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a b s t r a c t

The model predictive static programming (MPSP) technique, which is extended recently to incorporate
applicable state and control constraints, operates on the philosophy of nonlinear model predictive
control (NMPC). However, it reduces the problem into a lower-dimensional problem of control
variables alone, thereby enhancing computational efficiency significantly. Because of this, problems
with larger dimensions and/or increased complexity can be solved using MPSP without changing
the computational infrastructure. In this paper, the MPSP technique with applicable constraints is
applied to two challenging control problems in the mineral processing industry: (i) a single-stage
grinding mill circuit model, and (ii) a four-cell flotation circuit model. The results are compared with
a conventional nonlinear MPC approach. Comparison studies show that constrained MPSP executes
much faster than constrained MPC with similar/improved performance. Therefore, it can be considered
a potential optimal control candidate for mineral processing plants.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The use of process control in industrial plants is an efficient
ay to maintain consistent product quality, improve through-
ut, optimize power usage, and ensure safe process operation.
ince most industrial processes are multi-variable and nonlin-
ar, they can be difficult to control. Nonlinear Model Predictive
ontrol (NMPC) is an attractive solution to control large systems
ith highly interactive and nonlinear input–output responses.
he process industry uses MPC regularly because of its constraint
anagement capabilities and control simplicity [1,2]. NMPC is

deal for processes with relatively slow dynamics since it can be
omputationally intensive to apply online [3,4].
By way of example for the mineral processing industry, a

obust NMPC was implemented in simulation on a grinding mill
ircuit by Coetzee et al. [5], but the computational time was too
ong for practical implementation. To produce a practically viable
ontroller, it is necessary to reduce the computational time of the
PC without compromising its performance.
NMPC formulations which can include multiple constraints

nd operating conditions can potentially increase the computa-
ional burden of the algorithm. The reason for the computational
urden of these algorithms is the nonlinear nature of the models
eing used. The nonlinearities of a system add complexity in
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ttps://doi.org/10.1016/j.jprocont.2023.103067
959-1524/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

nc-nd/4.0/).
such a way that tailored algorithms for the NMPC implementation
might be necessary to achieve optimal results within a given
sampling time [6]. Different fast NMPC schemes are available
to improve the computational time of NMPC algorithms. Some
of these fast NMPC schemes use suboptimal update methods or
sensitivity-based update methods to approximate the optimal
solution to the controller objective functions [7]. Other fast NMPC
schemes include a real-time iterations (RTI) algorithm to reduce
the computational time of the NMPC algorithm [7–9]. The RTI
algorithm is implemented in such a way that all the preliminary
calculations that can be done without the initial state estimate
of a system are derived from the NMPC objective function. The
preliminary calculations are then used together with the state
estimates when they are obtained, either through sampling or
through a state estimation algorithm, to get an optimal solution
to the objective function [9].

Another fast NMPC scheme known as advanced-step NMPC
uses the previously calculated control input of the plant to pre-
dict the future plant states and solves the respective objective
function of the NMPC controller in advance [7,10].

Explicit NMPC is another technique that is used to decrease
the computational time of NMPC controllers [11]. The challenge
with Explicit NMPC is that the offline calculations become very
difficult to solve for high-dimensional complex processes (more
than five state dimensions) [12]. Chen et al. [13] and Zhang
et al. [14] have used reinforcement learning to approximate the

polyhedral regions of explicit MPC into a function for the explicit
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ontrol law. These significantly improve the computational time
f standard explicit MPC with fewer required computer resources.
Most of the online computational fast MPC methods work

n the principle of either decreasing the number of decision
ariables of the optimization problem or altering the optimization
outine to optimize the computational time of the specific plant
odel. Some of the ways to decrease the decision variables for the
ptimization problem is by including move-blocking, where the
umber of control moves to be calculated is reduced by keeping a
et of control moves constant between time iterations [15]. Faroni
t al. [16] show that the decision variable can be decreased by
hoosing the prediction time steps independently from the sam-
ling time and the control horizon. Another method to increase
ptimization efficiency is warm-starting, where the calculated
ontrol input of the previous iteration is used as the initial control
olution for the current iteration [12,17].
The computational time of the MPC controllers can also be

ecreased by defining termination constraints of the optimization
lgorithm [12]. This decreases the number of function evaluations
nd can lead to suboptimal solutions. This fast MPC control tech-
ique was implemented on a gas turbine system by Hou et al.
18], where the optimization routine complexity was reduced by
sing the original obstacle point method. A barrier parameter for
he inequality constraints simplified the optimization problem
nd the warm-starting method was also implemented to further
educe computational time. The above-mentioned methods of
ecreasing the number of decision variables of the optimiza-
ion routine and defining termination conditions can be used for
eneral NMPC controllers as well.
Kunz et al. [19] approximated a fast dynamics nonlinear plant

odel as a Linear Time-Varying (LTV) model for the MPC prob-
em formulation with a flatness-based trajectory. The method
btains a discrete-time LTV model for the defined prediction
eriod. The method was able to generate a control solution for
micro-coaxial helicopter at approximately 30% of its sampling

ime.
Padhi and Kothari [20] developed a different approach to

MPC known as Model Predictive Static Programming (MPSP).
PSP combines two different philosophies: NMPC and Approx-

mate Dynamic Programming [21]. The novelty of MPSP is that
t converts the dynamic optimization problem to an equivalent
mall-dimensional state optimization problem in terms of the
anipulated variable alone. The MPSP algebra relies on the re-
ursive calculation of sensitivity matrices which relates the error
f the output to the error of the control at each time step. After
he conversion, assuming a quadratic cost function, the problem
an be solved as a standard quadratic programming problem.
his method was implemented in simulation as a boost phase
uidance scheme and showed a close correlation to the optimal
ontrol solution.
The MPSP algorithm was also implemented in simulation to

n air-to-air missile guidance scheme [22]. The simulations han-
led inequality state constraints by using a slack variable ap-
roach which transforms the inequality constraints into an un-
onstrained problem.
Li et al. [23] manipulated MPSP to include input constraints for

guidance law for air-to-ground missile cooperation attacks. The
nput constraints were implemented by inserting the constraints
s a penalty function to the objective function. Kumar et al. [24]
urther adapted the MPSP method to include state and input
onstraints. The constrained MPSP method was implemented in
imulation and in real-time for the energy management of a
arallel Hybrid Electric Vehicle in [25]. They found that the MPSP
lgorithm has a faster computational time compared to the tradi-
ional MPC algorithms. Furthermore, there are various examples

f MPSP being applied in the aerospace industry [26–30].

2

In terms of mineral processing, an unconstrained MPSP con-
troller was applied in simulation to a grinding mill circuit. Results
showed that the unconstrained MPSP controller had a similar
overall performance as an unconstrained NMPC controller when
there were disturbances and measurement noise added to the
plant. The MPSP method had a significantly shorter computa-
tional time than the NMPC method [31].

The contribution of this article is the application of the con-
strained MPSP of Kumar et al. [24] in simulation to a grinding
mill circuit as well as a flotation circuit respectively. The com-
putational performance of the constrained MPSP is compared to
the application of constrained NMPC for the same plant mod-
els and disturbances. Whereas Le Roux et al. [31] considered
unconstrained MPSP only for a grinding mill circuit, this article
evaluates in simulation, constrained MPSP (which is more rele-
vant for practical problems) as applied to a grinding mill circuit
and a four-cell flotation circuit. It extends earlier preliminary
work where a limited simulation scenario evaluated state and
input constrained MPSP for the grinding mill circuit [32].

The article is organized as follows: Section 2 describes the
MPSP method and the NMPC method. Section 3.1 is the first
example of MPSP and NMPC applied to a grinding mill circuit,
and Section 3.2 is the second example where MPSP and NMPC is
applied to a flotation circuit. Section 4 concludes the article.

2. Model Predictive Static Programming

The recently extended version of MPSP [24], which is applica-
ble to tracking reference signals and can satisfy state and input
constraints, is applied in this paper. A summary of the method
described by Kumar et al. [24] is provided below.

A nonlinear system is written in discrete form as,

X i
k+1 = Fk

(
X i
k,U

i
k

)
Y i
k = hk

(
X i
k,U

i
k

)
,

(1)

where Xk ϵ ℜ
n, Uk ϵ ℜ

m and Yk ϵ ℜ
p represent the states, inputs

and outputs of the system respectively. The subscript k represents
the time step and the superscript i represents the iteration index.
The key aim here is to calculate a control history U i+1

k , k =

1, 2, . . . ,N , so that the output Y i+1
k will converge to the desired

output Y ∗

k for k = 1, 2, . . . ,N .

2.1. Analysis for output and state deviation

The output deviation dY i
k can be written in terms of the state

and input deviations at time steps (k− 1), (k− 2), ... , until the
first time step, as follows,

dY i
k =

k−1∑
j=1

[
Bk
j

]i
dU i

j , (2)

where [Bk
j ]

i is the sensitivity matrix, and is defined as,

[Bk
j ]

i
=

[
∂Yk

∂Xk

]
(
X i
k,U

i
k

)
[

∂Fk−1

∂Xk−1

]
(
X i
k−1,U i

k−1

) · · ·

[
∂Fj
∂Xj

]
(
X i
j ,U

i
j

)
[
Bk
k

]i
=

[
∂Yk

∂Uk

]
(
X i
k,U

i
k

) .

(3)

Similarly, the state deviation can be written as,

dX i
k =

k−1∑[
Ak
j

]i
dU i

j , (4)

j=1
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[
Ak
j

]i
=

[
∂Fk−1

∂Xk−1

]
(
X i
k−1,U i

k−1

) · · ·

[
∂Fj+1

∂Xj+1

]
(
X i
j+1,U i

j+1

)
[

∂Fj
∂Uj

]
(
X i
j ,U

i
j

) .

(5)

It should be noted that (2) represents the sensitivity of the
output dY i

k at the kth iteration with respect to the input changes
dU i

j at all the previous grid points (j = 1, 2, . . . , k−1). Calculating
Bk
j ]

i and [Ak
j ]

i for all k = 1, 2, 3, ..., N where N represents the
ontrol and prediction horizon, can be computationally demand-
ng. Note that the following recursive computation reduces the
omputational cost significantly.[
φk
k

]i
= In×n[

φk
j

]i
=
[
φk
j+1

]i [ ∂Fj
∂Xj

]
(
X i
j ,U

i
j

)
[
Ak
j

]i
=
[
φk
j+1

]i [ ∂Fj
∂Uj

]
(
X i
j ,U

i
j

)
[
Bk
j

]i
=

[
∂Yk

∂Xk

]
(
X i
k,U

i
k

) [Ak
j

]i

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
∀j < k

[
Bk
j

]i
=

[
∂Yk

∂Uk

] (
X i
k,U

i
k

)
∀j = k[

Ak
j

]i
= [0]n×m ∀j ≥ k[

Bk
j

]i
= [0]p×m ∀j > k

(6)

Detailed derivation of these expressions is given by Kumar et al.
[24].

2.2. Cost function

The analysis in Section 2.1 led to an under constrained system
of equations. One way of solving this system is to optimize a cost
function. The cost function chosen for each ith iteration is,

J i =
1
2

N∑
k=2

(
∆Y i

k − ∆Y ∗

k

)T
Q
(
∆Y i

k − ∆Y ∗

k

)
+

1
2

N−1∑
k=1

(
∆U i

k

)T
R
(
∆U i

k

) (7)

where ∆Y ∗

k = Y ∗

k − Y i
k is the output error with respect to the

esired output Y ∗

k , Q is the output weighting matrix and R is the
nput deviation weighting matrix. Minimizing this cost function
nsures that the measured output remains close to the desired
utput at each grid point for the next iteration (Y i+1

k → Y ∗

k , ∀ k =

1, 2, 3, . . . ,N). Assuming small output and input deviations, (7)
can be rewritten as,

J i =
1
2

N∑
k=2

(
dY i

k − ∆Y ∗

k

)T
Q
(
dY i

k − ∆Y ∗

k

)
+

1
2

N−1∑(
dU i

k

)T
R
(
dU i

k

)
.

(8)
k=1

3

2.3. Constrained MPSP

A condensed form of the cost function in (8) can be obtained
by substituting (2) and converting it into a vector form,

J i =
1
2
(δU i)T

(
Rk + ([B]i)TQk[B]i

)
δU i

− (δU i)T
(
[B]i
)T

Qk(∆Y ∗i)

+
1
2
(∆Y ∗i)TQk∆Y ∗i

(9)

where Qk, Rk, ∆Y ∗i and [B]i are,

Qk ≜ diag([Q1], [Q2], ..., [QN ])
Rk ≜ diag([R1], [R2], ..., [RN ])

Y ∗i ≜
[
(∆Y ∗i

1 )T (∆Y ∗i
2 )T · · · (∆Y ∗i

N )T
]T

[B]i ≜

⎡⎢⎢⎢⎣
[B1

1]
i

[B1
2]

i . . . [B1
N ]

i

[B2
1]

i
[B2

2]
i . . . [B2

N ]
i

...
...

. . .
...

[BN
1 ]

i
[BN

2 ]
i . . . [BN

N ]
i

⎤⎥⎥⎥⎦.

he state and input constraints applied in (9) are,

[A]
i

−[Ai
]

I
−I

⎤⎥⎦ δU i
≤

⎡⎢⎣XUB
− X i

X i
− X LB

UUB
− U i

U i
− ULB

⎤⎥⎦ , (10)

where XUB and X LB are the upper and lower bound constraints of
the states and UUB and ULB are the upper and lower bound con-
straints of the inputs. The matrix [A]

i is the same as represented
in (5) but in matrix form,

[A]
i ≜

⎡⎢⎢⎢⎣
[A1

1]
i

[A1
2]

i . . . [A1
N ]

i

[A2
1]

i
[A2

2]
i . . . [A2

N ]
i

...
...

. . .
...

[AN
1 ]

i
[AN

2 ]
i . . . [AN

N ]
i

⎤⎥⎥⎥⎦ .

Finally, δU i is the small control deviations,

δU i ≜
[
(dU i

1)
T (dU i

2)
T

· · · (dU i
N )

T ]T .

utput constraints can be added by using the definition in (2) to
btain,[
[B]i

−[Bi
]

]
δU i

≤

[
YUB

− Y i

Y i
− Y LB

]
, (11)

here YUB and Y LB are the upper and lower output constraints.
The cost function in (9) and the constraints in (10) and (11)

an be solved with any standard quadratic programming (QP)
roblem solver [24]. If, for example, sequential quadratic pro-
ramming (SQP) is used to solve the static optimization problem,
he approach inherits the stability and convergence properties
f SQP. The initial control for MPSP needs to be a feasible so-
ution, which is not a difficult task for regulation problems as
t can be assumed to be a steady-state solution without the
resence of disturbances. In the case of an infeasible solution,
QP can be adapted by introducing additional variables to define
higher dimensional subproblem consistent with constraints [33,
4], or infeasible interior point algorithms can be considered [35].
he quadratic programming optimization algorithm used for the
PSP method is quadprog [36], which uses the dual method
escribed in Goldfarb and Idnani [33].
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.4. Nonlinear model predictive control summary

The constrained NMPC can be formulated as,

min
k,Uk+1,...,Uk+Nc

J(Xk,Uk) =
1
2

Np∑
k=1

(
Yk − Y ∗

k

)T Q (Yk − Y ∗

k

)
+

1
2

Nc∑
k=1

(Uk+1 − Uk)
T R (Uk+1 − Uk)

(12)

s.t.
Xk+1 = Fk (Xk,Uk)

Yk = hk (Xk)

ULB
≤ U ≤ UUB

X LB
≤ X ≤ XUB

Y LB
≤ Y ≤ YUB

(13)

where Np is the prediction horizon, Nc is the control horizon, Y ∗

k is
the desired outputs, Uk is the input, Xk is the states of the plant,
ULB and UUB are the lower and upper bounds of the input con-
straints, X LB and XUB are the lower and upper bounds of the state
constraints, Y LB and YUB are the lower and upper bounds of the
output constraints, and R and Q are the input deviation weighting
matrices and output error weighting matrices respectively.

The objective function (12) is difficult to solve for nonlinear
plant models because it is difficult for the optimization algorithm
to differentiate between local and global minima. Linearizing the
nonlinear plant model about a nominal operation point is an
effective way to reduce the objective function complexity [37].
The linearization of the plant model reduces computational time
significantly because the objective function can be condensed into
a convex quadratic programming problem [6]. The MPSP method
can be seen as a linearization algorithm.

The minimization problem in (12) can be solved using an
appropriate numerical optimization routine which can solve non-
linear problems [34]. A standard NMPC approach with warm-
starting and move-blocking is implemented in both simulation
case studies to act as a baseline for the comparison of the MPSP
controller. The optimization algorithm used is the Least Squares
Subproblems method described in Kraft [38].

3. Simulation case studies

The simulations in both case studies were done in Python. The
simulations were executed on an Intel(R) Core(TM) i5-8400 (6
Core) 2.80 GHz processor with 20 GB RAM running a Microsoft
Windows 10 operating system.

3.1. Example 1: A grinding mill circuit

The constrained MPSP controller in Section 2 and the con-
strained NMPC controller in Section 2.4 are applied in simulation
to a grinding mill circuit. A single-stage grinding mill circuit is
shown in Fig. 1 [39,40]. The variables in Fig. 1 are described in
Table 1. An overview of the process can be found in Le Roux et al.
[40].

3.1.1. Grinding mill circuit process model
A brief overview of the model of the grinding mill circuit in

Fig. 1 is given below. A complete description of the plant model
is given by Le Roux et al. [40]. The model nomenclature is given
in Table 2. The variable and parameter values were taken from Le
Roux et al. [31].
4

Table 1
Circuit variable descriptions.

Manipulated variables

uMIW Flow-rate of water to the mill [m3/h]
uMFO Flow-rate of ore to the mill [t/h]
uMFB Flow-rate of steel balls to the mill [t/h]
uSFW Flow-rate of water to the sump [m3/h]
uCFF Flow-rate of slurry to the hydrocyclone [m3/h]

Controlled variables

yJT Fraction of the mill filled [–]
ySVOL Volume of slurry in the sump [m3]
yPSE Fraction of particles within specification [–]

The state-space model of the grinding mill circuit is,

˙mw = uMIW −
dqϕxmwxmw

xms + xmw

+ Qcwu

ẋms =
uMFO

ρo
(1 − αr) −

dqϕxmwxms

xms + xmw

+ Qcsu+

ϕPmill

ρoKRC

(
xmr

xmr + xms

)
ẋmf =

uMFO

ρo
αf −

dqϕxmwxmf

xms + xmw

+ Qcfu +
Pmill

ρoKFP

ẋmr =
uMFO

ρo
αr −

Pmillϕ

ρoKRC

(
xmr

xmr + xms

)
ẋmb =

uMFB

ρb
−

Pmillϕ

KBC

(
xmb

ρo (xmr + xms) + ρbxmb

)
ẋsw =

dqϕxmwxmw

xms + xmw

−
uCFFxsw
xsw + xss

+ uSFW

ẋss =
dqϕxmwxms

xms + xmw

−
uCFFxsw
xsw + xss

ẋsf =
dqϕxmwxmf

xms + xmw

−
uCFFxsf
xsw + xss

(14)

where uMIW , uMFO and uMFB are the flow rates of the mill inlet
ater, the feed ore and the feed balls respectively, uSFW is the

sump water dilution flow-rate, xmw, xms, xmf , xmr and xmb [m3]
are the volume of water, solids, fines, rocks and balls inside the
mill respectively, xsw, xss and xsf [m3] are the water, solids and
fines inside the sump respectively, and Qcwu, Qcsu and Qcfu [m3/h]
are the cyclone water, solids and fines underflow respectively.

The outputs are,

yJT =
xmw+xms+xmr+xmb

vmill
ySVOL = xss + xsw
yPSE =

Qcfo
Qcso

,

(15)

where Qcfo and Qcso [m3/h] are the volumetric flow-rates of the
fines and the solids at the overflow of the hydrocyclone respec-
tively, YJT is the volume fraction filled in the grinding mill, YSVOL is
the volume of the sump and YPSE is the particle size distribution
of the hydrocyclone overflow.

The intermediate variables required in (14) for the mill are,

ϕ =

⎧⎨⎩
√
1 −

(
ε−1
c − 1

) xs
xw

;
xs
xw

≤
(
ε−1
0 − 1

)−1

0; xs
xw

>
(
ε−1
0 − 1

)−1

Pmill =Pmax

{
1 − δv

(
xmw + xmr + xms + xmb

vmill vPmax

− 1
)2

− δs

(
ϕ

ϕ
− 1

)2
}

φc,

(16)
N
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Fig. 1. A single-stage grinding mill circuit [39].

where ϕ is an empirically defined rheology factor and Pmill [kW] is
he power draw of the grinding mill. The intermediate variables
equired in (14) and (15) for the hydrocyclone are,

Qccu =
uCFF

(
xss − xsf

)
xsw + xss

(
1 − C1 exp

(
−uCFF

εc

))
×(

1 −

(
xss

C2 (xsw + xss)

)C3
)(

1 −

(
xsf
xss

)C3
)

Fu =0.6 −

(
0.6 −

xss
xsw + xss

)
exp

(
−Qccu

αsuεc

)
cwu =

xsw (Qccu − FuQccu)

Fuxsw + Fuxsf − xsf

Qcfu =
xsf (Qccu − FuQccu)

Fuxsw + Fuxsf − xsf

Qcsu =qccu +
xsf (Qccu − FuQccu)

Fuxsw + Fuxsf − xsf

Qcso =
uCFFxss

xss + xsw
− Qcsu

Qcfo =
uCFFxsf
xss + xsw

− Qcfu.

(17)

here Qccu [m3/h] is the hydrocyclone coarse underflow, Qcso
nd Qcfo [m3/h] are the hydrocyclone solid and fines overflow

respectively, and Fu is the fraction of solids in the hydrocyclone
nderflow.

.1.2. Grinding mill circuit simulation

Simulation configuration
To compare the performance of the constrained MPSP and

MPC as applied to the grinding mill circuit, the following general
onfiguration is used.
The simulation duration time is 5h and each controller has a

ampling time of Ts = 10 s. A longer sampling time may allow
he sump to run dry or overflow before corrective action can be
aken [5]. The nonlinear state-space description of the circuit in
14) is simulated using the Runge–Kutta fourth order method.

Although it is not trivial to design an observer for the grinding
ill circuit, the state of the grinding mill circuit can be estimated
iven sufficient industrial measurements [39,41,42]. Since the
5

Table 2
Grinding mill circuit nomenclature.
Parameter Value Description

αf 0.055 Fraction fines in the ore
αr 0.465 Fraction rock in the ore
φc 0.72 Fraction of critical mill speed
αsu 1.50 Parameter related to fraction solids in

underflow
C1 0.6 Constant
C2 0.7 Constant
C3 4.0 Constant
δs 2.90 Power-change parameter for fraction solids in

the mill
δv 2.90 Power-change parameter for the volume of

mill filled
ρb 7.85 Density of steel balls [t/m3]
ρo 3.2 Density of feed ore [t/m3]
εc 111.9 Maximum fraction solids by volume of slurry

at zero slurry flow
εsv 0.6 Parameter related to coarse split [m3/h]
KBC 90.0 Ball consumption factor [kWh/t]
KFP 31.31 Fines production factor [kWh/t]
KRC 8.06 Rock consumption factor [kWh/t]
ϕN 0.57 Rheology normalization factor draw
Pmax 1670 Maximum mill motor

power draw [kW]
vmill 59.12 Mill volume [m3]
vPmax 0.34 Fraction of mill volume filled for maximum

power draw
dq 84.50 Discharge rate [h−1]

observer design falls outside the scope of this study, full-state
feedback is assumed.

The ball feed-rate uMFB is kept at a constant ratio with respect
o the volume of the mill filled with charge yJT , such that uMFB/yJT
16.7. The mill water inlet uMIW is kept in a ratio of 7% with the
ill feed ore uMFO.
The nominal and initial values of the plant are,

X0 =
[
xmw, xms, xmf , xmr , xmb, xsw, xss, xsf

]T
= [3.78, 3.45, 1.08, 1.86, 9.23, 3.79, 2.11, 0.66]T (18)

U0 = [uMFO, uSFW , uCFF ]T = [66.9, 67.1, 267]T (19)

Ysp =
[
yJT , ySVOL, yPSE

]T
= [0.31, 5.90, 0.60]T (20)

The input and output constraints for the grinding mill are,[ 0
0

100

]
≤

[ uMFO
uSFW
uCFF

]
≤

[ 100
150
500

]
[ 0.25

1.0
0.5

]
≤

[ yJT
ySVOL
yPSE

]
≤

[ 0.45
8.0
0.8

]
The desired set-points are kept constant at the nominal values

of the plant.
The first disturbance introduced to the grinding mill is a

change in the mill feed size distribution by increasing the fraction
of rocks in the ore fed to the mill, αr , with 50% of its nominal
value from t = 0.5h to t = 2.1h. The second disturbance intro-
duced to the circuit is a change in the ore hardness by increasing
the fines production factor, KFP , with 60% of its nominal value
from t =1.5h to t =3h. The increase in KFP is introduced as a
step-change in the simulation whereas it would generally change
gradually over time in an industrial plant.

MPSP configuration
Two MPSP controllers were simulated. The first controller,

MPSP36, has a control/prediction horizon of N = 36 and the
second controller, MPSP , has a control/prediction horizon of
72
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Table 3
Iteration time results of the MPSP and the NMPC simulations for
the grinding mill circuit.
Simulated Controller x̄ [s] σ [s]

MPSP36 0.670 0.544
MPSP72 1.735 1.260
NMPCB3 0.869 0.581
NMPCB1 4.878 3.167

N = 72 according to (8). The MPSP72 controller uses a sampling
time of Ts = 5 to obtain similar results as the MPSP36 controller
but with an increased number of control variables.

The weighting matrices for the MPSP controller were cho-
sen to normalize the inputs and outputs and prioritize set-point
following of yPSE , such that [31],

Qmpsp = diag([36.22, 0.013, 1510])

Rmpsp = 10−3 diag([3.481, 0.218, 0.218]),

here Qmpsp and Rmpsp are the weighting matrices for the MPSP
bjective function in (9). The MPSP algorithm terminates if the al-
orithm has been executed 15 times, or if either of the conditions
elow are met,Y i

k(1) − Y ∗

k (1)

2Y ∗

k (1)

2

< 0.5Y i
k(2) − Y ∗

k (2)

2Y ∗

k (2)

2

< 0.5Y i
k(3) − Y ∗

k (3)

2Y ∗

k (3)

2

< 0.1,

here Y i
k(p) refers to the pth entry in the output vector Y i

k.
The MPSP optimization problem is solved using a strictly

convex QP solver.

NMPC configuration
Two NMPC controller configurations were simulated, where

the prediction horizon is Np = 36 and the control horizon
is Nc = 12 for both controllers. The first controller, NMPCB1,
does not make use of move-blocking and the second controller,
NMPCB3, makes use of move-blocking of NB = 3. Both the NMPC
controllers use warm-starting [12].

Similar to MPSP, the weighting matrices for the NMPC con-
troller were chosen to normalize the inputs and outputs and
prioritize set-point following of yPSE , such that,

Qnmpc = diag([5.489, 0.015, 496.7])

Rnmpc = 10−3 diag([3.481, 0.218, 0.218]),

here Qnmpc and Rnmpc are the weighting matrices for the NMPC
bjective function in (12). The NMPC algorithm terminates when
he sequential programming problem optimization routine has
xecuted a maximum of 15 times, or the algorithm converged
etween iterations within a tolerance of 0.01.
The weighting matrices for the NMPC and MPSP controllers

an be chosen to apply larger penalties to input deviations and
utput setpoint tracking errors. For these larger weights, it may
ean that none of the constraints are reached for the operating
onditions in the simulations shown below. Because the aim
s to evaluate the algorithms when constraints are active, the
eighting matrices were not updated to apply larger penalties.

imulation results and discussion
The results of the simulation are shown in Figs. 2 to 3. The

ime to calculate a new control step for each kth time step was
 7

6

Fig. 2. MPSP and NMPC simulation outputs of the grinding mill circuit. The
nominal conditions of each output is shown in (20) and is represented by the
dashed line.

Table 4
IAE performance of the MPSP and the NMPC simulations for the grinding mill
circuit.
Simulated Controller IAE(YJT ) IAE(YSVOL) IAE(YPSE )

MPSP36 315.6 13040 43.40
MPSP72 313.6 12144 42.23
NMPCB3 310.8 14820 115.18
NMPCB1 213.2 5795 36.37

measured in the simulation and is shown in Table 3, where x̄
and σ represent the mean and standard deviation of the iteration
times of the simulations respectively. The Integral Absolute Error
(IAE) performance indicator is shown in Table 4 for the tracking
error of each output YJT , YSVOL and YPSE .

The simulation results show that the constrained MPSP and
NMPC controllers can reject disturbances with the same effi-
ciency. The MPSP36 and NMPCB3 controllers are the least compu-
tationally demanding algorithms as shown in Fig. 4.

All the controller computational times do not increase when
any constraints are active, but the computational time of the
NMPCB3, MPSP36 and MPSP72 controller increases significantly
hen new disturbances are added to the system as can be seen at
= 0.5h, t = 1.5h and t = 3h. This is not the case for the NMPCB1
ecause the computational time stays constant at approximately
.9 s during the simulation until plant disturbances are removed.
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Fig. 3. MPSP and NMPC simulation inputs to the grinding mill circuit. The
nominal conditions of each input is shown in (19).

The reason for the computational time of the NMPCB1 controller
taying constant during the simulations is because the controller
oes not converge to an optimal solution before 15 iterations of
he NLP solver.

The large increase in computational time when the first dis-
urbance is introduced at t = 0.5h increases the overall standard
eviation of all the controllers. The differences in the computa-
ional times between the MPSP36 and the NMPCB3 controller is
inimal. The NMPCB3 controller is on average 200ms slower than

he MPSP36 controller as seen in Table 3. The MPSP72 controller is
n average 2.6 times slower than the MPSP36 controller.
The computational time difference between the two NMPC

ontrollers is significant. The computational time increases by a
actor of 5.6 when there is no move-blocking implemented on the
MPC controller. The output results of the NMPCB1 and NMPCB3
ontrollers differ because the increased number of control moves
dds more weight to the input deviation in the objective function
or the same weighting matrices Qnmpc and Rnmpc .

The number of decision variables of the optimization algo-
ithm of the NMPCB1 controller is equal to the control horizon of
c = 12. The number of decision variables of the optimization al-
orithm of theMPSP72 controller is equal to the control/prediction
orizon of N = 72. The MPSP72 controller has more decision
ariables compared to the NMPCB1 controller by a factor of 6 and

alculates a new input on average 2.8 times faster than NMPCB1.

7

Fig. 4. The time necessary to calculate a new input for the respective controllers.

The controller that performs the best when comparing the
IAE values in Table 4 is the NMPCB1 controller. All the simulated
controllers are viable options for controlling a grinding mill as the
calculation time stays below the sampling time of Ts = 10 s.

3.2. Example 2: A flotation circuit

The constrained MPSP controller in Section 2 and the con-
strained NMPC controller in Section 2.4 are applied in simulation
to a four-cell flotation circuit.

3.2.1. Flotation process description
A four-cell flotation circuit is shown in Fig. 5 [43]. The vari-

ables in Fig. 5 are described in Table 5. Only a brief overview of
the process is given below.

There are four flotation cells where the tailings of each cell
is denoted by QTk and the concentrate flow is denoted by QCk ,
where k = 1, 2, 3, 4 represents the respective flotation cells.
The cell tailings feed into the next flotation cell downstream as
is shown in Fig. 5. The concentrate of each cell is collected in
the concentrate hopper which is then pumped to further mineral
extraction processes. The main inputs to the flotation circuit are
the aeration rates QAirk , the tailings flow-rate of each cell QTk and
the concentrate flow-rate out of the hopper QH . The level of each
cell is denoted as Lk and the level of the hopper is denoted by LH .
The froth depth of each cell is indicated as hfk.

3.2.2. Flotation process model
A brief overview of the model of the flotation circuit in Fig. 5 is

given below. A complete description is given by Oosthuizen et al.
[43]. The model nomenclature is given in Table 5. The variable
and parameters values were taken from Oosthuizen et al. [43].

The state-space continuous model for each cell k is,

ḊBFk =
KBSJg Jgk + KBSλλairk − DBFk

λairk

α̇k =
KαBFDBFk + KαJg Jgk − αk

λairk

L̇k =
(
QFk − QTk − QCk

)
/Ak

Ṁ i
k = Ṁ i

Fk − Ṁ i
Tk − Ṁ i

Ck

(21)

where DBFk [mm] is the top froth bubble size, αk is the air
recovery, L [m] is the level of the pulp, M i [kg] is the mass of
k k
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Fig. 5. A four-cell flotation bank with a hopper.
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Table 5
Flotation circuit nomenclature.
Parameter Value Description

Ak 8.20 The cross-sectional area of cell k [m2]
AH 2.00 The cross-sectional area of

the hopper [m2]
Jgk – Superficial gas velocity for cell k

[mm/s]
Qairk – Volumetric air flow-rate to cell k [m3/h]
hfk – Froth depth [mm]
αk – Air recovery for cell k
DBFk – Mean top of froth bubble diameter

for cell k [mm]
ρ0
s 3000 Solid particle density for desired

material class i = 0 [kg/m3]
ρ1
s 1800 Solid particle density for gangue

material class i = 1 [kg/m3]
ρ 1000 Fluid density [kg/m3]
µ 0.001 Fluid viscosity [Pa s]
g 9.81 Gravitational acceleration [m/s2]
dpmin 10 Particle minimum diameter [µm]
dpmax 150 Particle maximum diameter [µm]
CPB 50 Plateau border drag coefficient
Pe 0.15 Dispersion Peclet number
KBSJg 0.05 The effect of the superficial gas

velocities on the mean top of froth
bubble diameter

KBSλ 0.03 The effect of the average froth
residence time on the mean top
of froth bubble diameter

KαBF −0.002 The effect of the mean top of froth
bubble diameter on the air recovery

KαJg1 7.20 The effect of the superficial gas
velocities on the air recovery in cell 1

KαJg2 7.30 The effect of the superficial gas
velocities on the air recovery in cell 2

KαJg3 7.00 The effect of the superficial gas
velocities on the air recovery in cell 3

KαJg4 6.63 The effect of the superficial gas
velocities on the air recovery in cell 4

K 0 2.30 The flotation rate-constant for
desired material class i = 0

K 1 0.0002 The flotation rate-constant for
gangue material class i = 1

material class i in cell k, and Ṁ i
Fk
, Ṁ i

Tk
, and Ṁ i

Ck
[kg/h] are the

feed, tailings and concentrate mass flow-rates. The variable QFk
[m3/h] represents the input flow-rate to the specific cell k and is
the tailings of the previous cell k− 1. The surface area of a cell is
denoted by A .
k

8

The water recovery model for the flotation circuit is modelled
as,

QCk

Ak
=

⎧⎪⎪⎨⎪⎪⎩
18.54µCPBJ2gk

ρgD2
BFk

(1 − αk) αk 0 < αk < 0.5

18.54µCPBJ2gk
4ρgD2

BFk

αk ⩾ 0.5
(22)

where ρ, g, µ and CPB represent the fluid density, gravitational
onstant, fluid viscosity and the Plateau border drag coefficient
espectively.

The superficial gas velocity Jgk is calculated as,

gk = 100
Qairk

Ak
. (23)

The masses for the concentrate are calculated from entrainment
and true flotation models. The entrainment model defines the
concentrate mass flow-rate as [44],

Ṁ i
Ck =

K iM i
kJgkαk

DBPk
+ Ent iFrac

M i
k

AkLk
QCk (24)

where K i is the flotation rate constant for material class i. The
entrainment factor is,

Ent iFrac =
ln
(
diptr
)
− ln

(
dpmin

)
ln
(
dpmax

)
− ln

(
dpmin

) (25)

and dpmin is the minimum particle diameter, and dpmax is the
maximum particle diameter. The particle diameter is,

diptr =
3

√
ln(0.5)Jgk2

K i
enthfk

(26)

nd the constant K i
ent is defined as,

i
ent =

[
1
3
g
(
ρ i
s − ρ

)
18µ

]1.5
√

ρg
3µCPB

(
√
3 − π/2)Pe

√
αk (1 − αk)

, (27)

here ρ i
s is the solids particle density of the material class i. The

tate-space equation for the hopper is,

˙H =
QC1 + QC2 + · · · + QCN − QH

AH

Ṁ i
H =

N∑
Ṁ i

Ck −
M i

H

L A
QH

(28)
k=1 H H
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here N is the number of cells from which the concentrate
verflows to the hopper, M i

H is the mass of material class i in the
opper and AH is the surface area of the hopper. The grade in the

hopper is calculated as the ratio between the desired material
mass M0

DH
and the total masses inside the concentrate hopper

s,

radeH =
M0

DH∑n
i=0 M

i
H

(29)

where n is the total number of material classes i. For the purposes
of this study, only two mineral classes are used, i.e., i = 0 for the
desired mineral and i = 1 for the gangue.

3.2.3. Flotation circuit simulation
To compare the performance of constrained MPSP and NMPC

as applied to the flotation circuit, a leader-follower controller is
used as shown in Fig. 6 [45]. The follower controller is used to
control the desired levels of the cells Lksp and the hopper LHsp by
anipulating QTk and QH , whereas the leader controller is used

o keep the grade of the flotation circuit at a desired set-point
y manipulating the level set-point as well as the superficial gas
elocity Jgk . For this configuration, the leader controller does not
ave any output constraint, but only input and state constraints.
n Fig. 6 the following controller is implemented using NMPC. The
ead controller is used to compare constrained MPSP to NMPC in
imulation.

imulation configuration
To compare the performance of the MPSP controller and the

MPC as applied to the flotation circuit, the following general
onfiguration is used.
The simulation duration is 270min. Since the residence time

or each flotation cell is approximately 60 s, the sampling time for
ach controller was set at Ts = 10 s to ensure the fast dynamics
n the froth are captured by the NMPC [45,46].

The nonlinear state-space description of the flotation circuit in
21) is simulated using the Runge–Kutta fourth-order method.

All model states are observable and can be estimated using an
ppropriate observer [43]. Since the observer design falls outside
he scope of this study, full-state feedback is assumed.

The initial state conditions of each cell are,

0
c1 =

[
DBF1 , α1, L1,M0

1 ,M
1
1

]T
= [1.80, 0.41, 1.30, 53.87, 7007]T ,

X0
c2 =

[
DBF2 , α2, L2,M0

2 ,M
1
2

]T
= [1.45, 0.27, 1.30, 29.58, 7025]T ,

X0
c3 =

[
DBF3 , α3, L3,M0

3 ,M
1
3

]T
= [1.66, 0.17, 1.30, 19.84, 7032]T ,

X0
c4 =

[
DBF4 , α4, L4,M0

4 ,M
1
4

]T
= [1.40, 0.17, 1.30, 13.44, 7027]T ,

X0
H =

[
LH ,M0

H ,M1
H

]T
T

(30)
= [1.40, 97.62, 7.31] .

9

Fig. 6. Lead-follow controller configuration for the flotation circuit.

The initial input conditions of the following and leading con-
trollers are,

U0
follow =

[
QT1 , QT2 , QT3 , QT4 , QH

]T
= [728.38, 727.62, 727.29, 727.01, 3.00]T ,

U0
lead =

[
Jg1, Jg2, Jg3, Jg4,

L1, L2, L3, L4, LH ]T

= [8.4, 8.5, 8.1, 7.7,

1.30, 1.30, 1.30, 1.30, 1.00]T ,

(31)

where the desired grade is Ysp = Gradesp = 0.33.
The input ranges for the simulations are,

4.00 ≤ Jgk ≤ 12.00 ∀ k = 1, 2, 3, 4

0.01 ≤ Lk ≤ 1.35 ∀ k = 1, 2, 3, 4

0.02 ≤ LH ≤ 2.00.

The desired set-points are kept constant at the nominal values
of the plant.

Measured disturbances are introduced to activate the con-
straints of the controllers. The input feed flow QF1 is reduced
by 30% of its nominal value in 10min with a ramp function at
t = 30min. The input feed density ρF1 is reduced by 5% of its
nominal value at t = 60min. The input feed grade Gi

F1
is reduced

by 5% of its nominal value at t = 90min. The maximum and
minimum particle diameter sizes are decreased by 50% of the
initial values at t = 120min. The flotation rate constant K 0, which
is the desired material, is increased by 10% of its nominal value at
t = 150min. The flotation rate constant K 1, which is the gangue,
is increased by 20% of its nominal value at t = 180min.

NMPC follow controller
The NMPC algorithm is used for the following controller,

where the prediction horizon is Np = 60 and the control horizon
is Nc = 20 with a move blocking of NB = 5 [12]. Warm-starting is
used for the initial guess input of the optimization problem. The
weighting matrices for the NMPC follow controller are chosen as,

Q follow
mpc = diag([QL1 , QL2 , QL3 , QL4 , QLH ])

Rfollow
mpc = diag([RQ1 , RQ2 , RQ3 , RQ4 , RQH ]),

where QLk = QLH = 1000 represents the output weighting matrix
value and RQk = RQH = 0.01 represents the input weighting
matrix value for all cells k and the hopper H .

The NMPC algorithm terminates when the optimization rou-
tine has been executed a maximum of 5 times, or the algorithm
converged between iterations within a tolerance of 1 × 10−3.

MPSP configuration

The settings of the lead MPSP controller are as follows.
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The prediction and control horizon are the same with a value
of N = 60. The weighting matrices are,

Qmpsp = QGrade = 100

Rlead
mpsp = diag([RJg1 , RJg2 , RJg3 , RJg4 ,

RL1sp , RL2sp , RL3sp , RL4sp , RLHsp ]),

here RJgk = 0.0001 and RLksp = RLHsp = 0.001 for all cells k and
he hopper H .

The MPSP algorithm terminates for each iterative step if the
lgorithm has executed 10 times, or if the following conditions
re met,Y i

k − Y ∗

k


2Y ∗

k

 < 0.01

The same strictly convex QP solver that was used in the
rinding mill circuit simulation is used for the flotation circuit
imulation.

MPC lead controller
The settings of the lead NMPC controller are similar to the

ollowing NMPC controller in terms of the use of warm starting,
p = 60, Nc = 20, and NB = 5.
The weighting matrix for the NMPC controller in (12) are

hosen as,

nmpc = QGrade = 100

Rlead
nmpc = diag([RJg1 , RJg2 , RJg3 , RJg4 ,

RL1sp , RL2sp , RL3sp , RL4sp , RLHsp ])

here RJgk = 0.1 and RLksp = RLHsp = 1 for all cells k and the
opper H .
The NMPC algorithm terminates when the optimization rou-

ine has executed a maximum of 10 times, or the algorithm
onverged between iterations within a tolerance of 1 × 10−4.

imulation results and discussion
All the simulation results of the NMPC and the MPSP con-

rollers are shown in Figs. 7 to 11. The grade and recovery of
he flotation circuit are shown in Fig. 7. The control objective of
he lead controller was to keep the flotation circuit grade at a
pecific set-point. The grade performance of the two controllers
re both acceptable with the NMPC controller achieving a final
et-point deviation of 1.70% and the MPSP controller achieving a
inal set-point deviation of 0.06%. The recovery shown in Fig. 7
s instantaneous and differs from true recovery during transient
non steady-state) periods. At steady-state, the difference be-
ween instantaneous and true recovery is negligible [45]. NMPC
ettles at a higher recovery than MPSP.
The cell level results are shown in Fig. 8, where the dotted

ines indicate the set-points given from the leading controller to
he following level controller, and the solid lines show the output
esults of the following controller.

The leading NMPC controller manipulates the level set-points
ore aggressively than the MPSP controller for the first distur-
ance rejection at t = 30min. Fig. 8 in conjunction with Fig. 9
hows that the NMPC controller uses the level set-point to reject
he first plant disturbances and then uses the superficial gas
elocity Jgk to reject the disturbances that occur after t = 100min.
The opposite is true for the MPSP controller. The MPSP con-

roller uses the superficial gas velocities Jgk along with the cell
evels Lk to reject all of the disturbance. This causes the MPSP
ontroller to have better state constraint performance than the
MPC controller.
Fig. 10 shows the froth bubble diameter size DBFk of each cell

. Both the MPSP and the NMPC controllers can reject the state
10
Fig. 7. Grade and recovery of the flotation circuit.

Fig. 8. Flotation cell levels. Legend: LNMPC is the output level for the NMPC
controller, LMPSP is the output levels of the MPSP controller, SPNMPC is the input
set-point of the NMPC controller to the following controller and SPMPSP is the
input set-point of the MPSP controller to the following controller. The nominal
conditions of each cell is shown in (30).
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Fig. 9. Superficial gas velocity. The nominal conditions of each cell is shown in
31).

Fig. 10. Froth bubble size diameter of each cell. The nominal conditions of each
ell is shown in (30).

onstraints of the froth bubble size during the first disturbance,
ut the NMPC controller violates the constraints at t ≈ 40min.
he possible reason for this state constraint violation is caused
11
Fig. 11. The time necessary to calculate a new input of the controllers for the
flotation circuit.

Table 6
Iteration time and performance results of the MPSP and the NMPC simulations
for the flotation circuit.
Controller x̄ [s] σ [s] Max [s] IAE(GradeH )

NMPC 8.029 1.419 13.88 12.227
MPSP 0.907 0.773 3.060 4.423

by the input disturbance between the following controller and
the NMPC controller on the cell levels L1, L3 and L4.

Both the controllers were able to reject the measured distur-
ances and control the plant grade to the desired set-point.
The iteration time information for the lead controllers are

hown in Fig. 11 and Table 6. The MPSP controller is on average
.85 times faster than the NMPC controller. The standard devi-
tion of the calculation time is smaller for the MPSP controller
ompared to the NMPC controller. The MPSP controller calcu-
ation time significantly increases after the first disturbance is
ntroduced at t ≈ 35min. The maximum calculation time of the
PSP controller is 3.06 s, which is when the initial disturbance is

ntroduced to the plant.
The sampling time for each controller is Ts = 10 s. As shown

n Fig. 11, whereas the NMPC controller is able to calculate a
ew input within 7.5 s on average, there are instances where it
equires more than 10 s to calculate a new input. The MPSP con-
roller is significantly faster and requires at most 3 s to calculate
new input. Fig. 11 indicates that the MPSP algorithm is more
omputationally efficient.
Industrial flotation circuits often run at a sampling rate of

s = 60 s, even though this may be too slow to capture all
he dynamics of the process [45,46]. At this sampling rate, both
MPC and MPSP are viable options where only a single flotation
ank is controlled. In the case where multiple flotation banks
re combined into a plant-wide MPC strategy, MPSP is the better
ption. Investigation of MPSP for plant-wide control of a mineral
rocessing plant remains open for further research.

. Conclusion

In the case of the grinding mill circuit example in Section 3.1
one of the disturbances were known. Both the MPSP and NMPC
lgorithms were able to stay within the constraints of the plant.
he MPSP controller which uses the QP problem solver is compu-
ationally faster than the NMPC controllers.

In the case of the flotation circuit example in Section 3.2
ll the disturbances were measured. Both the MPSP and NMPC
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lgorithms were able to accurately predict the state and output
rajectory. None of the state constraints were violated for either
ontroller. The MPSP controller calculated a new control move
aster than the NMPC controller for each time-step in the simula-
ion. The number of optimization variables increased significantly
etween the two case studies which does not lead to a significant
ncrease of computational time for the MPSP controller.

As shown in this paper, constrained MPSP, as applied in simu-
ation to a grinding mill circuit and a four-cell flotation, has sim-
lar performance but a faster computational time compared to an
MPC controller. Even though MPSP operates on the philosophy
f MPC, it reduces the original problem into a lower-dimensional
roblem of control variables alone, thereby enhancing compu-
ational efficiency significantly. Because of this, problems with
arger dimensions and/or increased complexity can be solved
sing MPSP without changing the computational infrastructure.
ence, it can be a preferred fast MPC approach for mineral pro-
essing plants. Potential for future work is to evaluate constrained
PSP to other fast MPC approaches [47].
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