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Abstract – A microtubule is a cylindrical biological polymer that plays key roles in cellular
structure, transport, and signalling. In this work, based on studies of electronic properties of
polyacetelene and mechanical properties of microtubules themselves (Spakowitz A. J., Phys.
Rev. Lett., 103 (2009) 248101), we explore the possibility that microtubules could act as topolog-
ical insulators that are gapped to electronic excitations in the bulk but possess robust electronic
bounds states at the tube ends. Through analyses of structural and electronic properties, we model
the microtubule as a cylindrical stack of Su-Schrieffer-Heeger chains (originally proposed in the
context of polyacetylene) describing electron hopping between the underlying dimerized tubulin
lattice sites. We postulate that the microtubule is mostly uniform, dominated purely by GDP-
bound dimers, and is capped by a disordered regime due to the presence of GTP-bound dimers as
well. In the uniform region, we identify the electron hopping parameter regime in which the mi-
crotubule is a topological insulator. We then show the manner in which these topological features
remain robust when the hopping parameters are disordered. We briefly mention possible biological
implications for these microtubules to possess topologically robust electronic bound states.
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Introduction. – Organic polymers and biomolecules
have served as inspiration for discovering new condensed
matter phenomena, with path-breaking insights developed
for both biological systems and physical models [1,2]. The
Su-Schrieffer-Heeger (SSH) model proposed in the 1980s
for polyacetylene serves even today as a simple paradigm
for topological phases of matter and charge fractionaliza-
tion [3]. Such models have led to opening entire fields of
study, bringing theoretical and experimental advances in
our understanding of materials [4]. On the biological side,
the fundamental units of the model, involving dimeriza-
tion and sublattice symmetry, are building blocks for a
range of complex macromolecules. Here, we investigate
microtubules as a highly promising instance for extending
such topological behavior in rich and diverse ways.

The microtubule is a protein complex that forms an
integral part of the cellular cytoskeleton and consists
of dimerized units arranged in a helical structure [5,6].
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In ref. [7], the authors target the mechanical properties
of these dimer units embedded in a manifold in the uni-
form (non-disordered) case and model the underlying in-
teractions as harmonic coupling. The resulting dynamical
equations show similarities with the Hamiltonian of topo-
logical insulators. Strikingly, the similarity translates to
the mechanical system being topological —its phases are
characterized by topological invariants and such regimes
in parameter space possess classes of solutions reflecting
signature end modes rendered robust by a spectral gap.
As with metamaterials [8], the authors associate these
modes with robust boundary phonon modes that play an
important role in the growth and decay phases of micro-
tubules. We do the same in a corresponding electronic
system, and expect that the predicted phonon behavior in
microtubules would imply corresponding analogues in its
electronic properties.

In this work, we show that within a plausible pa-
rameter window, microtubules can possess a topological
phase determined by their electronic band structure. On
consideration of its electronic properties, we model it as
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a cylindrical stack of SSH chains. We explore the proper-
ties of such quasi one-dimensional weak topological insu-
lators and their response to disorder. We then discuss how
these electronic phases map back to biological properties,
possibly showing radically different kinds of conduction
properties of microtubules stemming from the presence of
topologically robust bound states.

The inherent complexity of biological systems is un-
avoidable in the attempt to build mathematical and phys-
ical models to describe them. While our model here is
conceptual, we hope that it serves as a novel and sound
hypothesis which can now be used to develop more com-
plicated computational and experimental techniques to in-
vestigate the many unexplained processes in microtubules,
where more conventional transport models are not enough
to explain the biophysics at hand. Our model thus picks
the simplest features of the microtubule that survive the
complex nature of its surroundings —a dimer lattice with
electron hopping— as a natural starting point.

Biophysics, structure, and electronic properties.
– Microtubules play important roles in maintaining struc-
tural integrity of the cell, in initiating cellular mitosis, and
in facilitating intracellular transport and signalling [9].
They are prominent structures in eukaryotic cells, espe-
cially crucial to the morphological makeup of neurons.
The microtubule has also long been a popular candidate
for the exploration of quantum effects manifesting in bi-
ological systems [10,11]. While it has often been argued
that finite temperature and the environment associated
with living cells would lead to decoherence and suppres-
sion of such effects, several recent studies provide evidence
that they may not be ignored in several biological systems
including microtubules [12–14]. Physiological tempera-
ture and solvent effects have even been theorized to aid
rather than disrupt quantum mechanical effects in these
systems in ref. [13]. While mesoscopic quantum coherence
in microtubules remains controversial, there is growing
evidence for the emergence of observable physical effects
resulting from local quantum phenomena like electron tun-
nelling within proteins structures and specifically, micro-
tubules [13,15–17]. In a more recent work [17], the authors
obtain experimental evidence demonstrating that micro-
tubules are, unexpectedly, effective light harvesters, which
takes place through proximity of aromatic residues tryp-
tophan and tyrosine in the microtubule. That is, quantum
energy transfer can coherently diffuse across protofila-
ments for distances up to 6.6 nm, consistent with multistep
hopping. Based on these works, we make the reasonable
assumption that inter-tubulin electron tunnelling is a rel-
evant process along microtubule filaments, which is fun-
damental to our work.

Structurally, the microtubule is a helical cylinder
composed of tubulin units. These units are dimers
consisting the homologous monomers α-tubulin and
β-tubulin. Typically, the cylinders have a 25 nm outer

Fig. 1: The cylindrical microtubule is composed mainly of
GDP-bound dimers (green). Panel (a) shows a microtubule
of zero pitch, while (b) shows a microtubule having pitch equal
to one dimer’s length. Panels (c) and (d) show the microtubule
in growth and decay phases respectively. While (a) and (b) are
uniform, in (c), the “cap” of the microtubule has dimers of both
the GDP and GTP (blue) kind, leading to increase in its length
when more dimers from the surrounding medium attach onto
the cap. This non-uniformity prevents the reduction in micro-
tubule length, depicted in panel (d). Panel (e) shows the lattice
model of the microtubule with associated hopping strengths.
In panel (f) the α and β tubulin monomers are indicated in
each type of dimer.

diameter and 15 nm inner diameter. The dimers them-
selves have dimensions of 8 nm × 5 nm × 5 nm [18]. The
dimers are attached helically around the cylinder giving
rise to protofilaments, usually 13 in number around
the circumference. The cylindrical lattice thus formed
is highly ordered and is most commonly seen in two
different configurations —with and without a prominent
seam, corresponding to differences in helical pitch, as seen
in fig. 1. As has been done with regards to mechanical
properties in ref. [7], these cylinders can thus be modeled
as extensions of the SSH system where the chain is
wrapped around in a cylindrical configuration.

The microtubule shows two distinct phases when it un-
dergoes “dynamic instability” —a growth or polymeriza-
tion phase, where dimers from the surrounding solution
attach themselves to the filaments of the microtubule,
and a “peeling off” or de-polymerization phase, where
the filaments of the microtubule curve outward longitu-
dinally and lose dimers to the solution, decreasing the
length of the tube [19,20]. The microtubule has been ob-
served to stochastically switch between the two phases.
The dimers can be of two possible types distinguished
by the molecule attached at an exchange site —GDP or
GTP. During the growth phase, dimers of both kinds at-
tach themselves to the microtubule to form longer fila-
ments. This non-uniform segment at the end of the tube
is called the cap. As the tube grows, the GTP hydrolyzes
to GDP after attachment to form uniform GDP attached

46001-p2



Are microtubules electron-based topological insulators?

extended regions. The GDP-attached filaments are longi-
tudinally curved, and it has been proposed that this cur-
vature that results in the “peeling” off when the energetics
overcome the stability provided by the cap [21,22]. Based
on this structure of the microtubule, our model distin-
guishes two distinct regimes —one in the uniform GDP-
based region, which we model as consisting of no disorder,
and the other in the cap region, which we model as having
a disorder distribution in the inter-tubulin charge hopping
amplitudes.

Ample computational and observational studies indicate
that the dimerized structure of the microtubule affects not
only vibrational degrees of freedom, but also the intersite
electronic hopping within the underlying lattice [23–26].
The conduction electron concentration on a microtubule
has been estimated to be n ∼ 1019 cm−3, which is higher
than that of semiconductors, but significantly lower than
that of metals. Even lower estimates of its conductivity
from these numbers (at physiological temperatures) sug-
gest a conductivity [18] that lies between 0.04 Ω−1 m−1

and 105 Ω−1 m−1. The microtubule has a large net nega-
tive charge per tubulin dimer that is mostly concentrated
on the “C-terminus” of each dimer. The uncompensated
negative charge is balanced in solution by counterions that
screen the charge, giving rise to a dielectric polarization
around the surface of the microtubule. This observation
has led to several models of conductivity in terms of tight
binding of electrons to the lattice site and effective charge
hopping from site to site [18,26], like in the case of organic
semiconductors [27,28]. Additionally, since the surround-
ing medium of the microtubule is rich in positively charged
ions [24,29], the highly negatively charged microtubule
might also exhibit conduction by proton hopping mecha-
nisms, leading to higher conductivity, a phenomenon that
plays a secondary role in this work. These descriptions for
conductivity form the starting point of our analysis: we
model electronic properties in terms of electrons hopping
between nearest-neighbor lattice sites provided by the un-
derlying α- and β-tubulin units.

Effective quasi-1D model. – Having established this
tight-binding description for electron hopping between the
α and β sites of the microtubule, we first analyze the uni-
form region. The resultant cylindrical lattice and hopping
strengths are as depicted in fig. 1. The system consists of
SSH chains along the length of the tube having alternating
bond strengths t1 and t2. As shown in the figure, along
the circumferential direction, the units are connected via
bonds t⊥,1 and t⊥,2. Hubbard model treatments of the
microtubule estimate these hopping strengths to be of the
order 0.4–1 eV [18]. The pitch is reflected in the allowed
quantized values of ky. Here, due to the helical nature of
the tubule, we assume that the staggering of the chains re-
sults in these inter-chain hoppings dominating. Thus, the
predominant hopping terms respect sub-lattice symmetry
in that hoppings are only between sub-lattices A consist-
ing of α sites and B consisting of β sites, but not within

each sublattice. The resultant Hamiltonian thus takes the
generic form

H =
∑
ij

(
c†
A,ij c†

B,ij

)
H

(
cA,ij

cB,ij

)
, (1)

where H obeys chiral symmetry such that SHS = −H with
S =

∑
ij(c

†
A,ijcA,ij−c†

B,ijcB,ij). This Hamiltonian, emerg-
ing from the dominant hoppings, respects the symmetries
of quasi-one-dimensional topological systems belonging to
class AIII, classified as per the usual Altland-Zirnbauer
formalism that characterizes topological systems accord-
ing to their symmetries [30].

In the absence of inter-chain hopping, the paradigm SSH
chains running along the length of the tube naturally sup-
port end bound states. These bound states correspond to
robust mid-gap states in a spectrum symmetric about the
Fermi energy having a gap of magnitude |t1 − t2|. Upon
inter-chain coupling, qualitatively, these states too couple
to form the end mode along the rim [31,32]; the robust-
ness of similar states has been discussed in the context
of coupled ladder systems [33–35]. Figures 2(b) and (c)
plot such typical end-mode eigenstates in a regime that
we have determined to be topological. For strong enough
interchain coupling, the gap in the spectrum closes and the
system undergoes a transition into a gapless phase where
no such robust end-mode exists.

To analyze these features more rigorously, we express
the Hamiltonian for a segment of this lattice in momen-
tum space. To first order, we assume that the segment
is long enough to take the thermodynamic limit. We as-
sume a unit lattice constant for each bond. The resultant
Hamiltonian takes the form

H =
(
c†
A,�k

c†
B,�k

) (
0 q(�k)
q†(�k) 0

) (
cA,�k

cB,�k

)
, (2)

where q(k̄) = u+ve−ikx , k̄ = (kx, ky), u = t1+2t⊥,2 cos ky

and v = 2t⊥,1 cos ky + t2. The energy band structure is
given by E± = ±√

u2 + v2 + 2uv cos kx.
In order to chart out the regimes where the system

is topological in that a finite-sized tube would have end
modes present, we can use the standard topological anal-
ysis of the band structure. In the thermodynamic limit,
or under periodic boundary conditions in both directions,
the band structure is gapped for a range of parameter
regimes, as shown in the phase diagram in fig. 2. The
gapped phases may further be classified as topological or
trivial, as depicted in the phase diagram. Crucially, the
topological phase is characterized by a topological invari-
ant or winding number defined as

νx = − i

2π

∫
dkxTr[q−1∂kxq]. (3)

In this system, ν takes the value 1 for |u| < |v| (topolog-
ical) or 0 for |u| > |v| (trivial) [4]. The system is gapless
when |u| = |v|.
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Fig. 2: Energy bands and phase diagram: Panel (a) shows the
phase diagram for the lattice model under the thermodynamic
limit, as a function of hopping strengths t2, t⊥,1 and t⊥,2 all
scaled to be in units of t1. The gapless and gapped phases
are indicated, with the gapped phases being identified by their
associated topological invariant. Panels (b) and (c) show one
of the possible zero energy edge states for a cylindrical strip
of Ny = 13 chains with 50 dimers along the length of the
microtubule in the topological phase. Panel (b) is for a helical
cylinder of pitch zero, while (c) is for a helical cylinder with
unit pitch. Panels (d) and (e) demonstrate the changes in the
band structure for strip of pitch zero (panel (d)) and pitch
one (panel (e)) when the parameter t2 is tuned from 0 to 3.
Here, t⊥,1 = 0.2 and t⊥,2 = 0.1. The figure shows an initial
configuration with a trivial gap become gapless for a range of
values before again opening up a topological gap. The zero
energy modes are also seen in the topological gap.

The band structure of a finite cylindrical strip is shown
in figs. 2(d) and (e), for two different boundary conditions
of the microtubule. In the figures, as parameter t2 is in-
creased, it is seen that that system initially has a trivial
gap, and then passes through a regime of gaplessness be-
fore opening up a topological gap, distinguished by the
presence of zero energy edge states. For a cylindrical strip
of Ny chains, there are 2Ny zero energy modes in the gap,
in the absence of sub-lattice symmetry-breaking terms.
In our quasi-1D model, this situation corresponds to a
topological invariant νx = 1 (higher integers are usually
associated with long-range coupling in such conjugated
systems). These edge states can then couple with other
systems, hybridize with each other for short enough tube
lengths, or interact with environmental modes. These ef-
fects give rise to a host of phenomena that have been ex-
tensively studied in the context of SSH chains and would
be of direct relevance to microtubules [36–38]. More-
over, while the staggered helical nature of the microtubule

allows the reasonable assumption of low hoppings of the
kind A-A or B-B or non-uniform on-site chemical poten-
tial, their presence explicitly breaks the aforementioned
sublattice symmetry of the system. For small values of
such symmetry breaking terms (with respect to the gap),
the spectrum is shifted or stretched or both, thus lifting
some or all the edge states from zero energy [39]. How-
ever, they retain their topological significance despite due
to the presence of the gap. Very high values, on the other
hand, can close the gap and cause these edge states to
become absent.

Disorder and dynamic instability. – The growth
phase of the microtubule sets in when the ends are not
uniformly composed of GDP dimers, but also contain in-
terspersed GTP dimers. Further, in some diseased states,
there could also be isoforms of tubulin present, which
would further contribute to the non-uniformity of the
cap [40]. This non-uniformity can be reasonably expected
to affect the electron hopping strength. Moreover, given
that the GTP molecules are in metastable stages of hydrol-
ysis enroute to conversion to GDP, we expect a continuous
range of non-uniformity, as opposed to a binary distribu-
tion. A full treatment of such effects involves considera-
tions of dynamics and energetics as brought about by these
changes. As a preliminary step, however, we treat these
changes as non-uniformities in the lattice. We model such
non-uniformity in the cap as disorder in the hopping pa-
rameters, and characterize its effects on topological prop-
erties via changes made to the winding number.

Since the cap does not cover the entire length of the mi-
crotubule, we assume disorder only in part of the tube. As
a specific proof-of-principle instance, we model the pres-
ence of disorder in half the tube. In order to determine
the phase of the microtubule, we employ the real space
version of the topological invariant typically used for dis-
ordered systems [41–43]. To briefly provide the recipe, in
the basis of eigenstates of S, the Hamiltonian can be writ-
ten in the off-diagonal form of eq. (2). One then defines
a “flat-band” version Q of this real-space Hamiltonian as
Q = P+ − P−, where P± are projectors onto eigenspaces
with positive and negative eigenvalues. The invariant is
given by

ν = − 1
Nx

Tr(Q̃†[X, Q̃]), Q =
(

0 Q̃

Q̃† 0

)
. (4)

Here Nx is the number of unit cells along the lattice and
X is the position operator in the lattice.

Our model of the microtubule corresponds to the AIII
class of topological insulators.

We effectively evaluate the topological invariant per unit
width νx = ν/Ny where Ny is the number of protofila-
ments. Thus, νx is quantized in units of 1/Ny. This quan-
tized behaviour has been established both analytically and
numerically, even in the presence of strong disorder [42].
In our system, we apply disorder to the hopping strengths
t1 and t2 individually. For each of these hopping strengths
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Fig. 3: Topological invariant νx plotting against disorder
strength W in t1 and strength W/2 in t2 for Ny = 8 in two
possible pitch configurations. The blue points correspond to
the real space topological invariant for a microtubule of pitch
zero, and the red curve is a rough fit of the data points. The
initial quantization is briefly retained until W ∼ 3.

hi, disorder is applied through the equation hi = hi0+Wiu
where u is a uniform random variable sampled between
[−0.5, 0.5] and Wi is the strength of the disorder. The
initial parameters hi0 are picked so that the microtubule
starts at a topological phase. We also pick W1 = W for
t1 and W2 = W/2 for t2. These parameters represent a
typical sample which demonstrates the plausible evolution
of topological features.

The results thus obtained are shown in fig. 3. A few
caveats are in order. The trend clearly shows a nearly
quantized value of unity for the invariant at low disorder
that drops towards zero upon increasing disorder. The
curve can stabilize at other values of νx that are multiples
of 1/Ny. Fluctuations around the allowed values are a re-
sult of the finite size of the system chosen and diminish
for longer systems [42]. We expect out results to hold for
the more realistic number Ny ∼ 13. While the form of
the invariant assumes sublattice symmetry, we expect the
topological feature of a robust edge mode to remain for
small deviations from this symmetry condition. Most im-
portantly, the simulation is a demonstration of the salient
properties in the presence of disorder. Our simulations
show that the quantization is retained for values of dis-
order as high as W = 3. While this treatment considers
the segment as a whole, with disorder in half the region to
represent the physical situation, a more detailed analysis
would show the exact physical location of the end modes
as possibly shifting into the interior. Most prominently, we
may reasonably expect that for regions of lower disorder,
the presence of the edge mode would still be prevalent.

Discussion and outlook. – Here, we have given a
proof-of-concept presentation of how topological proper-
ties of tight-binding lattices, emerging from their elec-
tronic conductivity properties, can provide microtubules
with unique bound state structure hitherto unexplored. It
adds to a growing body of work that posits coherent trans-
port of quantum excitations across microtubules even in
physiological conditions, like in refs. [13,18,26], etc. Here,
we associate the decay and growth phases of the micro-
tubule with the presence or disorder-induced vanishing of

an electronic topological edge mode. Realistically, sev-
eral variations of our model could come into play includ-
ing the effects of environmental interactions, and the non-
equilibrium stochastic nature of microtubule growth. In
particular, the estimated hopping strengths in previous
works [18] indicate a gap energy of the order of 0.4–1 eV,
which is much higher than physiological temperatures.
While this could heuristically indicate that the topolog-
ical gap is robust to thermal excitations, a more rigorous
treatment of the system in interaction with thermal vibra-
tional modes and other environmental factors is needed,
which is beyond the scope of this current work. Further,
in this work, we assumed sublattice symmetry, which ul-
timately gives rise to the mid-gap states centered at the
Fermi energy. We expect that deviations either due to
on-site potential variations or other couplings within each
of the A and B sublattices would still preserve the edge
modes for values small enough in comparison to the dimer
bond strength. Additionally, one could adapt these cal-
culations to extremely short microtubules as they start
to grow out of the centrosome, and perhaps to extremely
long microtubules that push an embryonic neuronal cell
membrane out to grow towards future synapses.

While our model is phenomenological in nature, fur-
ther studies would connect the disorder distribution to
physical conditions, such as hydrolysis states, temperature
effects, microtubule-associated proteins, such as kinesin
and dynein and presence of other biochemicals. Moreover,
while we studied uniform vs. disordered behavior for en-
tire segments, it is possible to have more robust bound
states at the interface of such segments. Nevertheless, the
presence of topologically robust modes in the microtubule
is further supported by studies of isotypes of tubulin in
diseased microtubules. It is seen that their functioning
is only marginally altered, with such defects only becom-
ing apparent in processes that are highly sensitive to mi-
crotubule dynamics [44]. A further intriguing possibility
would involve possible coupling between such edge modes
posited by mechanical and electronic degrees of freedom.

Finally, the existence of robust edge state modes could
have significant biological implications. In principle,
the bound state could act as an acceptor or donor of
charge, perhaps differentially influencing the more neg-
atively charged GTP compared with the GDP molecule.
Considering their role in neural transmission, they may
also extend into various parts of the axon terminal, and
dynamically change the open-or-closed states of voltage-
gated ion channels, contributing to pre-synaptic mem-
brane activity. Conversely, proteins that have an overall
positive charge or neurite regions that have a concen-
tration of positive charge (such as an action potential’s
influx of cations) might attract the microtubule if it is
in the topological regime for hosting negative charge at
its end. Regardless of the extent to which microtubules
are involved with intra-neuronal activity besides trans-
port [10,11], it is likely that sub-neuronal computation
is an important part of brain function, and microtubules
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may play a significant role in that. As in condensed
matter systems, conduction properties of microtubules
hinge greatly on their structure, chemical composition and
environment; their possible behavior as topological insu-
lators may bear radical insights into the quantum nature
of biophysical systems.
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