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A B S T R A C T

A new kinetic model is proposed where the equilibrium distribution with bounded support has a range of
velocities about two average velocities in 1D. In 2D, the equilibrium distribution function has a range of
velocities about four average velocities, one in each quadrant. In the associated finite volume scheme, the
average velocities are used to enforce the Rankine–Hugoniot jump conditions for the numerical diffusion at
cell-interfaces, thereby capturing steady discontinuities exactly. The variable range of velocities is used to
provide additional diffusion in smooth regions. Further, a novel kinetic theory based expression for relative
entropy is presented which, along with an additional criterion, is used to identify expansions and smooth flow
regions. Appropriate flow tangency and far-field boundary conditions are formulated for the proposed kinetic
model. Several benchmark 1D and 2D compressible flow test cases are solved to demonstrate the efficacy of
the proposed solver.
1. Introduction

Numerical methods to solve Euler equations and other nonlinear hy-
perbolic problems constitute an area of intense ongoing research. Of the
several approaches introduced for spatial discretization, upwinding has
emerged as a popular technique to obtain stability. Upwind schemes
use stencils biased along the direction of incoming wave(s). The up-
wind schemes can be categorized as (exact and approximate) Riemann
solvers, flux vector splitting methods, kinetic/Boltzmann schemes and
relaxation schemes. Of these, the approximate Riemann solvers are
quite popular, due to their low numerical diffusion. However, these
schemes suffer from many drawbacks like admitting entropy-violating
solutions, carbuncle phenomenon, kinked Mach stems, instabilities due
to odd even decoupling, etc. [1]. Another undesirable feature of these
schemes is the strong dependence on the underlying eigen-structure.

Kinetic theory based schemes provide elegant alternatives to tradi-
tional Riemann solvers. The governing equation at the kinetic level is
the Boltzmann equation. The macroscopic equations can be retrieved
from the Boltzmann equation by taking suitable moments. One of the
major advantages that kinetic schemes offer is the linearity of the ad-
vection term in Boltzmann equation, which simplifies upwinding. The
first Boltzmann scheme was developed by Chu [2], who used a finite
difference method to solve the Boltzmann-BGK equation. Sanders and
Prendergast [3] developed the Beam scheme, in which the Maxwellian
equilibrium distribution is replaced by a set of weighted Dirac-delta
functions, named beams. Pullin [4] introduced the Equilibrium Flux
Method (EFM) in which fluxes at the interface between cells are calcu-
lated based on half Maxwellians. The Kinetic Numerical Method (KNM)
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of Reitz [5], based on an operator splitting involving advection and
collision steps, is based on tracing the foot of the characteristic in
the convection step in Boltzmann equation with appropriate velocity
discretization. Deshpande introduced [6] a similar kinetic scheme, ob-
taining second order accuracy by using Chapman–Enskog distribution
function to provide an anti-diffusive correction. Deshpande [7] and
Mandal & Deshpande [8] introduced a Kinetic Flux Vector Splitting
(KFVS) scheme with the upwinding based on molecular velocities. The
final expressions for the split fluxes in KFVS method are the same as
in the Equilibrium Flux Method, though the approaches are different.
Kaniel [9] and Perthame [10] introduced kinetic schemes based on
equilibrium distributions with bounded support. Prendergast and Kun
Xu [11] utilized an approximate local solution of the Boltzmann-BGK
equation, while using a pressure sensor to detect shocks, thereby intro-
ducing an unsplit kinetic scheme. Raghurama Rao and Deshpande [12]
introduced the Peculiar Velocity based upwind (PVU) method, re-
placing the molecular velocity by the sum of fluid velocity (𝑢) and
peculiar velocity (𝑐 = 𝑣 − 𝑢), leading to a convection-pressure splitting
based upwind method. While there are more kinetic schemes in the
literature, a common drawback they share is their inability to capture
steady discontinuities exactly, a feat shared by some of the popular
macroscopic upwind schemes.

Another interesting line of research is to introduce kinetic schemes
based on discrete velocities. Natalini [13] and Aregba-Driollet and Na-
talini [14] developed kinetic schemes starting from a discrete velocity
Boltzmann equation with a BGK model. In such a discrete velocity
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formulation, the equilibrium distribution functions are not Maxwellians
but simple linear combinations of conserved variable vectors and
flux vectors. One inherent advantage that the discrete velocity based
schemes have over the continuous velocity based kinetic schemes is
that the complex integrals are replaced by summations while taking
moments. For the two-velocity model with velocities 𝜆 and −𝜆 in 1D,
the discrete velocity model is equivalent to the relaxation model of Jin
and Xin [15]. Bouchut [16] introduced BGK models with a family of
kinetic entropies for a given system of hyperbolic conservation laws.
Shrinath et al. [17] introduced the Kinetic Flux Difference Splitting
Scheme based on discrete velocity Boltzmann equations, utilizing the
two discrete velocities to satisfy the R-H conditions, while the third
velocity is used to provide additional diffusion in smooth regions.
For this purpose, they utilized the Kullback–Leibler divergence, in the
molecular velocity framework, to distinguish among different regions.

In the present work, we introduce a new kinetic formulation based
on variable velocities, based on compactly supported distributions.
Each set of variable velocities is centered on an average velocity. While
the average velocities are utilized to enforce Rankine–Hugoniot jump
conditions in the discretization, thereby capturing grid-aligned steady
discontinuities exactly, the variable range of velocities is utilized to
add additional numerical diffusion in the smooth regions. For this
purpose, we introduce a novel discrete velocity version of relative
entropy. The advantage that our formulation offers over the earlier
compactly supported distribution functions is that in our model, both
the average velocities and the range of velocities are flexible. Further,
new flow tangency and far-field boundary conditions are formulated
for our kinetic model and are utilized in the numerical simulations.

2. Gas-kinetic theory

The kinetic theory of gases is governed by the Boltzmann equation,
given by
𝜕𝑓
𝜕𝑡

+ 𝐯 ⋅ 𝜕𝑓
𝜕𝒙

= 𝑄(𝑓 ) (1)

Here, 𝑓 (𝑡, 𝐱, 𝐯) is the velocity distribution function, 𝐯 is molecular
velocity, and 𝑄(𝑓 ) is the collision term. The L.H.S. represents the
ate of change of 𝑓 due to molecular motion of particles. The R.H.S.
epresents the rate of change of 𝑓 due to binary collisions among
articles. The advection term is linear; the non-linearity is present in
he collision term. The collision term drives the distribution function

to equilibrium, vanishing at the limit. The equilibrium distribution
iven by kinetic theory of gases is the Maxwell–Boltzmann distribution
unction

𝑒𝑞 = 𝑓𝑀𝑎𝑥𝑤𝑒𝑙𝑙 =
𝜌
𝐼0

(

𝛽
𝜋

)𝑁∕2
𝑒𝑥𝑝

(

−𝛽|𝐯 − 𝐮|2
)

𝑒𝑥𝑝
(

−𝐼∕𝐼0
)

(2)

where 𝛽 = 1
2𝑅𝑇 , 𝐮(𝑡, 𝐱) is the macroscopic velocity, 𝑁 is the translational

egrees of freedom, 𝐼 is the internal energy variable corresponding to
on-translational degrees of freedom, 𝐼0 =

2−𝑁(𝛾−1)
2(𝛾−1) 𝑅𝑇 and 𝛾 = 𝑐𝑝

𝑐𝑣
. The

combined mass, momentum and total energy of particles is conserved
during collisions. Thus, 1, 𝐯 and 𝐼 + |𝐯|2

2 are the collisional invariants.
Multiplying the Boltzmann equation with the moment vector 𝜳 =
[

1, 𝑣1, .., 𝑣𝑁 , 𝐼 + |𝐯|2
2

]𝑇
and integrating w.r.t. 𝐯 and 𝐼 , i.e., taking mo-

ments, gives us the macroscopic conservation laws of mass, momentum
and energy. Utilizing the popular simplification to the collision term,
the BGK collision model [18], Eq. (1) becomes
𝜕𝑓
𝜕𝑡

+ 𝐯 ⋅ 𝜕𝑓
𝜕𝒙

= −1
𝜖
[

𝑓 − 𝑓 𝑒𝑞
]

(3)

where 𝜖 is the relaxation time. Then, using operator splitting for sep-
arating advection and collision terms and further using instantaneous
relaxation to equilibrium in the collision step (𝜖 → 0, i.e., 𝑓 = 𝑓 𝑒𝑞), we
can write the moments of the Boltzmann equation as

𝑑𝐯 𝑑𝐼 𝜳
(

𝜕𝑓
+
𝜕(𝑣𝑖𝑓 ) = 0, 𝑓 = 𝑓 𝑒𝑞

)

(4)
2

∫R𝑁 ∫R+ 𝜕𝑡 𝜕𝑥𝑖
Fig. 1. Equilibrium distribution in 1D: Maxwellian replaced by compactly supported
variable velocity distributions.

These moments in Eq. (4) form an elegant way of representing the
inviscid Euler equations at the macroscopic level, given by

𝜕𝐔
𝜕𝑡

+
𝜕𝐆𝑖
𝜕𝑥𝑖

= 0 (5)

with

𝐔 =
⎡

⎢

⎢

⎣

𝜌
𝜌𝑢𝑗
𝜌𝐸

⎤

⎥

⎥

⎦

,𝐆𝑖 =
⎡

⎢

⎢

⎣

𝜌𝑢𝑖
𝜌𝑢𝑖𝑢𝑗 + 𝑝𝛿𝑖𝑗
(𝜌𝐸 + 𝑝)𝑢𝑖

⎤

⎥

⎥

⎦

, 𝐸 = 𝑒 +
𝑢2𝑖
2

(6)

Here, the moment relations are

∫R𝑁
𝑑𝐯∫R+

𝑑𝐼 𝜳𝑓 = ∫R𝑁
𝑑𝐯∫R+

𝑑𝐼 𝜳𝑓 𝑒𝑞 = 𝐔 (7a)

R𝑁
𝑣𝑖𝑑𝐯∫R+

𝑑𝐼 𝜳𝑓 𝑒𝑞 = 𝐆𝑖 (7b)

ultiplying the Boltzmann equation by ln 𝑓 and taking its moment, we
et the kinetic entropy inequality, i.e., the H-theorem

𝜕𝐻
𝜕𝑡

+
𝜕𝐻𝑣,𝑖

𝜕𝑥𝑖
≤ 0 (8)

with

∫R𝑁
𝑑𝐯∫R+

𝑑𝐼 𝑓 ln 𝑓 = 𝐻, (9a)

R𝑁
𝑣𝑖𝑑𝐯∫R+

𝑑𝐼 𝑓 ln 𝑓 = 𝐻𝑣,𝑖, (9b)

R𝑁
𝑑𝐯∫R+

𝑑𝐼 𝑄(𝑓 ) ln𝑓 ≤ 0 (9c)

n the next section, we introduce our new compactly supported distri-
ution in 1-D with variable velocities, centered around two averaged
elocities.

. Equilibrium distribution in 1D

In this research work, we focus only on modeling in the velocity
𝑣) space. Therefore, we first introduce a truncated equilibrium distri-
ution function 𝑓 𝑒𝑞 , by first integrating w.r.t. to the internal energy
ariable 𝐼 as follows.

̆𝑒𝑞 = ∫

∞

0
𝑓 𝑒𝑞𝑑𝐼 (10)

hen, the moments in 1-D become

𝑖 =
∞
𝑑𝑣 𝛹𝑖𝑓

𝑒𝑞 and 𝐺𝑖 =
∞
𝑑𝑣 𝑣𝛹𝑖𝑓

𝑒𝑞 (11)
∫−∞ ∫−∞
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Now, defining

𝑓 𝑒𝑞𝑖 = 𝛹𝑖𝑓
𝑒𝑞 (12)

the moment relations take the form

𝑈𝑖 = ∫

∞

−∞
𝑑𝑣 𝑓 𝑒𝑞𝑖 = ⟨𝑓 𝑒𝑞𝑖 ⟩ and 𝐺𝑖 = ∫

∞

−∞
𝑑𝑣 𝑣𝑓 𝑒𝑞𝑖 = ⟨𝑣𝑓 𝑒𝑞𝑖 ⟩ (13)

The basic strategy of our model is to replace the 1-D Maxwellians
𝑓 𝑒𝑞𝑖,𝑀𝑎𝑥𝑤𝑒𝑙𝑙𝑖𝑎𝑛 (represented by a Gaussian curve in the space of molecular
velocities) by a set of two rectangular distributions, with control over
the locations as well as widths of these rectangular distributions, such
that the moment relations still hold. The rectangular distributions sat-
isfy the requirement of distributions with compact support, thus leading
to simplifications. The control over the locations of these distributions
will later help us in enforcing Rankine–Hugoniot conditions in the
discretization process. The control over the widths of these distribu-
tions will help us in adding additional numerical diffusion wherever
required, e.g., in expansions which may contain sonic points and thus
need additional diffusion to avoid nonphysical solutions. The new set
of compactly supported distributions is illustrated in Fig. 1 for the 1-D
case. We introduce the compactly supported rectangular distributions
with flexible velocities on both sides of 𝑣 = 0 for convenience. In the
limit of vanishing support, these new distributions degenerate to Dirac-
delta distributions, leading to the discrete velocities 𝜆𝑖 and −𝜆𝑖. For our
model, 𝑓 𝑒𝑞𝑖 (shown in Fig. 1) is defined as

𝑓 𝑒𝑞𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑓 𝑒𝑞+,𝑖, 𝜆𝑖 − 𝛿𝜆𝑖 ≤ 𝑣 ≤ 𝜆𝑖 + 𝛿𝜆𝑖,
𝑓 𝑒𝑞−,𝑖, −𝜆𝑖 − 𝛿𝜆𝑖 ≤ 𝑣 ≤ −𝜆𝑖 + 𝛿𝜆𝑖,
0, otherwise

⎫

⎪

⎬

⎪

⎭

(14)

hus, 𝑓 𝑒𝑞𝑖 is zero everywhere except in the velocity ranges [−𝜆𝑖 −
𝛿𝜆𝑖,−𝜆𝑖 + 𝛿𝜆𝑖] and [𝜆𝑖 − 𝛿𝜆𝑖, 𝜆𝑖 + 𝛿𝜆𝑖]. Fig. 1 corresponds to the first
omponent of 𝐔. Now, let us recall the moment relations in 1D.

𝑖 = ∫

∞

−∞
𝑑𝑣 𝑓 𝑒𝑞𝑖 =

⟨

𝑓 𝑒𝑞𝑖
⟩

(15a)

𝑖 = ∫

∞

−∞
𝑣𝑑𝑣 𝑓 𝑒𝑞𝑖 =

⟨

𝑣𝑓 𝑒𝑞𝑖
⟩

(15b)

Here, 𝑈𝑖 and 𝐺𝑖 are the 𝑖𝑡ℎ conserved variable and inviscid flux terms,
respectively. Substituting (14) in the moment relations (15), we obtain

2𝛿𝜆𝑖𝑓
𝑒𝑞
+,𝑖 + 2𝛿𝜆𝑖𝑓

𝑒𝑞
−,𝑖 = 𝑓 𝑒𝑞1𝑖 + 𝑓

𝑒𝑞
2𝑖 = 𝑈𝑖 (16a)

𝜆𝑖
(

2𝛿𝜆𝑖𝑓
𝑒𝑞
+,𝑖 − 2𝛿𝜆𝑖𝑓

𝑒𝑞
−,𝑖

)

= 𝜆𝑖
(

𝑓 𝑒𝑞1𝑖 − 𝑓
𝑒𝑞
2𝑖
)

= 𝐺𝑖 (16b)

where 𝑓 𝑒𝑞1𝑖 = 2𝛿𝜆𝑖𝑓
𝑒𝑞
+,𝑖 and 𝑓 𝑒𝑞2𝑖 = 2𝛿𝜆𝑖𝑓

𝑒𝑞
−,𝑖 are areas under respective

rectangles. Solving the above for 𝑓 𝑒𝑞1𝑖 and 𝑓 𝑒𝑞2𝑖 , we obtain

𝑓 𝑒𝑞1𝑖 =
𝑈𝑖
2

+
𝐺𝑖
2𝜆𝑖

, 𝑓 𝑒𝑞2𝑖 =
𝑈𝑖
2

−
𝐺𝑖
2𝜆𝑖

(17)

urther, computing the 𝑣2 moment, we get

𝑣2𝑓 𝑒𝑞𝑖
⟩

= (𝜆2𝑖 +
(𝛿𝜆𝑖)2

3
)2(𝛿𝜆𝑖)(𝑓

𝑒𝑞
+,𝑖 + 𝑓

𝑒𝑞
−,𝑖) (18a)

= (𝜆2𝑖 +
(𝛿𝜆𝑖)2

3
)(𝑓 𝑒𝑞1𝑖 + 𝑓

𝑒𝑞
2𝑖 ) (18b)

= (𝜆2𝑖 +
(𝛿𝜆𝑖)2

3
)𝑈𝑖 (from (16a)) (18c)

= 𝜆2𝑖𝑈𝑖 (18d)

e note that as 𝛿𝜆𝑖 changes, the zeroth and first moment relations
n Eq. (16) remain the same (in terms of 𝑓 𝑒𝑞1𝑖 and 𝑓 𝑒𝑞2𝑖 ). However, the

second moment (Eq. (18)) changes. Thus, for our model, we preserve
all three moments. To understand the significance of 𝑣2 moment and
the width 𝛿𝜆𝑖, we perform a Chapman–Enskog type analysis for a first
order approximation to 𝐟𝑖 (Appendix A). We observe that the

⟨

𝑣2𝑓 𝑒𝑞𝑖
⟩

oment acts as a viscous term. Thus a non zero 𝛿𝜆 adds to viscosity.
3

𝑖

.1. Limiting case: 𝛿𝜆𝑖 → 0

In the limiting case of 𝛿𝜆𝑖 → 0, the equilibrium distribution function
reduces to Dirac-delta distributions at the discrete velocities ±𝜆𝑖. That
is, in this limiting case,

𝑓 𝑒𝑞𝑖 = 𝑓 𝑒𝑞1𝑖 𝛿(𝑣 − 𝜆𝑖) + 𝑓
𝑒𝑞
2𝑖 𝛿(𝑣 + 𝜆𝑖) (19)

The
⟨

𝑓 𝑒𝑞𝑖
⟩

and
⟨

𝑣𝑓 𝑒𝑞𝑖
⟩

moment relations then give us:

𝑓 𝑒𝑞1𝑖 =
𝑈𝑖
2

+
𝐺𝑖
2𝜆𝑖

, 𝑓 𝑒𝑞2𝑖 =
𝑈𝑖
2

−
𝐺𝑖
2𝜆𝑖

(20)

The
⟨

𝑣2𝑓 𝑒𝑞𝑖
⟩

moment in this limiting case is
⟨

𝑣2𝑓 𝑒𝑞𝑖
⟩

= 𝜆2𝑖 (𝑓
𝑒𝑞
1𝑖 + 𝑓

𝑒𝑞
2𝑖 ) = 𝜆2𝑖𝑈𝑖 (21)

4. Kinetic scheme for 1D Euler equations

To simplify our numerical method, we define an equivalent Flexible
elocity Boltzmann Equation such that the zeroth, first and second

moment relations for the equilibrium distribution function given by
(15) and (18) are satisfied. That equation is

𝜕𝐟𝑖
𝜕𝑡

+
𝜕(𝛬𝑖𝐟𝑖)
𝜕𝑥

= −1
𝜖

[

𝐟𝑖 − 𝐟̃𝑒𝑞𝑖
]

(22)

ere,

𝑒𝑞
𝑖 =

[

𝑓 𝑒𝑞1𝑖
𝑓 𝑒𝑞2𝑖

]

, 𝛬𝑖 =
[

𝜆𝑖 0
0 −𝜆𝑖

]

, (23a)

𝑒̃𝑞
1𝑖 =

𝑈𝑖
2

+
𝐺𝑖
2𝜆𝑖

, 𝑓 𝑒𝑞2𝑖 =
𝑈𝑖
2

−
𝐺𝑖
2𝜆𝑖

; 𝜆𝑖 =

√

𝜆2𝑖 +
(𝛿𝜆𝑖)2

3
(23b)

Now, given the row vector 𝐏𝑖 =
[

1 1
]

, the different moments of 𝐟̃𝑒𝑞𝑖
are

𝐏𝑖 𝐟̃
𝑒𝑞
𝑖 = 𝑓 𝑒𝑞1𝑖 + 𝑓

𝑒𝑞
2𝑖 = 𝑈𝑖 (24a)

𝐏𝑖𝛬𝑖 𝐟̃
𝑒𝑞
𝑖 = 𝜆𝑖𝑓

𝑒𝑞
1𝑖 − 𝜆𝑖𝑓

𝑒𝑞
2𝑖 = 𝐺𝑖 (24b)

𝐏𝑖𝛬2
𝑖 𝐟̃
𝑒𝑞
𝑖 = 𝜆2𝑖 (𝑓

𝑒𝑞
1𝑖 + 𝑓

𝑒𝑞
2𝑖 ) = 𝜆2𝑖𝑈𝑖 = (𝜆2𝑖 +

(𝛿𝜆𝑖)2

3
)𝑈𝑖 (24c)

Thus, all three moment relations are satisfied. We work in a finite
volume framework and solve the conservation form of Boltzmann
equations (22) in 𝑗𝑡ℎ cell. To solve the Boltzmann equations, we use
operator splitting strategy. At the end of the 𝑛𝑡ℎ time step, we allow
the distribution function to relax (relaxation step) instantaneously to
the equilibrium distribution function. Next, in the advection step we
solve the advective part of Boltzmann equation numerically to get the
distribution function for (𝑛 + 1)𝑡ℎ time step. Thus,

Relaxation step: Instantaneous, i.e., 𝜖 → 0. Thus,

𝐟𝑖)𝑛𝑗 = (𝐟̃𝑒𝑞𝑖 )𝑛𝑗 (25)

dvection step: The advective part of Boltzmann equation is
𝜕𝐟𝑖
𝜕𝑡

+
𝜕𝐡𝑖
𝜕𝑥

= 0;𝐡𝑖 = 𝛬𝑖 𝐟̃
𝑒𝑞
𝑖 (26)

ewriting the advection equation in integral form for 𝑗𝑡ℎ cell,
𝑑(𝐟𝑖)𝑗
𝑑𝑡

= −(𝑅𝑖)𝑛𝑗 = − 1
𝛥𝑥

[

(𝐡𝑖)𝑛𝑗+1∕2 − (𝐡𝑖)𝑛𝑗−1∕2
]

(27)

he numerical flux is split using Courant splitting as follows.

𝐡𝑖)𝑗+1∕2 = (𝐡+𝑖 )𝐿 + (𝐡−𝑖 )𝑅

= (𝛬+
𝑖 𝐟̃

𝑒𝑞
𝑖 )𝐿 + (𝛬−

𝑖 𝐟̃
𝑒𝑞
𝑖 )𝑅, where 𝛬±

𝑖 = 1
2

(

𝛬𝑖 ± |𝛬𝑖|
)

= 1 {

(𝐡 ) + (𝐡 )
}

− 1 {

(𝛥𝐡+) − (𝛥𝐡−)
}

;

2 𝑖 𝐿 𝑖 𝑅 2 𝑖 𝑗+1∕2 𝑖 𝑗+1∕2
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T

𝜎

a
(

𝜆

t
d

𝜆

𝜆

p

𝜔

w
o

𝜔

a

𝑑

̃

o

𝐟̃

T

(𝛥𝐡±𝑖 )𝑗+1∕2 =
[

𝛬±
𝑖

{

(𝐟̃𝑒𝑞𝑖 )𝑅 − (𝐟̃𝑒𝑞𝑖 )𝐿
}]

𝑗+1∕2
(28)

For 1st order overall accuracy, spatially we assume piecewise constant
approximation for 𝐟̃𝑒𝑞𝑖 in each cell. Thus, (𝐟̃𝑒𝑞𝑖 )𝐿 = (𝐟̃𝑒𝑞𝑖 )𝑗 , (𝐟̃

𝑒𝑞
𝑖 )𝑅 = (𝐟̃𝑒𝑞𝑖 )𝑗+1.

Temporal derivative is approximated using Euler method as 𝑑(𝐟𝑖)𝑗
𝑑𝑡 =

(𝐟𝑖)𝑛+1𝑗 −(𝐟̃𝑒𝑞𝑖 )𝑛𝑗
𝛥𝑡 .

To obtain the macroscopic update formula for the 𝑖𝑡ℎ conserved
variable 𝑈𝑖 in the 𝑗𝑡ℎ cell, we take moment of (27) by multiplying it
by 𝐏𝑖. This gives us
𝑑(𝑈𝑖)𝑗
𝑑𝑡

= − 1
𝛥𝑥

[

(𝐺𝑖)𝑛𝑗+1∕2 − (𝐺𝑖)𝑛𝑗−1∕2
]

(29)

where the macroscopic flux at the interface is given by

(𝐺𝑖)𝑗+1∕2 = 𝐏𝑖(𝐡𝑖)𝑗+1∕2

= 1
2
{

(𝐺𝑖)𝐿 + (𝐺𝑖)𝑅
}

−
(𝜆𝑖)𝑗+1∕2

2
{

(𝑈𝑖)𝑅 − (𝑈𝑖)𝐿
}

= 1
2
{

(𝐺𝑖)𝐿 + (𝐺𝑖)𝑅
}

− 1
2
{

(𝛥𝐺+
𝑖 )𝑗+1∕2 − (𝛥𝐺−

𝑖 )𝑗+1∕2
}

;

(𝛥𝐺±
𝑖 )𝑗+1∕2 =

[

±
𝜆𝑖
2
{

(𝑈𝑖)𝑅 − (𝑈𝑖)𝐿
}

]

𝑗+1∕2

(30)

4.1. Stability of kinetic model

We consider Bouchut’s criterion [16] for existence of kinetic en-
tropies. It requires the eigenvalues of derivatives of the equilibrium
distributions, i.e., 𝐟̃𝑒𝑞1 (= 𝑓 𝑒𝑞1𝑖 ) and 𝐟̃𝑒𝑞2 (= 𝑓 𝑒𝑞2𝑖 ), to be real and non negative.
These derivatives are:

𝜕𝐟̃𝑒𝑞1
𝜕𝐔

= 1
2

⎡

⎢

⎢

⎣

1 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

+ 1
2

⎡

⎢

⎢

⎢

⎢

⎣

1
𝜆1

0 0

0 1
𝜆2

0

0 0 1
𝜆3

⎤

⎥

⎥

⎥

⎥

⎦

𝜕𝐆
𝜕𝐔

(31a)

𝜕𝐟̃𝑒𝑞2
𝜕𝐔

= 1
2

⎡

⎢

⎢

⎣

1 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

− 1
2

⎡

⎢

⎢

⎢

⎢

⎣

1
𝜆1

0 0

0 1
𝜆2

0

0 0 1
𝜆3

⎤

⎥

⎥

⎥

⎥

⎦

𝜕𝐆
𝜕𝐔

(31b)

hen, as per Bouchut’s criterion

⎛

⎜

⎜

⎝

𝜕𝐟̃𝑒𝑞1,2
𝜕𝐔

⎞

⎟

⎟

⎠

⊂ [0,∞) (32)

Here 𝜎 represents the spectral radius. For our scheme, we take 𝜆𝑖 = 𝜆
nd 𝛿𝜆𝑖 = 𝛿𝜆 (thus 𝜆𝑖 = 𝜆, i.e., numerical diffusion is a scalar). Then,
31) and (32) lead to:
̃≥ 𝑚𝑎𝑥 (|𝑢 − 𝑎| , |𝑢| , |𝑢 + 𝑎|) (33)

4.2. Fixing 𝜆

We take 𝜆𝑖 = 𝜆 and 𝛿𝜆𝑖 = 𝛿𝜆 (thus 𝜆𝑖 = 𝜆). 𝜆 is defined such
hat it satisfies the Rankine–Hugoniot jump conditions at a steady
iscontinuity. First we define the following speeds at the cell interface:

𝑠 = 𝑚𝑖𝑛𝑖(
|

|

𝛥𝐺𝑖||
|

|

𝛥𝑈𝑖|| + 𝜖0
), 𝛥 = ()𝑅 − ()𝐿 (34a)

𝑚𝑖𝑛 = 𝑚𝑎𝑥
{

𝑚𝑖𝑛(|𝑢 − 𝑎|, |𝑢|, |𝑢 + 𝑎|)𝐿, 𝑚𝑖𝑛(|𝑢 − 𝑎|, |𝑢|, |𝑢 + 𝑎|)𝑅
}

(34b)

Then, we define 𝜆 as follows.

𝜆 =

⎧

⎪

⎨

⎪

⎩

𝜆𝑚𝑖𝑛, if ‖𝛥𝐔‖ ≤ 𝜖1 (uniform flow)
𝜆𝑠, if ‖𝛥𝐔‖ > 𝜖1, ‖𝛥𝐆‖ ≤ 𝜖2 (steady discontinuity)
𝑚𝑎𝑥(𝜆𝑚𝑖𝑛, 𝜆𝑠), otherwise

⎫

⎪

⎬

⎪

⎭

(35)

Here, we use 𝜆𝑚𝑖𝑛 to provide a lower limit to 𝜆 everywhere except at a
steady discontinuity. We take 𝜖1 = 10−5, 𝜖2 = 10−8 and 𝜖0 = 10−14 for
all the test cases.
4

𝐻

4.3. Fixing 𝛿𝜆

𝜆 as defined in the previous subsection is still a very low numer-
ical coefficient of diffusion, which can lead to formation of entropy-
violating expansion shocks when expansive sonic points are present.
Thus we augment the coefficient of diffusion by having a non-zero 𝛿𝜆
in smooth regions, which include expansions. In smooth regions, we set
𝛿𝜆 based on Eq. (33), as follows.

𝜆2 = (𝜆2 +
(𝛿𝜆)2

3
) ≥ [𝑚𝑎𝑥 (|𝑢 − 𝑎| , |𝑢| , |𝑢 + 𝑎|)]2 (36)

Thus,

𝛿𝜆 =

{ √

3(𝜆2𝑚𝑎𝑥 − 𝜆2), in smooth regions
0, otherwise

}

(37a)

𝜆𝑚𝑎𝑥 = 𝑚𝑎𝑥
{

𝑚𝑎𝑥(|𝑢 − 𝑎|, |𝑢|, |𝑢 + 𝑎|)𝐿, 𝑚𝑎𝑥(|𝑢 − 𝑎|, |𝑢|, |𝑢 + 𝑎|)𝑅
}

(37b)

Thus, in smooth regions, the numerical diffusion in our scheme changes
to that of the Rusanov or Local Lax–Friedrich (LLF) scheme.

4.4. Relative entropy

Now, the next problem is identifying the smooth flow regions in
contrast to the discontinuities (high gradient regions). For this purpose,
we introduce a novel formulation for the relative entropy, 𝑑2 (first
resented at [19]). First we introduce a kinetic entropy variable, 𝜔 as

= 𝜕𝐻̂
𝜕𝑓 𝑒𝑞

(38)

where 𝐻̂ is the kinetic entropy. For the classical case, it refers to (9)
without the moments (𝐻̂ = 𝑓 𝑒𝑞 ln 𝑓 𝑒𝑞). We now define the relative
entropy as the kinetic entropy distance, given by

𝑑2 = ⟨𝛥𝜔 ⋅ 𝛥𝑓 𝑒𝑞⟩; 𝛥 = ()𝑅 − ()𝐿 (39)

here ⟨⟩ refers to taking moments. For the classical case with continu-
us molecular velocity, from (9), we have

= 1 + ln 𝑓 𝑒𝑞 (40)

nd thus we recover

2 = ⟨𝛥 (𝑙𝑛𝑓 𝑒𝑞) ⋅ 𝛥𝑓 𝑒𝑞⟩ =

⟨

𝑙𝑛
𝑓 𝑒𝑞𝑅
𝑓 𝑒𝑞𝐿

(𝑓 𝑒𝑞𝑅 − 𝑓 𝑒𝑞𝐿 )

⟩

(41)

which is the Kullback–Leibler divergence [20]. However, as our kinetic
model is closer to the discrete Boltzmann system, we use Bouchut’s
form of kinetic entropy function [16], while noting that Bouchut’s
stability criterion is satisfied in smooth regions, ensuring existence of
kinetic entropies. To begin, we rewrite our equilibrium distribution
function as

𝐟𝑒𝑞𝑖 =

[

𝐟̃𝑒𝑞1𝑖
𝐟̃𝑒𝑞2𝑖

]

=
⎡

⎢

⎢

⎣

𝑈𝑖
2 + 𝐺𝑖

2𝜆
𝑈𝑖
2 − 𝐺𝑖

2𝜆

⎤

⎥

⎥

⎦

=

[

1
2
1
2

]

𝑈𝑖 +

[ 1
2𝜆
− 1

2𝜆

]

𝐺𝑖 (42)

r,

𝑒𝑞 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑓 𝑒𝑞11
𝑓 𝑒𝑞21
𝑓 𝑒𝑞12
𝑓 𝑒𝑞22
𝑓 𝑒𝑞13
𝑓 𝑒𝑞23

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 1
2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐔 + 1
2𝜆

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐆

= 𝜶0𝐔 + 𝜶1𝐆 (43)

hen, the kinetic entropy 𝐻̂ is given by

̂
 = 𝜶0𝜂 + 𝜶1𝜓 (44)
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⟨

⟨

T
⟨

⟨

N

𝑑

𝑑

H
T
s

I

w
d
𝑘
c
T
o
t

𝛥

𝜙

T

(

W

(

where (𝜂, 𝜓) are the macroscopic entropy–entropy flux pairs. For Euler
equations, 𝜂 = 𝜌𝑠 and 𝜓 = 𝜌𝑢𝑠, where 𝑠 = 𝑐𝑣 ln

𝑝
𝜌𝛾 + constant. Now,

𝐟̃𝑒𝑞
⟩

= 𝐏𝐟̃𝑒𝑞 = 𝐔 ⇒ 𝐏𝜶0 = 𝐼,𝐏𝜶1 = 0 (45a)

𝛬𝐟̃𝑒𝑞
⟩

= 𝐏𝛬𝐟̃𝑒𝑞 = 𝐆 ⇒ 𝐏𝛬𝜶0 = 0,𝐏𝛬𝜶1 = 𝐼 (45b)

herefore,

𝐻̂
⟩

= 𝐏(𝜶0𝜂 + 𝜶1𝜓) = 𝜂 (46a)

𝛬𝐻̂
⟩

= 𝐏𝛬(𝜶0𝜂 + 𝜶1𝜓) = 𝜓 (46b)

ow the relative entropy is

2 = ⟨𝛥𝜔 ⋅ 𝛥𝐟̃𝑒𝑞⟩ =
⟨

𝛥

{

𝜕𝐻̂(𝐟̃𝑒𝑞)
𝜕𝐟̃𝑒𝑞

}

⋅ 𝛥𝐟̃𝑒𝑞
⟩

=
⟨

𝛥
{

𝜶0
𝜕𝜂

𝜕𝐟̃𝑒𝑞
+ 𝜶1

𝜕𝜓

𝜕𝐟̃𝑒𝑞

}

⋅ 𝛥𝐟̃𝑒𝑞
⟩

=
⟨{

𝜶0𝛥
(

𝜕𝜂

𝜕𝐟̃𝑒𝑞

)

+ 𝜶1𝛥
(

𝜕𝜓

𝜕𝐟̃𝑒𝑞

)}

⋅ 𝛥𝐟̃𝑒𝑞
⟩

(since 𝜆, 𝛿𝜆= f(L,R))

= 𝐏𝜶0𝛥
(

𝜕𝜂

𝜕𝐟̃𝑒𝑞

)

⋅ 𝛥𝐟̃𝑒𝑞 + 𝐏𝜶1𝛥
(

𝜕𝜓

𝜕𝐟̃𝑒𝑞

)

⋅ 𝛥𝐟̃𝑒𝑞

= 𝛥
(

𝜕𝜂

𝜕𝐟̃𝑒𝑞

)

⋅ 𝛥𝐟̃𝑒𝑞

= 𝛥

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝜂
𝜕𝑈1

𝜕𝑈1
𝜕𝑓 𝑒𝑞11

+ 𝜕𝜂
𝜕𝑈2

𝜕𝑈2
𝜕𝑓 𝑒𝑞11

+ 𝜕𝜂
𝜕𝑈3

𝜕𝑈3
𝜕𝑓 𝑒𝑞11

𝜕𝜂
𝜕𝑈1

𝜕𝑈1
𝜕𝑓 𝑒𝑞21

+ 𝜕𝜂
𝜕𝑈2

𝜕𝑈2
𝜕𝑓 𝑒𝑞21

+ 𝜕𝜂
𝜕𝑈3

𝜕𝑈3
𝜕𝑓 𝑒𝑞21

𝜕𝜂
𝜕𝑈1

𝜕𝑈1
𝜕𝑓 𝑒𝑞12

+ 𝜕𝜂
𝜕𝑈2

𝜕𝑈2
𝜕𝑓 𝑒𝑞12

+ 𝜕𝜂
𝜕𝑈3

𝜕𝑈3
𝜕𝑓 𝑒𝑞12

𝜕𝜂
𝜕𝑈1

𝜕𝑈1
𝜕𝑓 𝑒𝑞22

+ 𝜕𝜂
𝜕𝑈2

𝜕𝑈2
𝜕𝑓 𝑒𝑞22

+ 𝜕𝜂
𝜕𝑈3

𝜕𝑈3
𝜕𝑓 𝑒𝑞22

𝜕𝜂
𝜕𝑈1

𝜕𝑈1
𝜕𝑓 𝑒𝑞13

+ 𝜕𝜂
𝜕𝑈2

𝜕𝑈2
𝜕𝑓 𝑒𝑞13

+ 𝜕𝜂
𝜕𝑈3

𝜕𝑈3
𝜕𝑓 𝑒𝑞13

𝜕𝜂
𝜕𝑈1

𝜕𝑈1
𝜕𝑓 𝑒𝑞23

+ 𝜕𝜂
𝜕𝑈2

𝜕𝑈2
𝜕𝑓 𝑒𝑞23

+ 𝜕𝜂
𝜕𝑈3

𝜕𝑈3
𝜕𝑓 𝑒𝑞23

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⋅ 𝛥

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑓 𝑒𝑞11
𝑓 𝑒𝑞21
𝑓 𝑒𝑞12
𝑓 𝑒𝑞22
𝑓 𝑒𝑞13
𝑓 𝑒𝑞23

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(47)

𝑑2 = 𝛥

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝜂
𝜕𝑈1
𝜕𝜂
𝜕𝑈1
𝜕𝜂
𝜕𝑈2
𝜕𝜂
𝜕𝑈2
𝜕𝜂
𝜕𝑈3
𝜕𝜂
𝜕𝑈3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⋅ 𝛥

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑓 𝑒𝑞11
𝑓 𝑒𝑞21
𝑓 𝑒𝑞12
𝑓 𝑒𝑞22
𝑓 𝑒𝑞13
𝑓 𝑒𝑞23

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 𝛥
𝜕𝜂
𝜕𝑈1

𝛥(𝑓 𝑒𝑞11 + 𝑓 𝑒𝑞21 ) + 𝛥
𝜕𝜂
𝜕𝑈2

𝛥(𝑓 𝑒𝑞12 + 𝑓 𝑒𝑞22 ) + 𝛥
𝜕𝜂
𝜕𝑈3

𝛥(𝑓 𝑒𝑞13 + 𝑓 𝑒𝑞23 )

= 𝛥
𝜕𝜂
𝜕𝑈1

𝛥𝑈1 + 𝛥
𝜕𝜂
𝜕𝑈2

𝛥𝑈2 + 𝛥
𝜕𝜂
𝜕𝑈3

𝛥𝑈3

2 =
(

𝛥
𝜕𝜂
𝜕𝐔

)𝑇
⋅ 𝛥𝐔 (48)

= 𝛥
(

𝛾 − 𝑠
𝛾 − 1

−
𝜌𝑢2

2𝑝

)

𝛥(𝜌) + 𝛥
(

𝜌𝑢
𝑝

)

𝛥(𝜌𝑢) + 𝛥
(

−
𝜌
𝑝

)

𝛥(𝜌𝐸) (49)

Thus, relative entropy in our formulation is the scalar product of change
in entropy variable and change in conserved variable at the interface.
This expression, derived from kinetic theoretic considerations, happens
to coincide with the macroscopic entropy distance defined by Zaide
and Roe [21]. We analyze how this relative entropy varies for Sod’s
shock tube problem (Toro Test Case 1). For this unsteady problem,
solution at 𝑡 = 0.2 is considered; it comprises of an expansion, a
contact discontinuity and a shock wave. The solution (numerical and
exact) is shown in Fig. 2. We can see that 𝑑2 gives a positive signal
(>0) at expansions as well as at contact discontinuities and shocks, its
magnitude being much smaller at expansions. Since at expansions there
5

is no change in entropy, we can identify expansions using the following
criterion.

At expansions: 𝑑2 > 0, 𝛥𝑠 = 0 (50)

owever, for numerical solutions, |𝛥𝑠| at expansions is not exactly zero.
aking that into account, we use a less stringent condition to identify
mooth regions, as follows:

n smooth regions: 𝑑2 > 0 and |𝛥𝑠| ≤ 𝑘(𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛) (51)

here 𝑠𝑚𝑎𝑥 and 𝑠𝑚𝑖𝑛 are the maximum and minimum entropy in the
omain at a given time level. 𝑘 is a fraction, taken as small as possible;
= 0.1 has proven to be sufficient for all our 1D and 2D Euler test

ases. Now, the modified condition accepts very small entropy changes.
herefore, we introduce a corresponding condition also for 𝑑2, based
n the term containing the entropy in its definition (49) and conclude
hat non zero 𝛥𝑠 introduces an error − 𝛥𝑠𝛥𝜌

𝛾−1 in the relative entropy 𝑑2.
Taking this into account, our modified criteria for introducing LLF type
numerical diffusion is given by

In smooth regions: 𝑑2 > −
𝛥𝑠𝛥𝜌
𝛾 − 1

, |𝛥𝑠| ≤ 0.1(𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛) (52)

Finally, we can describe the numerical coefficient of diffusion 𝜆 as
follows

𝜆 =

{ √

𝜆2 + (𝛿𝜆)2
3 , if criteria (52) is satisfied,

𝜆, otherwise

}

(53)

5. Higher order accuracy

For second order accuracy, we assume piecewise linear approxima-
tion for 𝐟̃𝑒𝑞𝑖 in each cell, for evaluating (𝐟̃𝑒𝑞𝑖 )𝐿∕𝑅. However, a second
order accurate scheme cannot be monotone as it would give rise to
oscillations. Thus, a limiter function is used to limit the slope, as
follows:

(𝐟̃𝑒𝑞𝑖 )𝑗+ 1
2 ,𝐿

= (𝐟̃𝑒𝑞𝑖 )𝑗 +
1
2
𝜙(𝛥+𝑗 𝐟̃

𝑒𝑞
𝑖 , 𝛥

−
𝑗 𝐟̃

𝑒𝑞
𝑖 ) (54a)

(𝐟̃𝑒𝑞𝑖 )𝑗− 1
2 ,𝑅

= (𝐟̃𝑒𝑞𝑖 )𝑗 −
1
2
𝜙(𝛥−𝑗 𝐟̃

𝑒𝑞
𝑖 , 𝛥

+
𝑗 𝐟̃

𝑒𝑞
𝑖 ) (54b)

+
𝑗 𝐟̃

𝑒𝑞
𝑖 = (𝐟̃𝑒𝑞𝑖 )𝑗+1 − (𝐟̃𝑒𝑞𝑖 )𝑗 , 𝛥−𝑗 𝐟̃

𝑒𝑞
𝑖 = (𝐟̃𝑒𝑞𝑖 )𝑗 − (𝐟̃𝑒𝑞𝑖 )𝑗−1 (54c)

(𝑥, 𝑦) =
𝑥2𝑦 + 𝑥𝑦2

𝑥2 + 𝑦2
(VanAlbada limiter) (55)

hus,

𝑈𝑖)𝑗+ 1
2 ,𝐿

= (𝑓 𝑒𝑞1𝑖 )𝑗+ 1
2 ,𝐿

+ (𝑓 𝑒𝑞2𝑖 )𝑗+ 1
2 ,𝐿

= (𝑈𝑖)𝑗 +
1
2
𝜙(𝛥+𝑗 𝑓

𝑒𝑞
1𝑖 , 𝛥

−
𝑗 𝑓

𝑒𝑞
1𝑖 ) +

1
2
𝜙(𝛥+𝑗 𝑓

𝑒𝑞
2𝑖 , 𝛥

−
𝑗 𝑓

𝑒𝑞
2𝑖 ) (56)

At this point, we make an approximation. It is inspired by the work of
Kumar & Dass[22], who, in the continuous-velocity space, approximate
the integral of limiter function of two variables by the limiter func-
tion of integral of the two variables. In our framework, integrals are
replaced by summations. Thus, we approximate (56) by the following
expression.

(𝑈𝑖)𝑗+ 1
2 ,𝐿

= (𝑈𝑖)𝑗 +
1
2
𝜙(𝛥+𝑗 𝑓

𝑒𝑞
1𝑖 + 𝛥

+
𝑗 𝑓

𝑒𝑞
2𝑖 , 𝛥

−
𝑗 𝑓

𝑒𝑞
1𝑖 + 𝛥

−
𝑗 𝑓

𝑒𝑞
2𝑖 )

= (𝑈𝑖)𝑗 +
1
2
𝜙(𝛥+𝑗 𝑈𝑖, 𝛥

−
𝑗 𝑈𝑖) (57)

Similarly,

(𝑈𝑖)𝑗− 1
2 ,𝑅

= (𝑈𝑖)𝑗 −
1
2
𝜙(𝛥−𝑗 𝑈𝑖, 𝛥

+
𝑗 𝑈𝑖) (58)

e rewrite (57) and (58) as

𝑈 ) 1 = (𝑈 ) + 1𝜙(𝑟 )
{

(𝑈 ) − (𝑈 )
}

(59a)
𝑖 𝑗+ 2 ,𝐿
𝑖 𝑗 2 𝑗 𝑖 𝑗 𝑖 𝑗−1
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Fig. 2. (a) Relative entropy 𝑑2 for Sod’s shock tube problem at 𝑡 = 0.2. (b) Zoomed figure.
s

(

7

v
1
n
u
v

𝑓

𝑈𝑖)𝑗− 1
2 ,𝑅

= (𝑈𝑖)𝑗 −
1
2
𝜙( 1
𝑟𝑗
)
{

(𝑈𝑖)𝑗+1 − (𝑈𝑖)𝑗
}

(59b)

(𝑟) = 𝑟2 + 𝑟
𝑟2 + 1

, 𝑟𝑗 =
𝛥+𝑗 𝑈𝑖
𝛥−𝑗 𝑈𝑖

=
(𝑈𝑖)𝑗+1 − (𝑈𝑖)𝑗
(𝑈𝑖)𝑗 − (𝑈𝑖)𝑗−1

(59c)

If the denominator of the argument of the limiter function 𝜙 in Eq. (59a)
is close to zero, we modify 𝑟𝑗 , to avoid numerical overflow, as follows:

𝑟𝑗 =
𝛥+𝑗 𝑈𝑖

𝑠𝑖𝑔𝑛(𝛥−𝑗 𝑈𝑖) ∗ 𝜖3
, if |𝛥−𝑗 𝑈𝑖| < 𝜖3 (60)

where 𝑠𝑖𝑔𝑛() is the standard signum function. Here, we take 𝜖3 =
10−12. Next, temporal derivative is discretized using Strong Stability
Preserving Runge Kutta (SSPRK) Method [23]. The update formula is,

(𝐟𝑖)1𝑗 = (𝐟̃𝑒𝑞𝑖 )𝑛𝑗 − 𝛥𝑡𝑅((𝐟̃
𝑒𝑞
𝑖 )𝑛𝑗 ) (61a)

(𝐟𝑖)2𝑗 =
1
4
(𝐟𝑖)1𝑗 +

3
4
(𝐟̃𝑒𝑞𝑖 )𝑛𝑗 −

1
4
𝛥𝑡𝑅((𝐟𝑖)1𝑗 ) (61b)

(𝐟𝑖)𝑛+1𝑗 = 2
3
(𝐟𝑖)2𝑗 +

1
3
(𝐟̃𝑒𝑞𝑖 )𝑛𝑗 −

2
3
𝛥𝑡𝑅((𝐟𝑖)2𝑗 ) (61c)

ere, R is the residual (see (27)). The macroscopic update formula is
hen obtained by taking moment of (61) and is given by

𝑈𝑖)1𝑗 = (𝑈𝑖)𝑛𝑗 − 𝛥𝑡𝑅((𝑈𝑖)
𝑛
𝑗 ) (62a)

(𝑈𝑖)2𝑗 =
1
4
(𝑈𝑖)1𝑗 +

3
4
(𝑈𝑖)𝑛𝑗 −

1
4
𝛥𝑡𝑅((𝑈𝑖)1𝑗 ) (62b)

𝑈𝑖)𝑛+1𝑗 = 2
3
(𝑈𝑖)2𝑗 +

1
3
(𝑈𝑖)𝑛𝑗 −

2
3
𝛥𝑡𝑅((𝑈𝑖)2𝑗 ) (62c)

. Kinetic scheme for viscous flows

We consider a first order approximation to f, i.e., 𝑓 = 𝑓𝐶𝐸 , where
𝐶𝐸 is the Chapman–Enskog distribution function. For a first order ap-
roximation to 𝑓 , the moments of variable velocity Boltzmann equation
ive us the macroscopic Navier–Stokes equations, given by

𝜕𝐔
𝜕𝑡

+
𝜕𝐆𝑖
𝜕𝑥𝑖

=
𝜕𝐆𝑣𝑖𝑠,𝑖

𝜕𝑥𝑖
(63)

with

𝐔 =
⎡

⎢

⎢

⎣

𝜌
𝜌𝑢𝑗
𝜌𝐸

⎤

⎥

⎥

⎦

,𝐆𝑖 =
⎡

⎢

⎢

⎣

𝜌𝑢𝑖
𝜌𝑢𝑖𝑢𝑗 + 𝑝𝛿𝑖𝑗
(𝜌𝐸 + 𝑝)𝑢𝑖

⎤

⎥

⎥

⎦

,𝐆𝑣𝑖𝑠,𝑖 =
⎡

⎢

⎢

⎣

0
𝜏𝑖𝑗

𝜏𝑖𝑗𝑢𝑗 − 𝑞𝑖

⎤

⎥

⎥

⎦

(64)

and

𝜏𝑖𝑗 = 𝜇
(

𝜕𝑢𝑖 +
𝜕𝑢𝑗

)

−
2𝜇 𝜕𝑢𝑘 𝛿𝑖𝑗 , 𝑞𝑖 = −𝐾 𝜕𝑇 (65)
6

𝜕𝑥𝑗 𝜕𝑥𝑖 3 𝜕𝑥𝑘 𝜕𝑥𝑖
Here, the moment relations are

∫R𝑁
𝑑𝐯∫R+

𝑑𝐼 𝜳𝑓𝐶𝐸 = 𝐔,∫R𝑁
𝑣𝑖𝑑𝐯∫R+

𝑑𝐼 𝜳𝑓𝐶𝐸 = 𝐆𝑖 −𝐆𝑣𝑖𝑠,𝑖 (66)

In 1D, we define 𝑓𝐶𝐸𝑖 in the same fashion as we did 𝑓 𝑒𝑞𝑖 , but
atisfying the moment relations (66), i.e.,
⟨

𝑓𝐶𝐸𝑖
⟩

= 𝑓𝐶𝐸1𝑖 + 𝑓𝐶𝐸2𝑖 = 𝑈𝑖 (67a)

⟨

𝑣𝑓𝐶𝐸𝑖
⟩

= 𝜆𝑓𝐶𝐸1𝑖 − 𝜆𝑓𝐶𝐸2𝑖 = 𝐺𝑖 − 𝐺𝑣𝑖𝑠,𝑖 (67b)

The moment relations (67) give us

𝑓𝐶𝐸1𝑖 =
𝑈𝑖
2

+
𝐺𝑖 − 𝐺𝑣𝑖𝑠,𝑖

2𝜆
(68a)

𝑓𝐶𝐸2𝑖 =
𝑈𝑖
2

−
𝐺𝑖 − 𝐺𝑣𝑖𝑠,𝑖

2𝜆
(68b)

We use the operator splitting strategy to solve a Flexible Velocity
Boltzmann Equation, with the only difference being that we now relax
the distribution function to the Chapman–Enskog distribution function
in the collision step. The kinetic numerical flux is evaluated using
Courant splitting as follows.

(𝐡𝑖)𝑗+1∕2 = (𝐡+𝑖 )𝐿 + (𝐡−𝑖 )𝑅 = (𝛬+𝐟𝐶𝐸𝑖 )𝐿 + (𝛬−𝐟𝐶𝐸𝑖 )𝑅 (69)

The macroscopic flux at the interface is then evaluated to be

𝐺𝑖)𝑗+1∕2 = 𝐏𝑖(𝐡𝑖)𝑗+1∕2

= 1
2
{

(𝐺𝑖)𝐿 − (𝐺𝑣𝑖𝑠,𝑖)𝐿
}

+ 1
2
{

(𝐺𝑖)𝑅 − (𝐺𝑣𝑖𝑠,𝑖)𝑅
}

−
(𝜆)𝑗+1∕2

2
{

(𝑈𝑖)𝑅 − (𝑈𝑖)𝐿
}

(70)

. Equilibrium distribution in 2D

In 2D, we define the equilibrium distribution 𝑓 𝑒𝑞𝑖 to take non-zero
alues in all four quadrants in 𝑣1 − 𝑣2 plane as shown in Fig. 3. As in
-D, the average velocities (𝜆1𝑖, 𝜆2𝑖) are utilized to provide the primary
umerical diffusion based on R-H conditions while the 𝛿𝜆1𝑖 and 𝛿𝜆2𝑖 are
sed to provide the augmented numerical diffusion to avoid entropy
iolations. The 2-D distribution is given by

̂𝑒𝑞
𝑖 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

𝑓 𝑒𝑞++,𝑖, 𝜆1𝑖 − 𝛿𝜆1𝑖 ≤ 𝑣1 ≤ 𝜆1𝑖 + 𝛿𝜆1𝑖,
𝜆2𝑖 − 𝛿𝜆2𝑖 ≤ 𝑣2 ≤ 𝜆2𝑖 + 𝛿𝜆2𝑖,

𝑓 𝑒𝑞−+,𝑖, −𝜆1𝑖 − 𝛿𝜆1𝑖 ≤ 𝑣1 ≤ −𝜆1𝑖 + 𝛿𝜆1𝑖,
𝜆2𝑖 − 𝛿𝜆2𝑖 ≤ 𝑣2 ≤ 𝜆2𝑖 + 𝛿𝜆2𝑖,

𝑓 𝑒𝑞−−,𝑖, −𝜆1𝑖 − 𝛿𝜆1𝑖 ≤ 𝑣1 ≤ −𝜆1𝑖 + 𝛿𝜆1𝑖,
− 𝜆2𝑖 − 𝛿𝜆2𝑖 ≤ 𝑣2 ≤ −𝜆2𝑖 + 𝛿𝜆2𝑖,

𝑓 𝑒𝑞+−,𝑖, 𝜆1𝑖 − 𝛿𝜆1𝑖 ≤ 𝑣1 ≤ 𝜆1𝑖 + 𝛿𝜆1𝑖,
− 𝜆2𝑖 − 𝛿𝜆2𝑖 ≤ 𝑣2 ≤ −𝜆2𝑖 + 𝛿𝜆2𝑖,

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

(71)
⎩ 0, otherwise ⎭
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̃
Fig. 3. Equilibrium distribution in 2D; zoomed portion of the infinite domain (−∞,∞)
in both 𝑣1 , 𝑣2 is shown.

Substituting the above expressions in the moment relations given by

𝑈𝑖 = ∫

∞

−∞
𝑑𝑣1 ∫

∞

−∞
𝑑𝑣2 𝑓

𝑒𝑞
𝑖 =

⟨

𝑓 𝑒𝑞𝑖
⟩

(72a)

𝐺1𝑖 = ∫

∞

−∞
𝑑𝑣1 ∫

∞

−∞
𝑑𝑣2 𝑣1𝑓

𝑒𝑞
𝑖 =

⟨

𝑣1𝑓
𝑒𝑞
𝑖
⟩

(72b)

𝐺2𝑖 = ∫

∞

−∞
𝑑𝑣1 ∫

∞

−∞
𝑑𝑣2 𝑣2𝑓

𝑒𝑞
𝑖 =

⟨

𝑣2𝑓
𝑒𝑞
𝑖
⟩

(72c)

we obtain

4𝛿𝜆1𝑖𝛿𝜆2𝑖(𝑓
𝑒𝑞
++,𝑖 + 𝑓

𝑒𝑞
−+,𝑖 + 𝑓

𝑒𝑞
−−,𝑖 + 𝑓

𝑒𝑞
+−,𝑖) = 𝑈𝑖 (73a)

4𝛿𝜆1𝑖𝛿𝜆2𝑖(𝜆1𝑖𝑓
𝑒𝑞
++,𝑖 − 𝜆1𝑖𝑓

𝑒𝑞
−+,𝑖 − 𝜆1𝑖𝑓

𝑒𝑞
−−,𝑖 + 𝜆1𝑖𝑓

𝑒𝑞
+−,𝑖) = 𝐺1𝑖 (73b)

4𝛿𝜆1𝑖𝛿𝜆2𝑖(𝜆2𝑖𝑓
𝑒𝑞
++,𝑖 + 𝜆2𝑖𝑓

𝑒𝑞
−+,𝑖 − 𝜆2𝑖𝑓

𝑒𝑞
−−,𝑖 − 𝜆2𝑖𝑓

𝑒𝑞
+−,𝑖) = 𝐺2𝑖 (73c)

Substituting 4𝛿𝜆1𝑖𝛿𝜆2𝑖𝑓
𝑒𝑞
++,𝑖 = 𝑓 𝑒𝑞1𝑖 , 4𝛿𝜆1𝑖𝛿𝜆2𝑖𝑓

𝑒𝑞
−+,𝑖 = 𝑓 𝑒𝑞2𝑖 , 4𝛿𝜆1𝑖𝛿𝜆2𝑖𝑓

𝑒𝑞
−−,𝑖 =

𝑓 𝑒𝑞3𝑖 and 4𝛿𝜆1𝑖𝛿𝜆2𝑖𝑓
𝑒𝑞
+−,𝑖 = 𝑓 𝑒𝑞4𝑖 in (73), the moment relations can be

rewritten as

𝑓 𝑒𝑞1𝑖 + 𝑓
𝑒𝑞
2𝑖 + 𝑓

𝑒𝑞
3𝑖 + 𝑓

𝑒𝑞
4𝑖 = 𝑈𝑖 (74a)

𝜆1𝑖(𝑓
𝑒𝑞
1𝑖 − 𝑓

𝑒𝑞
2𝑖 − 𝑓

𝑒𝑞
3𝑖 + 𝑓

𝑒𝑞
4𝑖 ) = 𝐺1𝑖 (74b)

𝜆2𝑖(𝑓
𝑒𝑞
1𝑖 + 𝑓

𝑒𝑞
2𝑖 − 𝑓

𝑒𝑞
3𝑖 − 𝑓

𝑒𝑞
4𝑖 ) = 𝐺2𝑖 (74c)

Assuming 𝜆’s and 𝛿𝜆’s as known quantities for now, we have four
unknowns (𝑓 𝑒𝑞1𝑖 ,… , 𝑓 𝑒𝑞4𝑖 ) but only three equations. Hence, we make an
assumption here that the distributions 𝑓 𝑒𝑞𝑗𝑖 are a linear combination of
conserved variable vector and flux vectors, i.e., 𝑈𝑖, 𝐺1𝑖 and 𝐺2𝑖. One
solution satisfying the moment relations then is given by

𝑓 𝑒𝑞1𝑖 = 1
4

[

𝑈𝑖 +
𝐺1𝑖
𝜆1𝑖

+
𝐺2𝑖
𝜆2𝑖

]

(75a)

𝑓 𝑒𝑞2𝑖 = 1
4

[

𝑈𝑖 −
𝐺1𝑖
𝜆1𝑖

+
𝐺2𝑖
𝜆2𝑖

]

(75b)

𝑓 𝑒𝑞3𝑖 = 1
4

[

𝑈𝑖 −
𝐺1𝑖
𝜆1𝑖

−
𝐺2𝑖
𝜆2𝑖

]

(75c)

𝑓 𝑒𝑞 = 1
[

𝑈𝑖 +
𝐺1𝑖 −

𝐺2𝑖
]

(75d)
7

4𝑖 4 𝜆1𝑖 𝜆2𝑖
For the above defined equilibrium distribution function, the com-
puted second moments are

⟨

𝑣21𝑓
𝑒𝑞
𝑖
⟩

= (𝜆21𝑖 +
𝛿𝜆21𝑖
3

)(𝑓 𝑒𝑞1𝑖 + 𝑓
𝑒𝑞
2𝑖 + 𝑓

𝑒𝑞
3𝑖 + 𝑓

𝑒𝑞
4𝑖 ) = (𝜆1𝑖)2𝑈𝑖 (76a)

⟨

𝑣22𝑓
𝑒𝑞
𝑖
⟩

= (𝜆22𝑖 +
𝛿𝜆22𝑖
3

)(𝑓 𝑒𝑞1𝑖 + 𝑓
𝑒𝑞
2𝑖 + 𝑓

𝑒𝑞
3𝑖 + 𝑓

𝑒𝑞
4𝑖 ) = (𝜆2𝑖)2𝑈𝑖 (76b)

⟨

𝑣1𝑣2𝑓
𝑒𝑞
𝑖
⟩

= 𝜆1𝑖𝜆2𝑖(𝑓
𝑒𝑞
1𝑖 − 𝑓

𝑒𝑞
2𝑖 + 𝑓

𝑒𝑞
3𝑖 − 𝑓

𝑒𝑞
4𝑖 ) = 0 (76c)

8. Kinetic scheme for 2D Euler equations

We now formulate a 2D Flexible Velocity Boltzmann Equation for 𝑖𝑡ℎ
distribution such that the equilibrium distribution function 𝐟̃𝑒𝑞𝑖 satisfies
the zeroth, first and second moments given by (72) and (76). It is given
by

𝜕𝐟𝑖
𝜕𝑡

+
𝜕(𝛬1𝑖𝐟𝑖)
𝜕𝑥1

+
𝜕(𝛬2𝑖𝐟𝑖)
𝜕𝑥2

= −1
𝜖

[

𝐟𝑖 − 𝐟̃𝑒𝑞𝑖
]

(77)

Here,

𝐟𝑒𝑞𝑖 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑓 𝑒𝑞1𝑖
𝑓 𝑒𝑞2𝑖
𝑓 𝑒𝑞3𝑖
𝑓 𝑒𝑞4𝑖

⎤

⎥

⎥

⎥

⎥

⎦

, 𝛬1𝑖 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜆1𝑖 0 0 0
0 −𝜆1𝑖 0 0
0 0 −𝜆1𝑖 0
0 0 0 𝜆1𝑖

⎤

⎥

⎥

⎥

⎥

⎦

,

𝛬2𝑖 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜆2𝑖 0 0 0
0 𝜆2𝑖 0 0
0 0 −𝜆2𝑖 0
0 0 0 −𝜆2𝑖

⎤

⎥

⎥

⎥

⎥

⎦

(78)

and

𝑓 𝑒𝑞1𝑖 = 1
4

[

𝑈𝑖 +
𝐺1𝑖

𝜆1𝑖
+
𝐺2𝑖

𝜆2𝑖

]

(79a)

𝑓 𝑒𝑞2𝑖 = 1
4

[

𝑈𝑖 −
𝐺1𝑖

𝜆1𝑖
+
𝐺2𝑖

𝜆2𝑖

]

(79b)

𝑓 𝑒𝑞3𝑖 = 1
4

[

𝑈𝑖 −
𝐺1𝑖

𝜆1𝑖
−
𝐺2𝑖

𝜆2𝑖

]

(79c)

𝑓 𝑒𝑞4𝑖 = 1
4

[

𝑈𝑖 +
𝐺1𝑖

𝜆1𝑖
−
𝐺2𝑖

𝜆2𝑖

]

(79d)

Defining 𝐏𝑖 = [1, 1, 1, 1], we have

𝐏𝑖 𝐟̃
𝑒𝑞
𝑖 = 𝑈𝑖, (80a)

𝐏𝑖𝛬1𝑖 𝐟̃
𝑒𝑞
𝑖 = 𝐺1𝑖,𝐏𝑖𝛬2𝑖 𝐟̃

𝑒𝑞
𝑖 = 𝐺2𝑖 (80b)

𝐏𝑖𝛬2
1𝑖 𝐟̃

𝑒𝑞
𝑖 = 𝜆21𝑖𝑈𝑖,𝐏𝑖𝛬

2
2𝑖 𝐟̃

𝑒𝑞
𝑖 = 𝜆22𝑖𝑈𝑖,𝐏𝑖𝛬1𝑖𝛬2𝑖 𝐟̃

𝑒𝑞
𝑖 = 0 (80c)

Thus, all the moments are satisfied. Next, we solve the 𝑖𝑡ℎ component
of the Boltzmann equations (77) by using operator splitting, leading to
relaxation and advection steps for (𝑗, 𝑘)𝑡ℎ cell, as follows:
Relaxation step: Instantaneous, i.e., 𝜖 → 0. Thus,

(𝐟𝑖)𝑛𝑗,𝑘 = (𝐟̃𝑒𝑞𝑖 )𝑛𝑗,𝑘 (81)

Advection step: The advection part of Boltzmann equation is
𝜕𝐟𝑖
𝜕𝑡

+
𝜕𝐡1𝑖
𝜕𝑥1

+
𝜕𝐡2𝑖
𝜕𝑥2

= 0;𝐡1∕2𝑖 = 𝛬1∕2𝑖 𝐟̃
𝑒𝑞
𝑖 (82)

Rewriting the advection equation in integral form for (𝑗, 𝑘)𝑡ℎ cell,

𝐴𝑗,𝑘
𝑑𝐟𝑖
𝑑𝑡

+ ∮ 𝐡𝑛𝑑𝑙 = 0;𝐡𝑛𝑖 = 𝛬𝑛𝑖 𝐟̃
𝑒𝑞
𝑖 , 𝛬𝑛𝑖 = 𝛬1𝑖𝑛1 + 𝛬2𝑖𝑛2 (83a)

⇒ 𝐴𝑗,𝑘
𝑑𝐟𝑖 +

4
∑

(𝐡𝑛𝑖)𝑠𝑙𝑠 = 0 (mid-point quadrature)

𝑑𝑡 𝑠=1
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Fig. 4. Interior cell and associated unit normal vector for a structured grid in 2D.

here, (𝐡𝑛𝑖)𝑠 = (𝐡+𝑛𝑖)𝐿 + (𝐡−𝑛𝑖)𝑅 = (𝛬+
𝑛𝑖 𝐟̃

𝑒𝑞
𝑖 )𝐿 + (𝛬−

𝑛𝑖 𝐟̃
𝑒𝑞
𝑖 )𝑅 (83b)

In the above expressions, we have assumed a structured grid with
quadrilateral finite volumes (see Fig. 4). Multiplying (𝐡𝑛𝑖)𝑠 by 𝐏𝑖 gives
us the macroscopic normal flux (𝐆𝑛𝑖)𝑠.

(𝐆𝑛𝑖)𝑠 = 𝐏𝑖(𝐡𝑛𝑖)𝑠 = 𝐏𝑖(𝛬+
𝑛𝑖 𝐟̃

𝑒𝑞
𝑖 )𝐿 + 𝐏𝑖(𝛬−

𝑛𝑖 𝐟̃
𝑒𝑞
𝑖 )𝑅

= 1
2

[

(𝐺𝑛𝑖)𝐿 + (𝐺𝑛𝑖)𝑅
]

− 1
2
|𝜆1𝑖𝑛1+𝜆2𝑖𝑛2|+|−𝜆1𝑖𝑛1+𝜆2𝑖𝑛2|

2 𝛥𝑈𝑖
(84)

r

𝐆𝑛𝑖)𝑠 =
1
2
[

(𝐺𝑛𝑖)𝐿 + (𝐺𝑛𝑖)𝑅
]

−
𝜆𝑛𝑖
2
𝛥𝑈𝑖 (85)

here

𝑛̃𝑖 =
|𝜆1𝑖𝑛1 + 𝜆2𝑖𝑛2| + | − 𝜆1𝑖𝑛1 + 𝜆2𝑖𝑛2|

2
(86)

8.1. Fixing 𝜆𝑛

We take 𝜆1𝑖 = 𝜆1, 𝜆2𝑖 = 𝜆2, 𝛿𝜆1𝑖 = 𝛿𝜆1, 𝛿𝜆2𝑖 = 𝛿𝜆2. Thus, we obtain
he scalar diffusion as 𝜆𝑛𝑖 = 𝜆𝑛 =

√

𝜆2𝑛 + (𝛿𝜆)2∕3. Before defining 𝜆𝑛, we
efine the following wave speeds.

𝑠 = 𝑚𝑖𝑛𝑖(
|

|

𝛥𝐺𝑛,𝑖||
|

|

𝛥𝑈𝑖|| + 𝜖0
), 𝛥 = ()𝑅 − ()𝐿 (87a)

𝑚𝑖𝑛 = 𝑚𝑎𝑥
{

𝑚𝑖𝑛(|𝑢𝑛 − 𝑎|, |𝑢𝑛|, |𝑢𝑛 + 𝑎|)𝐿, 𝑚𝑖𝑛(|𝑢𝑛 − 𝑎|, |𝑢𝑛|, |𝑢𝑛 + 𝑎|)𝑅
}

(87b)

Note that the expression (87a) is based on enforcing Rankine–Hugoniot
jump conditions across a cell-interface. Then, we define 𝜆𝑛 as follows

𝜆𝑛 =

⎧

⎪

⎨

⎪

⎩

𝜆𝑚𝑖𝑛, if ‖𝛥𝐔‖ ≤ 𝜖1 (uniform flow)
𝜆𝑠, if ‖𝛥𝐔‖ > 𝜖1, ‖‖𝛥𝐆𝑛

‖

‖

≤ 𝜖2 (steady discontinuity)
𝑚𝑎𝑥(𝜆𝑚𝑖𝑛, 𝜆𝑠), otherwise

⎫

⎪

⎬

⎪

⎭

(88)

ere too, we take 𝜖1 = 10−5, 𝜖2 = 10−8 and 𝜖0 = 10−14 for all the test
ases.

.2. Relative entropy in 2D

Following the same procedure as in 1-D, the relative entropy 𝑑2 in
D can be derived (see Appendix B) and is given by

2 =
(

𝛥
𝜕𝜂
𝜕𝐔

)𝑇
⋅ 𝛥𝐔

= 𝛥

(

𝛾 − 𝑠
𝛾 − 1

−
𝜌𝑢21
2𝑝

−
𝜌𝑢22
2𝑝

)

𝛥(𝜌) + 𝛥
(

𝜌𝑢1
𝑝

)

𝛥(𝜌𝑢1) +

𝛥
(

𝜌𝑢2
𝑝

)

𝛥(𝜌𝑢2) + 𝛥
(

−
𝜌
𝑝

)

𝛥(𝜌𝐸) (89)

The relative entropy based criterion given by (52) is then used to
provide LLF type numerical diffusion in smooth flow regions.
8

Fig. 5. Boundary cell and associated unit normal vector for a structured grid in 2D.

9. Boundary conditions based on a discrete kinetic system

Boundary conditions for 2D Euler equations are non-trivial and
substantial research is done in developing them at the macroscopic
level. For boundary conditions based on molecular velocities and the
classical Maxwellians, we refer to [8] for flow tangency boundary condi-
tions (based on specular reflection model) and [24] for far-field kinetic
boundary conditions. We utilize similar strategies in a novel way, based
on discrete kinetic systems, to arrive at flow tangency and farfield
boundary conditions in this section.

At boundaries, we assume that 𝛿𝜆 → 0 for simplicity, i.e., our
equilibrium distribution function simplifies to Dirac-delta distribution
functions. We then proceed to formulate Discrete Kinetic Flow Tangency
Boundary Condition (DK-FTBC) and Discrete Kinetic Farfield Boundary
Condition (DK-FBC) based on our kinetic model. To start, we assume
that the unit normal 𝐧(= 𝑛1𝐞1 + 𝑛2𝐞2) at boundary surfaces points
outward (see Fig. 5). Now, rewriting our discrete velocity equilibrium
distribution function 𝑓 𝑒𝑞𝑖 in terms of normal and tangential components
of velocities, we have

𝑓 𝑒𝑞𝑖 = 𝑓 𝑒𝑞1𝑖 𝛿
(

𝑣1 − 𝜆1𝑖
)

𝛿
(

𝑣2 − 𝜆2𝑖
)

+ 𝑓 𝑒𝑞2𝑖 𝛿
(

𝑣1 + 𝜆1𝑖
)

𝛿
(

𝑣2 − 𝜆2𝑖
)

+

𝑓 𝑒𝑞3𝑖 𝛿
(

𝑣1 + 𝜆1𝑖
)

𝛿
(

𝑣2 + 𝜆2𝑖) + 𝑓
𝑒𝑞
4𝑖 𝛿(𝑣1 − 𝜆1𝑖

)

𝛿
(

𝑣2 + 𝜆2𝑖
)

= 𝑓 𝑒𝑞1𝑖 𝛿
(

𝑣𝑛 −
[

𝜆1𝑖𝑛1 + 𝜆2𝑖𝑛2
])

𝛿
(

𝑣𝑡 −
[

−𝜆1𝑖𝑛2 + 𝜆2𝑖𝑛1
])

+

𝑓 𝑒𝑞2𝑖 𝛿
(

𝑣𝑛 −
[

−𝜆1𝑖𝑛1 + 𝜆2𝑖𝑛2
])

𝛿
(

𝑣𝑡 −
[

𝜆1𝑖𝑛2 + 𝜆2𝑖𝑛1
])

+

𝑓 𝑒𝑞3𝑖 𝛿
(

𝑣𝑛 −
[

−𝜆1𝑖𝑛1 − 𝜆2𝑖𝑛2
])

𝛿
(

𝑣𝑡 −
[

𝜆1𝑖𝑛2 − 𝜆2𝑖𝑛1
])

+

𝑓 𝑒𝑞4𝑖 𝛿
(

𝑣𝑛 −
[

𝜆1𝑖𝑛1 − 𝜆2𝑖𝑛2
])

𝛿
(

𝑣𝑡 −
[

−𝜆1𝑖𝑛2 − 𝜆2𝑖𝑛1
])

(90)

where, 𝑣𝑛 = 𝑣1𝑛1 + 𝑣2𝑛2, 𝑣𝑡 = −𝑣1𝑛2 + 𝑣2𝑛1. The split normal fluxes
at surface 𝑠 for our scheme, which are formed by Courant splitting of
normal component of the (discrete) kinetic velocities, can be written as

𝐆+
𝑛𝑠,𝑖 = ∫

∞

0
𝑣𝑛𝑑𝑣𝑛 ∫

∞

−∞
𝑑𝑣𝑡 ∫

∞

0
𝑑𝐼 𝛹𝑖𝑓

𝑒𝑞 = ∫

∞

0
𝑣𝑛𝑑𝑣𝑛 ∫

∞

−∞
𝑑𝑣𝑡 𝑓

𝑒𝑞
𝑖 (91a)

𝐆−
𝑛𝑠,𝑖 = ∫

0

−∞
𝑣𝑛𝑑𝑣𝑛 ∫

∞

−∞
𝑑𝑣𝑡 ∫

∞

0
𝑑𝐼 𝛹𝑖𝑓

𝑒𝑞 = ∫

0

−∞
𝑣𝑛𝑑𝑣𝑛 ∫

∞

−∞
𝑑𝑣𝑡 𝑓

𝑒𝑞
𝑖 (91b)

The split flux 𝐆+
𝑛𝑠,𝑖 with 𝑣𝑛 ≥ 0 corresponds to outgoing information

and depends on interior data, whereas the split flux 𝐆−
𝑛𝑠,𝑖 with 𝑣𝑛 ≤ 0

corresponds to information coming into the domain from the boundary.

Discrete kinetic flow tangency boundary condition: This is the inviscid
wall boundary condition, and is based on the specular reflection model
of kinetic theory of gases. According to specular reflection model, at
inviscid wall the normal velocity of particles gets reversed while the
tangential velocity remains unchanged. Thus, we take

𝐆+
𝑛𝑤,𝑖 = ∫

∞

0
𝑣𝑛𝑑𝑣𝑛 ∫

∞

−∞
𝑑𝑣𝑡 ∫

∞

0
𝑑𝐼𝛹𝑖𝑓

𝑒𝑞(𝑣𝑛, 𝑣𝑡) (92a)

𝐆−
𝑛𝑤,𝑖 = ∫

0

−∞
𝑣𝑛𝑑𝑣𝑛 ∫

∞

−∞
𝑑𝑣𝑡 ∫

∞

0
𝑑𝐼𝛹𝑖𝑓

𝑒𝑞(−𝑣𝑛, 𝑣𝑡) (92b)

Now, with the above definitions, the split fluxes can be written as

𝐆+ =
∞
𝑣𝑛𝑑𝑣𝑛

∞
𝑑𝑣𝑡

∞
𝑑𝐼 𝑓 𝑒𝑞(𝑣𝑛, 𝑣𝑡)
𝑛𝑤,1 ∫0 ∫−∞ ∫0
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S

𝐆

= ∫

∞

0
𝑣𝑛𝑑𝑣𝑛 ∫

∞

−∞
𝑑𝑣𝑡 𝑓

𝑒𝑞
1 (𝑣𝑛, 𝑣𝑡)

= (𝜆11𝑛1 + 𝜆21𝑛2)+𝑓
𝑒𝑞
11 + (−𝜆11𝑛1 + 𝜆21𝑛2)+𝑓

𝑒𝑞
21 +

(−𝜆11𝑛1 − 𝜆21𝑛2)+𝑓
𝑒𝑞
31 + (𝜆11𝑛1 − 𝜆21𝑛2)+𝑓

𝑒𝑞
41 (93a)

𝐆−
𝑛𝑤,1 = ∫

0

−∞
𝑣𝑛𝑑𝑣𝑛 ∫

∞

−∞
𝑑𝑣𝑡 ∫

∞

0
𝑑𝐼 𝑓 𝑒𝑞(−𝑣𝑛, 𝑣𝑡)

= ∫

0

−∞
𝑣𝑛𝑑𝑣𝑛 ∫

∞

−∞
𝑑𝑣𝑡 𝑓

𝑒𝑞
1 (−𝑣𝑛, 𝑣𝑡)

= (−𝜆11𝑛1 − 𝜆21𝑛2)−𝑓
𝑒𝑞
11 + (𝜆11𝑛1 − 𝜆21𝑛2)−𝑓

𝑒𝑞
21 +

(𝜆11𝑛1 + 𝜆21𝑛2)−𝑓
𝑒𝑞
31 + (−𝜆11𝑛1 + 𝜆21𝑛2)−𝑓

𝑒𝑞
41

= −(𝜆11𝑛1 + 𝜆21𝑛2)+𝑓
𝑒𝑞
11 − (−𝜆11𝑛1 + 𝜆21𝑛2)+𝑓

𝑒𝑞
21 −

(−𝜆11𝑛1 − 𝜆21𝑛2)+𝑓
𝑒𝑞
31 − (𝜆11𝑛1 − 𝜆21𝑛2)+𝑓

𝑒𝑞
41 (93b)

𝐆𝑛𝑤,1 = 𝐆+
𝑛𝑤,1 +𝐆+

𝑛𝑤,1 = 0 (93c)

𝐆+
𝑛𝑤,2 = ∫

∞

0
𝑣𝑛𝑑𝑣𝑛 ∫

∞

−∞
𝑑𝑣𝑡 ∫

∞

0
𝑑𝐼 𝑣1𝑓

𝑒𝑞(𝑣𝑛, 𝑣𝑡)

= ∫

∞

0
𝑣𝑛𝑑𝑣𝑛 ∫

∞

−∞
𝑑𝑣𝑡 ∫

∞

0
𝑑𝐼 (𝑣𝑛𝑛1 − 𝑣𝑡𝑛2)𝑓 𝑒𝑞(𝑣𝑛, 𝑣𝑡)

= ∫

∞

0
𝑣𝑛𝑑𝑣𝑛 ∫

∞

−∞
𝑑𝑣𝑡 𝑓

𝑒𝑞
2 (𝑣𝑛, 𝑣𝑡)

= (𝜆12𝑛1 + 𝜆22𝑛2)+𝑓
𝑒𝑞
12 + (−𝜆12𝑛1 + 𝜆22𝑛2)+𝑓

𝑒𝑞
22 +

(−𝜆12𝑛1 − 𝜆22𝑛2)+𝑓
𝑒𝑞
32 + (𝜆12𝑛1 − 𝜆22𝑛2)+𝑓

𝑒𝑞
42 (94a)

𝐆−
𝑛𝑤,2 = ∫

0

−∞
𝑣𝑛𝑑𝑣𝑛 ∫

∞

−∞
𝑑𝑣𝑡 ∫

∞

0
𝑑𝐼 𝑣1𝑓

𝑒𝑞(−𝑣𝑛, 𝑣𝑡)

= ∫

0

−∞
𝑣𝑛𝑑𝑣𝑛 ∫

∞

−∞
𝑑𝑣𝑡 ∫

∞

0
𝑑𝐼 (𝑣𝑛𝑛1 − 𝑣𝑡𝑛2)𝑓 𝑒𝑞(−𝑣𝑛, 𝑣𝑡)

= ∫

0

−∞
𝑣𝑛𝑑𝑣𝑛 ∫

∞

−∞
𝑑𝑣𝑡 ∫

∞

0
𝑑𝐼 (−𝑣𝑛𝑛1 − 𝑣𝑡𝑛2)𝑓 𝑒𝑞(−𝑣𝑛, 𝑣𝑡) +

∫

0

−∞
𝑣𝑛𝑑𝑣𝑛 ∫

∞

−∞
𝑑𝑣𝑡 ∫

∞

0
𝑑𝐼 (2𝑣𝑛𝑛1)𝑓 𝑒𝑞(−𝑣𝑛, 𝑣𝑡)

= ∫

0

−∞
𝑣𝑛𝑑𝑣𝑛 ∫

∞

−∞
𝑑𝑣𝑡 𝑓

𝑒𝑞
2 (−𝑣𝑛, 𝑣𝑡) +

2𝑛1 ∫

0

−∞
𝑣2𝑛𝑑𝑣𝑛 ∫

∞

−∞
𝑑𝑣𝑡 𝑓

𝑒𝑞(−𝑣𝑛, 𝑣𝑡)

=
{

−(𝜆12𝑛1 + 𝜆22𝑛2)
}− 𝑓 𝑒𝑞12 +

{

−(−𝜆12𝑛1 + 𝜆22𝑛2)
}− 𝑓 𝑒𝑞22 +

{

−(−𝜆12𝑛1 − 𝜆22𝑛2)
}− 𝑓 𝑒𝑞32 +

{

−(𝜆12𝑛1 − 𝜆22𝑛2)
}− 𝑓 𝑒𝑞42 +

2𝑛1 ∫

0

−∞
𝑣2𝑛𝑑𝑣𝑛 ∫

∞

−∞
𝑑𝑣𝑡𝑓

𝑒𝑞(−𝑣𝑛, 𝑣𝑡)

= −(𝜆12𝑛1 + 𝜆22𝑛2)+𝑓
𝑒𝑞
12 − (−𝜆12𝑛1 + 𝜆22𝑛2)+𝑓

𝑒𝑞
22 −

(−𝜆12𝑛1 − 𝜆22𝑛2)+𝑓
𝑒𝑞
32 − (𝜆12𝑛1 − 𝜆22𝑛2)+𝑓

𝑒𝑞
42 +

2𝑛1 ∫

0

−∞
𝑣2𝑛𝑑𝑣𝑛 ∫

∞

−∞
𝑑𝑣𝑡𝑓

𝑒𝑞(−𝑣𝑛, 𝑣𝑡) (94b)

𝐆𝑛𝑤,2 = 𝐆+
𝑛𝑤,2 +𝐆−

𝑛𝑤,2 = 2𝑛1 ∫

0

−∞
𝑣2𝑛𝑑𝑣𝑛 ∫

∞

−∞
𝑑𝑣𝑡 𝑓

𝑒𝑞(−𝑣𝑛, 𝑣𝑡)

= 1
2
[{|𝜆12𝑛1 + 𝜆22𝑛2| + |𝜆12𝑛1 − 𝜆22𝑛2|}𝜌𝑢1𝑛21 +

{|𝜆13𝑛1 + 𝜆23𝑛2| + |𝜆13𝑛1 − 𝜆23𝑛2|}𝜌𝑢2𝑛1𝑛2] +
(

𝜌𝑢2𝑛𝑤 + 𝑝
)

𝑛1
= 𝑝𝑛1, for 𝜆1𝑖 = 𝜆1, 𝜆2𝑖 = 𝜆2 (94c)

imilarly,

𝑛𝑤,3 = 2𝑛2
0
𝑣2𝑑𝑣𝑛

∞
𝑑𝑣𝑡 𝑓

𝑒𝑞(−𝑣𝑛, 𝑣𝑡)
9

∫−∞ 𝑛 ∫−∞
= 1
2
[{|𝜆12𝑛1 + 𝜆22𝑛2| + |𝜆12𝑛1 − 𝜆22𝑛2|}𝜌𝑢1𝑛1𝑛2 +

{|𝜆13𝑛1 + 𝜆23𝑛2| + |𝜆13𝑛1 − 𝜆23𝑛2|}𝜌𝑢2𝑛22] +
(

𝜌𝑢2𝑛𝑤 + 𝑝
)

𝑛2
= 𝑝𝑛2, for 𝜆1𝑖 = 𝜆1, 𝜆2𝑖 = 𝜆2 (94d)

𝐆+
𝑛𝑤,4 = ∫

∞

0
𝑣𝑛𝑑𝑣𝑛 ∫

∞

−∞
𝑑𝑣𝑡 ∫

∞

0
𝑑𝐼

[

𝐼 +
𝑣2𝑛 + 𝑣

2
𝑡

2

]

𝑓 𝑒𝑞(𝑣𝑛, 𝑣𝑡)

= ∫

∞

0
𝑣𝑛𝑑𝑣𝑛 ∫

∞

−∞
𝑑𝑣𝑡 𝑓

𝑒𝑞
4 (𝑣𝑛, 𝑣𝑡)

= (𝜆14𝑛1 + 𝜆24𝑛2)+𝑓
𝑒𝑞
14 + (−𝜆14𝑛1 + 𝜆24𝑛2)+𝑓

𝑒𝑞
24 +

(−𝜆14𝑛1 − 𝜆24𝑛2)+𝑓
𝑒𝑞
34 + (𝜆14𝑛1 − 𝜆24𝑛2)+𝑓

𝑒𝑞
44 (95a)

𝐆−
𝑛𝑤,4 = ∫

0

−∞
𝑣𝑛𝑑𝑣𝑛 ∫

∞

−∞
𝑑𝑣𝑡 ∫

∞

0
𝑑𝐼

[

𝐼 +
𝑣2𝑛 + 𝑣

2
𝑡

2

]

𝑓 𝑒𝑞(−𝑣𝑛, 𝑣𝑡)

= ∫

0

−∞
𝑣𝑛𝑑𝑣𝑛 ∫

∞

−∞
𝑑𝑣𝑡 𝑓

𝑒𝑞
4 (−𝑣𝑛, 𝑣𝑡)

= −(𝜆14𝑛1 + 𝜆24𝑛2)+𝑓
𝑒𝑞
14 − (−𝜆14𝑛1 + 𝜆24𝑛2)+𝑓

𝑒𝑞
24 −

(−𝜆14𝑛1 − 𝜆24𝑛2)+𝑓
𝑒𝑞
34 − (𝜆14𝑛1 − 𝜆24𝑛2)+𝑓

𝑒𝑞
44 (95b)

𝐆𝑛𝑤,4 = 𝐆+
𝑛𝑤,4 +𝐆−

𝑛𝑤,4 = 0 (95c)

Discrete kinetic farfield boundary condition:This boundary condition
is applicable at farfield boundary, at a very large distance from the
body. The positive split flux at farfield boundary depends on interior
data, whereas negative split flux depends on boundary data. Thus,

𝐆+
𝑛𝑓 ,𝑖 = ∫

∞

0
𝑣𝑛𝑑𝑣𝑛 ∫

∞

−∞
𝑑𝑣𝑡 ∫

∞

0
𝑑𝐼 𝛹𝑖(𝑓 𝑒𝑞)𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟

= ∫

∞

0
𝑣𝑛𝑑𝑣𝑛 ∫

∞

−∞
𝑑𝑣𝑡 (𝑓

𝑒𝑞
𝑖 )𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 (96a)

𝐆−
𝑛𝑓 ,𝑖 = ∫

0

−∞
𝑣𝑛𝑑𝑣𝑛 ∫

∞

−∞
𝑑𝑣𝑡 ∫

∞

0
𝑑𝐼 𝛹𝑖(𝑓 𝑒𝑞)𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

= ∫

0

−∞
𝑣𝑛𝑑𝑣𝑛 ∫

∞

−∞
𝑑𝑣𝑡 (𝑓

𝑒𝑞
𝑖 )𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 (96b)

𝐆𝑛𝑓 ,𝑖 = 𝐆+
𝑛𝑓 ,𝑖 +𝐆−

𝑛𝑓 ,𝑖 (96c)

Thus, the macroscopic flux at the farfield boundary interface is com-
puted using the same scheme as that at the interior interfaces, using
the appropriate interior and boundary values.

10. Results and discussion

10.1. Experimental order of convergence

To determine the Experimental Order of Convergence of the presented
scheme, a simple 1D Euler test is considered, for which the exact
solution is known. The computational domain taken is 𝑥 ∈ [0, 2]. The
initial conditions are

𝜌(𝑥, 0) = 𝜌0(𝑥) = 1 + 0.2𝑠𝑖𝑛(𝜋𝑥) (97a)

𝑢(𝑥, 0) = 0.1, 𝑝(𝑥, 0) = 0.5 (97b)

Thus, velocity and pressure are initially constant, while the density
varies sinusoidally. Periodic boundary conditions are applied at the two
ends. For this problem, 𝑢 and 𝑝 remain constant while exact solution for
density is given by
𝜌(𝑥, 𝑡) = 𝜌0(𝑥 − 𝑢𝑡) = 1 + 0.2𝑠𝑖𝑛 (𝜋 [𝑥 − 0.1𝑡]) (98)
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Table 1
EOC using 𝐿1 and 𝐿2 error norms for first order accuracy.
Nx 𝛥x 𝐿1 Error EOC 𝐿2 Error EOC

40 0.05 0.0191413808 0.0154857921
80 0.025 0.0085164603 1.168369 0.0069153845 1.163063
160 0.0125 0.0045451439 0.905928 0.0036194091 0.934055
320 0.00625 0.0022895408 0.989267 0.0018024477 1.005796
640 0.003125 0.0011552003 0.986915 0.0009209818 0.968713
1280 0.0015625 0.0005665738 1.027807 0.0004564290 1.012782
2560 0.00078125 0.0002874274 0.979066 0.0002298604 0.989632
Table 2
EOC using 𝐿1 and 𝐿2 error norms for second order accuracy with Van Albada limiter.
Nx 𝛥x 𝐿1 Error EOC 𝐿2 Error EOC

40 0.05 0.0012055970 0.0013636619
80 0.025 0.0003310609 1.864579 0.0004857523 1.489193
160 0.0125 0.0000765373 2.112862 0.0001403528 1.791163
320 0.00625 0.0000187416 2.029916 0.0000433965 1.693408
640 0.003125 0.0000045506 2.042103 0.0000135291 1.681510
1280 0.0015625 0.0000010846 2.068911 0.0000040809 1.729078
2560 0.00078125 0.0000002438 2.153041 0.000001174 1.797770
Table 3
EOC using 𝐿1 and 𝐿2 error norms for second order accuracy without limiter.
Nx 𝛥x 𝐿1 Error EOC 𝐿2 Error EOC

40 0.05 0.0003656949 0.0002969886
80 0.025 0.0000851224 2.103030 0.0000671913 2.144061
160 0.0125 0.0000207283 2.037941 0.0000163095 2.042564
320 0.00625 0.0000051489 2.009272 0.0000040460 2.011155
640 0.003125 0.0000012847 2.002791 0.0000010091 2.003356
1280 0.0015625 0.0000003207 2.002197 0.0000002519 2.002316
2560 0.00078125 0.0000000797 2.008218 0.0000000626 2.008252
i
=
T

The problem is solved numerically, and its solution is considered at
𝑡 = 0.5. The numerical solution is computed for varying grid sizes, i.e.,
𝑁𝑥(= 2

𝛥𝑥 ) = 40, 80, 160, .. and so on. Next, the 𝐿1 and 𝐿2 errors in
solution are computed as follows.

‖

‖

𝜀𝐾‖‖𝐿1
= 𝛥𝑥

𝐾
∑

𝑖=1
|𝜌𝑖 − 𝜌𝑖𝑒| (99a)

𝜀𝐾‖‖𝐿2
=

√

√

√

√𝛥𝑥
𝐾
∑

𝑖=1
(𝜌𝑖 − 𝜌𝑖𝑒)2 (99b)

Here 𝐾 is the number of cells, 𝜌𝑖 and 𝜌𝑖𝑒 are the numerical and exact
solution in the 𝑖𝑡ℎ cell. Now, for a 𝑝𝑡ℎ order accurate scheme,
‖

‖

𝜀𝐾‖‖ = 𝐶𝛥𝑥𝑝 + 𝑂(𝛥𝑥𝑝+1). Similarly, (100a)

‖

‖

‖

𝜀𝐾∕2
‖

‖

‖

= 𝐶(2𝛥𝑥)𝑝 + 𝑂(𝛥𝑥)𝑝+1, (𝐾 ∝ 1
𝛥𝑥

) (100b)

hus,
‖

‖

‖

𝜀𝐾∕2
‖

‖

‖

‖

‖

𝜀𝐾‖‖
= 2𝑝 + 𝑂(𝛥𝑥) ⇒ 𝑙𝑜𝑔2

⎛

⎜

⎜

⎝

‖

‖

‖

𝜀𝐾∕2
‖

‖

‖

‖

‖

𝜀𝐾‖‖

⎞

⎟

⎟

⎠

= 𝑝 + 𝑂(𝛥𝑥) (101)

The experimental order of convergence (EOC) of the scheme is then
given by

EOC = 𝑙𝑜𝑔2
⎛

⎜

⎜

⎝

‖

‖

‖

𝜀𝐾∕2
‖

‖

‖

‖

‖

𝜀𝐾‖‖

⎞

⎟

⎟

⎠

(102)

The 𝐿1 and 𝐿2 errors of the present scheme for I order accuracy are
abulated in Table 1. The II order results are tabulated in Table 2 (with
imiter) and Table 3 (without limiter) respectively. The log–log plots
omparing the EOC with slopes 1 and 2 are shown in Fig. 6.

0.2. 1D Euler tests

An extensive list of 1D Euler test cases are solved to test the
obustness and accuracy of our scheme. The initial conditions are given
10
n Table 4. For all the problems, domain is 𝑥 ∈ [0, 1], 𝑁𝑥 = 200, CFL
0.8 and Neumann boundary conditions are applied at the two ends.

he global time step is computed as: 𝛥𝑡= CFL 𝛥𝑥
𝑚𝑎𝑥𝑖(|𝑢|+𝑎)𝑖

. Test case 1
has a stationary contact discontinuity as initial discontinuity. Test case
2 has a stationary shock as initial condition, with freestream Mach no=
2. Post shock conditions are obtained using gas dynamics relations for
the stationary shock test case. As the results in Figs. 7 and 8 show,
the stationary discontinuities for both these test cases are, by design,
captured exactly. Test case 3 (Fig. 9) comprises of a slowly moving
contact discontinuity. The moving contact discontinuity is diffused as
expected; the result is reasonably accurate. Test case 4 comprises of
a slowly moving shock wave. The results in Fig. 10 show the shock
captured over few cells, with very minor post-shock oscillations. Test
cases 5 to 9 are taken from Toro (Chapter 6, test cases 1 to 5 [25]). Test
case 5 is Sod’s shock tube problem; the solution consists of a right shock
wave, a right traveling contact discontinuity and a left sonic expansion
wave. The results in Fig. 11 show that no entropy violating expansion
shocks are formed. Test case 6 (overheating problem) comprises of
two strong symmetric expansions at left and right, with a contact
discontinuity of vanishing strength in the middle. The pressure at the
center reaches near vacuum. Thus, this problem is suitable for assessing
performance of a scheme for low-density flows. The results for this test
case in Fig. 12 show that our scheme does not fail even at low densities.
However, an increase in internal energy at the center is observed, which
is common to many numerical methods due to numerical overheating.
Test cases 7 to 9 test the robustness of a scheme in handling large
gradients. Test case 7 is the left half of the blast wave problem of
Woodward and Colella. Its solution comprises of a strong shock to
the left, a contact discontinuity in middle and expansion fan to the
right. Test case 8 involves collision of two strong shocks; its solution
consists of a left facing shock (traveling very slowly to the right), a
right traveling contact discontinuity and a right traveling shock. Test
case 9 consists of a left rarefaction wave, a right traveling shock wave
and a stationary contact discontinuity. The results for these test cases
are shown in Figs. 13–15. The results are reasonably accurate.
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Fig. 6. (a) 𝐿1 error norm vs grid size. (b) 𝐿2 error norm vs grid size.

Fig. 7. Test case 1: Steady contact discontinuity.

Fig. 8. Test case 2: Steady shock.
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Table 4
Initial condition for 1D test cases.

𝑥0 𝜌𝐿 𝑢𝐿 𝑝𝐿 𝜌𝑅 𝑢𝑅 𝑝𝑅 𝑡𝑓𝑖𝑛𝑎𝑙

0.5 1.4 0 1.0 1.0 0.0 1.0 2.0

0.5 1.0 1.0 1
𝛾𝑀(= 2)2

𝛾 + 1
𝛾 − 1

𝑝𝑅
𝑝𝑙

+ 1

𝛾 + 1
𝛾 − 1

+
𝑝𝑅
𝑝𝐿

√

𝛾(2 + (𝛾 − 1)𝑀2)𝑝𝑅
(2𝛾𝑀2 + 1 − 𝛾)𝜌𝑅

𝑝𝐿
2𝛾𝑀2 − (𝛾 − 1)

𝛾 + 1
1.5

0.5 1.4 0.1 1.0 1.0 0.1 1.0 1.0
0.5 3.86 −0.81 10.33 1.0 −3.44 1.0 1.0
0.3 1.0 0.75 1.0 0.125 0.0 0.1 0.2
0.5 1.0 −2.0 0.4 1.0 2.0 0.4 0.15
0.5 1.0 0.0 1000.0 1.0 0.0 0.01 0.012
0.4 5.99924 19.5975 460.894 5.99242 −6.19633 46.0950 0.035
0.8 1.0 −19.59745 1000.0 1.0 −19.59745 0.01 0.012
Fig. 9. Test case 3: Slowly moving contact discontinuity.
Fig. 10. Test case 4: Slowly moving shock.
12
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Fig. 11. Test case 5: Sod’s shock tube problem, 𝑡 = 0.2.
Fig. 12. Test case 6: Overheating problem.
10.3. 2D Euler tests

Some standard 2D inviscid test cases are solved to showcase the
accuracy and robustness of the scheme. Time step is computed as 𝛥𝑡 =

FL 𝑚𝑖𝑛𝑗,𝑘
𝐴𝑟𝑒𝑎𝑗,𝑘

(|𝑢𝜉 |+𝑎)𝑙𝜉+(|𝑢𝜂 |+𝑎)𝑙𝜂
, where (𝜂, 𝜉) are the grid-coordinate direc-

tions. For all test cases, we take CFL = 0.8 unless specified otherwise.
or steady test cases, the solution is evolved in time until a minimum
esidual (of density) of 10−10 or maximum time steps of 50,000 is
eached, whichever happens earlier.

0.3.1. Oblique shock reflection
This test case [26] comprises of an oblique shock, striking and

eflecting from a solid wall. The incident shock angle is 29◦ and
reestream Mach no. is 2.9. The computational domain is [0, 3] × [0, 1],

with Cartesian cells. At the left boundary, freestream conditions are
applied; flow tangency (wall) conditions are applied at the bottom.
13
Post shock conditions obtained using compressible flow relations are
applied at the top, and supersonic outflow conditions are applied at the
right boundary. Freestream initial conditions are used. Fig. 16 shows
the pressure contours of first and second order accurate steady state
solutions. The shock profile for second order accurate result is much
sharper compared to the first order accurate result.

Fig. 17 shows the variation in RMS error in density with number of
iterations for the first order result with varying grid sizes. Two plots are
shown; one where criterion (51) is used to identify smooth flow regions,
and the other where the much stricter criterion (52) is used to identify
smooth flow regions. The criterion (51) leads to better convergence
as it is a less strict criteria to introduce LLF type numerical diffusion.
However, it makes the scheme more diffusive, hence we use (52) for
our test cases. Fig. 18 shows the variation in RMS error in density with
iterations for second order result with varying grid sizes.



Computers and Fluids 265 (2023) 106016S.S. Roy and S.V.R. Rao

1

i
a
𝑥
t
a
F
T
t
t
f
r
v

Fig. 13. Test case 7: Left half portion of Woodward and Colella problem.
Fig. 14. Test case 8: Colliding strong shocks.
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0.3.2. Supersonic flow over a compression ramp
This test consists of a Mach 2 flow over a 15◦ compression ramp

n a wind tunnel [27]. The dimensions of the computational domain
re [−1, 2] × [0, 1], with a 15◦ ramp at the bottom from 𝑥 = −0.5 to
= 0. Freestream conditions are applied at the left boundary, flow

angency boundary conditions are applied at top and bottom walls
nd supersonic outflow conditions are applied at the right boundary.
reestream initial conditions are used throughout the interior domain.
he steady state solution comprises of an oblique shock originating at
he concave corner (start of the ramp) and expansion fans starting from
he convex corner (end of ramp). The oblique shock strikes and reflects
rom the top and bottom walls and also interacts with the emerging and
eflected expansion fans. As the contours in Fig. 19 show, no entropy
iolating expansion shocks are formed.
14
10.3.3. Horizontal slip flow
In this test case, a Mach 3 flow slips on top of a Mach 2 flow [28].

The computational domain is [0, 1] × [01] with Cartesian cells. The
flow is initialized with a horizontal Mach 3 flow for 𝑦 ≥ 0.5 and

ach 2 flow for 𝑦 < 0.5, keeping density and pressure same for
oth flows. Supersonic inflow conditions are used at the left boundary
nd supersonic outflow conditions at the right boundary. Neumann
oundary conditions are used at top and bottom boundaries. The steady
tate solution shown in Fig. 20 shows that our scheme captures the grid
ligned slip-stream exactly without any numerical diffusion.

0.3.4. Hypersonic flow over a half-cylinder
This test consists of Mach 6 and Mach 20 flows over a half cylinder.

he computational domain is 𝑟, 𝜃 ∈ [0.5, 2] × [ 𝜋2 ,
3𝜋
2 ], with constant

grid spacing along 𝑟 and 𝜃 directions. Boundary conditions used are:
supersonic inflow and flow tangency conditions at 𝑟 = 2 and 𝑟 = 0.5
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Fig. 15. Test case 9.

Fig. 16. Oblique shock reflection with shock angle 29◦, inflow Mach no. 2.9 — Pressure contours (0.7:0.1:2.9), (Top) I order and II order accurate results for 120 × 40 grid,
(Bottom) I order and II order accurate results on 240 × 80 grid.

Fig. 17. Oblique shock reflection test case: RMS error in density vs number of iterations for I order result, (a) Criterion (51) used for smooth flow regions, (b) Criterion (52) used
for smooth flow regions.
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Fig. 18. Oblique shock reflection test case: RMS error in density vs number of iterations
or II order result.

nd supersonic outflow conditions at 𝜃 = 𝜋
2 and 3𝜋

2 boundaries. The
low is initialized with freestream conditions. Further, for the Mach
0 flow test case, a lower CFL of 0.5 is used to prevent pressure from
aking negative values. The steady state solution consists of a bow shock
ormed in front of, and detached from, the half cylinder. For this test
ase, many low diffusive schemes like Riemann solvers give rise to
arbuncle phenomenon leading to solution failures due to (numerical)
hock instability [1]. The results for this test case are shown in Fig. 21.
o carbuncle shock is observed in our solutions.

0.3.5. Supersonic flow over a forward-facing step
In this test case, a Mach 3 flow enters the wind tunnel containing

step, from the left [29]. The dimensions of the wind tunnel are
0, 3] × [0, 1]. The step is 0.2 units high and located at distance of 0.6
nits from the left end. The boundary conditions are: supersonic inflow
t the left boundary, flow tangency at the top and bottom (including
he step) boundaries and supersonic outflow at the right boundary.
reestream initial conditions are used. At 𝑡 = 4, a lambda shock is
eveloped. A clear slip stream can be seen beyond the triple point,
hich can be captured well only by low diffusion schemes. The first
rder and second order accurate results for this test case are shown in
ig. 22.

0.3.6. Odd-even decoupling
This test case assesses a scheme for a form of numerical instability

alled odd-even decoupling. The test case comprises of a planar shock
ave of𝑀𝑠 = 6 propagating through a rectangular duct [1]. A Cartesian
esh of 800 × 200 square cells is used. The center-line of the grid is
erturbed as

𝑦𝑖,𝑗 )𝑚𝑖𝑑 =
{

(𝑦𝑖,𝑗 )𝑚𝑖𝑑 + 10−3, 𝑖 is even
(𝑦𝑖,𝑗 )𝑚𝑖𝑑 − 10−3, 𝑖 is odd

}

(103)

ow diffusion schemes and approximate Riemann solvers develop os-
illations, which then destroy the solution. However, as our results in
ig. 23 show, our scheme is not prone to this form of instability.

0.3.7. Double mach reflection
This test case comprises of a planar Mach 5.5 shock across a 30◦

edge [1]. The domain is [0, 2]×[0, 1.5] with a 30◦ wedge at the bottom
tarting at 𝑥 = 0.5. The initial conditions consist of a planar Mach 5.5
hock at 𝑥 = 0.25, with stationary medium to its right. Inviscid wall
oundary conditions are applied at the top and bottom boundaries,
upersonic inflow conditions are used at the left boundary and constant
xtrapolation is done at the right boundary. When the planar Mach 5.5

◦

16

hock collides with the 30 ramp, it reflects over the surface as Mach
eflection. The wave configuration consists of four discontinuities: the
nitial shock, the reflected shock, one Mach stem and one slip stream,
ll of which meet at a single triple point. Fig. 24 shows the numerical
olution of this unsteady problem at 𝑡 = 0.25. Some low diffusion
chemes produce an unphysical kinked Mach stem. No such kinked
ach stem is seen in the above figure.

0.3.8. Shock diffraction
In this test case, a planar Mach 5.09 shock diffracts around a 90◦

orner [1]. The computational domain is [0, 1] × [0, 1], with a corner at
he bottom left end of width 0.05 and height 0.625 units. The initial
onditions consist of a planar Mach 5.09 shock at 𝑥 = 0.05 moving
owards a stationary medium to the right. The boundary conditions
sed are: flow tangency conditions at the top and for the corner, con-
tant extrapolation at the right and bottom boundaries, and supersonic
nflow conditions at the left boundary. Fig. 25 shows the numerical
olution to this unsteady problem at 𝑡 = 0.1561. The solution has a
omplex wave structure comprising of the incident planar shock, the
iffracted shock, a strong expansion fan and a slip stream. Without
n entropy fix, several low-diffusive schemes give rise to unphysical
xpansion shocks. Our results are free of expansion shocks and all flow
eatures are captured well.

0.3.9. NACA0012 airfoil test cases
Some benchmark test cases are performed for the symmetric

ACA0012 airfoil [30,31]. An O-type structured mesh of dimensions
f 25 times the chord length is used around the airfoil. The discrete
inetic farfield boundary conditions derived in Section 9 are applied at
he outer boundary. Whereas discrete kinetic flow tangency conditions
re applied at the airfoil surface. Periodic conditions are applied
long 𝜂 direction where the first and last grid meet. Freestream initial
onditions are used, and the steady state solution is sought. Numerical
ests are done for the following supersonic, transonic and subsonic test
ases:

1. 𝑀∞ = 1.2, A.O.A. (Angle of attack) = 0◦

2. 𝑀∞ = 1.2, A.O.A. = 7◦

3. 𝑀∞ = 0.8, A.O.A. = 1.25◦

4. 𝑀∞ = 0.85, A.O.A. = 1◦

5. 𝑀∞ = 0.63, A.O.A. = 2◦

he results for the above test cases are shown in Figs. 26–30.
The pressure contours around the airfoil for first and second order

ccuracy are shown. Further, the second order results for pressure
oefficient 𝑐𝑝

(

= 𝑝−𝑝∞
1
2 𝜌∞𝑢

2
∞

)

and 𝑀𝑥

(

= 𝑢1
𝑎

)

along the top and bottom
airfoil surfaces are plotted vs. 𝑥∕𝑐 for our scheme as well as Roe’s
scheme with Harten’s entropy fix on the same grid.

10.4. 2D viscous tests

These test cases test the ability of the scheme to solve viscous flow
equations and resolve viscous flow features. The viscous terms at the
interface are computed using auxiliary volume method. For the inviscid
fluxes, we do not use any entropy fix to provide additional numerical
diffusion, since physical viscous terms are proved to be sufficient.

10.4.1. Shock boundary layer interaction
In this test case, an oblique shock wave with freestream Mach

number 𝑀∞ = 2.15 and shock angle of 30.8◦ strikes a flat plate at the
bottom on which a laminar boundary layer is evolving [32]. The shock
impinging on the boundary layer causes the flow to locally separate
and then reattach to the surface. The reflected waves comprise of
compression waves converging into a shock, expansion fans, followed
again by compression waves. For this test, the computational domain
taken is [−0.2, 1.8] × [0, 1]. Freestream conditions are applied at the left
boundary for 𝑦 ≤ 0.765, whereas post-shock conditions are applied for
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r

Fig. 19. Mach 2 flow over a 15◦ ramp, — Pressure contours (1.1:0.05:3.8), (Top) I order and II order accurate results on 120 × 40 grid, (Bottom) I order and II order accurate
esults on 240 × 80 grid.
Fig. 20. Mach 3 flow slipping on a Mach 2 flow, 𝑢1 contours (2:0.033:3) (a) I order, 20 × 20 grid (b) II order, 20 × 20 grid.
Fig. 21. Hypersonic flow past a half-cylinder, density contours (2:0.2:5) on 50 × 40 grid (a) Mach 6 flow, I order (b) Mach 6 flow, II order, (c) Mach 20 flow, I order (d) Mach
20 flow, II order.
𝑦 > 0.765 at the left end as well as the top boundary. At the bottom,
flow symmetry conditions are applied for 𝑥 ≤ −0.2, whereas no slip
17

a

conditions are applied for 𝑥 > 0.2. Supersonic outflow conditions are
pplied at the right boundary. The freestream Reynolds no, 𝑅𝑒 = 105
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d
g

Fig. 22. Mach 3 flow over a forward-facing step in wind tunnel, 𝑡 = 4, density contours (1:0.15:6.5); (Top) I order and II order accurate results on 240 × 80 grid, (Bottom) I
order and II order accurate results on 960 × 320 grid.
Fig. 23. Mach 6 shock wave through a rectangular duct at 𝑡 = 100, 800 × 20 grid,
density contours; (a) I order and (b) II order.

Fig. 24. Double Mach reflection for Mach 5.5 shock across a 30◦ wedge, 𝑡 = 0.25,
ensity contours (1.5:0.5:19); (Top) I order and II order accurate results on 400 × 400
rid, (Bottom) I order and II order accurate results on 1200 × 1200 grid.
18
Fig. 25. Shock diffracting around a 90◦ corner, 𝑡 = 0.1561, density contours
(0.5:0.25:6.75); (Top) I order and II order accurate results on 400 × 400 grid, (Bottom)
I order and II order accurate results on 1200 × 1200 grid.

and Prandtl no 𝑃𝑟 = 0.72 are prescribed. The domain is discretized
into 140 × 120 cells with constant grid size along 𝑥-direction, whereas
along 𝑦-direction the grid is geometrically stretched with a regular 4.5%
increment in grid size.

The pressure contours for second order accurate results are shown
in Fig. 31. As can be observed, flow features like reflected compression
and expansion waves and recirculated flow in separated flow region are
properly captured. The wall pressure 𝑝𝑤

𝑝∞
and skin friction coefficient 𝑐𝑓

along the length of the plate are plotted in Fig. 32. Our results match
well with the data from Degrez [32].

10.4.2. Supersonic flow over a bump
This test case comprises of a Mach 1.4 flow across a circular bump

in a channel [33]. The computational domain is [−1, 2]×[0, 1] with a 4%
cylindrical bump at the bottom from 𝑥 = 0 to 𝑥 = 1. Freestream Mach
no, 𝑀∞ = 1.4, Reynolds no 𝑅𝑒 = 8000 and Prandtl no 𝑃𝑟 = 0.72 are
prescribed. Supersonic inflow conditions are used at the left boundary.
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Fig. 26. NACA0012, 𝑀∞ = 1.2, A.O.A = 0◦: (Top) I and II order accurate results on
298 × 98 grid; pressure contours (0.4:0.05:2.0), (Bottom) plots of 𝑐𝑝 and 𝑀𝑥 vs 𝑥∕𝑐
long airfoil surface.

Fig. 27. NACA0012, 𝑀∞ = 1.2, A.O.A= 7◦: (Top) I and II order accurate pressure
ontours (0.4:0.05:2.0) on 298 × 98 grid, (Bottom) II order accurate plots of 𝑐𝑝 and
𝑥 vs x/c along airfoil surface.

low tangency conditions are used at the top. At the bottom, symmetry
onditions are used from 𝑥 = −1 to 𝑥 = 0, whereas for 𝑥 > 0, no slip
oundary conditions are used. Supersonic outflow conditions are used
t the right boundary. The domain is discretized into 240 × 80 cells
ith constant grid size along 𝑥-direction, whereas along 𝑦-direction the
rid is geometrically stretched with a 4.5% increase in grid size. 𝑢1
ontours for the second order scheme are shown in Fig. 33. An oblique
hock forms at the leading edge of the bump, which then reflects from
he top. This reflected shock then interacts with separated flow at the
nd of the bump and reflects from it. The skin friction coefficient 𝑐𝑓 is
lotted along the length of the plate and compared with data from [33]
see Fig. 34).
19

w

Fig. 28. NACA0012, 𝑀∞ = 0.8, A.O.A= 1.25◦: (Top) I and II order accurate pressure
ontours (0.4:0.05:2.0) on 298 × 98 grid, (Bottom) II order accurate plots of 𝑐𝑝 and
𝑥 vs x/c along airfoil surface.

Fig. 29. NACA0012, 𝑀∞ = 0.85, A.O.A = 1◦: (Top) I and II order accurate pressure
contours (0.4:0.05:2.0) on 298 × 98 grid, (Bottom) II order accurate plots of 𝑐𝑝 and
𝑀𝑥 vs x/c along airfoil surface.

1. Conclusions

A new kinetic scheme with a set of compactly supported equilib-
ium distribution functions is presented. The distribution function has
lexible average velocities as well as ranges of velocities. The average
elocities are used to satisfy the Rankine–Hugoniot jump conditions at
iscontinuities, leading to exact capture of grid-aligned steady discon-
inuities. The variable range of velocities is used to provide additional
iffusion in expansion and smooth flow regions, preventing formation
f any entropy violating solutions. A novel formulation for relative
ntropy is introduced in the discrete velocity framework. This relative
ntropy, along with an additional criterion, is used to identify expan-
ions and smooth flow regions. Flow tangency and farfield boundary
onditions are formulated for the described kinetic model and used
herever applicable. Various benchmark 1D and 2D inviscid tests as
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Fig. 30. NACA0012, 𝑀∞ = 0.63, A.O.A= 2◦: (Top) I and II order accurate pressure
contours (0.7:0.02:1.4) on 298 × 98 grid, (Bottom) II order accurate plots of 𝑐𝑝 and

𝑥 vs x/c along airfoil surface.

ell as 2D viscous tests are solved for an extensive validation of the
roposed scheme.
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ppendix A. Chapman Enskog type expansion in 1D

We consider 1D Boltzmann-BGK equations. For a zeroth order ap-
roximation to 𝐟 , i.e., substituting 𝐟 = 𝐟𝑒𝑞 into the Boltzmann equations
nd taking their moments (which leads to macroscopic inviscid Euler
quations), the following moment relations are needed.

𝐟𝑒𝑞⟩ = 𝐔 (A.1a)

𝑣𝐟𝑒𝑞⟩ = 𝐆 (A.1b)

here 𝐔 and 𝐆 are conserved variable vector and inviscid flux vector,
espectively. For a first order approximation, we take 𝐟 = 𝐟𝑒𝑞 + 𝜖𝐟 𝜖 .
aking moment of 𝐟 , we get

𝐟⟩ = ⟨𝐟𝑒𝑞 + 𝜖𝐟 𝜖⟩ = 𝐔 ⇒ ⟨𝐟 𝜖⟩ = 0 (A.2)
20
urther, let

𝑣𝐟⟩ = ⟨𝑣(𝐟𝑒𝑞 + 𝜖𝐟 𝜖)⟩ = 𝐖 ⇒ ⟨𝑣𝐟 𝜖⟩ = 𝐖 −𝐆
𝜖

(A.3)

Now, substituting 𝐟 = 𝐟𝑒𝑞 +𝜖𝐟 𝜖 into the Boltzmann equations and taking
moments, we get
𝜕𝐔
𝜕𝑡

+ 𝜕𝐖
𝜕𝑥

= 0 (A.4)

urther, substituting 𝐟 = 𝐟𝑒𝑞 + 𝜖𝐟 𝜖 into the Boltzmann equations
ultiplied by 𝑣 and taking moments, we get

𝜕𝐖
𝜕𝑡

+ 𝜕
𝜕𝑥

⟨

𝑣2𝐟
⟩

= 𝐆 −𝐖
𝜖

(A.5)

or

𝐖 = 𝐆 + 𝑂(𝜖) (A.6)

Taking 𝜕
𝜕𝑡 (A.6),

𝜕𝐖
𝜕𝑡

= 𝜕𝐆
𝜕𝐔

𝜕𝐔
𝜕𝑡

+ 𝑂(𝜖)

= − 𝜕𝐆
𝜕𝐔

𝜕𝐖
𝜕𝑥

+ 𝑂(𝜖) = − 𝜕𝐆
𝜕𝐔

𝜕𝐆
𝜕𝑥

+ 𝑂(𝜖)

= −
( 𝜕𝐆
𝜕𝐔

)2 𝜕𝐔
𝜕𝑥

+ 𝑂(𝜖) (A.7)

ow,

= 𝐆 − 𝜖
[ 𝜕𝐖
𝜕𝑡

+ 𝜕
𝜕𝑥

⟨

𝑣2𝐟
⟩

]

= 𝐆 − 𝜖
[

−
( 𝜕𝐆
𝜕𝐔

)2 𝜕𝐔
𝜕𝑥

+ 𝜕
𝜕𝑥

⟨

𝑣2𝐟𝑒𝑞
⟩

]

+ 𝑂(𝜖2)

= 𝐆 − 𝜖
[{

𝜕
𝜕𝐔

⟨

𝑣2𝐟𝑒𝑞
⟩

−
( 𝜕𝐆
𝜕𝐔

)2} 𝜕𝐔
𝜕𝑥

]

+ 𝑂(𝜖2) (A.8)

Finally, substituting (A.8) into (A.4), we get

𝜕𝐔
𝜕𝑡

+ 𝜕𝐆
𝜕𝑥

= 𝜖 𝜕
𝜕𝑥

[{

𝜕
𝜕𝐔

⟨

𝑣2𝐟𝑒𝑞
⟩

−
( 𝜕𝐆
𝜕𝐔

)2} 𝜕𝐔
𝜕𝑥

]

+ 𝑂(𝜖2) (A.9)

The term in the RHS acts as viscous term. Thus, the
⟨

𝑣2𝐟𝑒𝑞
⟩

moment
dds to viscosity for a first order approximation. For our kinetic model,
omputing the second moment and substituting in (A.9), we get

𝜕𝐔
𝜕𝑡

+ 𝜕𝐆
𝜕𝑥

= 𝜖 𝜕
𝜕𝑥

[{

𝜆2 + 𝛿𝜆2

3
−
( 𝜕𝐆
𝜕𝐔

)2} 𝜕𝐔
𝜕𝑥

]

+ 𝑂(𝜖2) (A.10)

Thus 𝛿𝜆 adds diffusion to the system. We also note that in the limit
𝜆 → 0, the above system simplifies to the relaxation model of Jin and
in [15].

ppendix B. Relative entropy in 2D

Our equilibrium distribution for the 2D Flexible Velocity Boltzmann
quation (77) is given by

𝑒𝑞
𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑓 𝑒𝑞1𝑖
𝑓 𝑒𝑞2𝑖
𝑓 𝑒𝑞3𝑖
𝑓 𝑒𝑞4𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= 1
4

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑈𝑖 +
𝐺1𝑖
𝜆1

+ 𝐺2𝑖
𝜆2

𝑈𝑖 −
𝐺1𝑖
𝜆1

+ 𝐺2𝑖
𝜆2

𝑈𝑖 −
𝐺1𝑖
𝜆1

− 𝐺2𝑖
𝜆2

𝑈𝑖 +
𝐺1𝑖
𝜆1

− 𝐺2𝑖
𝜆2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 1
4

⎡

⎢

⎢

⎢

⎢

⎣

1
1
1
1

⎤

⎥

⎥

⎥

⎥

⎦

𝑈𝑖 +
1
4𝜆1

⎡

⎢

⎢

⎢

⎢

⎣

1
−1
−1
1

⎤

⎥

⎥

⎥

⎥

⎦

𝐺1𝑖 +
1
4𝜆2

⎡

⎢

⎢

⎢

⎢

⎣

1
1
−1
−1

⎤

⎥

⎥

⎥

⎥

⎦

𝐺2𝑖

= 𝐁0𝑈𝑖 + 𝐁1𝐺1𝑖 + 𝐁2𝐺2𝑖 (B.1)

or

𝐟𝑒𝑞 =

⎡

⎢

⎢

⎢

⎢

𝐁0 0 0 0
0 𝐁0 0 0
0 0 𝐁0 0

⎤

⎥

⎥

⎥

⎥

𝐔 +

⎡

⎢

⎢

⎢

⎢

𝐁1 0 0 0
0 𝐁1 0 0
0 0 𝐁1 0

⎤

⎥

⎥

⎥

⎥

𝐆1
⎣

0 0 0 𝐁0⎦ ⎣

0 0 0 𝐁1⎦
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Fig. 31. Test case: Shock wave–boundary layer interaction (140 × 120), (a) II order accurate Pressure contours, (b) Streamlines showing the recirculation zone.
Fig. 32. Test case: Shock wave–boundary layer interaction (140 × 120), (a) Wall pressure, (b) Skin friction coefficient along plate length.
Fig. 33. Test case: Supersonic flow over a bump (240 × 80), II order 𝑢1 contours.
Fig. 34. Test case: Supersonic flow over a bump (240 × 80), Skin friction coefficient along wall.
21
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𝜓
⟨

+

⎡

⎢

⎢

⎢

⎢

⎣

𝐁2 0 0 0
0 𝐁2 0 0
0 0 𝐁2 0
0 0 0 𝐁2

⎤

⎥

⎥

⎥

⎥

⎦

𝐆2

= 𝜶0𝐔 + 𝜶1𝐆1 + 𝜶2𝐆2 (B.2)

Here, 𝜶0, 𝜶1 and 𝜶2 are 16 × 4 matrices. The kinetic entropy 𝐻̂ is
then given by

𝐻̂ = 𝜶0𝜂 + 𝜶1𝜓1 + 𝜶2𝜓2 (B.3)

where 𝜂, 𝜓1 and 𝜓2 are the macroscopic entropy and entropy fluxes
along 𝑥- and 𝑦-directions. For Euler equations, 𝜂 = 𝜌𝑠, 𝜓1 = 𝜌𝑢1𝑠 and
2 = 𝜌𝑢2𝑠. Now,

𝐟̃𝑒𝑞
⟩

= 𝐏𝐟̃𝑒𝑞 = 𝐔 ⇒ 𝐏𝜶0 = 𝐼,𝐏𝜶1 = 0,𝐏𝜶2 = 0 (B.4a)

⟨

𝛬1 𝐟̃𝑒𝑞
⟩

= 𝐏𝛬1 𝐟̃𝑒𝑞 = 𝐆1 ⇒ 𝐏𝛬1𝜶0 = 0,𝐏𝛬1𝜶1 = 𝐼,𝐏𝛬1𝜶2 = 0 (B.4b)

⟨

𝛬2 𝐟̃𝑒𝑞
⟩

= 𝐏𝛬2 𝐟̃𝑒𝑞 = 𝐆2 ⇒ 𝐏𝛬2𝜶0 = 0,𝐏𝛬2𝜶1 = 0,𝐏𝛬2𝜶2 = 𝐼 (B.4c)

Therefore,
⟨

𝐻̂
⟩

= 𝐏(𝜶0𝜂 + 𝜶1𝜓1 + 𝜶2𝜓2) = 𝜂 (B.5a)

⟨

𝛬1𝐻̂
⟩

= 𝐏𝛬1(𝜶0𝜂 + 𝜶1𝜓1 + +𝜶2𝜓2) = 𝜓1 (B.5b)

⟨

𝛬2𝐻̂
⟩

= 𝐏𝛬2(𝜶0𝜂 + 𝜶1𝜓1 + +𝜶2𝜓2) = 𝜓2 (B.5c)

Now the relative entropy is

𝑑2 = ⟨𝛥𝜔 ⋅ 𝛥𝐟̃𝑒𝑞⟩ =
⟨

𝛥

{

𝜕𝐻̂(𝐟̃𝑒𝑞)
𝜕𝐟̃𝑒𝑞

}

⋅ 𝛥𝐟̃𝑒𝑞
⟩

=
⟨

𝛥
{

𝜶0
𝜕𝜂

𝜕𝐟̃𝑒𝑞
+ 𝜶1

𝜕𝜓1

𝜕𝐟̃𝑒𝑞
+ 𝜶2

𝜕𝜓2

𝜕𝐟̃𝑒𝑞

}

⋅ 𝛥𝐟̃𝑒𝑞
⟩

=
⟨{

𝜶0𝛥
(

𝜕𝜂

𝜕𝐟̃𝑒𝑞

)

+ 𝜶1𝛥
(

𝜕𝜓1

𝜕𝐟̃𝑒𝑞

)

+ 𝜶2𝛥
(

𝜕𝜓2

𝜕𝐟̃𝑒𝑞

)}

⋅ 𝛥𝐟̃𝑒𝑞
⟩

= 𝐏𝜶0𝛥
(

𝜕𝜂

𝜕𝐟̃𝑒𝑞

)

⋅ 𝛥𝐟̃𝑒𝑞 + 𝐏𝜶1𝛥
(

𝜕𝜓1

𝜕𝐟̃𝑒𝑞

)

⋅ 𝛥𝐟̃𝑒𝑞 + 𝐏𝜶2𝛥
(

𝜕𝜓2

𝜕𝐟̃𝑒𝑞

)

⋅ 𝛥𝐟̃𝑒𝑞

= 𝛥
(

𝜕𝜂

𝜕𝐟̃𝑒𝑞

)

⋅ 𝛥𝐟̃𝑒𝑞

=
(

𝛥
𝜕𝜂
𝜕𝐔

)𝑇
𝛥𝐔 (on simplifying)

= 𝛥

(

𝛾 − 𝑠
𝛾 − 1

−
𝜌𝑢21
2𝑝

−
𝜌𝑢22
2𝑝

)

𝛥(𝜌) + 𝛥
(

𝜌𝑢1
𝑝

)

𝛥(𝜌𝑢1) +

𝛥
(

𝜌𝑢2
𝑝

)

𝛥(𝜌𝑢2) + 𝛥(−
𝜌
𝑝
)𝛥(𝜌𝐸) (B.6)
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