time and adaptively assign the
training time for devices based on the these information.

• We demonstrate the implementation with deployments on
multiple mobile phones to quantify the waiting time in
client selection.

• We present an extensive evaluation of our framework
on both simulations and mobile phone settings using a
custom created audio corpus with a heterogeneous set of
speakers.

This paper is organised as follows. We provide a brief
literature survey in Section II. Then, we discuss briefly about
our Ed-Fed framework for FL settings in Section III. In Section
IV, we discuss our proposed resource-aware client selection
algorithm used in the server, followed by the framework
evaluation in Section V and results in Section VI. Finally,
concluding remarks are presented in Section VII.

II. RELATED WORKS

FL Framework Recently, there has been a lot of interest
in training ASR models in FL settings [2], [3], [4], [5], [6].
Implementing ASR for federated settings in mobile phones is
a challenge in itself due to the complex model architectures
and dynamic nature of the speech signals, as well as the
limited resources available in mobile devices. Furthermore,
due to factors such as noisy backgrounds, multiple accented
speech, and different voice characteristics such as gender,
pitch, phonation, loudness and tempo, the local speech data
available on devices are non-IID in nature. This further com-
plicates the training of ASR models. Several FL frameworks,
including TensorFlow-Federated (TFF) [7], and LEAF [8],
support only the simulation of FL systems and do not propose
an edge device deployment. Flower framework [9], on the
other hand, supports extending FL settings to edge devices.
However, we can see that the ASR task with the flower
framework is also limited to system-level simulations [2].
Moreover, they provide only transfer learning techniques [10]
but not entire retraining of the model from scratch. To the
best of our knowledge, no existing framework has provided a
comprehensive implementation of ASR on-device training, as
well as FL settings for mobile phones.

Client selection We focus mainly on bandit based client
selection techniques in FL. In [11], the authors formulated the
client selection as a traditional multi-arm bandit based problem
to select clients with better quality of data to improve the FL
accuracy. The authors proposed upper confidence bound based
client selection in [12], [13] with the goal of reducing the over-
all time consumption of FL training including transmission
time and local computation time. In [14], the authors intelli-
gently select clients by exploiting the data correlations among
clients to improve FL learning performance. However, none
of these studies used actual computation resource information
from the devices to explain training latency. Meanwhile, [15]
took a similar approach to ours, taking into account resource
information and grouping clients accordingly. Even though
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Fig. 1: Optimised model created for on-device training and FL
setup

the clients with similar resources are selected together, the
need for adaptive setting training epochs is needed to control
the stragglers. Furthermore, they did not take the battery
information into account, which is critical.

III. ED-FED FRAMEWORK

This section provides a detailed overview of our Ed-Fed
framework. We first discuss the methodology for facilitating
on-device training and weight updation of models in the
clients, followed by a brief overview on the communication
protocol and the server-side algorithms used.

A. Client
It is critical to develop a better methodology for converting

a larger global model to a memory efficient and optimised
version suitable for edge devices. We use TensorFlow [16] to
create a well-optimised Flatbuffer format based conversion,
which allows for significant model size reduction. We use
the signature functions in Tensorflow to interface with the
optimised model and perform operations such as training,
inference, loading and saving the checkpoint weights, as
described in [17], [18]. Furthermore, we build extra signature
functions specifically for FL configuration to aid in efficient
communication between clients and server. Figure 1 depicts
the optimised model with eight signature functions that allow
us to successfully train the model on the device, and perform
FL related functions in the mobile devices. Along with the
existing signature functions such as train, evaluate, save, load,
and calculate loss, we build three new signature functions:

• Get 1D weights: reshapes an N-dimensional weight ten-
sor from each node in the model graph to a 1-D array
and returns a list of 1-D arrays.

• Get nodenames shapes: returns all the node names as
well as the actual tensor shapes.

• Set weights: reshape the aggregated 1-D weight array to
N-D tensor and reloads it into the model.

One key functionality of these signatures is packing and
unpacking the weights into 1-D and N-D arrays respectively.
In [19], the authors explained that important sensitive data
can be decoded if an intruder gets access to weights during
communication. But if the weights are packed into a 1-D array,
private information like shape of the weight matrices of each
layer which can give useful insights about the model architec-
ture and data patterns are hidden. These three main signatures,
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Get 1D weights, Get nodenames shapes and Set weights not
only facilitate in implementing Ed-Fed framework but also
induce privacy to the framework.

Due to the limited resources available in the edge devices,
we prevent repeated storing of checkpoints after each epoch
of training. Instead, we update a single checkpoint throughout
the training. Hence, the optimised model (tflite) generated with
the signature functions has all the functionalities which include
support for training the models efficiently on the device as well
as FL-based weight updation. The optimised model is utilised
in our android application and our simulation systems, hence
facilitating end-to-end real-time FL.

B. Communication protocol

We use the gRPC [20] communication protocol to ensure
efficient communication between the server and clients. gRPC,
like many RPC systems, is built on the concept of establishing
a service, which describes the methods that can be called
remotely with their input and return types. Protocol buffers
are the most common interface definition language (IDL)
used by gRPC to describe both the service interface and the
message structure of the payloads. In our framework, three
RPCs were used. “CommunicatedText” is the first, which is
used to send the current context of the client and server.
“GetGlobalWeights” is the second, which is used to send the
current global FL weights to the clients who have been chosen
for training. The final one is “GetFLWeights,” which is used
to share the aggregated weights between the server and client.

C. Server

On the server side, there are two major components: the
Client selection with fairness and Aggregation strategy. Client
selection involves selecting k clients out of N available clients.
In case of waiting time optimised client selection algorithms,
the clients should be selected in such a way that the overall
waiting time of the clients is minimised, while ensuring
fairness in the selection of clients. More about the client
selection algorithms is discussed in further sections.

The weight aggregation is an integral part of FL. The server
strategy algorithms aggregates the weights (wi

t) obtained from
the selected k clients by choosing algorithms such as Fe-
dAvg [1], FedProx [21], etc., and the updated weights are
sent back to the clients. Typically, in real-world settings the
client’s local data will not be representative of the global data
distribution because of the noisy background or the different
voice characteristics. Hence, simply aggregating weights from
such clients with low quality data will lead to a deviation
from the global model. An improved solution is to generate
a weighted aggregation of the models, with a weighting
coefficient reflecting the quality of the model [2]. A client with
a higher word error rate (WER) denotes poor performance of
the global model. In such cases, we assign a lower weighting
coefficient to that model during the aggregation. We use a
weighted WER-based strategy in our Ed-Fed setting and is
denoted as follows:
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Fig. 2: Scenario 1: Slow vs
Fast client.
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Fig. 3: Scenario 2: One client
with insufficient battery life.

wt+1 ←
k∑

i=1

αiw
i
t+1 (1)

αi =
exp(1−WERi)∑k
j=1 exp(1−WERj)

(2)

where the weights αi’s are calculated using the softmax
distribution obtained from the WER values from multiple
clients.

Once clients are selected for training, the server notifies
them to start training. The clients begin their training, and once
they complete their training, they send their updated weight to
the server. The server then aggregates them through a weight
aggregation strategy. The aggregation strategy considers the
uncertainties in the quality and quantity of data by using the
WER based weighting used by each client obtained during the
training process.

IV. RESOURCE-AWARE TIME-OPTIMISED CLIENT
SELECTION

A. Need for waiting time optimisation

Waiting time is the amount of time the client waits for
server to fulfill the request. This is mainly observed when the
clients send their updated weights and request the aggregated
weights to be returned by the server. Since client platforms
have different training times, the server cannot compute the
aggregated weights until responses are obtained from all
clients, leading to higher waiting times for clients with faster
computing capabilities.

To quantify the waiting time, we considered two common
scenarios : (1) Select one fast client and one slow client and
(2) Select one client with insufficient battery life made to run
more number of epochs. Figure 2 shows client 1 having higher
compute capabilities which has waited for a significant amount
of time for the slower client 2 to finish its training process.
Figure 3 presents the results of the experiment (Scenario 2).
We can see that client 1 switches off in the middle of training,
making client 2 wait for an infinite amount of time.

Considering all these problems, we created a resource-
aware time-optimized client selection algorithm which takes
the resources of the clients into consideration and assigns work
adaptively to each client depending on that client’s resources.
Our approach has three important phases, a resource informa-
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Algorithm 1: NeuralUCB-m
Data: Number of training rounds T, exploration parameters
{αt}t∈T ,Hidden layer size m,Context vectors at tth

round: {ct,s|s ∈ {1 · · ·N}}
Initialisation: Randomly initialise θs

0,
Z0,s = λI ∀s ∈ 1 · · ·N

for t=1 to T do
for s=1 to N do[

ˆb tt,s, d̂t,s

]
← fs(ct,s;θ

s
t−1)

Ut,s ← − ˆb tt,s +

αt

√
∇fs(ct,s;θs

t−1)
T
Z−1

t−1,s∇fs(ct,s;θ
s
t−1)/m

end
St ← Top min(k, |Ut|) clients from Ut

Run the clients s ∈ St and get the true [b tt,s, dt,s]
Update Zt,s ←
Zt−1,s +∇fs(ct,s;θs

t−1)
T∇fs(ct,s;θs

t−1)/m
Dt,s ← Dt−1,s ∪ (ct,s, [b tt,s, dt,s])
θs
t ← TrainNN

(
Dt,s,θ

s
t−1

)
end

tion extraction, neural reward generation and a resource-aware
time-optimised algorithm for clients.

B. Resource information

We aim to investigate the relationship between the resource
availability and the fluctuations in the training time. We
also aim to assess the impact of training on battery drain,
which is crucial in real-world scenarios to prevent device
shutdown during extended usage. The different resources
which we considered for estimating the training time and
battery drain of a particular phone are (1) memory-related
information, (2) power-related information, (3) CPU-usage-
related information (CI), and, (4) phone-specific information
(PI). Memory-related information is captured using: (a) total
RAM (TR), and, (b) available RAM (AR). In case of power-
related information, (a) available battery charge (AC) and (b)
battery status (BS) are used. For CI , the average usage of
CPU across multiple cores is used. In order to find the PI ,
we used the Antutu score. The breakup of these resources
into individual components is important because each of these
can individually effect the training time. All these resources
together form the context information of the client device, i.e.,
c = [TR,AR,AC,BS,CI, PI]. Obtaining context informa-
tion from the phone before each FL round is important as
time taken to complete the training process depends on it. We
make use of this information by training a neural network
to understand these dependencies and predict the expected
training time and battery charge consumption based on a
context vector. Once, we get to estimate these two parameters
of each client, we can group clients together in a manner that
minimises the waiting time of each client.

C. Neural reward generator

In this section, our goal is to learn the training time, and
battery drop based on the given resources. Further, use these

values to learn a better client selection by removing straggler
clients or by doing an adaptive setting of the training time for
clients. We will first give a brief overview of the basic con-
textual combinatorial multi-armed bandits (CC-MAB) problem
using neural upper confidence bound (NeuralUCB)[22] policy.
We will then use this in our FL framework setting to optimise
the overall waiting time, based on the context information.

We formulate our client selection problem as a CC-MAB
setting with N arms in which the agent interacts with the
arms for T rounds. Initially, the true rewards generated by the
arms are unknown, and the agent observes only the N context
vectors from corresponding arms: {ct,s ∈ Rd|s ∈ {1 · · ·N}}.
Let S ⊆ 2N be the set of all proper subsets of N available arms
in the setting. At each round t, the agent predicts the rewards
{r̂t,s}s∈St using a reward estimating function (f) parame-
terised by θ, such that r̂t,s = f(ct,s;θ). Then, the agent selects
a subset, St ∈ S containing k arms based on the calculated
rewards. In most cases, the agent is aware of the parametric
form of the reward estimating function that is being used. In
linear upper confidence bound problems (LinUCB)[23], for
example, the reward is calculated as r̂t,s = θ∗

T ct,s. After
playing the arms in St, the agent observes the true rewards
given as {rt,s}s∈St . The goal of the agent is to maximise the
expected reward, which is equivalent to minimising RT , the
cumulative regret over T rounds:

RT = E

 T∑
t=1

∑
s∈S∗

t

rt,s −
∑
s∈St

r̂t,s

 (3)

where S∗
t is the set of k optimal arms with maximum true

rewards at round t.
Unlike the classical linear contextual bandit where the

reward estimating function f(ct,s;θ) is linear, we utilises a
neural network to deal with the intricate relationship between
context features and rewards. The neural network based reward
estimating function f(ct,s;θ) estimates the expected reward of
an action based on past observations, and is parameterised as:

f(ct,s;θ) =
√
mWLσ (WL−1σ (· · ·σ (W1 (ct,s)))) (4)

where L is the total number of hidden layers, m is the hidden
layer size (assumed to be same for all the layers for conve-
nience), σ is the activation function, and Wl corresponds to
the weight matrix in lth layer. Here θ is the vectorised weight
matrices from all the hidden layers in the neural network and
is given as θ =

[
vec(W1

T ), vec(W2
T ) · · · vec(WL

T )
]
.

Our proposed approach for client selection considers the
clients or edge devices participating in FL as the arms with
resource information discussed in Section IV-B as the context
vectors. We also observe that using a single reward generation
model f(ct,s;θt−1) for multiple client devices (NeuralUCB-
s) may lead to performance degradation if the edge devices
have different intrinsic characteristics such as age and usage
history. For example, consider two identical phones, one of
which has been in use for 5 years and the other of which
is brand new. However, if we calculate the training time and
battery drop of both phones under similar contexts, they do
not match. We see that the older phone performs badly and
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Algorithm 2: Resource-aware time-optimised algo-
rithm for client selection

Data: Context vectors of clients at tth round: {ct,s|s ∈
{1 · · ·N}}
Number of samples at round t: (nt,1, nt,2.., nt,N ),
Number of clients to be selected: k,Minimum
and maximum number of epochs to run in a FL

round: (emin, emax),Batch size: bs, Battery
threshold γ.

Result: k clients along with their respective et,i
for i=1 to N do

ˆb tt,i, d̂t,i ← fi(ct,i;θ
i
t−1) ; /* Step 1 */

bmaxt,i
← ⌊(ACt,i − γ)/d̂t,i⌋;

emaxt,i ← min(emax, ⌊(bmaxt,i/(nt,i/bs))⌋) ;
/* Step 2 */

if emaxt,i
≥ emin then /* Step 3 */

Pt.append(ct,i);
end

end
St ← NeuralUCB-m(Pt); /* Step 4 */

mt ← 0;
foreach client i in St do

mt ← min(mt, emaxt,i ∗ (nt,i/bs) ∗ ˆb tt,i) ;
/* Step 5 */

end
foreach client i in St do

et,i ← ⌊(mt/ ˆb tt,i) ∗ (bs/nt,i)⌋ ; /* Step 6 */

end

drains faster due to the aging of batteries. Also, it is dependent
on how extensively the phone is used over time. If we use
a single model, we miss out on these relationships, and the
model gets confused if such clients exist in our rounds with
degradation in performance. On the other hand, personalised
reward generation models fs(ct,s;θ

s
t−1) (NeuralUCB-m), can

better adapt to the unique characteristics of each client device
and provide more accurate results. In our approach, the neural
network predicts the training time per batch of samples and
also the drop in battery percentage given the resource informa-
tion as the context vector, i.e.,

[
ˆb tt,s, d̂t,s

]
= fs(ct,s;θ

s
t−1).

We use the negative of training time per batch (− ˆb tt,s) for
each arm as the reward in the UCB setting and the battery drop
is used for straggler handling. Once the training is completed
for round t, the clients will send their [b tt,s, dt,s] along with
the updated weights. Then, (ct,s, [b tt,s, dt,s]) will be added
to the corresponding clients’ dataset (Dt,s) and will be used
for training the neural network.

The detailed algorithm for neural combinatorial contextual
bandits is shown in Algorithm 1.

D. Resource-aware time-optimised algorithm for client selec-
tion

Initially, all the available clients {s ∈ {1 · · ·N}} who wish
to participate in tth FL round, express their interest by sending
their context vectors {ct,s} and number of samples available

for training (nt,i) to the server. The server then selects k
clients based on Algorithms 1 and 2 and notifies the selected
clients about their selection along with the number of epochs
(et,i) they need to run in that round which is computed using
Algorithm 2. The methodology is as follows:
Step 1 Calculate: (a) time taken to complete training a batch

of data ( ˆb tt,i), (b) drop in battery on training a batch
of data (d̂t,i), and (c) the maximum number of batches
(bmaxt,i ), each client can run while maintaining the
battery above γ%.

Step 2 Calculate the maximum number of epochs (emaxt,i
)

each client can run from bmaxt,i
, nt,i, emax and bs

Step 3 Filter out the clients who can run a minimum of emin

epochs into a set (Pt)
Step 4 Create a set (St) by picking min(k, |Pt|) clients of Pt

using Algorithm 1.
Step 5 Calculate the time taken to run emaxt,i

epochs for
each client and take the minimum of all these times
(mt). mt will be the maximum time the FL round can
happen while ensuring that no client switches off in
this time.

Step 6 Calculate the number of epochs (et,i) each client can
run in mt time.

Step 7 Notify each client of St about their selection for that
FL round along with their respective et,i.

Thus, this algorithm ensures to adaptively choose the num-
ber of training epochs for the chosen clients while taking into
account the available resources and minimising the waiting
time for each client during FL rounds.

V. ED-FED FRAMEWORK SETUP

We explain the entire setup used for evaluating Ed-Fed
framework in both simulation and mobile environments.

A. Setup for system-based evaluation
In this section, we present the simulation settings used for

evaluating our Ed-Fed framework for ASR tasks. The objective
of this experiment to make the global model robust to multiple
accents by learning from different accented clients.

We use an end-to-end acoustic model similar to Deep-
Speech2 [24] architecture, collectively trained on datasets such
as Librispeech [25], commonvoice [26] and tedlium [27] as
our initial global model. For FL experiments, we created an
audio corpus using a text-to-speech (TTS) system [28] for 15
different accented speakers to simulate unique clients. Each
speech sample is about 8-10 seconds, with an average label
length limited to 150 characters. We run the FL experiments
by associating one speaker data to one client. To evaluate the
global model’s accuracy, we created a test set consisting of
speech samples from various speakers.

The simulation environment uses a single server and multi-
ple python clients. We conduct a series of experiments, where
we use our Ed-Fed framework to train the baseline ASR model
on our audio corpus. We repeated the experiment for different
values of k varying from 3 to 5. Each experiment is run for
T = 5 rounds with a fixed k and the k clients are randomly
chosen from a pool of 10 readily available clients. We use
the server strategy algorithm explained in Section III-C to
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TABLE I: Details about mobile phone hardware.

Device Model RAM CPU OS SoC

OnePlus 7T-1 4.0|8 GB Octa-core Max 2.96 GHz Oxygen 11 (Android 11) Snapdragon 855 Plus
OnePlus 7T-2 4.1|8 GB Octa-core Max 2.96 GHz Oxygen 11 (Android 11) Snapdragon 855 Plus
OnePlus 5T 3.6|6 GB Octa-core Max 2.45 GHz Oxygen 9 (Android 9 ) Snapdragon 835
Xiaomi 11 Pro 4.8|8 GB Octa-core Max 2.05 GHz MIUI 13 (Android 11) Helio G96
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Fig. 4: Effect of RAM on training time

aggregate the weights from the selected k clients. We train
the model with 25 samples and a validation set of 10 samples.
All of our experiments were carried out using NVIDIA RTX
3090 and 3080 GPUs on a 10-core Intel i9-10900K CPU.

B. Mobile phone based Evaluation

With this set of experiments, we discuss the technical details
associated with running Ed-Fed on edge devices. We present
results from deploying our framework on our custom-built
android application which allows the user to record speech
samples. These recorded samples gets stored into the local
memory of the application.

We save the datasets for training and testing in the storage
cache of the mobile phone. We train the model with 25 samples
and a validation set of 10 samples. We host our python Ed-
Fed server with WER based aggregation strategy on a local
machine. The Ed-Fed clients are the Android mobile phones
listed in Table I. We use the optimised model mentioned in
Section III-A for the on-device personalisation of the ASR
model.

VI. RESULTS

A. Effect of resources on the training time

Figure 4 depicts the results of an experiment to show the
effect of varying RAM on training time with the help of two
scenarios: one with background apps running alongside our FL
android application (less AR) and other with no background
apps (high AR). We observe that with decrease in available
RAM, there is a significant increase in training time per batch,
across all the mobile phones. This is especially noticeable in
Figure 4a and Figure 4d, where we see a jump of 49 and 33
seconds in training time respectively. Figure 5 presents the
results obtained during the experiment conducted to check the
effect of the battery percentage on the phone’s training time.
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Fig. 5: Battery vs training time

We can infer from the figures that training time shoots up
abruptly when in lower battery bands (γ = 20%), whereas
it is almost constant in the upper battery bands for all the
phones except Xiaomi 11 Pro. This is particularly evident in
the OnePlus 5T phone where training time increased 2.4 times
the regular time in lower battery bands.

B. Neural reward generator

For our contextual bandits experiment, we chose N = 4
clients and the number of rounds T = 475. We ran multiple
iterations of on-device training on the N mobile devices to
generate the context vectors containing the resource infor-
mation and noted down the time taken per batch and the
battery drop. We use the experimental setup described in [23]
for LinUCB. The neural networks used in the NeuralUCB-
s and NeuralUCB-m share the same architecture, consisting
of a simple fully connected feedforward network with two
hidden layers of 32 and 16 units, respectively with ReLu
activations. The input to the network is a d dimensional context
vector, and the outputs are the time and battery drop. For
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Fig. 6: Training loss vs FL rounds for different reward generator functions

TABLE II: Client selection evaluation

Approach Experiments Clients AC BS emin emax
ˆb tt,i bmaxt,i emaxt,i

mt

(minutes) et,i
Actual time

per batch (seconds)
Waiting time

(minutes)

Our
Client Selection

Scenario 1 Client 1 100 1 1 7 431.93 46 7 146.57 4 430 7.42Client 2 100 1 1 7 251.25 46 7 7 233

Scenario 2 Client 1 60 0 1 7 251.25 18 3 51.86 3 233 14.25Client 2 100 0 1 7 130.36 50 7 4 132

Random
Client Selection

Scenario 1 Client 1

X

7 430 114.92Client 2 7 233

Scenario 2 Client 1 7 233 ∞Client 2 7 132
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Fig. 7: Comparison of UCB based client selection algorithms

NeuralUCB-s and LinUCB, we use a single reward generating
function for all the clients. As a result the context vector
c = [TR,AR,AC,BS,CI, PI] contains all six features as
discussed in Section IV-B. In contrast, we do not need to pro-
vide the total RAM (TR) and phone-specific information (PI)
as features in the NeuralUCB-m approach with personalised
models for each client device. Hence, d = 4 is used in this
case. We do a grid search over {0.01, 0.1, 1.0, 10} for the
exploration term multiplier αt = α for all the experiments,
and tuned the parameter in such a way that the fairness
achieved is similar across all the algorithms. For LinUCB,
we selected α = 10.0 and a value of 0.01 for NeuralUCB
based algorithms.

Figure 6 trace the model’s mean square error loss over
rounds. We can see that neural network-based algorithms
outperform LinUCB. Figure 6a demonstrates that linear mod-
els are unable to accurately estimate the output and learn
feature representations from the data. Comparing the results
of NeuralUCB-s and NeuralUCB-m from Figures 6b and 6c
respectively, we can observe that both loss curves looks similar
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Fig. 8: Scenario 1: Slow vs
Fast client.

Client 1 Client 2
Clients

0

25

50

75

100

125

150

175

200

Tr
ai
ni
ng

 T
im

e 
(M

in
ut
es
)

Training Time
Waiting Time

Fig. 9: Scenario 2: One client
with insufficient battery life.
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Fed on mobile phones

with NeuralUCB-m performing slightly better over a long run.
Figure 7 plots the overall regret of all the algorithms against
rounds. We present the findings based on an average of five
repeated experiments using various random dataset shuffles.
Further, we can also infer from Figure 7 that NeuralUCB-m
with disjoint personalised models for each client appears to
outperform all other algorithms.
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C. Resource-aware time-optimised client selection
Figure 8 and Figure 9 are the results obtained when we redo

the experiments of Scenario 1 and Scenario 2 of Section IV-A
with our client selection algorithm using our neural reward
generator at t = 476. Table II contains the detailed information
of these two experiments. In Scenario 1, our algorithm iden-
tified that client 1 has weaker computing capabilities based
on the ˆb tt,i values computed. Since, client 1 has weaker
computing capabilities, our algorithm assigns a smaller et,1 of
4 epochs in contrast to the 7 epochs given by random client
selection approach. Thereby, reducing the overall waiting time
to 7.42 minutes when compared to random client selection’s
114.92 minutes. In Scenario 2, it is clear from emaxt,i values
of the Table II that client 1 has weak battery resources. Our
client selection algorithm deduced that client 1 cannot run
7 epochs and prevented the whole FL round from stopping
by assigning a smaller et,1 of 3 epochs unlike random client
selection. Further, our algorithm adjusted et,2 with respect to
et,1 by giving it a value of 4 and reduced the waiting time
even more. Whereas, the random client selection without any
knowledge of resource information asks the client 1 to run
emax epochs. This leads to power shutdown of client 1, thereby
making client 2 wait for infinite amount of time.

D. Ed-Fed framework evaluation
Figure 10 displays the results obtained by choosing various

values of k for each FL experiment. The figure shows three
line plots, each corresponding to different values of k. Each
line plot shows how the global model performs on the global
test set after each round of FL. The global test set consists
of 15 unseen speech samples each from 10 speakers with 4
different accents. We can deduce from the figure that as k
increases, the WER of the global model decreases.

Figure 11 depicts the findings obtained on deployment of
our Ed-Fed framework on multiple phones. The experiment
is carried for 5 rounds on 4 mobile devices. In each round,
2 clients are selected. The round 0 in the figure refers to the
initial global weights. All the checkpoints that are obtained at
the end of each FL round are put to the test on a global test
set. As could be predicted, the WER declines as the number
of FL rounds grow.

VII. CONCLUSIONS AND FUTURE DIRECTIONS
In this work, we present Ed-Fed, a first-of-its-kind end-

to-end federated learning framework that will serve as a
foundation for future research in practical FL systems. We also
propose a client selection algorithm that takes into account
factors such as computation, storage, power, and device-
specific capabilities to handle stragglers, optimise waiting
time, and adapt training time based on resource information.
The framework has been thoroughly tested in simulations
and on actual edge devices, and in the future, we plan to
incorporate communication latency parameters to measure
waiting time.
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