
Article
Collective heterogeneity of mitochondrial potential
in contact inhibition of proliferation
Basil Thurakkal,1 Kishore Hari,2 Rituraj Marwaha,1 Sanjay Karki,1 Mohit K. Jolly,2,* and Tamal Das1,*
1Tata Institute of Fundamental Research Hyderabad (TIFR-H), Hyderabad, India and 2Centre for BioSystems Science and Engineering, Indian
Institute of Science, Bengaluru, India
ABSTRACT In the epithelium, cell density and cell proliferation are closely connected to each other through contact inhibition
of proliferation (CIP). Depending on cell density, CIP proceeds through three distinct stages: the free-growing stage at low den-
sity, the pre-epithelial transition stage at medium density, and the post-epithelial transition stage at high density. Previous
studies have elucidated how cell morphology, motion, and mechanics vary in these stages. However, it remains unknown
whether cellular metabolism also has a density-dependent behavior. By measuring the mitochondrial membrane potential at
different cell densities, here we reveal a heterogeneous landscape of metabolism in the epithelium, which appears qualitatively
distinct in three stages of CIP and did not follow the trend of other CIP-associated parameters, which increases or decreases
monotonically with increasing cell density. Importantly, epithelial cells established a collective metabolic heterogeneity exclu-
sively in the pre-epithelial transition stage, where the multicellular clusters of high- and low-potential cells emerged. However,
in the post-epithelial transition stage, the metabolic potential field became relatively homogeneous. Next, to study the underlying
dynamics, we constructed a system biology model, which predicted the role of cell proliferation in metabolic potential toward
establishing collective heterogeneity. Further experiments indeed revealed that the metabolic pattern spatially correlated with
the proliferation capacity of cells, as measured by the nuclear localization of a pro-proliferation protein, YAP. Finally, experi-
ments perturbing the actomyosin contractility revealed that, while metabolic heterogeneity was maintained in the absence of
actomyosin contractility, its ab initio emergence depended on the latter. Taken together, our results revealed a density-depen-
dent collective heterogeneity in the metabolic field of a pre-epithelial transition-stage epithelial monolayer, which may have sig-
nificant implications for epithelial form and function.
SIGNIFICANCE Epithelial contact inhibition of proliferation (CIP) plays a key role in tissue homeostasis, morphogenesis,
and development. The biochemical changes in cells during different stages of CIP are not as well documented as the
biophysical changes. We unveil a heterogeneous landscape of metabolism that appears distinct in different stages of CIP.
Importantly, in the pre-epithelial transition stage, epithelial cells establish a collective metabolic heterogeneity where
multicellular clusters of high- and low-potential cells emerge despite the uniform genetic and nutrient conditions for the
cells. The collective heterogeneity is correlated with local fluctuations in geometrical parameters and the proliferative
capacity of cells. Finally, we demonstrate the role of cell mechanics in establishment of collective heterogeneity.
INTRODUCTION

Orchestration of cell proliferation and growth in the epithe-
lial tissue is pivotal for morphogenesis, tissue homeostasis,
and development in multicellular organisms (1). This feat
is achieved by strict control over processes like cell divi-
sion, apoptosis, cell migration, and metabolism. An impor-
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tant way of regulating cell proliferation in the epithelium is
contact inhibition of proliferation (CIP). CIP is defined as a
decrease in the mitotic rate of cells when a critical density
is attained (2,3). When reaching this critical density, cell-
cell junctions and the intracellular molecular signaling un-
dergo significant changes that prevent the cells to enter the
cell division cycle. Importantly, CIP also marks the transi-
tion from the free-growing motile state to the highly dense
immobile state of epithelial cells (4). Loss of CIP can result
in cancer and abnormal morphogenesis (5). Relevantly,
depending on mitotic rate patterns, cell shape, and cell
density, CIP proceeds through three distinct stages (4). At
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low density, cells continue to divide without any decrease
in cell mitotic rate. Epithelial cells are observed to have
a stretched, spindle-shaped morphology at low density.
At medium density, the cells undergo a morphological tran-
sition, acquiring a polygonal epithelial shape. Finally, at
the highest density, mitotic arrest happens, and the cell
area continues to decrease and induce kinetic arrest (4,6).
Hereafter, we refer to these three distinct stages as stages
1, 2, and 3, respectively. Relevantly, while some of the bio-
physical features of these stages of CIP are known, they
remain mostly uncharacterized from a biochemical point
of view.

Nevertheless, CIP is known to be the cause and result of
mechanical and biochemical changes in the epithelial cells
(7–10). As the density increases, stronger cadherin-medi-
ated cell-cell contacts are made, resulting in mechanical
changes such as decreasing traction forces (7–9). These
changes eventually act as inhibitory signals, resulting in a
mitotic arrest (4,11–14). The increase in density and contact
inhibition is also accompanied by a glass-like phase transi-
tion in epithelial cells (15). At a cell-autonomous level, the
mechanism behind the mechanical signaling of CIP is linked
to the Hippo signaling pathway. It is known that cell size and
shape deformations trigger the Hippo pathway to cause CIP
(6,14,16–18). On the other hand, the epithelial growth factor
level is one of the main biochemical cues known for regu-
lating CIP because cadherin-mediated contacts inhibit cell
proliferation only when epithelial growth factor is below a
critical threshold level (10). Taken together, most of the
studies so far focus on the mechanisms of CIP or biophysi-
cal changes associated with CIP. However, the metabolic
changes the cell undergoes while approaching CIP remain
elusive.

Metabolic changes are an important aspect associated with
cell growth and proliferation (19). Rapidly proliferating can-
cer cells that multiply quickly tend to favor aerobic glycol-
ysis as their primary metabolic pathway instead of the
more efficient oxidative phosphorylation (20,21). Known as
the Warburg effect, it is a characteristic of not only cancer
cells but also normal proliferating cells (22). It is well estab-
lished that the mitochondrion, being the powerhouse of a
cell, has an immense role in cellular metabolism as a biosyn-
thesis center, balancer of reducing equivalents, and waste
management hub (23). It is possible that malignant cells pre-
fer the glycolytic pathway because of inherent mitochondrial
deficiencies. In addition, mitochondrial outer membrane
permeabilization plays a crucial role in regulated cell death
(24–26), and many cancer cells exhibit increased resistance
to regulated cell death because of alterations in mitochon-
drial control of the process (5). Hence it is important to
look at the changes in metabolism, and specifically mito-
chondrial activity changes, in the context of control of prolif-
eration and CIP. Previous studies have explored the global
metabolic changes of cells as cell density increases. The pop-
ulation-averaged studies, focusing on metabolic changes
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with increasing density, have revealed that metabolic
pointers like oxygen consumption level, net lactate produc-
tion, ATP content, and total nicotinamide adenine dinucleo-
tide content per cell decrease with increasing cell density
(27). However, the spatiotemporal changes in cell meta-
bolism as CIP progresses through the three stages remain un-
known. Here we investigated the cellular- and multicellular-
scale dynamics of metabolism accompanied by different
stages of CIP. We asked how metabolism might be correlated
with the geometrical and mechanical parameters of epithelial
cells in the three stages of CIP.
MATERIALS AND METHODS

Cell culture

Madin-Darby canine kidney (MDCK) epithelial cell lines were used for this

study. Tetracycline-resistant wild-type MDCK cell lines were a gift from Ya-

suyuki Fujita. Cells were cultured in Dulbecco’s modified Eagle’s medium

(DMEM) supplemented with GlutaMax (Gibco) with 5% fetal bovine serum

(tetracycline-free fetal bovine serum [FBS], Takara Bio) and 10 U mL�1

penicillin and 10 mg mL�1 streptomycin (Invitrogen) in an incubator main-

tained at 37�C and 5% CO2 unless mentioned otherwise. All transient

plasmid DNA transfections were done using Lipofectamine 2000 (Invitro-

gen) following the manufacturer’s protocol. We varied the density of cultured

cells by increasing the seeding density. To get a higher density with the

desired control, the cells were seeded in an Ibidi two-well insert.
Staining for the mitochondrial membrane
potential (DJM)

We used either 2 mg/mL 5,5,6,60-tetrachloro-1,10,3,30 tetraethylbenzimi-da-

zoylcarbocyanine iodide (JC-1) dye (Invitrogen) or 100 nM tetramethylr-

hodamine methyl ester perchlorate (TMRM; catalog number I34361,

Invitrogen) to stain for DJM. The cells were incubated at 37�C for

30 min with TMRM to stain the cells. Following incubation, cells were

imaged immediately in TMRM-containing medium. In the case of JC-1 im-

aging, the dye-containing medium was replaced with DMEM prior to

imaging.
Antibodies and plasmids

Sources and dilutions of all primary and secondary antibodies used for the

immunostaining studies are given in Table S1. The details of all plasmids

used for this study are given in Table S2.
Immunofluorescence

Cell fixation was done with 4% formaldehyde diluted in 1� phosphate-

buffered saline (PBS; pH 7.4) at room temperature (RT) for 10 min, fol-

lowed by 1� PBS washes (three times). Cell permeabilization was carried

out with 0.25% (v/v) Triton X-100 (Sigma) in PBS for 10 min at RT, fol-

lowed by washing three times with PBS to remove the reagent. To block

non-specific antibody binding, samples were incubated in 2% BSA in

0.1% (v/v) PBST (Triton X-100 in 1� PBS) at RT for 45 min. The blocking

buffer was removed after 45 min, and the primary antibody dilution pre-

pared in the blocking buffer was added to the samples for 60 min at RT

or at 4�C overnight. Afterward, samples were washed twice with PBST

and three times with 1� PBS. Next, secondary antibodies tagged with a flu-

orophore were (same dilution as primary) prepared in blocking buffer and

added to the sample for 60 min at RT. To counterstain cell nuclei, the
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samples were added with a DNA-binding dye, 40,6-diamidino-2-phenylin-

dole (DAPI; 1 mg mL�1 in PBS, Invitrogen), along with the secondary anti-

body solution. Last, thorough washing of the samples was done with PBST

and PBS before imaging.
5-Ethynyl-20-deoxyuridine (EdU) proliferation
assay

We used the Click-iT Plus EdU Cell Proliferation Kit (Invitrogen, C10637)

and Click-iT EdU Imaging Kit (Invitrogen, C10086) for the proliferation

assay. MDCK cells were seeded to confluence at the required density in a

glass-bottom dish. The cells were incubated at 37�C in 10 mM EdU diluted

in complete DMEM for 60 min, followed by cell fixation with 4% formal-

dehyde diluted in 1� PBS (pH 7.4) at RT for 15 min. The fixation medium

was removed, and the cells were washed twice with 3% BSA solution

in PBS. After washing, cell permeabilization was carried out with 0.5%

(v/v) PBST at RT for 20 min. Click chemistry reactions were carried out

following the manufacture’s standard protocol for each kit. Last, the sam-

ples were counterstained for cell nuclei using DAPI (1 mg mL�1 in PBS,

Invitrogen) before imaging using wide-field microscopy.
Wide-field microscopy

Wide-field fluorescence images were acquired using a 20� air objective

(HC PL FLUOTAR L PH1 20�, numerical aperture ¼ 0.4, Leica) mounted

on a Leica DMi8 microscope. Images were acquired using a Leica

DFC9000 scientific CMOS camera. Time-lapse images were taken in a

stage-top live chamber maintained at 37�C and 5% CO2.
Confocal microscopy

Fluorescence images were acquired using a 60� oil objective (PlanApo N

60� Oil, numerical aperture ¼ 1.42, Olympus) mounted on an Olympus

IX83 inverted microscope equipped with a scanning laser confocal head

(Olympus FV3000). Time-lapse images of live samples were done in the

live-cell chamber provided with the microscopy setup. 25 mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid buffer (Gibco) was used to

maintain pH levels.
Inhibition studies

For all inhibition studies, cells in glass-bottom dishes were incubated with

the required concentration of the inhibitor in OptiMEM and TMRM (mito-

chondrial potential dye) for 30 min at 37�C in a 5% CO2 humidified

incubator for pre-treatment. Cells were switched to TMRM-containing

growth medium (Fluorobrite DMEMþ 5% FBS) with or without inhibitors

according to the experimental setup and imaged on a wide-field fluores-

cence microscope. The cells were treated with 5 mM carbonyl cyanide

4-(trifluoromethoxy)phenylhydrazone (FCCP; Sigma, a mitochondrial po-

tential decoupler) for 1 h to short-circuit the potential across the mitochon-

drial membrane. For recovery post FCCP treatment, the cells were

replenished with growth medium containing the myosin II inhibitor bleb-

bistatin (Sigma, B0560, 50 mM) and Rho-associated protein kinase

(ROCK) inhibitor Y27632 (Sigma, 30 mM), to disrupt the actomyosin

contractility. All drugs were dissolved in DMSO to prepare the primary

stock solution.
Cells cycle stage synchronization using
aphidicolin

MDCK cells were grown in complete DMEM with 5% FBS to 70% conflu-

ency before switching to complete medium with 10 mg mL�1 aphidicolin
concentration. Cells were then grown to confluency overnight (30 h) in

the presence of aphidicolin. After 30 h, aphidicolin treatment was released

by replacing the medium with complete medium with 5% FBS. Images

were taken 1.5 h post release.
Fluorescence resonance energy transfer (FRET)-
based molecular tension and metabolite
measurements

Pyruvate, glucose, and lactate levels in the cells were measured by the

FRET-based sensors Pyronic/pcDNA3.1(-), Laconic/pcDNA3.1(-), and

pcDNA3.1 FLII12Pglu-700uDelta6, respectively. The FRET experiments

were carried out in the live-cell confocal setup (Olympus FV3000).

MDCK cells, plated in a six-well plate (Tarsons), were transiently trans-

fected with the corresponding plasmid. After 6 h, cells were trypsinized

and seeded in glass-bottom dishes. After confluency, the medium was re-

placed with fresh medium containing TMRM and 25 mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid. The cells were incubated

at 37�C for 30 min before imaging. Images were taken in three different

channels: 1) mTFP1 (445 nm laser; filter, 460–500 nm), 2) FRET

(445 nm laser; filter, 530–630 nm), and 3) mVenus (514 nm laser; filter,

530–630 nm). The pinhole diameter, laser intensity, and exposure times

for donor, acceptor, and FRET channels were always kept constant for all

experiments. In the same field of views, TMRM intensity was also

measured along with these, with an excitation wavelength of 561 nm.

Each field yielded three 1024 � 1024 pixel images representing the donor,

FRET, and acceptor channels. Images were then analyzed using custom

software written in MATLAB (MathWorks).
Nutrient starvation experiments

For all the nutrient starvation studies, MDCK cells were cultured in com-

plete DMEM to confluency before staining with TMRM and imaged under

a fluorescence microscope. Complete DMEM was then replaced with the

specified minimal medium containing TMRM. A fluorescence image was

then taken after the corresponding incubation time. Details regarding the

composition of minimal medium are provided in Table S3.
System biology modeling and simulation

The model can be described as follows.

� A 2D grid (100 � 100 pixels) was used to represent the in vitro culture.

Each pixel can have a maximum of one cell.

� 500 cells were randomly placed across the whole grid at the start of the

simulation.

� Each cell had two key properties: activation level (mitochondrial activity)

and proliferation/division time. The division time represented the time

taken for a cell to divide and was controlled by CIP, as described below.

� A density was assigned to each cell, calculated as the fraction of cells pre-

sent in a 5 � 5 square grid around the cell. In other words, each cell was

sensitive to 2 grids around it, represented as the R neighborhood, where

R ¼ 2. At the boundary of the grid, cells could sense only a part of the

square to determine the density. The density of a corner cell was calcu-

lated as the fraction of pixels that were occupied in a quarter of the square

(9 pixels instead of the 25 pixels in the full square). Similarly, the cells on

the boundaries sensed 13 pixels. The density is the key aspect of the

model because it incorporates the effects of CIP. While it does not mea-

sure any mechanical properties of the cells directly, it can be taken as a

proxy of the intracellular pressure because the intracellular pressure is

only being affected by the density in the in vitro culture.

� Both the properties were assumed to depend sigmoidally on the density

of the cell as follows:
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TABLE 1 Default parameter values for the model

Parameter Terminology used in figures Value

R (radius for calculating local density) R 2

actThresh (activation threshold density) activation threshold 0.9

divThresh (division threshold density) division threshold 0.1

nAct (exponent for activation level dependence

on density)

activation Hill 5

nDiv (exponent for division time dependence on

density)

division Hill 1

divTime (basal division time of the cells) division time 1.5

divFC (maximum fold change in division time

with density)

division time FC 8

Thurakkal et al.
activation level ¼ densitynAct�
densitynAct þ actThreshnAct

� (1)

division time ¼ divTimeþ divTime � ðdivFC � 1Þ
�
�

densitynDiv

densitynDiv þ divThreshnDiv

�
(2)

As the local density increases, the cells become more active and less

likely to divide (CIP). divTime represents the basal division rate of the cells
and was taken to be 1.5 days, which was closer to the proliferation time of

MDCK cells. The divFC parameter defined the extent to which cell division

slowed down in the culture at high density compared with low density. The

exponents nDiv and nAct represented the sensitivity of the activation level

and division time to the density. As shown in the results section, the ultra-

sensitivity activation level to density, given by a high value of nAct, was

necessary for collective heterogeneity.

� Each cell was assigned a lifetime, which was the difference between the

current simulation time and the birth time of the cell. When the lifetime

crossed the division time of the cell, the cell could divide when there was

an empty grid in its R neighborhood.

� At each time step, all cells were updated in three ways: their activation

level changed based on the local density, their division time was updated

based on the local density, and they divided when the cells had space

around them and when the lifetime was long enough. The default param-

eters used for the simulations were as follows.

divTime was taken as 1 (28), thereby setting the time unit of the model

as a day, and divFC was inspired from the experimental data (Fig. S1 a).

Sensitivity analysis was performed for all parameters to establish the ef-

fect of different model parameters on the emergence of collective hetero-

geneity. For each sensitivity analysis, the parameter values were the

default ones mentioned in the Table 1, except for the parameter that

was the subject of the analysis. For specific parameters, like activation

and division thresholds, non-default parameters used were mentioned as

the title of the corresponding plot. Figures included in the paper are

intended to demonstrate the effect of the parameter on activation

dynamics and, thereby, the emergence of collective heterogeneity. Com-

plete data corresponding to the sensitivity analysis of all parameters and

the corresponding figure have been included in the GitHub repository.

The simulations are carried out using the package Agents:jl (29) in

Julia 1:6:2 The simulation codes are available at https://github.com/

askhari139/CollectiveHeterogeeneity.
Heterogeneity index and collectivity index
calculation

Heterogeneity index, - was calculated as
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Z ¼ ðI75% � I25%Þ = I (3)

where I75% and I25% are the mean fluorescence intensities of cells with top

25% and bottom 25% fluorescence intensity, respectively. I represented

the mean fluorescence intensity of the entire population. For extracting

spatial information, we first divided the image into regions of interest

(ROIs) of varying sizes, and mean - was calculated for each ROI size

(Fig. S1 c).
Image analysis

All image analyses mentioned were done by Fiji, custom-written

MATLAB scripts, Tissue Analyzer (30), and Cellpose (31). A custom-

written MATLAB script was used for the TMRM intensity collectiv-

ity-related analysis in Fig. 1. Also, the analysis of geometric

parameters including the local density, area, cell shape index, and

aspect ratio, was carried out using custom-written MATLAB scripts.

All cell-boundary segmentation was carried out using custom-written

MATLAB code or Cellpose. In Fig. 1 a, second row, the threshold for

determining ‘‘high’’ and ‘‘low’’ fluorescence intensity was set at 25%

of the cell with the maximum TMRM fluorescence intensity. Cells

with intensities higher than the threshold were classified as ‘‘high,’’

while the remaining cells were considered ‘‘low.’’ For other figures

and analyses involving stage 2 of CIP, two thresholds were utilized.

The 75th percentile of the population’s intensities marks the ‘‘high’’

threshold, and the 25th percentile marks the ‘‘low’’ threshold. Conse-

quently, this defined the upper quartile (‘‘top 25%’’) and lower quartile

(‘‘bottom 25%’’) populations.

A custom written MATLAB code was used to calculate the YAP nuclear/

cytoplasmic ratio. The YAP ratio is defined as

logðINuc = IP:NucÞ (4)

where INuc is the average YAP intensity in the cell nucleus, and IP:Nuc is the

average YAP intensity in the perinuclear region (32). The nucleus for each
was segmented from the DAPI-stained fluorescence image using Cellpose.

The perinuclear region is the dilated region of the nuclear mask by a struc-

tural element of size 2. The cell boundaries were calculated by Voronoi

tessellation of the cell centroids.
Bayesian force inference

Relative pressure within each cell was computed using the Bayesian

force inference method (33,34). To this end, bright-field phase contrast

or differential interference contrast (DIC) images showing the cell

boundary in the confluent cell monolayer were segmented using

Cellpose (31). The segmentation output was then processed by

Tissue Analyzer (30) to assign cell vertices and edges. The output

data containing this information were fed into a custom-written



FIGURE 1 Metabolism shows different patterns of collectivity at different stages of CIP. (a) Top: TMRM-stained images of a confluent MDCK

monolayer corresponding to the three stages of CIP, showing differences in the metabolic heterogeneity pattern. Left to right: stages 1, 2, and 3. Yellow

dashed lines mark the clusters formed at stage 2. Scale bar, 100 mm. The mean and standard deviation of the cell density corresponding to each stage

are shown at the top of the panels. Bottom: Cartoon of pattern variation at different global densities corresponding to the field of view. Yellow indicates

high DJM cells, and green squares show low DJM. 25% of the maximum normalized intensity is considered the threshold for low and high classi-

fication here. (b) Top: column scatter-dotplot of variance of TMRM intensity at three stages of CIP in an MDCK cell monolayer. Mean with standard

deviation is shown. Statistical significance was assessed using an unpaired Student’s t-test with Welch’s correction (two tailed). Bottom: column scatter-

dotplot of the heterogeneity index for ROI size equals the image field of view size at three stages of CIP. Mean value is shown along with SEM. Sta-

tistical significance was assessed using an unpaired Student’s t-test. (c) Representative histogram showing the distribution of TMRM intensity for cells

in stage 2 of CIP. The peak with near-zero intensities is marked by the red arrow. (d) Confocal images of TMRM-stained MDCK cells in the left panel

and right panel show Tom20 immunofluorescence confocal images. Scale bar, 50 mm. *p < 0.05, **p < 0.01, and ***p < 0.001. To see this figure in

color, go online.
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MATLAB (MathWorks) program that implemented Bayesian force

inference. As part of this approach, a matrix was formulated to represent

the balance between interfacial tensions and intracellular pressure at

every vertex of the cell. To solve this undetermined linear system,

Bayesian inversion was implemented to calculate all variables and pa-

rameters of the problem with a specific probability. Details of the prob-

abilistic determination have been described in detail elsewhere (33).

Relative pressure obtained by Bayesian force inference is a unitless

quantity.

Normalized relative pressure PNorm is given by

PNorm ¼ ðPi � PminÞ = ðPmax � PminÞ (5)

where Pi is the calculated relative pressure of the specific cell. Pmax ¼
3 � standard deviation (P) and Pmin ¼ � Pmax.
The MATLAB program used for the analysis is available in the following

GitHub link: https://github.com/askhari139/CollectiveHeterogeeneity.
Statistical analysis

Statistical analyses were carried out in GraphPad Prism 9. Statistical signif-

icance was calculated by paired t-test with Welch’s correction, unpaired

Student’s t-test, or Wilcoxon matched-pairs signed-rank test, as mentioned

in the corresponding figure. Bar-whisker plots are displayed as mean 5

maximum and minimum values. p values greater than 0.05 were considered

to be statistically not significant. For all main and supplementary figures,

*p < 0.05, **p < 0.01, and ***p < 0.001. No statistical methods were

used to set the sample size. Quantification was done using data from at least

three independent biological replicates. For analysis involving live-imaging
Biophysical Journal 122, 3909–3923, October 3, 2023 3913
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experiments, data were collected from at least three independent experi-

ments. All the experiments with representative images were repeated at

least three times.
RESULTS

Metabolism shows different collectivity at
different stages of CIP

To study the spatiotemporal variation of metabolism associ-
ated with CIP, we grew confluent MDCK cell monolayers in
varying densities falling into one of three stages. We selected
these density values according to the values reported in pre-
vious studies (4,15) (Fig. 1 a). A cell density range of 2000–
2600 cells/mm2 represented stage 1, which corresponded
to the free-growing stage of CIP. Cells at this stage were
elongated, with many cells showing stretched triangular or
quadrilateral shapes (Fig. 1 a), and a significant fraction
turned out to be in S phase, as stained by EdU (Fig. S1 a).
Next, a density range of 2700–4000 cells/mm2 represents
stage 2, which corresponded to the pre-epithelial transition
stage of CIP. Cells at this stage showed cobblestone-like
hexagonal or higher-order polygonal shapes, but still, a sig-
nificant fraction turned out to be EdU positive (Figs. 1 a and
S1 a). Finally, in a density range of 4400–6000 cells/mm2,
the fraction of EdU-positive cells decreased with increasing
density (Fig. S1 a). This density range represented the post-
epithelial transition stage of CIP. Importantly, to obtain
monolayers with varying densities and, at the same time,
to ensure similar culture conditions, we seeded the cells in
different initial densities and always imaged them within
24–30 h post seeding. As an indicator of metabolism, espe-
cially for oxidative phosphorylation leading to ATP produc-
tion, we measured DJM using TMRM, a cell-permeant
fluorescent dye. Because the accumulation of TMRM in
the mitochondrial matrix is directly proportional to DJM

(35), we can indirectly read out DJM using fluorescence mi-
croscopy. The signal is bright for polarized mitochondria
with high DJM and is dim when the mitochondrial mem-
brane is depolarized. Despite being genetically identical
and maintained under the same environment, we discovered
different patterns of metabolic variability emerging at the
multicellular level. Further, these variabilities showed
different spatial patterns at different stages of CIP, as marked
by the cell density (Fig. 1 a). In our study, we only consid-
ered epithelia post-confluence (i.e., packing fraction is
one). Subsequently, at stage 1, which corresponded to the
free-growing stage of CIP, cells showed cell-cell variability
in DJM without any cluster formation (Fig. 1 a, left). At
stage 2, which corresponded to the pre-epithelial transition
stage of CIP, we noticed the emergence of cluster formation,
with neighboring cells collectively having similar DJM

(Fig. 1 a, middle; Fig. S1 b). Given the collective nature of
the metabolic variability in this regimen, we termed this
observation ‘‘collective heterogeneity.’’ Finally, DJM ap-
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peared to be homogenized at stage 3, which corresponded
to the post-epithelial transition stage of CIP (Fig. 1 a, right).
The higher variability of DJM in stage 2 is confirmed by the
higher variance compared with that of stages 2 and 3 (Fig. 1
b, top). To quantify the heterogeneity and spatial collectivity
in DJM, we defined a metric called heterogeneity index (-),
which we defined as Z ¼ ðI75% � I25% =IÞ, where I75% and
I25% are the mean fluorescence intensities of cells with
top 25% and bottom 25% fluorescence intensity, respec-
tively, and I represents the mean fluorescence intensity of
the entire population. A perfectly homogeneous population
will have - ¼ 0, and it should increase with increasing
heterogeneity. Interestingly, at stage 2, cells show signifi-
cantly higher - than cells at stages 1 and 3 (Fig. 1 b, bottom).
Next, to extract spatial information, we first divided the
image into ROIs of varying sizes. The mean - was then
plotted against the ROI size to understand spatial informa-
tion, as shown in Fig. S1 c. While - remained constant
with decreasing ROI for cells at stages 1 and 3, for cells at
stage 2, - decreased at the lowest size of ROI. This
decrease in - occurred at the threshold length of ROI that
matched the cluster size in the population because, when
the ROI was less than or equal to the cluster of high- or
low-potential cells, heterogeneity within the ROI decreased.
As expected, stage 2 exhibited the highest relative change in
- (Fig. S1 d), quantitatively representing the collective
heterogeneity. Additionally, a significant fraction of the
cell population showed vanishingly small DJM at stage 2
(Figs. 1 c and S1 e, red arrows). This population was unique
to stage 2 and disappeared again at stage 3. The homogenous
population at stage 3 implies that DJM of neighboring
cells lost their correlation at this stage. This result is surpris-
ing given that the correlation length of cellular motions
and forces monotonically increases with increasing den-
sity (15,36).

To check whether the metabolic variability was TMRM
specific, in separate samples, we stained the cells with
another DJM indicator dye, JC-1, where the measurement
becomes ratiometric. JC-1 exhibits DJM-dependent accu-
mulation in mitochondria, indicated by a fluorescence emis-
sion shift from green (�525 nm) to red (�590 nm) as dye
aggregates are formed from the monomers on the mitochon-
drial membranes. Hence, the red:green intensity ratio is high
for polarized mitochondria and low for depolarized mito-
chondria. Moreover, the JC-1 signal is known to be indepen-
dent of the morphological parameters of mitochondria. JC-1
staining also captured the different patterns of metabolic
variability at different stages (Fig. S1 f). Like TMRM stain-
ing, we observed collective heterogeneity in JC-1 red emis-
sion at stage 2, and a more homogenous signal at stages 1
and 3 (Fig. S1 f). At stage 2, the distribution of JC-1 red:
green intensity displayed two peaks, with one of the peaks
located near zero (Fig. S1 g, red arrow). In contrast, at
stages 1 and 3, we observed only a single peak in the distri-
bution (Fig. S1 g). Hence, the results from JC-1 staining
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experiments indicated that the observed density-dependent
heterogeneity of the DJM was independent of the choice
of dye. It is known that the cell division is not synchronized
in a growing epithelial monolayer. Hence, to check whether
the differences in cell cycle stages could be responsible for
the observed heterogeneity in DJM, we synchronized the
cell cycle using the DNA polymerase alpha inhibitor aphidi-
colin and imaged the TMRM intensity landscape. The cell-
cycle-synchronized population also exhibited collective
heterogeneity in DJM at stage 2, thus undermining the
contribution of cell cycle phases in metabolic heterogeneity
(Fig. S2 a).

Further, we examined whether the heterogeneity arose
from differential nutrition availability and cellular con-
sumption. To this end, we first performed nutrient starvation
experiments. We cultured MDCK cells at stage 2 in various
minimal media instead of complete DMEM (see Materials
and methods) and subsequently investigated the impact on
collective heterogeneity in DJM. We observed that the cells
exhibited collective heterogeneity inDJM under all nutrient
starvation conditions considered (Fig. S2 b), showing that
nutrient availability did not play a major role in the emer-
gence of collective heterogeneity in DJM. To further under-
stand the differences in nutrition availability, we measured
the pyruvate, glucose, and lactate levels in cells by geneti-
cally encoded FRET-based sensors Pyronic, Laconic, and
FLII12Pglu-700uDelta6, respectively. We transiently trans-
fected MDCK cells with the corresponding plasmids and
carried out FRET measurements in cells with high and
low TMRM intensity. We did not observe any significant
difference in the levels of glucose, lactate, or pyruvate in
the two cell populations (Fig. S2 c), indicating that the cor-
responding nutrient availability in the cells is homogenous.
Together, these two results demonstrated that the collective
heterogeneity in JM did not originate from differential
nutrient consumption or availability. Finally, we investi-
gated whether differences in DJM stem from cell-cell dif-
ferences in the mitochondrial mass. For this, we first
stained cells at stage 2 with TMRM and imaged them.
TMRM intensity appeared to be heterogeneous here. Later,
we fixed the same sample and stained it with an antibody
against a mitochondrial outer membrane protein, Tom20,
that is commonly used to quantify the mitochondrial mass
(37,38). Tom20 staining intensity appeared to be homoge-
nous compared with the TMRM intensity landscape
(Fig. 1 d). To evaluate how the mitochondrial content is
different in the high and low DJM populations, we quanti-
fied the total Tom20 intensity in both populations. To this
end, we considered the cells of lower-quartile TMRM inten-
sity (the subpopulation of cells with the bottom-most 25%
intensity) and upper-quartile TMRM intensity (the subpop-
ulation of cells with the topmost 25% intensity) as the cells
with low and high DJM, respectively. A cell-wise quantifi-
cation of the Tom20 signal showed that the population
with higher DJM has a slightly higher Tom20 intensity
compared with the population with lower DJM. But the dif-
ference is low compared with the heterogeneity in DJM.

The enhancement in DJm (�3.59-fold) was significantly
higher than that of the mitochondrial mass (�1.15-fold)
(Fig. S2 d). Hence, we propose that the collective heteroge-
neity in DJM is not primarily due to the heterogeneity in the
mitochondrial mass, although the latter may have some frac-
tional contributions. Taken together, these results revealed a
heterogeneous DJM field emerging in the epithelial mono-
layer whose length scale and variance depended on the
global cell density. This heterogeneity was qualitatively
and quantitatively different in three previously reported
stages of CIP. Importantly, these results revealed an emer-
gence of collective heterogeneity at stage 2, which is also
the pre-epithelial transition stage. Hence, going forward,
we investigated how this collective heterogeneity observed
at stage 2 depended on the local parameters beyond its de-
pendency on the global density.
Correlation of local variations in membrane
potential with the local geometric environment

Relevantly, at stage 2, cells display a local fluctuation in
density across the monolayer field (39,40). Hence, we
next studied how the local fluctuation in density influences
the metabolism in the pre-epithelial transition stage. For
this purpose, we mapped the collective heterogeneity in
metabolism, as measured by the spatial variation in
TMRM intensity, onto the local number density of cells.
To this end, we segmented the cell boundary from bright-
field images using a custom-written code in MATLAB.
The local density value was defined, by counting the number
of cells around each pixel in a unit neighborhood area. The
unit neighborhood area was defined as a square with a side
of three times the average cell diameter because a side size
of three times the average cell diameter was the optimum
neighborhood area to give the maximum difference between
average DJM for the low and high local density population
of cells. (Fig. S3 a). Further correlation analysis showed that
DJM was correlated with local variation of the number den-
sity of cells (Figs. 2 a and S3 b). To evaluate the statistical
significance of this observed correlation, we compared the
TMRM intensity of the top 25% dense region (high density)
with that of the bottom 25% dense region (low density). The
comparison revealed that TMRM intensity in high-density
regions was higher than TMRM intensity in low-density re-
gions (Fig. 2 b). Relevantly, local fluctuations in local den-
sity can result in changes in other geometric parameters of
cells as well. We therefore investigated how different geo-
metric parameters, including the cell area, cellular aspect ra-
tio, and shape index are spatially correlated with TMRM
intensity. Aspect ratio is defined as the ratio of the minor
axis and major axis of the cell. The shape index is defined
as the ratio of the perimeter to the square root of the area.
We considered the cells of lower-quartile TMRM intensity
Biophysical Journal 122, 3909–3923, October 3, 2023 3915



FIGURE 2 Local variations in membrane potential are correlated with the local geometric environment. (a) Left panel: Images of TMRM-stained MDCK

cells, merged with bright-field images, showing cell boundaries. The increase and decrease in TMRM intensity correlate with the changes in local density.

Magenta dashed lines mark high-DJM and cyan dashed lines mark low-DJM cells. Scale bar, 100 mm. Right panel: insets showing the high and low density

corresponding to the changes in TMRM intensity. The yellow square in the left panel shows the cells used for insets. (b) Box-and-whisker plot showing the

difference in mean TMRM intensity for MDCK cells at the highest (top 25%) and lowest (bottom 25%) local density neighborhood. Statistical significance

was assessed using Wilcoxon matched-pairs signed-rank test. (c) Left panel: box-and-whisker plot showing the difference in mean area for MDCK cells with

the highest (upper quartile) and lowest (lower quartile) TMRM intensityMiddle panel: box-and-whisker plot showing the difference in mean shape index for

MDCK cells with the highest (upper quartile) and lowest (lower quartile) TMRM intensity. Right panel: box-and-whisker plot showing the difference in mean

aspect ratio for MDCK cells with the highest (upper quartile) and lowest (lower quartile) TMRM intensity. Statistical significance was assessed using Wil-

coxon matched-pairs signed-rank test. *p < 0.05, **p < 0.01, and ***p < 0.001. To see this figure in color, go online.
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and upper-quartile TMRM intensity as cells with low and
high DJM for quantification purposes. The results delin-
eating the variation of TMRM intensity with cell area re-
vealed that the cells with high DJM were smaller
compared with the cells with lower DJM (Fig. 2 c left).
At the same time, the results delineating the variation of
TMRM intensity with cellular aspect ratio and shape index
revealed that the cells with high DJM were more rounded
compared with cells with low DJM, which were extended.
(Fig. 2 c, middle and right). Interestingly, in all three stages,
we observed that cells with higher TMRM intensity were
smaller according to the normalized cell area (Fig. S3 c).
Also, for cells at stage 3, there was no significant difference
3916 Biophysical Journal 122, 3909–3923, October 3, 2023
in aspect ratio and shape index for high and low TMRM in-
tensity populations (Fig. S3 c). It is possible that, at this
stage, cells are so crowded that they do not have enough
flexibility to assume a variety of states in the physical space
as well as in the biochemical space, as suggested by the
relatively homogeneous mitochondrial potential field at
this stage.

Further, to check how Tom20 level varies with cell shape
or geometric features, we quantified the area, aspect ratio,
and shape index of the cell population with the highest
25% Tom20 intensity and lowest 25% Tom20 intensity.
Although Tom20 levels slightly increase with the increase
in TMRM level, the geometric parameters do not follow
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the same trend (Figs. 2 c and S3 d). Specifically, cells with
high Tom20 intensity exhibit a larger area and higher shape
index compared with the population with low Tom20 inten-
sity. On the other hand, cells with high TMRM intensity
display a smaller area and lower shape index compared
with cells with low TMRM intensity (Figs. 2 c and S3 d).
Again, in terms of the aspect ratio, cells with high and
low Tom20 intensity follow the same trend as for TMRM in-
tensity. Cells with high Tom20 intensity have a lower aspect
ratio compared with the population with high Tom20 inten-
sity and, hence, are more symmetrical. Cells with high
TMRM intensity also have a lower aspect ratio (Figs. 2 c
and S3 d, right). Together, these contrasts in the trends indi-
cate that the correlation of heterogeneity in DJM with
geometrical parameters cannot be attributed to the associ-
ated changes in mitochondrial mass. It is possible that cells
of small areas in high-density regions may cause mitochon-
dria to be tightly packed, resulting in a higher value of DJM

when stained. However, we argue that it was not the case for
these results because 1) there was high contrast in DJM be-
tween the population (Fig. S1 b) and 2) the heterogeneity of
Tom20 signals was minuscule, which should not be the case
if mitochondrial crowding because of cell size variation had
a major effect on imaging. Taken together, these results
show that, beyond global density, locally the heterogeneity
in DJM is connected to the heterogeneity in geometric fac-
tors but not to biochemical factors, such as mitochondrial
biogenesis.
Dynamic model

We next asked howmetabolic heterogeneity is established as
a function of cell proliferation. To this end, we constructed a
phenomenological population-level dynamic model. Based
on the results of the dependence of metabolic heterogeneity
on density and CIP, we made two assumptions in the
model: 1) cell proliferation decreases (therefore, prolifera-
tion time increases) sigmoidally with local cell density,
and 2) DJM, which is termed the ‘‘activation level’’ in the
model, increases sigmoidally with local cell density. The
sigmoidal dependencewas chosen because of two reasons: 1)
the proliferation capacity and activation threshold have an
upper and lower bound, and 2) it allows quantifying two
key parameters: threshold local densities that mark a steep
transition from high to low proliferative capacity (division
threshold) and that from a low to high DJM (activation
threshold). These thresholds can potentially be determined
experimentally using temporally collected images of cell
culture. One crucial difference between the model and
experimental condition is that the model does not operate
at confluent conditions, but confluence is the final state of
the model. This difference can be justified by the fact that
the key assumptions are not dependent on the confluence
but on local cell density, which can be captured by the mea-
sure of density defined in the model as the number of cells in
a five-cell square (see Materials and methods).

Our model was able to capture the three stages of CIP-
linked metabolic heterogeneity observed experimentally:
sporadic activation at low density (stage 1), patches of acti-
vation representing collective heterogeneity (stage 2), and
homogeneous activation (stage 3), as shown in Fig. 3 a.
Stage 1 was characterized by a narrow distribution of activa-
tion with low mean. Stage 2 was characterized by the acti-
vation distribution skewed to the left, with patches of
activation in the field, as mentioned above. Stage 3 was
characterized by a narrow distribution with high mean acti-
vation (Fig. S4 a). Given the three phases, we wanted to
identify factors that control the dynamics of these phases,
specifically the residence time in each of the phases. As a
first step, we focused on qualitative predictions that can be
verified experimentally. First, we tried to understand the
appearance of collective heterogeneity as a function of the
threshold of activation and threshold of proliferation. Given
the distribution characteristics above, we tracked the dy-
namics of the variance of cell activation level distribution
with time as a metric to distinguish between the three stages
(Fig. 3 b; Video S1a).

At a high activation threshold, a low division threshold al-
lows clear emergence and longer sustenance of stage 2,
where collective heterogeneity exists (Fig. 3 c; Video
S1a). At higher division thresholds, stage 2 emerges but re-
mains for a relatively shorter period (Fig. 3 c; Video S1b).
At a lower activation threshold, on the other hand, we found
multiple short-lived patches of high variance activation pro-
files (Fig. 3 d; Video S1c) for each division time. These re-
sults can be interpreted as the fact that a lower activation
threshold allows quick homogenization of the system,
thereby reducing the chances of emergence of heterogene-
ity. This is also the reason why the system requires a high
exponent for activation-level dependence on density
(nAct) (Fig. 3 e), which is the exponent in the activation-
level equation (Eq. 1). Because the division threshold has
a relatively lesser impact on the system, collective heteroge-
neity is not sensitive to nDiv (Fig. S4 b), which is the expo-
nent in the division time equation (Eq. 2).

Furthermore, we predicted that the dependence of activa-
tion and proliferation must be on local density (small R) as
opposed to global density because the dependence of DJM

on global density leads to rapid homogenization of DJM,
thereby eliminating the existence of collective heterogene-
ity. The neighborhood parameter R in our model determined
whether a cell was sensitive to local density (low value of R)
or global density (high value of R). We found that, as the
value of R increased, the variance in activation level that
distinguishes collective heterogeneity goes down, being
comparable with the variance of low- and high-density sce-
narios at R ¼ 9 (Fig. 3 f).

Our sensitivity analysis (all figures are included in the
GitHub repository) hence shows that, among the seven
Biophysical Journal 122, 3909–3923, October 3, 2023 3917



FIGURE 3 Results from the simulation. (a) Activation level heatmaps at different time points (T ¼ 10, 16, 22) corresponding to 3 stages. Each pixel rep-

resents a cell in the figure. (b) Line plot showing activation variance against time points (each time point corresponds to different densities). (c) Line plot

showing activation variance for different division threshold values with high actThresh (0.9). (d) Same as (c) but for a low actThresh (0.1). (e) Line plot

showing activation variance against the Hill coefficient corresponding to activation level. (f) Line plot showing activation variance against the neighborhood

radius. Maximum variance is obtained at a two- to three-cell neighborhood radius. (g) Boxplot depicting density differences in cells with low and high acti-

vation levels. **p < 0.01. To see this figure in color, go online.
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parameters considered in the model, the emergence of col-
lective heterogeneity is mainly sensitive to three parameters:
high activation threshold (actThresh; >0.5), high nAct (Eq.
1; >3), and low neighborhood parameter (R < 4), which
represents the sensitivity of each cell to its surroundings.
Sensitivity analysis clearly shows that, while changing the
other parameters (including division Hill [Fig. S4 b], divi-
sion time [Fig. S4 c], and division time FC [Fig. S4 d])
might have minor quantitative changes in the collective het-
erogeneity dynamics, qualitatively they remain the same.
The details of all parameters and the sensitivity analysis
have been described in the Materials and methods section.
The density around the cell also controls the relevant me-
chanical parameters; hence, we use the density parameter
in the model as a proxy of the mechanical aspects, such as
intracellular pressure. Cells with lower DJM delve into
lower-density regions and therefore have lower intracellular
pressure. Similarly, cells with higher DJM have a higher
density and therefore higher pressure (Fig. 3 g). Taken
3918 Biophysical Journal 122, 3909–3923, October 3, 2023
together, the simulation results predicted a role of cell pro-
liferation in metabolic potential toward setting the collective
heterogeneity in the latter at the medium density corre-
sponding to stage 2 of CIP.
Metabolism pattern emergence is correlated to
the proliferation capacity of cells

Next, to test this prediction from the dynamic model, we
studied DJM and the proliferation capacity of cells in the
same sample. As a proxy for proliferation capacity, we
used nuclear/cytoplasmic (N/C) localization of a transcrip-
tional regulator protein, YAP (yes-associated protein 1).
We preferred it over EdU staining because we reasoned
that EdU-positive S phase cells would be time-wise
advanced in the cell cycle. In that case, even if a change
in the metabolic potential had initiated proliferation earlier,
S phase cells might not be correlated with the spatial distri-
bution of metabolic patterns at the time of observation. On



FIGURE 4 Metabolic heterogeneity is correlated with the proliferation capacity of the cells. (a) Fluorescence images comparing YAP N/C localization

(top panel) and TMRM levels (bottom panel) in MDCK cells at stage 2 of CIP. Nuclear localization of YAP corresponding with low TMRM intensity is

marked with cyan dashed lines. Cytoplasmic localization of YAP corresponding with high TMRM intensity is marked with magenta dashed lines. On

the right, insets are shown at higher magnification. Scale bars, 100 mm. (b) Heatmaps showing mean TMRM levels (bottom panel) and YAP N/C (top panel)

in MDCK cells. Dashed lines show the cell population with high and low TMRM intensity and YAP C/N ratio. (c) Box-and-whisker plot showing the dif-

ference in mean TMRM intensity in the cell population having the lowest (lower quartile) and highest (upper quartile) N/C ratio of YAP. Statistical signif-

icance was assessed using the Wilcoxon matched-pairs signed-rank test. ***p < 0.001. To see this figure in color, go online.
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the other hand, YAP is a protein that, when localized to the
nucleus, induces division by activating genes involved in
proliferation and suppressing those involved in apoptosis.
Nuclear localized YAP suggests a proliferative cell, and
cytoplasmic localization suggests inhibited proliferation
(18). YAP nuclear localization, therefore, indicates a very
early stage of pro-proliferation activity, perhaps right at
the moment when the change in metabolism triggers prolif-
eration. First, to understand how the proliferation capacity
of cells changes collectively at different stages of CIP, we
immunostained confluent MDCK cells with a YAP antibody
at different densities. At stage 1, all cells have nuclear local-
ization of YAP. At stage 2, cells appear as patches in terms
of YAP N/C localization, like the collective heterogeneity in
metabolism. At stage 3, all cells have cytoplasmic localiza-
tion of YAP (Fig. S5 a). The results indicate that the vari-
ability of proliferative capacity among cells is similar to
that ofDJM, especially the appearance of collective patches
in stage 2. Nevertheless, we also studied the pattern of EdU
staining and observed emergence of clustering at stage 2
there as well (Fig. S5 b). In contrast, at stage 3, most cells
were found to be EdU negative, and at stage 1, EdU-positive
cells were found to be distributed evenly in the field of view.
We next studied the local correlation of proliferation capac-
ity with DJM at stage 2. To this end, we stained the cells at
stage 2 with TMRM to measure DJM. We then fixed and
immunostained the same cells with YAP to find that YAP
N/C localization was correlated with DJM. Low-DJM re-
gions were associated with cells having predominantly nu-
clear YAP localization, while high-DJM regions were
associated with cells having predominantly cytoplasmic
YAP localization (Fig. 4 a and b). For quantification, we
considered cells of lower quartile TMRM intensity and up-
per quartile TMRM intensity as cells with low and high
DJM. The results delineating the variation of TMRM inten-
sity with YAP nuclear translocation revealed that cells with
low DJM have proliferation capacity, while cells with
higher DJM are entering quiescence. Cells with low
DJM have high nuclear translocation of YAP compared
with the cells with high DJM (Fig. 4 c). Together, these
results upheld the predicted correlation between prolifera-
tive capacity, as represented by the nuclear localization
of YAP, and metabolic heterogeneity, suggesting a connec-
tion between these two aspects of a confluent epithelial
monolayer.
Metabolic memory and dependence of collective
heterogeneity on the active mechanical state

To summarize the results obtained so far, we showed that the
collective heterogeneity in metabolism is associated with
local density fluctuations and proliferation. Notably, local
density fluctuations and proliferation are mechanosensitive
events. With local density fluctuation of the epithelial
monolayer, actomyosin content and organization, key
players in cell mechanics, are known to change (41,42).
The proliferation regulator YAP/TAZ is also mechanosensi-
tive (42). In addition, CIP ceases to happen in the absence of
Biophysical Journal 122, 3909–3923, October 3, 2023 3919



FIGURE 5 Metabolic memory and dependence of

collective heterogeneity on active mechanical state.

(a) Images of a TMRM-stained MDCK cell mono-

layer at stage 2, showing patterns of TMRM hetero-

geneity. Treatment with blebbistatin without FCCP

does not get rid of metabolic heterogeneity. Left

panels: control. Right panels: blebbistatin treated.

Magenta dashed lines show high-TMRM-intensity

clusters. Scale bar, 100 mm. (b) Images of a

TMRM-stained MDCK cell monolayer at stage 2

of CIP. Treatment with Y27632 without FCCP

does not get rid of metabolic heterogeneity. Left

panels: control. Right panels: Y27632 treated.

Magenta and cyan dashed lines show high- and

low-TMRM-intensity clusters, respectively. Scale

bar, 50 mm. (c) A time-lapse montage of a

TMRM-stained MDCK monolayer at stage 2. Left

to right: before FCCP treatment, after FCCP treat-

ment, and after washing off FCCP with replacement

of complete DMEM. Top panel: vehicle wash-off

medium could bring back the initial metabolic het-

erogeneity patterns in the monolayer. Middle panel:

wash-off medium with blebbistatin is used, and het-

erogeneity is lost in this case post washing. Scale

bar, 100 mm. The collective heterogeneity pattern

is highlighted with magenta dashed lines. Bottom

panel: wash-off medium with Y27632 is used, and

the pattern of heterogeneity is changed in this case

post washing. The collective heterogeneity pattern

is highlighted with magenta dashed lines. Scale

bar, 100 mm. (d) Box-and-whisker plot showing

the difference in mean TMRM intensity in a cell

population having the lowest (bottom 25%) and

highest (top 25%) cell pressure. Statistical signifi-

cance was assessed using the Wilcoxon matched-

pairs signed-rank test. **p < 0.01. To see this figure

in color, go online.
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adhesion molecules or under actomyosin inhibition condi-
tions (43,44). Last, mechanical stretch can increase prolifer-
ation, acting through the Hippo pathway (43). Hence, we
next asked whether actomyosin contractility is necessary
to maintain and/or establish metabolic collective heteroge-
neity. First, to check whether cells can maintain collective
heterogeneity in the absence of actomyosin contractility,
we treated the cell monolayer at stage 2 with a myosin inhib-
itor, blebbistatin, that is known to reduce actomyosin
contractility. After the treatment, we tracked the cells for
4 h but did not observe any change in metabolic heterogene-
ity (Fig. 5 a). Similarly, treatment of the cells with Y27632,
a ROCK inhibitor did not cause any change in metabolic
heterogeneity over time (Fig. 5 b). This experiment indi-
cated that maintenance of collective heterogeneity does
3920 Biophysical Journal 122, 3909–3923, October 3, 2023
not depend on active cellular mechanics. Second, to check
whether the establishment of collective heterogeneity re-
quires actomyosin contractility, we first abolished the
DJM in all cells by treating the cells with an Hþ ionophore
and uncoupler of oxidative phosphorylation, FCCP, and then
studied how the cells regained DJM upon withdrawal of
FCCP from the medium in the presence and absence of bleb-
bistatin and Y27632. As expected, FCCP treatment homo-
genously depolarized the mitochondria of all cells in the
monolayer (Fig. 5 c). When FCCP was washed off post
treatment and normal DMEM was added, the cells re-estab-
lished the same pattern of collective heterogeneity they had
before depolarization (Fig. 5 c, top). However, when the re-
covery DMEM contained blebbistatin, the cells regained
their DJM, but the collective heterogeneity of DJM
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vanished and a metabolically homogenous population
emerged (Fig. 5 c, middle). When the recovery DMEM con-
tained Y27632, the cells regained their DJM, but with a
visibly different pattern of collective heterogeneity of
DJM. In contrast to blebbistatin treatment, ROCK inhibi-
tion did not homogenize the DJM (Fig. 5 c, bottom). These
results revealed that, when emerged, epithelial cells can
maintain metabolic heterogeneity in the absence of actomy-
osin contractility. However, its initial emergence depended
on the latter. These results are quantified in Fig. S6, a–d.
Only when the cells are treated with blebbistatin, post
FCCP treatment, - decreases and stays constant independent
of the ROI size, indicating emergence of a homogenous
population (Fig. S6 d). In all other cases, we observe a
drop in - with a decrease in ROI size, signifying collective
heterogeneity (Fig. S6 a–d). To better understand the
different effects of FCCP wash-off followed by blebbistatin
or Y27632, we went on to analyze the accompanied changes
in cellular geometry. To this end, we analyzed the shape in-
dex and aspect ratio before and after treatment in both cases
(Fig. S6 e–h). We did not see any noticeable global shift
in cell shape in either case (Fig. S6 e and h). Although
FCCP treatment followed by blebbistatin homogenized the
DJM, it did not lead to a homogenous cell population in
terms of the cell shape parameters (Fig. S6 e). On the other
hand, local changes in cell shape were observed in case of
FCCP þ Y27632 treatment. These changes in cell shape
were predominantly localized to regions where the hetero-
geneity pattern of the cells changed (Fig. S6 f and g).
This suggests that the effect of blebbistatin can be attributed
to its negative impact on the mechanosensing ability
of cells. In contrast, Y27632 alters the geometric param-
eters to change the mitochondrial potential heterogeneity
landscape.

Finally, we investigated whether there exists a direct cor-
relation between the local mechanical state and collective
metabolic heterogeneity. To this end, we calculated the
cell-cell junctional tension and pressure using the Bayesian
force inference method (33) and, at the same time, stained
the cells with TMRM (Fig. S6 i). For quantification, we
considered cells of lower-quartile TMRM intensity and up-
per-quartile TMRM intensity as cells with low and high
DJM. The results delineating the variation of TMRM inten-
sity with cell pressure revealed that cells with high DJM

have higher intracellular pressure compared with cells
with lower DJM (Fig. 5 d). Together, these results indicate
the importance of active cellular mechanics for establish-
ment of collective heterogeneity in metabolism. However,
maintenance of metabolic variability does not depend on
actomyosin contractility, only ab initio emergence does.
DISCUSSION

Taken together, our experiments unveiled the heterogeneous
landscape of metabolism in epithelial cells. The length scale
of this heterogeneity changes as the cells transition through
three stages of CIP. Significantly, we unveil collective hetero-
geneity in DJM at stage 2 of CIP (Fig. 1). The system under
our study is amonolayer of genetically identical epithelial cell
populations, all under the samenutrient conditions.Hence, the
self-emergence of a collective-level heterogeneity inDJM in
the absence of any external signaling in an otherwise identical
environment is of great interest. Through experimental char-
acterization and the systems biology model, we suggest that
epithelial cells bring about these biochemical variabilities
because of their intricate relations with emerging biophysical
differences. Relevantly, the biophysical differences in terms
of geometrical and certain cell mechanics-related parameters
of the cells are basically a result of the non-uniform growth in
the monolayer. Non-uniform growth gives rise to feedback
mechanical signals to ensure uniform growth (40). Hence,
we speculate that the metabolic variabilities in cells lead
to mechanical variabilities. However, further studies are
required for a deeper understanding.

The mathematical model implemented in this manuscript
has been designed to be a minimalistic one. Parameters
related to cell mechanics or cell geometry, for instance,
have not been explicitly included in the model. While the
importance of these parameters cannot be ignored, because
the aim of the investigation is to determine the effect of den-
sity on cell proliferation and metabolic activity, we intro-
duced phenomenological parameters, such as the density
threshold and radius of sensitivity, to explain how collective
heterogeneity may arise in metabolic activity. As we have
briefly shown, the cell mechanics parameters correlate
well with density, and, hence, the effect of these parameters
on collective heterogeneity can be predicted based on the
current modeling formalism. In the future, we plan to
expand the scope of the model by explicitly including the
mechanical and geometric parameters and investigate their
impact on collective heterogeneity as well.

We found that DJM variabilities were correlated with the
proliferative capacity of cells (Fig. 4). Quiescent cells have
higher DJM, while proliferating cells have less. It is possible
that this is because proliferating cells prefer the glycolytic
pathway rather than oxidative phosphorylation for their en-
ergy requirements, hence staying at the basal DJM level,
an effect similar to the Warburg effect (22). Interestingly,
similar density-dependent changes have been observed in
contact inhibition of locomotion (CIL), in the case of jam-
ming transition in epithelial cells (15,45). In jamming-transi-
tion, as density increases, the velocity of cells decreases but
the fastest cells move in large multicellular groups (15). Cells
become less elongated and less variable, as they get approach
jamming (46). It also is known that during epithelial unjam-
ming, energy metabolism shifts toward the glycolysis (47),
which connects CIL to local changes in metabolism. In our
work, we reveal the local changes in metabolism with CIP.
Hence, these results together indicate that density-dependent
changes in cellular metabolism are fundamental properties of
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the epithelial tissue in the context of CIP and CIL, which
should have enormous physiological consequences.

In this regard, one of the main physiological implications
of density-dependent collective heterogeneity will be
pattern formation in multicellular organisms. Hair follicle
distribution in mammalian skin is a scenario where this
may be relevant. Which cells among the skin give rise to
placodes and the determining factor are still not completely
understood (48,49). Given the density and shape changes in
cells during placode formation, it will be interesting to look
at metabolic and biophysical changes before initiation of
placode formation. Because we used a monolayer of epithe-
lial cells for the current study, fundamental characteristics of
the epithelium in the absence of any external signaling can
be pinpointed here. At the same time, this becomes a limi-
tation because it is not the case under physiological condi-
tions. Investigation of the local metabolic changes in a 3D
organoid model along with the biophysical characterization
will be an interesting study. We also concentrated solely on
DJM reading as a proxy for metabolism. Complete meta-
bolic profiling as the cells progress through CIP with
increasing density will be a worthwhile endeavor, given
the results from our current study.
CONCLUSIONS

While the metabolic changes in a cell population as CIP sets
in have been investigated, the patterns of local metabolic
changes as the cells progress through CIP are relatively
less known. We systematically studied the local changes
in metabolism during CIP, using DJM measurement as a
proxy for metabolism. Collectively, our experiments estab-
lished three different metabolic regimens corresponding to
the three different stages of CIP (Fig. 1 a). At stage 1, cells
showed cell-cell variability in DJM without any cluster for-
mation. We unveil emergence of multicellular-level collec-
tive heterogeneity in DJM at stage 2 of CIP. Importantly,
this collective heterogeneity in DJM was exclusive to stage
2 and disappeared at stage 3, while other parameters such as
the correlation length of cellular motions and the monolayer
stresses monotonically increase with increasing density. Our
further investigations show that the metabolic changes are
correlated with the local changes in cell density and the geo-
metric parameters of cells (Fig. 2). We found that, at stage 2,
cells with comparatively higher DJM are smaller, rounder,
and more symmetric compared with the cells with lower
DJM. While the connection between CIP and mechanics
has been shown previously (4,50), here we demonstrate
that the local metabolic changes that accompany CIP are
also connected to cell mechanics (Fig. 5). A simple mathe-
matical model could capture the three different metabolic
regimens corresponding to the three stages of CIP. The
model where the cellular parameters depend on local den-
sity predicted a role of cell proliferation in collective hetero-
geneity at stage 2 of CIP. Subsequently, in vitro, we found
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that the DJM variabilities were correlated with the prolifer-
ation capacity of cells (Fig. 4). Altogether, we reveal a het-
erogeneous landscape of DJM emerging in the epithelial
monolayer, whose length scale depends on the global den-
sity of cells. The heterogeneous landscape observed is
different in the three stages of CIP. Importantly, for the first
time, we reveal emergence of collective heterogeneity in
the otherwise identical epithelial cells at stage 2 of CIP,
which is related to the geometric and mechanical parame-
ters of the cell.
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