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The model predictive static programming (MPSP) technique, which is extended recently to incorporate
applicable state and control constraints, operates on the philosophy of nonlinear model predictive
control (NMPC). However, it reduces the problem into a lower-dimensional problem of control
variables alone, thereby enhancing computational efficiency significantly. Because of this, problems
with larger dimensions and/or increased complexity can be solved using MPSP without changing
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Grinding mills grinding mill circuit model, and (ii) a four-cell flotation circuit model. The results are compared with
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a conventional nonlinear MPC approach. Comparison studies show that constrained MPSP executes
much faster than constrained MPC with similar/improved performance. Therefore, it can be considered
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a potential optimal control candidate for mineral processing plants.
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The use of process control in industrial plants is an efficient
way to maintain consistent product quality, improve through-
put, optimize power usage, and ensure safe process operation.
Since most industrial processes are multi-variable and nonlin-
ear, they can be difficult to control. Nonlinear Model Predictive
Control (NMPC) is an attractive solution to control large systems
with highly interactive and nonlinear input-output responses.
The process industry uses MPC regularly because of its constraint
management capabilities and control simplicity [1,2]. NMPC is
ideal for processes with relatively slow dynamics since it can be
computationally intensive to apply online [3,4].

By way of example for the mineral processing industry, a
robust NMPC was implemented in simulation on a grinding mill
circuit by Coetzee et al. [5], but the computational time was too
long for practical implementation. To produce a practically viable
controller, it is necessary to reduce the computational time of the
MPC without compromising its performance.

NMPC formulations which can include multiple constraints
and operating conditions can potentially increase the computa-
tional burden of the algorithm. The reason for the computational
burden of these algorithms is the nonlinear nature of the models
being used. The nonlinearities of a system add complexity in
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such a way that tailored algorithms for the NMPC implementation
might be necessary to achieve optimal results within a given
sampling time [6]. Different fast NMPC schemes are available
to improve the computational time of NMPC algorithms. Some
of these fast NMPC schemes use suboptimal update methods or
sensitivity-based update methods to approximate the optimal
solution to the controller objective functions [7]. Other fast NMPC
schemes include a real-time iterations (RTI) algorithm to reduce
the computational time of the NMPC algorithm [7-9]. The RTI
algorithm is implemented in such a way that all the preliminary
calculations that can be done without the initial state estimate
of a system are derived from the NMPC objective function. The
preliminary calculations are then used together with the state
estimates when they are obtained, either through sampling or
through a state estimation algorithm, to get an optimal solution
to the objective function [9].

Another fast NMPC scheme known as advanced-step NMPC
uses the previously calculated control input of the plant to pre-
dict the future plant states and solves the respective objective
function of the NMPC controller in advance [7,10].

Explicit NMPC is another technique that is used to decrease
the computational time of NMPC controllers [11]. The challenge
with Explicit NMPC is that the offline calculations become very
difficult to solve for high-dimensional complex processes (more
than five state dimensions) [12]. Chen et al. [13] and Zhang
et al. [14] have used reinforcement learning to approximate the
polyhedral regions of explicit MPC into a function for the explicit
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control law. These significantly improve the computational time
of standard explicit MPC with fewer required computer resources.

Most of the online computational fast MPC methods work
on the principle of either decreasing the number of decision
variables of the optimization problem or altering the optimization
routine to optimize the computational time of the specific plant
model. Some of the ways to decrease the decision variables for the
optimization problem is by including move-blocking, where the
number of control moves to be calculated is reduced by keeping a
set of control moves constant between time iterations [ 15]. Faroni
et al. [16] show that the decision variable can be decreased by
choosing the prediction time steps independently from the sam-
pling time and the control horizon. Another method to increase
optimization efficiency is warm-starting, where the calculated
control input of the previous iteration is used as the initial control
solution for the current iteration [12,17].

The computational time of the MPC controllers can also be
decreased by defining termination constraints of the optimization
algorithm [12]. This decreases the number of function evaluations
and can lead to suboptimal solutions. This fast MPC control tech-
nique was implemented on a gas turbine system by Hou et al.
[18], where the optimization routine complexity was reduced by
using the original obstacle point method. A barrier parameter for
the inequality constraints simplified the optimization problem
and the warm-starting method was also implemented to further
reduce computational time. The above-mentioned methods of
decreasing the number of decision variables of the optimiza-
tion routine and defining termination conditions can be used for
general NMPC controllers as well.

Kunz et al. [19] approximated a fast dynamics nonlinear plant
model as a Linear Time-Varying (LTV) model for the MPC prob-
lem formulation with a flatness-based trajectory. The method
obtains a discrete-time LTV model for the defined prediction
period. The method was able to generate a control solution for
a micro-coaxial helicopter at approximately 30% of its sampling
time.

Padhi and Kothari [20] developed a different approach to
NMPC known as Model Predictive Static Programming (MPSP).
MPSP combines two different philosophies: NMPC and Approx-
imate Dynamic Programming [21]. The novelty of MPSP is that
it converts the dynamic optimization problem to an equivalent
small-dimensional state optimization problem in terms of the
manipulated variable alone. The MPSP algebra relies on the re-
cursive calculation of sensitivity matrices which relates the error
of the output to the error of the control at each time step. After
the conversion, assuming a quadratic cost function, the problem
can be solved as a standard quadratic programming problem.
This method was implemented in simulation as a boost phase
guidance scheme and showed a close correlation to the optimal
control solution.

The MPSP algorithm was also implemented in simulation to
an air-to-air missile guidance scheme [22]. The simulations han-
dled inequality state constraints by using a slack variable ap-
proach which transforms the inequality constraints into an un-
constrained problem.

Li et al. [23] manipulated MPSP to include input constraints for
a guidance law for air-to-ground missile cooperation attacks. The
input constraints were implemented by inserting the constraints
as a penalty function to the objective function. Kumar et al. [24]
further adapted the MPSP method to include state and input
constraints. The constrained MPSP method was implemented in
simulation and in real-time for the energy management of a
Parallel Hybrid Electric Vehicle in [25]. They found that the MPSP
algorithm has a faster computational time compared to the tradi-
tional MPC algorithms. Furthermore, there are various examples
of MPSP being applied in the aerospace industry [26-30].
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In terms of mineral processing, an unconstrained MPSP con-
troller was applied in simulation to a grinding mill circuit. Results
showed that the unconstrained MPSP controller had a similar
overall performance as an unconstrained NMPC controller when
there were disturbances and measurement noise added to the
plant. The MPSP method had a significantly shorter computa-
tional time than the NMPC method [31].

The contribution of this article is the application of the con-
strained MPSP of Kumar et al. [24] in simulation to a grinding
mill circuit as well as a flotation circuit respectively. The com-
putational performance of the constrained MPSP is compared to
the application of constrained NMPC for the same plant mod-
els and disturbances. Whereas Le Roux et al. [31] considered
unconstrained MPSP only for a grinding mill circuit, this article
evaluates in simulation, constrained MPSP (which is more rele-
vant for practical problems) as applied to a grinding mill circuit
and a four-cell flotation circuit. It extends earlier preliminary
work where a limited simulation scenario evaluated state and
input constrained MPSP for the grinding mill circuit [32].

The article is organized as follows: Section 2 describes the
MPSP method and the NMPC method. Section 3.1 is the first
example of MPSP and NMPC applied to a grinding mill circuit,
and Section 3.2 is the second example where MPSP and NMPC is
applied to a flotation circuit. Section 4 concludes the article.

2. Model Predictive Static Programming

The recently extended version of MPSP [24], which is applica-
ble to tracking reference signals and can satisfy state and input
constraints, is applied in this paper. A summary of the method
described by Kumar et al. [24] is provided below.

A nonlinear system is written in discrete form as,
X;H—] = Fk (Xll<’ Ul’() (-l)
Yi = he (X;. U

where X € N, Uy € R™ and Y, € NP represent the states, inputs
and outputs of the system respectively. The subscript k represents
the time step and the superscript i represents the iteration index.
The key aim here is to calculate a control history U™, k =
1,2, ..., N, so that the output Y,i“ will converge to the desired
output Y fork=1,2,...,N.

2.1. Analysis for output and state deviation

The output deviation dY; can be written in terms of the state

and input deviations at time steps (k— 1), (k—2), ..., until the
first time step, as follows,

k=1 ‘
dvi = "[Bf] du}, 2)

j=1
where [Bj’F]i is the sensitivity matrix, and is defined as,

=[] [ [
o L L g i) L% gg)

k

—1

3
i [ove (3)
[Bk] = oU N
K (dui)
Similarly, the state deviation can be written as,
k—1 .
ax; = _[A] duj, (4)

j=1
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where,

e [ 2] E2Te
U ) e g0 LGy

+17 1
(5)

It should be noted that (2) represents the sensitivity of the
output dY,ﬁ at the kth iteration with respect to the input changes
dU]? at all the previous grid points (j = 1, 2, ..., k—1). Calculating
[BJ’.‘]i and [AJ’F]I' forall k = 1,2,3, ..., N where N represents the
control and prediction horizon, can be computationally demand-
ing. Note that the following recursive computation reduces the
computational cost significantly.

[¢Ik<]l = Inxn
i i| 9F;
o7 =fokd 2]
D)
i i| 0F Vi<k
w1 =toid [5]
)
k1! _ aYk:| k1! (6)
[ ]] N |:8Xk (X’ Ul) ]
k7 Y iqgi :
[BY] = [B—U’J (xi, UL Vi =k
[A] = [0 Vi > k
8] = 00y -k

Detailed derivation of these expressions is given by Kumar et al.
[24].

2.2. Cost function

The analysis in Section 2.1 led to an under constrained system
of equations. One way of solving this system is to optimize a cost
function. The cost function chosen for each ith iteration is,

Ji= (AYi — aYy)' Q (4Y — AYy)

N | —
1=

0
L

+5 2 (aU) R (aU))

1

N[ — =
=~
Il

where AY} = Y; — Y| is the output error with respect to the
desired output Y, Q is the output weighting matrix and R is the
input deviation weighting matrix. Minimizing this cost function
ensures that the measured output remains close to the desired
output at each grid point for the next iteration (Y,"' — Y, Vk =
1,2,3,...,N). Assuming small output and input deviations, (7)
can be rewritten as,

Ji= 257 (avf - avp)’ (v - AY)

N | —
1=

0
L

(du))" R (au)
1

N[ — =
=~
Il
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2.3. Constrained MPSP

A condensed form of the cost function in (8) can be obtained
by substituting (2) and converting it into a vector form,

Ji= %(wif (Re + (1B Qu[B]') 8U
— (U (1BY) @u(AY*) (9)
+ S (av Ay

where Qi, Ry, AY* and [B]' are,

Qe = diag([Qi], [Q2], .., [Qn])
R = diag([R1], [R2], .., [Rn])
Ay*i S [(Ayl*l)T (AYZ*I)T . (AYN*I)T]T

[B]I [Bj) ... [B\J
A Bi' B3] ... [BRT
(B2 | . . ) .
L[BY] [BST ... [BNT
The state and input constraints applied in (9) are,
[A]I | XUB _Xi
_ Ai X Xi _XLB
W sut < | o i | (10)
—1 Ui _ ULB

where XU and X8 are the upper and lower bound constraints of
the states and UY and U are the upper and lower bound con-
straints of the inputs. The matrix [A]' is the same as represented
in (5) but in matrix form,

A AT AL
e | AT AT 441

(AT [AYY [ANT

Finally, 8U' is the small control deviations,

sU' 2 [(dub)” (U’ - (dup)]"
Output constraints can be added by using the definition in (2) to
obtain,

i UB i

[_[fg,]] $U' < B - yﬁ] , ()
where YY8 and Y8 are the upper and lower output constraints.

The cost function in (9) and the constraints in (10) and (11)
can be solved with any standard quadratic programming (QP)
problem solver [24]. If, for example, sequential quadratic pro-
gramming (SQP) is used to solve the static optimization problem,
the approach inherits the stability and convergence properties
of SQP. The initial control for MPSP needs to be a feasible so-
lution, which is not a difficult task for regulation problems as
it can be assumed to be a steady-state solution without the
presence of disturbances. In the case of an infeasible solution,
SQP can be adapted by introducing additional variables to define
a higher dimensional subproblem consistent with constraints [33,
34], or infeasible interior point algorithms can be considered [35].
The quadratic programming optimization algorithm used for the
MPSP method is quadprog [36], which uses the dual method
described in Goldfarb and Idnani [33].
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2.4. Nonlinear model predictive control summary

The constrained NMPC can be formulated as,
Np

1
min JXe U = 5 3 (%= )" Q (Y~ ¥7)

Ue: U415+ Uk Ne =1

(12)
+1§)u — UYT R W1 — Up)
2 - k+1 k k+1 k
S.t.
Xir1 = Fie (Xi, Ur)
Y = he (Xi)
U <U <y (13)
XLB SX S XUB

YLB < Y < YUB

where N, is the prediction horizon, N, is the control horizon, Y} is
the desired outputs, Uy is the input, X is the states of the plant,
U8 and U"B are the lower and upper bounds of the input con-
straints, X8 and XUB are the lower and upper bounds of the state
constraints, Y8 and YUB are the lower and upper bounds of the
output constraints, and R and Q are the input deviation weighting
matrices and output error weighting matrices respectively.

The objective function (12) is difficult to solve for nonlinear
plant models because it is difficult for the optimization algorithm
to differentiate between local and global minima. Linearizing the
nonlinear plant model about a nominal operation point is an
effective way to reduce the objective function complexity [37].
The linearization of the plant model reduces computational time
significantly because the objective function can be condensed into
a convex quadratic programming problem [6]. The MPSP method
can be seen as a linearization algorithm.

The minimization problem in (12) can be solved using an
appropriate numerical optimization routine which can solve non-
linear problems [34]. A standard NMPC approach with warm-
starting and move-blocking is implemented in both simulation
case studies to act as a baseline for the comparison of the MPSP
controller. The optimization algorithm used is the Least Squares
Subproblems method described in Kraft [38].

3. Simulation case studies

The simulations in both case studies were done in Python. The
simulations were executed on an Intel(R) Core(TM) i5-8400 (6
Core) 2.80 GHz processor with 20 GB RAM running a Microsoft
Windows 10 operating system.

3.1. Example 1: A grinding mill circuit

The constrained MPSP controller in Section 2 and the con-
strained NMPC controller in Section 2.4 are applied in simulation
to a grinding mill circuit. A single-stage grinding mill circuit is
shown in Fig. 1 [39,40]. The variables in Fig. 1 are described in
Table 1. An overview of the process can be found in Le Roux et al.
[40].

3.1.1. Grinding mill circuit process model

A brief overview of the model of the grinding mill circuit in
Fig. 1 is given below. A complete description of the plant model
is given by Le Roux et al. [40]. The model nomenclature is given
in Table 2. The variable and parameter values were taken from Le
Roux et al. [31].
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Table 1
Circuit variable descriptions.

Manipulated variables

Upiw Flow-rate of water to the mill [m?/h]

Unmro Flow-rate of ore to the mill [t/h]

U Flow-rate of steel balls to the mill [t/h]

Uspw Flow-rate of water to the sump [m3/h]

Ucrr Flow-rate of slurry to the hydrocyclone [m?/h]

Controlled variables

yr Fraction of the mill filled [-]
Ysvor Volume of slurry in the sump [m?]
Ypse Fraction of particles within specification [-]

The state-space model of the grinding mill circuit is,

. dgXmuX
X = U — —— 4 Qeu
Xms + Xmuw
. Upmro dyQXmuwX
Xms = 1 —a)— 1$FmwEms + Qesut
Lo Xms + Xmuw
OPpiyy ( Xmr >
PoKre \ Ximr + Xims
. u dq@XmuX Py
R = MFOO(f _ qPXmwXmf + chu + mill
Lo Xms + Xmuw PoKep
. u P X
Xy = MFO a — mill P ( mr ) (.14)
Po poKRC Xmr + Xms
. Umrs  Prmingy ( Xmb )
Xmp = —— —
Pb Kpc 0o Kmr + Xms) + ObXmb
. dqoXmuwX UCFFX
Ry = qPXmwXmw — UcFFXsw + Usy
Xms + Xmw Xsw + Xss
foo = dgpXmuXms _ UcrFXsw
® Xms + Xmw Xsw + Xss
X Aq@XmuXmf UcFFXsf
Sf = -
> Xms + Xmw Xsu + Xss

where upyw, Uyro and uygg are the flow rates of the mill inlet
water, the feed ore and the feed balls respectively, uspy is the
sump water dilution flow-rate, Xnw, Xms, Xmf, Xmr and Xmp [m3]
are the volume of water, solids, fines, rocks and balls inside the
mill respectively, X, X and X [m3] are the water, solids and
fines inside the sump respectively, and Qcyu, Qcsu and Qg [m3/h]
are the cyclone water, solids and fines underflow respectively.
The outputs are,

— Xmw+Xms+Xmr +Xmp

I Umill

Ysvor = Xss + Xsu (15)
= %

YrsE = 4o

where Qg and Qc, [m3/h] are the volumetric flow-rates of the
fines and the solids at the overflow of the hydrocyclone respec-
tively, Yjr is the volume fraction filled in the grinding mill, Ysyo; is
the volume of the sump and Yps; is the particle size distribution
of the hydrocyclone overflow.

The intermediate variables required in (14) for the mill are,

= -1 & Ex(e' 1)

¢ = " _
0; 5o (e —1)"
2
Xmw T X, X X
Pmill =Pmax :1 _ 81) < mw + Xmr + Xms + Xmb _ 1) (16)
Umill UPpax

2
—&(w—ﬁ)]@,
N
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Mill Inlet Particle Size Estimate (ypsg)

‘Water
(umrw)

Cyclone k
Cluster

¢

Cyclone
Feed Flow
— (ucrr)

Sump
Feed
Water

Mill Feed Balls

Mill Load (us Fw)
(umrg) ir)
Mill Feed Ore _l_
(Umro)

Sump Fill
(svor)

Fig. 1. A single-stage grinding mill circuit [39].

where ¢ is an empirically defined rheology factor and Pp,;; [kW] is
the power draw of the grinding mill. The intermediate variables
required in (14) and (15) for the hydrocyclone are,

u Xss — X, —u
Ques = CFF( ss sf) (1 -G exp( CFF)) <

Xsw 1 Xss Ec

C2 (Xsw + Xss) Xss
x —
F, =0.6 — (0.6 - ) exp ( Q“”)
Xsu + Xss Osy€c

_ Xsw (Qecu — FuQccu)

chu _Fuxsw + Fuxsf - Xsf (17)
Xsf (Qeccw — FuQccu)
Qu=c""T-—"—
Fuxsw + Fuxsf — Xsf
Xsf (Qeeu — FuQccu)
Qesu =qccu + Lo orew — Tureeau]
Fuxsw + Fuxsf — Xsf
UcrrX,
cho = — Qtsu
Xss + Xsw
UcFrXsf
Qo =~ — Q-
fo Xss + Xsuw T

where Q. [m3/h] is the hydrocyclone coarse underflow, Q,
and Q, [m3/h] are the hydrocyclone solid and fines overflow
respectively, and F, is the fraction of solids in the hydrocyclone
underflow.

3.1.2. Grinding mill circuit simulation

Simulation configuration

To compare the performance of the constrained MPSP and
NMPC as applied to the grinding mill circuit, the following general
configuration is used.

The simulation duration time is 5h and each controller has a
sampling time of Ty = 10s. A longer sampling time may allow
the sump to run dry or overflow before corrective action can be
taken [5]. The nonlinear state-space description of the circuit in
(14) is simulated using the Runge-Kutta fourth order method.

Although it is not trivial to design an observer for the grinding
mill circuit, the state of the grinding mill circuit can be estimated
given sufficient industrial measurements [39,41,42]. Since the
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Table 2
Grinding mill circuit nomenclature.

Parameter Value Description

ar 0.055 Fraction fines in the ore

o 0.465 Fraction rock in the ore

bc 0.72 Fraction of critical mill speed

sy 1.50 Parameter related to fraction solids in
underflow

G 0.6 Constant

G 0.7 Constant

Cs 4.0 Constant

8s 2.90 Power-change parameter for fraction solids in
the mill

8y 2.90 Power-change parameter for the volume of
mill filled

Ob 7.85 Density of steel balls [t/m?]

Do 3.2 Density of feed ore [t/m?]

& 111.9 Maximum fraction solids by volume of slurry
at zero slurry flow

Esy 0.6 Parameter related to coarse split [m?/h]

Kpc 90.0 Ball consumption factor [kWh/t]

Kep 31.31 Fines production factor [kWh/t]

Kre 8.06 Rock consumption factor [kWh/t]

ON 0.57 Rheology normalization factor draw

Prax 1670 Maximum mill motor
power draw [kKW]

Vil 59.12 Mill volume [m?]

Upmax 0.34 Fraction of mill volume filled for maximum
power draw

dg 84.50 Discharge rate [h™!]

observer design falls outside the scope of this study, full-state
feedback is assumed.

The ball feed-rate upyp is kept at a constant ratio with respect
to the volume of the mill filled with charge yjr, such that uygs/yjr
= 16.7. The mill water inlet uyyy is kept in a ratio of 7 % with the
mill feed ore upyro.

The nominal and initial values of the plant are,

T
Xo = [me! Xmss Xmf > Xmr> Xmb > Xsw» Xss, Xsf]
—[3.78, 3.45, 1.08, 1.86, 9.23, 3.79, 2.11, 0.66]"  (18)
Uo = [umro, Usrw. Ucre]’ = [66.9, 67.1, 267] (19)
T
Yo = [.VJTa YsvoL, _VPSE] =1[0.31, 5.90, 0.60]" (20)

The input and output constraints for the grinding mill are,

0 Upmro 100
&) 2]
100 UcFr 500
|: 1.0 :|S|:YSVOL:|S|: 8.0 j|
0.5 Ypse 0.8

The desired set-points are kept constant at the nominal values
of the plant.

The first disturbance introduced to the grinding mill is a
change in the mill feed size distribution by increasing the fraction
of rocks in the ore fed to the mill, «;, with 50% of its nominal
value from t = 0.5h to t = 2.1h. The second disturbance intro-
duced to the circuit is a change in the ore hardness by increasing
the fines production factor, Kgp, with 60% of its nominal value
from t =1.5h to t =3h. The increase in K is introduced as a
step-change in the simulation whereas it would generally change
gradually over time in an industrial plant.

MPSP configuration

Two MPSP controllers were simulated. The first controller,
MPSPs6, has a control/prediction horizon of N = 36 and the
second controller, MPSP7,, has a control/prediction horizon of
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Table 3
Iteration time results of the MPSP and the NMPC simulations for
the grinding mill circuit.

Simulated Controller X [s] o [s]
MPSP36 0.670 0.544
MPSP7, 1.735 1.260
NMPCg; 0.869 0.581
NMPCgy 4.878 3.167

N = 72 according to (8). The MPSP;, controller uses a sampling
time of Ty = 5 to obtain similar results as the MPSP55 controller
but with an increased number of control variables.

The weighting matrices for the MPSP controller were cho-
sen to normalize the inputs and outputs and prioritize set-point
following of ypsg, such that [31],

Qmpsp = diag([36.22, 0.013, 1510])

Rumpsp = 1072 diag([3.481, 0.218, 0.218]),

where Qupsp and Rppsp are the weighting matrices for the MPSP
objective function in (9). The MPSP algorithm terminates if the al-

gorithm has been executed 15 times, or if either of the conditions
below are met,

[ -vol, _ .
v,

[ -v@l, .
val,

[vi» -3, o,
[vi3)l,

where Y/(p) refers to the pth entry in the output vector Y.
The MPSP optimization problem is solved using a strictly
convex QP solver.

NMPC configuration
Two NMPC controller configurations were simulated, where
the prediction horizon is N, = 36 and the control horizon

is No = 12 for both controllers. The first controller, NMPCg1,
does not make use of move-blocking and the second controller,
NMPCg3, makes use of move-blocking of Ny = 3. Both the NMPC
controllers use warm-starting [12].

Similar to MPSP, the weighting matrices for the NMPC con-
troller were chosen to normalize the inputs and outputs and
prioritize set-point following of ypsg, such that,

Qumpe = diag([5.489, 0.015, 496.7])
Rampe = 1072 diag([3.481, 0.218, 0.218]),

where Qumpe and Rympe are the weighting matrices for the NMPC
objective function in (12). The NMPC algorithm terminates when
the sequential programming problem optimization routine has
executed a maximum of 15 times, or the algorithm converged
between iterations within a tolerance of 0.01.

The weighting matrices for the NMPC and MPSP controllers
can be chosen to apply larger penalties to input deviations and
output setpoint tracking errors. For these larger weights, it may
mean that none of the constraints are reached for the operating
conditions in the simulations shown below. Because the aim
is to evaluate the algorithms when constraints are active, the
weighting matrices were not updated to apply larger penalties.

Simulation results and discussion
The results of the simulation are shown in Figs. 2 to 3. The
time to calculate a new control step for each kth time step was
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Fig. 2. MPSP and NMPC simulation outputs of the grinding mill circuit. The
nominal conditions of each output is shown in (20) and is represented by the
dashed line.

Table 4
IAE performance of the MPSP and the NMPC simulations for the grinding mill
circuit.

Simulated Controller IAE(Y)r) TAE(Ysyor) TAE(Ypsg)
MPSPs 315.6 13040 43.40
MPSP;, 313.6 12144 42.23
NMPCpgs 3108 14820 115.18
NMPCp, 2132 5795 36.37

measured in the simulation and is shown in Table 3, where x
and o represent the mean and standard deviation of the iteration
times of the simulations respectively. The Integral Absolute Error
(IAE) performance indicator is shown in Table 4 for the tracking
error of each output Yjr, Ysyor and Ypsz.

The simulation results show that the constrained MPSP and
NMPC controllers can reject disturbances with the same effi-
ciency. The MPSP;5 and NMPCgs controllers are the least compu-
tationally demanding algorithms as shown in Fig. 4.

All the controller computational times do not increase when
any constraints are active, but the computational time of the
NMPCg3, MPSP3¢ and MPSP;, controller increases significantly
when new disturbances are added to the system as can be seen at
t =0.5h,t =1.5hand t = 3 h. This is not the case for the NMIPCg;
because the computational time stays constant at approximately
7.9 s during the simulation until plant disturbances are removed.
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Fig. 3. MPSP and NMPC simulation inputs to the grinding mill circuit. The
nominal conditions of each input is shown in (19).

The reason for the computational time of the NMPCg; controller
staying constant during the simulations is because the controller
does not converge to an optimal solution before 15 iterations of
the NLP solver.

The large increase in computational time when the first dis-
turbance is introduced at t = 0.5 h increases the overall standard
deviation of all the controllers. The differences in the computa-
tional times between the MPSP;s and the NMPCgs controller is
minimal. The NMPCg3 controller is on average 200 ms slower than
the MPSPsg controller as seen in Table 3. The MPSP;, controller is
on average 2.6 times slower than the MPSPs¢ controller.

The computational time difference between the two NMPC
controllers is significant. The computational time increases by a
factor of 5.6 when there is no move-blocking implemented on the
NMPC controller. The output results of the NMIPCg; and NMPCgs;
controllers differ because the increased number of control moves
adds more weight to the input deviation in the objective function
for the same weighting matrices Qumpc and Rympe.

The number of decision variables of the optimization algo-
rithm of the NMPCg controller is equal to the control horizon of
N, = 12. The number of decision variables of the optimization al-
gorithm of the MPSP7;, controller is equal to the control/prediction
horizon of N = 72. The MPSP;, controller has more decision
variables compared to the NMPCg; controller by a factor of 6 and
calculates a new input on average 2.8 times faster than NMPCg;.
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Fig. 4. The time necessary to calculate a new input for the respective controllers.

The controller that performs the best when comparing the
IAE values in Table 4 is the NMPCg, controller. All the simulated
controllers are viable options for controlling a grinding mill as the
calculation time stays below the sampling time of Ts = 10s.

3.2. Example 2: A flotation circuit

The constrained MPSP controller in Section 2 and the con-
strained NMPC controller in Section 2.4 are applied in simulation
to a four-cell flotation circuit.

3.2.1. Flotation process description

A four-cell flotation circuit is shown in Fig. 5 [43]. The vari-
ables in Fig. 5 are described in Table 5. Only a brief overview of
the process is given below.

There are four flotation cells where the tailings of each cell
is denoted by Qr, and the concentrate flow is denoted by Qc,,
where k = 1,2, 3, 4 represents the respective flotation cells.
The cell tailings feed into the next flotation cell downstream as
is shown in Fig. 5. The concentrate of each cell is collected in
the concentrate hopper which is then pumped to further mineral
extraction processes. The main inputs to the flotation circuit are
the aeration rates Qu;r,, the tailings flow-rate of each cell Qy, and
the concentrate flow-rate out of the hopper Qy. The level of each
cell is denoted as L and the level of the hopper is denoted by Ly.
The froth depth of each cell is indicated as hg.

3.2.2. Flotation process model
A brief overview of the model of the flotation circuit in Fig. 5 is
given below. A complete description is given by Oosthuizen et al.
[43]. The model nomenclature is given in Table 5. The variable
and parameters values were taken from Oosthuizen et al. [43].
The state-space continuous model for each cell k is,

_ Kbsy Jg + Kes, Aair, — Der,

BFk )\airk
& I<(¥BFDBF,( + K(X]g.]gk — Ok (21)
k=
)\airk

i‘k = (QFk - QTk - ka) /Ak

M = M}, — M}, — M(,
where Dgr, [mm] is the top froth bubble size, oy is the air
recovery, L, [m] is the level of the pulp, M, [kg] is the mass of
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Fig. 5. A four-cell flotation bank with a hopper.

Table 5
Flotation circuit nomenclature.

Parameter Value Description

Ag 8.20 The cross-sectional area of cell k [m?]

Al 2.00 The cross-sectional area of
the hopper [m?]

Jy - Superficial gas velocity for cell k
(mm/s]

Quir, - Volumetric air flow-rate to cell k [m?/h]

hy, - Froth depth [mm]

a - Air recovery for cell k

Dgr, - Mean top of froth bubble diameter
for cell k [mm)]

pf 3000 Solid particle density for desired
material class i = 0 [kg/m?]

ol 1800 Solid particle density for gangue
material class i = 1 [kg/m?]

o 1000 Fluid density [kg/m?]

" 0.001 Fluid viscosity [Pa s]

g 9.81 Gravitational acceleration [m/s?]

Apmin 10 Particle minimum diameter [pm]

pmax 150 Particle maximum diameter [pum]

Cpg 50 Plateau border drag coefficient

P, 0.15 Dispersion Peclet number

Kgs, 0.05 The effect of the superficial gas
velocities on the mean top of froth
bubble diameter

Kps, 0.03 The effect of the average froth
residence time on the mean top
of froth bubble diameter

Kogr —0.002 The effect of the mean top of froth
bubble diameter on the air recovery

Koy, 7.20 The effect of the superficial gas
velocities on the air recovery in cell 1

Koy 7.30 The effect of the superficial gas
velocities on the air recovery in cell 2

Koy 7.00 The effect of the superficial gas
velocities on the air recovery in cell 3

Koygq 6.63 The effect of the superficial gas
velocities on the air recovery in cell 4

K° 2.30 The flotation rate-constant for
desired material class i = 0

K! 0.0002 The flotation rate-constant for

gangue material class i = 1

material class i in cell k, and M;, , and M'C [kg/h] are the
feed, tailings and concentrate mass ﬂow rates. The variable Qs
[m3/h] represents the input flow-rate to the specific cell k and is

the tailings of the previous cell k — 1. The surface area of a cell is
denoted by Ay.

The water recovery model for the flotation circuit is modelled
as,

1854#Cpﬁ]§k (1—a
— Gk

Jar 0<oar <05
% _ pgDBFk ¢ (22)
Ak 18. 54ucp31gk o > 05
4pgDBFk k = Y.

where p, g, u and Cpg represent the fluid density, gravitational
constant, fluid viscosity and the Plateau border drag coefficient
respectively.

The superficial gas velocity Jg, is calculated as,

Q.airk
A
The masses for the concentrate are calculated from entrainment

and true flotation models. The entrainment model defines the
concentrate mass flow-rate as [44],

 KMJg o

Dgp,

Jg = 100 (23)

Mék + En tFracA QCk (24)

where K' is the flotation rate constant for material class i. The
entrainment factor is,

In (d’,,) — In (dpmin)
In (dpmax) — In (dpmin)

and dppmix is the minimum particle diameter, and dymax is the
maximum particle diameter. The particle diameter is,

Enth, = (25)

. In(0.5
di, = In(0.5 Vg2 (26)
Kenths,
and the constant K!,, is defined as,
. 15
o _[186=0)]" J (S o
et = | 3718, Vo d—a)

where p! is the solids particle density of the material class i. The
state-space equation for the hopper is,
Qf] + QCZ + -+ QCN -

i =
H A

N

. . M
1_2: i H
MH_ MCk_mQH

k=1

(28)
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where N is the number of cells from which the concentrate
overflows to the hopper, M}, is the mass of material class i in the
hopper and Ay is the surface area of the hopper. The grade in the
hopper is calculated as the ratio between the desired material
mass MEO,H and the total masses inside the concentrate hopper
as,

0

D

Gradey = ——— (29)
YoMy

where n is the total number of material classes i. For the purposes

of this study, only two mineral classes are used, i.e., i = 0 for the

desired mineral and i = 1 for the gangue.

3.2.3. Flotation circuit simulation

To compare the performance of constrained MPSP and NMPC
as applied to the flotation circuit, a leader-follower controller is
used as shown in Fig. 6 [45]. The follower controller is used to
control the desired levels of the cells Ly, and the hopper Ly, by
manipulating Qr, and Qy, whereas the leader controller is used
to keep the grade of the flotation circuit at a desired set-point
by manipulating the level set-point as well as the superficial gas
velocity Jg, . For this configuration, the leader controller does not
have any output constraint, but only input and state constraints.
In Fig. 6 the following controller is implemented using NMPC. The
lead controller is used to compare constrained MPSP to NMPC in
simulation.

Simulation configuration

To compare the performance of the MPSP controller and the
NMPC as applied to the flotation circuit, the following general
configuration is used.

The simulation duration is 270 min. Since the residence time
for each flotation cell is approximately 60 s, the sampling time for
each controller was set at Ty = 10s to ensure the fast dynamics
in the froth are captured by the NMPC [45,46].

The nonlinear state-space description of the flotation circuit in
(21) is simulated using the Runge-Kutta fourth-order method.

All model states are observable and can be estimated using an
appropriate observer [43]. Since the observer design falls outside
the scope of this study, full-state feedback is assumed.

The initial state conditions of each cell are,

T
X% = [DBFVOM,L],M?,M”
= [1.80, 0.41, 1.30, 53.87, 7007]",
T
X%, = [DBFZ,Olz,Lz,Mg,le]
=[1.45,0.27, 1.30, 29.58, 7025]",
T
X% = [DBF37W3»L3,M§),M31]
=[1.66,0.17, 1.30, 19.84, 7032]",
T
XY, = [DBF4, g, Lg, MY, Ml]
=[1.40,0.17, 1.30, 13.44, 7027]",
XS = Ly, M3, M,\]"
=[1.40, 97.62, 7.31]".
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Fig. 6. Lead-follow controller configuration for the flotation circuit.

The initial input conditions of the following and leading con-
trollers are,

Uliow = [Qr1s Qry. Qrye Qrps Qu]'
= [728.38, 727.62, 727.29, 727.01, 3.00]T,
Upaa = g1+ Je2 Je3s Jgas
L. L. L3, Ly, Lyl
= (8.4, 85, 8.1, 7.7,
1.30, 1.30, 1.30, 1.30,1.00]T,

(31)

where the desired grade is Y5, = Gradey, = 0.33.
The input ranges for the simulations are,

4.00 <Jg < 12.00 Yk=1,2,3,4
001<Ly <135 Vk=1,23,4
0.02 <Ly < 2.00.

The desired set-points are kept constant at the nominal values
of the plant.

Measured disturbances are introduced to activate the con-
straints of the controllers. The input feed flow Qf, is reduced
by 30% of its nominal value in 10 min with a ramp function at
t = 30min. The input feed density pf, is reduced by 5% of its
nominal value at t = 60 min. The input feed grade G"F1 is reduced
by 5% of its nominal value at t = 90min. The maximum and
minimum particle diameter sizes are decreased by 50% of the
initial values at t = 120 min. The flotation rate constant K°, which
is the desired material, is increased by 10% of its nominal value at
t = 150 min. The flotation rate constant K', which is the gangue,
is increased by 20% of its nominal value at t = 180 min.

NMPC follow controller

The NMPC algorithm is used for the following controller,
where the prediction horizon is N, = 60 and the control horizon
is N. = 20 with a move blocking of Nz = 5 [12]. Warm-starting is
used for the initial guess input of the optimization problem. The
weighting matrices for the NMPC follow controller are chosen as,

follow — diag([Qu,, Quy» Qs Qe Q)
R{gggw = diag([qu, Ro,, Ro,, Roy, RQH]),

where Q;, = Q;,;, = 1000 represents the output weighting matrix
value and Ry, = Rq, = 0.01 represents the input weighting
matrix value for all cells k and the hopper H.

The NMPC algorithm terminates when the optimization rou-
tine has been executed a maximum of 5 times, or the algorithm
converged between iterations within a tolerance of 1 x 1073,

MPSP configuration
The settings of the lead MPSP controller are as follows.
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The prediction and control horizon are the same with a value
of N = 60. The weighting matrices are,

Qmpsp = QGrade =100
lead .
ert?)sp = diag([Ryg,, Rig,, Rigs, R,
Ruig,, Riag,s Risgs Riags Ring 1)

where Ry, = 0.0001 and Ry, = Ry, = 0.001 for all cells k and
the hopper H.

The MPSP algorithm terminates for each iterative step if the
algorithm has executed 10 times, or if the following conditions
are met,

Vi — vl
[ve]
The same strictly convex QP solver that was used in the

grinding mill circuit simulation is used for the flotation circuit
simulation.

< 0.01

NMPC lead controller

The settings of the lead NMPC controller are similar to the
following NMPC controller in terms of the use of warm starting,
N, =60, Nc = 20, and Ng = 5.

The weighting matrix for the NMPC controller in (12) are
chosen as,

Qnmpc = QGrade =100
lead :
er#lpc = diag([Ryg,, Rig,, Rigs, R,
Riig,, Rizgys Risgs Riags Ringl)

where R, = 0.1 and Ry, = Ry, = 1 for all cells k and the
hopper H.

The NMPC algorithm terminates when the optimization rou-
tine has executed a maximum of 10 times, or the algorithm
converged between iterations within a tolerance of 1 x 1074,

Simulation results and discussion

All the simulation results of the NMPC and the MPSP con-
trollers are shown in Figs. 7 to 11. The grade and recovery of
the flotation circuit are shown in Fig. 7. The control objective of
the lead controller was to keep the flotation circuit grade at a
specific set-point. The grade performance of the two controllers
are both acceptable with the NMPC controller achieving a final
set-point deviation of 1.70% and the MPSP controller achieving a
final set-point deviation of 0.06 %. The recovery shown in Fig. 7
is instantaneous and differs from true recovery during transient
(non steady-state) periods. At steady-state, the difference be-
tween instantaneous and true recovery is negligible [45]. NMPC
settles at a higher recovery than MPSP.

The cell level results are shown in Fig. 8, where the dotted
lines indicate the set-points given from the leading controller to
the following level controller, and the solid lines show the output
results of the following controller.

The leading NMPC controller manipulates the level set-points
more aggressively than the MPSP controller for the first distur-
bance rejection at t = 30 min. Fig. 8 in conjunction with Fig. 9
shows that the NMPC controller uses the level set-point to reject
the first plant disturbances and then uses the superficial gas
velocity Jg, to reject the disturbances that occur after t = 100 min.

The opposite is true for the MPSP controller. The MPSP con-
troller uses the superficial gas velocities J; along with the cell
levels Ly to reject all of the disturbance. This causes the MPSP
controller to have better state constraint performance than the
NMPC controller.

Fig. 10 shows the froth bubble diameter size Dgy, of each cell
k. Both the MPSP and the NMPC controllers can reject the state

10
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Fig. 7. Grade and recovery of the flotation circuit.
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Fig. 8. Flotation cell levels. Legend: Lyypc is the output level for the NMPC
controller, Lypsp is the output levels of the MPSP controller, SPyypc is the input
set-point of the NMPC controller to the following controller and SPypsp is the
input set-point of the MPSP controller to the following controller. The nominal
conditions of each cell is shown in (30).
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Fig. 9. Superficial gas velocity. The nominal conditions of each cell is shown in
(31).

2.0 1

18 T T

Dpp, [mm] Dgp, [mm] Dpgr, [mm]

1.9 4
1.8 1
1.7 1
£ 16l
g
Q14 . .
0 100 200
Time [min]
—— MPSP
—— NMPC

Fig. 10. Froth bubble size diameter of each cell. The nominal conditions of each
cell is shown in (30).

constraints of the froth bubble size during the first disturbance,
but the NMPC controller violates the constraints at t ~ 40 min.
The possible reason for this state constraint violation is caused

11
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Fig. 11. The time necessary to calculate a new input of the controllers for the
flotation circuit.

Table 6
Iteration time and performance results of the MPSP and the NMPC simulations
for the flotation circuit.

Controller X [s] o [s] Max [s] 1AE(Gradey)
NMPC 8.029 1.419 13.88 12.227
MPSP 0.907 0.773 3.060 4423

by the input disturbance between the following controller and
the NMPC controller on the cell levels Ly, L3 and Ly.

Both the controllers were able to reject the measured distur-
bances and control the plant grade to the desired set-point.

The iteration time information for the lead controllers are
shown in Fig. 11 and Table 6. The MPSP controller is on average
8.85 times faster than the NMPC controller. The standard devi-
ation of the calculation time is smaller for the MPSP controller
compared to the NMPC controller. The MPSP controller calcu-
lation time significantly increases after the first disturbance is
introduced at t &~ 35 min. The maximum calculation time of the
MPSP controller is 3.06 s, which is when the initial disturbance is
introduced to the plant.

The sampling time for each controller is Ty = 10s. As shown
in Fig. 11, whereas the NMPC controller is able to calculate a
new input within 7.5 s on average, there are instances where it
requires more than 10 s to calculate a new input. The MPSP con-
troller is significantly faster and requires at most 3 s to calculate
a new input. Fig. 11 indicates that the MPSP algorithm is more
computationally efficient.

Industrial flotation circuits often run at a sampling rate of
Ts = 60s, even though this may be too slow to capture all
the dynamics of the process [45,46]. At this sampling rate, both
NMPC and MPSP are viable options where only a single flotation
bank is controlled. In the case where multiple flotation banks
are combined into a plant-wide MPC strategy, MPSP is the better
option. Investigation of MPSP for plant-wide control of a mineral
processing plant remains open for further research.

4. Conclusion

In the case of the grinding mill circuit example in Section 3.1
none of the disturbances were known. Both the MPSP and NMPC
algorithms were able to stay within the constraints of the plant.
The MPSP controller which uses the QP problem solver is compu-
tationally faster than the NMPC controllers.

In the case of the flotation circuit example in Section 3.2
all the disturbances were measured. Both the MPSP and NMPC
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algorithms were able to accurately predict the state and output
trajectory. None of the state constraints were violated for either
controller. The MPSP controller calculated a new control move
faster than the NMPC controller for each time-step in the simula-
tion. The number of optimization variables increased significantly
between the two case studies which does not lead to a significant
increase of computational time for the MPSP controller.

As shown in this paper, constrained MPSP, as applied in simu-
lation to a grinding mill circuit and a four-cell flotation, has sim-
ilar performance but a faster computational time compared to an
NMPC controller. Even though MPSP operates on the philosophy
of MPC, it reduces the original problem into a lower-dimensional
problem of control variables alone, thereby enhancing compu-
tational efficiency significantly. Because of this, problems with
larger dimensions and/or increased complexity can be solved
using MPSP without changing the computational infrastructure.
Hence, it can be a preferred fast MPC approach for mineral pro-
cessing plants. Potential for future work is to evaluate constrained
MPSP to other fast MPC approaches [47].
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