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1. Introduction

Let D denote the open unit disc in the complex plane. Denote by H∞(D) the commutative Banach 
algebra of all bounded analytic functions on D with

‖ϕ‖∞ = sup{|ϕ(z)| : z ∈ D} (ϕ ∈ H∞(D)).

This is one of the most important non-separable Banach algebras, with a variety of applications in function 
theory, operator theory, and operator algebras. The disc algebra A(D) is another important space among 
the classical separable Banach algebras. Recall that

A(D) = H∞(D) ∩ C(T ).
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In general, given a domain Ω in C, we denote by A(Ω) the space of analytic functions that extends contin-
uously to the boundary of Ω. A classic result of L. Bers [4] serves as the starting point for our discussion: 
Two domains Ω1 and Ω2 are conformally equivalent if and only if there is an automorphism between A(Ω1)
and A(Ω2). Recall that two domains are conformally equivalent if there exists an angle preserving bijec-
tive analytic map between them. This is the same as asserting that the domains being biholomorphically 
equivalent. In what follows, we will refer to an automorphism as a linear and algebra isomorphism.

Returning to the special case when Ω1 = Ω2 = D, an isomorphism T : A(D) → A(D) is precisely given 
by (again, see Bers [4])

Tf = f ◦ τ (f ∈ A(D)),

for some conformal map τ on D (that is, τ ∈ Aut(D)). Moreover, for H∞(D), we have the same conclu-
sion (a particular case of Rudin [23]): Isomorphisms between H∞(D) are induced by conformal mappings 
as described above. As Bers and Rudin noted, Chevalley and Kakutani’s earlier work also inspired this 
development. See also [22,24] for more classical advancement.

In this paper, we examine automorphisms of two important subalgebras of H∞(D) namely H∞
0 (D) and 

the Neil algebra. First, we recall that

H∞
0 (D) = {f ∈ H∞(D) : f(0) = 0}.

Like H∞(D), the above space is crucial to functional analysis. For instance, see Lomonosov [20] for coun-
terexamples in the context of the Bishop-Phelps-Bollobás theorem. Next, we recall the Neil Algebra H∞

1 (D)
(see [8]):

H∞
1 (D) = {f ∈ H∞(D) : f ′(0) = 0}.

This space is commonly used to test classical theories such as the interpolation problem, corona theorem, 
commutant lifting theorem, and invariant subspaces, to name a few. The following is a summary of the main 
results concerning the automorphisms of H∞

0 (D) and H∞
1 (D) (see Theorems 2.3 and 3.1). For any Banach 

space X, the Banach algebra of bounded linear operators on X is denoted by B(X).

Theorem 1.1. Let X = H∞
0 (D) or H∞

1 (D), and let T : X → X be a map. Then T is an automorphism if 
and only if there exists θ ∈ R such that

(Tf)(z) = f(eiθz),

for all f ∈ X and z ∈ D.

Basically, this shows that H∞
0 (D) and H∞

1 (D)’s automorphisms are simple (or trivial). Along the way, 
we prove that (see Theorem 2.1) automorphisms of H∞(D) preserve inner functions. Recall that a function 
ϕ ∈ H∞(D) is called an inner function if |ϕ(z)| = 1 for all z ∈ T a.e. We also prove that (see Corollary 3.2): 
If T is a surjective linear isometries of H∞

1 (D), then there exist α ∈ T and θ ∈ R such that

Tf(z) = αf(eiθz),

for all f ∈ H∞
1 (D) and z ∈ D. The main idea of the proof of the preceding fact is straightforward. It all 

comes down to showing that H∞
1 (D) can be represented as a uniform algebra.

The second goal of this paper is to describe the structure of generalized tri-circular projections on Hp(D)
and Hp(D2), 1 ≤ p ≤ ∞, p 	= 2. The notion of generalized tri-circular projection comes from the ideas of 
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bicircular projections, which also connect the structure of surjective isometries on Banach spaces. We begin 
by recalling the definition of projections on Banach spaces in order to be more precise. Given a Banach 
space X (here all Banach spaces are over C), a bounded linear operator P on X is called a projection if

P 2 = P.

A projection P ∈ B(X) is called bicircular projection if P +λ(I−P ) is a surjective linear isometry for some 
λ ∈ T , and it is called generalized bicircular projection if there exists λ ∈ T \ {1} such that P + λ(I − P )
is a surjective linear isometry [11].

Projections are fundamental building blocks for more complex operators, but depending on the Banach 
spaces, they can be adequately complex. On the other hand, surjective linear isometries often help explain 
operators on Banach and Hilbert spaces [10]. Given the preceding and subsequent definitions, we note that, 
despite the benefits of using surjective linear isometries to construct specific projections, which we will also 
discuss in this paper, the mechanism itself can be computationally intensive.

Generalized bicircular projections are fully described in some classical Banach spaces. For instance, finite 
dimensional Banach spaces with respect to various G-invariant norms [11], minimal ideals of operators [6], 
JB∗-triples [14], certain Hardy spaces [17], Lp-spaces, 1 ≤ p < ∞, p 	= 2 [19], etc.

Generalized tri-circular projections, a finer concept of projections, were introduced earlier in [1]. The 
present definition, however, is derived from [7, Definition 1.4].

Definition 1.2. A nonzero projection P on a Banach space X is said to be a generalized tri-circular projection 
if there exist distinct scalars λ, μ ∈ T \ {1} and nonzero projections Q, R ∈ B(X) such that

P ⊕Q⊕R = I,

and P + λQ + μR is a surjective linear isometry.

It is worth noting that the meaning of P ⊕Q ⊕R = I in the above definition is that

PQ = QR = PR = 0, and P + Q + R = I.

Generalized tri-circular projections and related topics have recently received increased attention (cf. [5]
and references therein). This also has to do with questions about projections and isometries on Banach 
spaces. Generalized tri-circular projections are completely characterized for some known spaces: C(X) [1], 
Cn and Mn(C) [2], minimal norm ideals on operator algebra B(H) [7], JB∗-triple [15], Hilbert C0(X)-
modules [16], and the Banach spaces of functions of bounded variation and of absolutely continuous functions 
[13].

Generally, the solution to a set of projection-related equations is used to classify generalized tri-circular 
projections. Thanks to Čuka and Ilišević’s work [7] (also see Lemma 4.1), we employ identical methodologies. 
The classification of generalized tri-circular projections on Hp(D) (see Theorem 4.3) appears to be similar 
to that of other classes of classical Banach spaces obtained earlier. However, the answer for Hp(D2) (see 
Theorem 5.1) differs significantly, which perhaps highlights the complexity of several complex variables. 
We also remark that the later result is the first instance of generalized tri-circular projections in several 
variables.

The remaining part of the paper is organized as follows. Section 2 deals with the classification of auto-
morphisms of H∞

0 (D). We also prove that automorphisms of H∞(D) preserve inner functions. Section 3
studies the Neil algebra H∞

1 (D) and classifies automorphisms of H∞
1 (D). We also classify surjective linear 

isometries of H∞
1 (D). Section 4 serves as the starting point for the second half of this paper. Here we 

characterize generalized tri-circular projections on Hp(D), 1 ≤ p ≤ ∞, p 	= 2. The final section, Section 5, 
classifies the generalized tri-circular projections on Hp(D2), 1 ≤ p ≤ ∞, p 	= 2.
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2. Automorphisms of H∞
0 (D)

The purpose of this section is to classify the automorphisms of H∞
0 (D). We begin by addressing a natural 

question that may be familiar to experts. However, we were unable to locate it in the literature. The proof 
uses a two-variables function theoretic result.

Theorem 2.1. Automorphisms of H∞(D) preserve inner functions.

Proof. Let T be an automorphism of H∞(D), and let ϕ ∈ H∞(D) be an inner function. Assume, contrary 
to the desired conclusion, that Tϕ is not inner. There exists ε > 0 such that m(K) > 0, where

K = {z ∈ T : |Tϕ(z)| < 1 − ε}.

Define the function Tϕ ⊗ 1 ∈ H∞(T 2) by

(Tϕ⊗ 1)(z1, z2) := (Tϕ)(z1),

for all (z1, z2) ∈ T 2. Set K1 = K × T . Since

|(Tϕ⊗ 1)(z1, z2)| < 1 − ε,

for all (z1, z2) ∈ K1, it follows that m(K1) > 0, and hence Tϕ ⊗ 1 is not inner. Now, in view of K1, there 
exists ψ ∈ H∞(T 2) such that (cf. [12, Theorem 5.9, p. 297])

|ψ(z1, z2)| =
{

1 if (z1, z2) ∈ K1

1 − ε if (z1, z2) ∈ T 2 \K1.

Set

K2 = {z1 ∈ T : (z1, z2) ∈ K1 for some z2 ∈ T},

and define a function ψ1 ∈ L∞(T ) by

ψ1(z1) = ψ(z1, z2) (z1 ∈ T ).

Clearly, |ψ1(z1)| = |ψ(z1, z2)| = 1 on K2, and |ψ1(z1)| = |ψ(z1, z2)| = 1 − ε on T \K2. Since ψ ∈ H∞(D2), 
we have the power series expansion

ψ1(z1) = ψ(z1, z2) =
∞∑

n,m=0
anmzn1 z

m
2 .

Since

∞∑
n,m=0

|anmzm2 |2 ≤
∞∑

n,m=0
|anm|2|zm2 |2 =

∞∑
n,m=0

|anm|2 < ∞,

we conclude that ψ1 ∈ H2(T ), and hence ψ1 ∈ H∞(T ). Now there exists g ∈ H∞(T ) such that Tg = ψ1. 
Then ‖Mϕg‖ = ‖ϕg‖∞ = 1, but

‖T (ϕg)‖∞ = ‖T (ϕ)T (g)‖∞ = ‖(Tϕ)ψ1‖∞ ≤ 1 − ε,
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which is a contradiction. Thus Tϕ is an inner function. �
Next, our goal is to prove that automorphisms of H∞

0 (D) preserve inner functions. The following simple 
and general observation is crucial. In view of f = f(0) +(f − f(0)) for all f ∈ H∞(D), we write the Banach 
space direct sum as

H∞(D) = C �H∞
0 (D). (2.1)

Fix an automorphism T of H∞
0 (D), and define X : H∞(D) → H∞(D) by

X(α + βf) = α + βT−1f, (2.2)

for all α, β ∈ C and f ∈ H∞
0 (D), and claim that X is an automorphism. Clearly, X|H∞

0 (D) = T−1 and 
X(1) = 1. A routine computation shows that X is linear and multiplicative. We check, for instance, the 
linearity of X: If αi, βi, γ ∈ C and fi ∈ H∞

0 (D), i = 1, 2, then

X((α1 + β1f1) + γ(α2 + β2f2)) = X(α1 + γα2 + β1f1 + γβ2f2)

= α1 + γα2 + T−1(β1f1 + γβ2f2)

= α1 + T−1(β1f1) + γ(α2 + T−1(β2f2))

= X(α1 + β1f1) + γX(α2 + β2f2).

Now we show that X is injective: let α + βT−1f = 0. If β = 0, then α = 0. Therefore, assume that β 	= 0. 
This implies that α + β(T−1f)(z) = 0 for every z ∈ D. Since T−1f(0) = 0, it follows that α = 0. Then 
T−1f = 0, and hence f = 0. To prove that X is onto, assume that g ∈ H∞(D). Since T−1 is onto and 
g − g(0) ∈ H∞

0 (D), there exists g̃ ∈ H∞
0 (D) such that

T−1(g̃) = g − g(0).

Then g = g(0) + T−1(g̃) = X(g(0) + g̃), which ends the proof of the claim.

Lemma 2.2. Automorphisms of H∞
0 (D) preserve inner functions.

Proof. Fix an automorphism T of H∞
0 (D), and consider X as defined in (2.2). Pick an inner function 

ϕ ∈ H∞
0 (D), and assume on contrary that Tϕ ∈ H∞

0 (D) is not inner. We know that X|H∞
0 (D) = T−1, and 

hence by Theorem 2.1 we conclude that X(Tϕ) = T−1(Tϕ) = ϕ is inner, which is a contradiction. �
We are now ready for characterizations of the automorphisms of H∞

0 (D). Our proof is in the lines of 
deLeeuw, Rudin, and Wermer [9].

Theorem 2.3. Let T : H∞
0 (D) → H∞

0 (D) be a map. Then T is an automorphism if and only if there exists 
θ ∈ R such that

(Tf)(z) = f(eiθz) (f ∈ H∞
0 (D), z ∈ D).

Proof. The sufficient part is trivial. For the necessary direction, consider the inner function ϕ ∈ H∞
0 (D)

defined by ϕ(z) = z, z ∈ D. Then τ := Tϕ is an inner function (see Lemma 2.2). Note that τ(0) = 0
forces that τ is non-constant, which, in turn, yields |τ | < 1 on D (cf. [21, Theorem 2.2.10]). Next, we fix 
f ∈ H∞

0 (D) and z0 ∈ D. Since (f2 − f(τ(z0))f)(τ(z0)) = 0 and f(0) = 0, there exist g, ̃g ∈ H∞(D) such 
that
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f2 − f(τ(z0))f = (ϕ− τ(z0))g,

and

f = ϕg̃.

Together, the equalities mentioned above imply that

f3 − f(τ(z0))f2 = (ϕ− τ(z0))ϕgg̃.

Again, in view of f = ϕg̃, this further leads to

f4 − f(τ(z0))f3 = (ϕ2 − τ(z0)ϕ)ϕgg̃2.

Applying the operator T to both sides of the above, we find

Tf4 − f(τ(z0))Tf3 = T (ϕ2 − τ(z0)ϕ)T (ϕgg̃2).

Since T (ϕ) = τ , T (ϕ2) = τ2 (recall that T is multiplicative) and (τ2 − τ(z0)τ)(z0) = 0, by evaluating at 
z = z0, the above identity yields (Tf4)(z0) = f(τ(z0))(Tf3)(z0). Since z0 ∈ D was arbitrary, we conclude 
that

(Tf4)(z) = f(τ(z))(Tf3)(z) (z ∈ D). (2.3)

By setting T−1ϕ = ψ, a similar computation yields the following identity:

(T−1f4)(z) = f(ψ(z))(T−1f3)(z) (z ∈ D).

Writing ϕ4 = T (T−1(ϕ4)) and then applying (2.3) to f = T−1ϕ, we find

ϕ4 = T ((T−1ϕ)4)

= (T−1ϕ ◦ τ)T (T−1ϕ)3

= (ψ ◦ τ)T (T−1ϕ3)

= (ψ ◦ τ)ϕ3.

By the definition of ϕ, it follows that ψ ◦ τ(z) = z, z ∈ D. Similarly, using T−1(Tϕ)4 = (Tϕ ◦ψ)T−1(Tϕ)3, 
we find τ ◦ ψ(z) = z, z ∈ D, which proves that τ is a conformal map of D, hence there is a real number θ
such that

τ(z) = eiθz (z ∈ D).

For a fixed z0 ∈ D, we again observe that

fϕ− f(τ(z0))ϕ = (ϕ− τ(z0))h,

for some h ∈ H∞(D). Multiplying both sides by ϕ2 gives

fϕ3 − f(τ(z0))ϕ3 = (ϕ2 − τ(z0)ϕ)hϕ.
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Then T ((ϕ2 − τ(z0)ϕ))(z0) = 0 implies that

(Tf)(z)τ3(z) = f(τ(z))τ3(z),

for all f ∈ H∞
0 (D) and z ∈ D. Using the equality τ(z) = eiθz, we conclude that

Tf(z)e3iθz = f(eiθz)e3iθz,

for all z ∈ D, and hence Tf = f ◦ τ . This completes the proof of the theorem. �
3. Automorphisms of Neil algebra

In this section we characterise the automorphism of the Neil Algebra H∞
1 (D). We also classify surjective 

linear isometries of H∞
1 (D). Recall that

H∞
1 (D) = {f ∈ H∞(D) : f ′(0) = 0},

is a closed Banach subalgebra of H∞(D).

Theorem 3.1. Let T : H∞
1 (D) → H∞

1 (D) be a map. Then T is an automorphism if and only if there exists 
θ ∈ R such that

(Tf)(z) = f(eiθz) (f ∈ H∞
1 (D), z ∈ D).

Proof. The sufficient condition holds trivially so we only need to prove the necessary condition. Let f ∈
H∞

1 (D). Clearly, λ ∈ Ran(f) if and only if f − λ is not invertible in H∞
1 (D). Since T is an automorphism, 

we get f − λ is invertible if and only if Tf − λ is invertible. Therefore

Ran(f) = Ran(Tf).

Consider the identity function id(z) = z for all z ∈ D. Then id2(z) = z2 and id3(z) = z3. Let f2 := T (id2), 
and f3 := T (id3). Since T is an automorphism, f2, f3 	= 0. Observe that

T (id6) = T (id2)3 = f3
2 = T (id3)2 = f2

3 .

Let z0 be a zero of f2 of multiplicity n. Since f3
2 = f2

3 , it follows that z0 is a zero of f2
3 of multiplicity 3n

for some n ≥ 1. In other words, z0 is a zero of f3 of multiplicity 3n/2 ∈ N, and hence n is even. Therefore

τ := f3

f2
∈ Hol(D).

Then, f2
3 = τ2f2

2 = f3
2 , and hence f2 = τ2 outside the isolated zeros of f2. By the identity theorem, f2 = τ2, 

and so f3 = τ3 on D. Since τ2 = f2 is bounded, we conclude that τ ∈ H∞(D). Moreover, we have that 
T (id2) = τ2 and T (id3) = τ3. Now

Ran(τ2) = Ran(τ3) = id2 = id3 = D.

By the open mapping theorem, τ2 and τ3 are open maps. Thus τ2(D) ⊂ D, and τ3(D) ⊂ D, which implies 
that τ(D) ⊂ D. Next, we claim that τ is in Aut(D). To this end, let f ∈ H∞

1 (D) and let z0 ∈ D. Since 
f − f(τ(z0)) vanishes at τ(z0), we have
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f − f(τ(z0)) = (id− τ(z0))g,

for some g ∈ H∞(D). Multiplying each side by id4 and then applying T , we find

T (f id4) − f(τ(z0))T (id4) = (T (id3) − T (τ(z0)id2))T (g id2).

In particular, if z = z0 is arbitrary, then

Tf(z0)τ4(z0) − f(τ(z0))τ4(z0) = (τ3(z0) − τ(z0)τ2(z0))T (g id2)(z0),

which (after simplification) gives us Tf(z0)τ4(z0) − f(τ(z0))τ4(z0) = 0, and hence

(Tf − f ◦ τ)τ4 = 0.

Choose a neighbourhood N(0, δ) of 0 ∈ D such that

N(0, δ) ⊂ D.

Since τ4 	≡ 0 (note that T is an automorphism), τ4 has finitely many zeros in N(0, δ). Thus Tf − f ◦ τ has 
infinitely many zeros in N(0, δ) ⊂ D. By the identity theorem, we conclude

Tf = f ◦ τ (f ∈ H∞
1 (D)).

Since T−1 is also an automorphism, by the previous argument, there exists ψ ∈ H∞(D) such that

T−1g = g ◦ ψ (g ∈ H∞
1 (D)),

and hence, for each g ∈ H∞
1 (D), we have

g = T−1(Tg) = T−1(g ◦ τ) = g ◦ (τ ◦ ψ) (g ∈ H∞
1 (D)).

In particular, if g(z) = z2, then z2 = (τ(ψ(z)))2, that is

(z − τ(ψ(z)))(z + τ(ψ(z))) = 0.

We claim that τ(ψ(z)) = z for every z 	= 0 in D. To show this, first, we observe following the proof of the 
above equality that g(z) = z3 implies that

(z − τ(ψ(z))(z2 + (τ(ψ(z))2 + zτ(ψ(z))) = 0.

If τ(ψ(z0)) = −z0 for some nonzero z0 ∈ D, then we get 2z3
0 = 0, which is a contradiction. This proves 

the claim that τ(ψ(z)) = z for every z 	= 0 in D. Applying the identity theorem, we finally conclude that 
τ ◦ ψ = id. Using similar argument we get, ψ ◦ τ = id. Therefore, we conclude that τ is a conformal map. 
Since f ◦ τ ∈ H∞

1 (D), we have

f ′(τ(0))τ ′(0) = 0.

Since τ ′(0) 	= 0, we get f ′(τ(0)) = 0 for every f ∈ H∞
1 (D). Choose, for instance, f(z) = z2

2 , and conclude 
that τ(0) = 0. This completes the proof. �
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Now we turn to characterizations of surjective linear isometries of H∞
1 (D). The result is largely a con-

sequence of the fact that H∞
1 (D) is uniform algebra. Denote by M(H∞

1 (D)) the maximal ideal space of 
H∞

1 (D). It is clear that M(H∞
1 (D)) is a complex object, and that the structure of M(H∞

1 (D)) will be a key 
factor in many questions regarding the Banach algebra H∞

1 (D). We apply the basic structure of M(H∞
1 (D))

to prove that H∞
1 (D) is a uniform algebra (just as in the case of H∞(D)).

Corollary 3.2. Let T be a surjective linear isometries of H∞
1 (D). Then there exist α ∈ T and θ ∈ R such 

that

Tf(z) = αf(eiθz) (f ∈ H∞
1 (D), z ∈ D).

Proof. Consider the Gelfand map

Γ : H∞
1 (D) −→ C(M(H∞

1 (D))),

defined by

Γf = f̂ ,

where f̂(ϕ) = ϕ(f) for all ϕ ∈ M(H∞
1 (D)) and f ∈ H∞

1 (D). For each f ∈ H∞
1 (D), we compute (just as in 

the case of H∞(D))

‖f̂‖ = sup
ϕ∈M(H∞

1 (D))
|f̂(ϕ)| = sup

ϕ∈M(H∞
1 (D))

|ϕ(f)| ≤ ‖f‖.

On the other hand, for each ϕ ∈ M(H∞
1 (D)), we have

‖f̂‖ ≥ sup
ϕλ∈M(H∞

1 (D))
|f̂(ϕλ)| = sup

ϕλ∈M(H∞
1 (D))

|ϕλ(f)| = sup
λ∈D

|f(λ)| = ‖f‖,

and hence ‖f‖ = ‖f̂‖, that is, Γ is an isometry. We identify H∞
1 (D) with ̂H∞

1 (D) := Γ(H∞
1 (D)). Let ϕ1 	= ϕ2

be in M(H∞
1 (D)). Then there exists f0 ∈ H∞

1 (D) such that ϕ1(f0) 	= ϕ2(f0), that is

f̂0(ϕ1) 	= f̂0(ϕ2).

Therefore ̂H∞
1 (D) separates the points of M(H∞

1 (D)). Hence we conclude that H∞
1 (D) is an uniform 

algebra. The remainder of the proof now follows from [9, Theorem 3] and Theorem 3.1. �
For each n ∈ N, define the algebra H∞

0,1,2,...,n(D) as

H∞
0,1,2,...,n(D) = {f ∈ H∞(D) : f (j)(0) = 0, j = 0, 1, . . . , n}.

Suppose T is an automorphism on H∞
0,1,2,...,n(D) onto itself. A similar argument to the one used to prove 

the preceding theorem implies that

Tf(z) = f(eiθz) (f ∈ H∞
0,1,2,...,n(D)),

for some θ ∈ R. A similar statement as in Corollary 3.2 also holds true for surjective linear isometries of 
H∞

1,2,...,n(D).
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4. Generalized projections on Hp(D)

In this section, we characterize generalized tri-circular projections on Hp(D), 1 ≤ p ≤ ∞, p 	= 2. As part of 
the necessary background, we require two results from the literature. The first one concerns representations 
of generalized tri-circular projections [7, Lemma 1.5]:

Lemma 4.1. Let X be a Banach space, P, Q, R, T ∈ B(X), and let λ, μ ∈ C \ {1} be distinct scalars. The 
following conditions are equivalent:

(1) T = P + λQ + μR and P , Q, and R are projections satisfying P ⊕Q ⊕R = I.
(2) The following holds: (T − I)(T − λI)(T − μI) = 0 and

P = (T − λI)(T − μI)
(λ− 1)(μ− 1) , Q = (T − I)(T − μI)

(λ− 1)(λ− μ) , R = (T − I)(T − λI)
(μ− 1)(μ− λ) .

We again remind the reader that P ⊕Q ⊕R = I in the above lemma means that

PQ = QR = PR = 0, and P + Q + R = I.

The second tool is classifications of surjective isometries on Hardy spaces [18, Proposition 2]:

Proposition 4.2. Let 1 ≤ p < ∞, p 	= 2, and let T ∈ B(Hp(D)). Then T is a linear surjective isometry if 
and only if there exists τ ∈ Aut(D) and a unimodular constant α such that

Tf = α(τ ′)
1
p f ◦ τ (f ∈ Hp(D)).

In what follows, for any τ ∈ Aut(D) we denote

τ0 = (τ ′)
1
p , τ1 = (τ ′ ◦ τ)

1
p , and τ2 = (τ ′ ◦ τ2)

1
p .

Moreover, define id ∈ Aut(D) by

id(z) = z (z ∈ D).

We are now ready for the classification of generalized tri-circular projections. The Lagrange polynomials are 
an integral part of the proof presented below, which is also typical for comparable results in other Banach 
spaces.

Theorem 4.3. Let 1 ≤ p ≤ ∞, p 	= 2. P ∈ B(Hp(D)) is a generalized tri-circular projection if and only if 
there exists a surjective linear isometry T ∈ B(Hp(D)) such that

(1) T 3 = I, and
(2) T = P + λQ + λ2R for some nontrivial projection Q, R ∈ B(Hp(D)) and a cube root of unity λ.

Moreover, P = 1
3 (I + T + T 2), Q = 1

3 (I + λ2T + λT 2), and R = 1
3 (I + λT + λ2T 2).

Proof. First, we assume that 1 ≤ p < ∞. Suppose P ∈ B(Hp(D)) is a generalized tri-circular projection. 
By the definition, there exist distinct scalars λ1, λ2 ∈ T \ {1} and nonzero projections Q and R on Hp(D)
such that P ⊕Q ⊕R = I and T := P + λ1Q + λ2R is a surjective linear isometry. By Lemma 4.1, we write
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P = (T − λ1I)(T − λ2I)
(1 − λ1)(1 − λ2)

, Q = (T − I)(T − λ2I)
(λ1 − 1)(λ1 − λ2)

, R = (T − I)(T − λ1I)
(λ2 − 1)(λ2 − λ1)

(4.1)

and

T 3 − (1 + a)T 2 + (a + b)T − bI = 0, (4.2)

where

a = λ1 + λ2 and b = λ1λ2.

By Proposition 4.2, there exist τ ∈ Aut(D) and a unimodular constant α such that

Tf = ατ0f ◦ τ,

for all f ∈ Hp(D). Then, for each f ∈ Hp(D), we have

T 2f = α2τ0τ1f ◦ τ2 and T 3f = α3τ0τ1τ2f ◦ τ3, (4.3)

and hence by (4.2)

α3τ0τ1τ2f ◦ τ3 − (1 + a)α2τ0τ1f ◦ τ2 + (a + b)ατ0f ◦ τ − bf = 0. (4.4)

We claim that there are only three possible options:

(1) τ = id,
(2) τ 	= id and τ2 = id,
(3) τ, τ2 	= id and τ3 = id.

Let us assume the contrary. Suppose id 	= τ, τ2, τ3. Since τ, τ2, and τ3 are analytic functions, there exists 
z0 ∈ D such that {z0, τ(z0), τ2(z0), τ3(z0)} is a set of distinct scalars. Consider a Lagrange polynomial L
such that

L(τ(z0)) = L(τ2(z0)) = L(τ3(z0)) = 0 and L(z0) = 1.

Applying (4.4) to f = L and at z = z0, we obtain

0 = τ0(z0){α3τ1(z0)τ2(z0)L(τ(z0)3) − (1 + a)τ1(z0)L(τ(z0)2) + (a + b)αL(τ(z0))

+ (a + b)αL(τ(z0))} − bL(z0)

= −b,

and hence λ1λ2 = 0, which gives a contradiction to the fact that both λ1 and λ2 are nonzero, and proves 
the claim.

We will now examine each of the three cases separately. First, we consider the nontrivial case (as the 
other two cases would be shown to be redundant):
Case I: τ, τ2 	= id and τ3 = id. In particular, for τ3 = id, (4.4) yields

α3τ0τ1τ2f ◦ id− (1 + a)α2τ0τ1f ◦ τ2 + (a + b)ατ0f ◦ τ − bf = 0. (4.5)

Applying this to f = 1, we obtain
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α3τ0τ1τ2 = (1 + a)α2τ0τ1 − (a + b)ατ0 + b, (4.6)

which, applied to (4.5) further yields

(1 + a)α2τ0τ1(f ◦ id− f ◦ τ2) − (a + b)ατ0(f ◦ id− f ◦ τ) + b(f ◦ id− f) = 0.

In particular, if f = id, then the above identity implies

(1 + a)α2τ0τ1(id− τ2) = (a + b)ατ0(id− τ), (4.7)

and for f = id2, it yields

(1 + a)α2τ0τ1(id2 − (τ2)2) − (a + b)ατ0(id2 − τ2) = 0. (4.8)

Applying the first identity to the latter identity, we find

(a + b)ατ0(id− τ)(id + τ2) − (a + b)ατ0(id2 − τ2) = 0.

Since ατ0 	= 0, it follows that

(a + b)(id− τ)(τ2 − τ) = 0.

As we know that id 	= τ and τ2 	= τ , we finally have that a + b = 0, that is

λ1 + λ2 + λ1λ2 = 0.

Finally, plugging the right side of (4.7) into (4.8) and noting the fact that ατ0τ1 	= 0, we see that

(1 + a)(id− τ2)(τ2 − τ) = 0,

and hence 1 +a = 0. Consequently, 1 +λ1 +λ2 = 0. This, along with λ1 +λ2 +λ1λ2 = 0, imply that λ1 = λ

and λ2 = λ2, where λ is cube root of unity. Therefore, by (4.1) and (4.2), it follows that T 3 = I and

P = I + T + T 2

3 , Q = I + λ2T + λT 2

3 , and R = I + λT + λ2T 2

3 .

Case II: Let τ 	= id and τ2 = id. Note in particular that τ2 = τ0 (recall that τ2 = (τ ′ ◦ τ2)
1
p ). By (4.4), we 

have

α3(τ2
0 τ1)f ◦ τ − (1 + a)α2τ0τ1f ◦ id + (a + b)ατ0f ◦ τ − bf = 0,

for all f ∈ Hp(D). In particular, if f = 1, we have

α3(τ2
0 τ1) = (1 + a)α2τ0τ1 − (a + b)ατ0 + b, (4.9)

and, for f = id, we obtain

α3(τ2
0 τ1)τ − (1 + a)α2τ0τ1id + (a + b)ατ0τ − bid = 0. (4.10)

In view of (4.9), the latter identity implies



R. Maurya et al. / J. Math. Anal. Appl. 530 (2024) 127698 13
(1 + a)α2τ0τ1(τ − id) + b(τ − id) = 0.

Since τ 	= id is analytic we have

b = −(1 + a)α2τ0τ1. (4.11)

Again, by (4.9), we have (1 + a)α2τ0τ1 = α3(τ2
0 τ1) + (a + b)ατ0 − b. Applying this to (4.10), we have

α3(τ2
0 τ1)τ − (α3(τ2

0 τ1) + (a + b)ατ0 − b)id + (a + b)ατ0τ − bid = 0,

that is

α3(τ2
0 τ1)(τ − id) + (a + b)ατ0(τ − id) = 0.

Again, analyticity of τ 	= id gives us

α2τ0τ1 = −(a + b). (4.12)

This along with b = −(1 + a)α2τ0τ1 yield

(1 + a)(a + b) − b = 0.

Simplifying this in view of a = λ1 + λ2 and b = λ1λ2, we obtain

(1 + λ1)(1 + λ2)(λ1 + λ2) = 0.

Let λ1 = −1: Then,

α2τ0τ1 = −(a + b) = −(λ1 + λ2 + λ1λ2) = 1,

and hence, by (4.3), we conclude T 2f = α2τ0τ1f ◦ τ2 = f , for every f ∈ Hp(D), that is, T 2 = I. Then 
(4.1) implies that R = 0. An analogous calculation results in: λ2 = −1 implies Q = 0, and λ1 = −λ2 yields 
P = 0. As a result, this case is redundant.
Case III: τ = id. It follows that τ0 = τ1 = τ2 ≡ 1. The identity in (4.4) yields

α3f − (1 + a)α2f + (a + b)αf − bf = 0,

for all f ∈ Hp(D). In particular, for f = 1, we have α3 − (1 + a)α2 + (a + b)α − b = 0, which implies that 
α = 1, λ1, λ2 (recall that a = λ1 + λ2 and b = λ1λ2).
If α = 1, then (4.3) implies that T = I, and hence Q = R = 0. Similarly, if α = λ1, then Tf = λ1f . Hence, 
we have P = 0. Finally, suppose α = λ2. Then Tf = αf = λ2f for every f ∈ Hp(D). Therefore, T = λ2I, 
and consequently P = 0. As a result, this case is also not feasible. This completes the proof of the theorem 
for 1 ≤ p < ∞, p 	= 2.
Now we turn to p = ∞. In this case, the proof is identical to the previous case, but the structure of surjective 
linear isometries of H∞(D) must be used. In other words, we need to use the bounded analytic functions 
version of Proposition 4.2, which can be found in [9, Theorem 1]: An operator X ∈ B(H∞(D)) is a surjective 
linear isometry if and only if there exist α ∈ T and τ ∈ Aut(T ) such that

Xf = α(f ◦ τ) (f ∈ H∞(D)).

In view of the above representation, the proof for p = ∞ case is identical to the proof for the previous case, 
and we omit the details. This completes the proof of the theorem. �
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Some of the identities established in the preceding theorem will serve as the foundation for additional 
calculations in the following section.

5. Generalized projections on Hp(D2)

The representations of generalized tri-circular projections on Hp(D) as obtained in Theorem 4.3 are 
common among known generalized tri-circular projections acting on Banach spaces. However, in this section, 
we will see that the structure of generalized tri-circular projections on Hp(D2) is richer.

In what follows, we always assume that 1 ≤ p ≤ ∞, p 	= 2. First, we recall a classification of surjective 
linear isometries of Hp(D2) [18, Theorems 1 and 3]: T ∈ B(Hp(T 2)) is an isometry if and only if there exist 
τ ∈ Aut(D), unimodular function σ ∈ L∞(T ), and α ∈ T such that

(Tf)(z, w) = α(τ ′(z))
1
p f(τ(z), wσ(z)), (5.1)

whenever 1 ≤ p < ∞, and, if p = ∞, then

(Tf)(z, w) = αf(τ(z), wσ(z)), (5.2)

for all f ∈ Hp(T 2), and z, w ∈ T .
To ease notation, as in Section 4, for τ ∈ Aut(D) and σ ∈ L∞(T ), define

τ0(z) = (τ ′(z))
1
p , τ1(z) = (τ ′ ◦ τ(z))

1
p , and τ2(z) = (τ ′ ◦ τ2(z))

1
p ,

and also

σ1(z) = σ ◦ τ(z) and σ2(z) = σ ◦ τ2(z),

for all z ∈ T . However, in what follows, we consider all the above functions (including both τ and σ) in two 
variables, but as functions of z alone. For simplicity of notation, we often write composition of function f2

instead of f ◦ f (whenever composition of maps make sense). Now we are ready for the characterizations of 
generalized tri-circular projections on Hp(T 2).

Theorem 5.1. Let P ∈ B(Hp(T 2)). Then P is a generalized tri-circular projection if and only if there exist 
nontrivial projections Q, R ∈ B(Hp(T 2)) and a surjective linear isometry T ∈ B(Hp(T 2)) such that one 
of the following assertions holds:

(1) T = P + λQ + λ2R, T 3 = I, λ is a cube root of unity, and 

⎧⎪⎪⎨
⎪⎪⎩
P = 1

3 (I + T + T 2)
Q = 1

3(I + λ2T + λT 2)
R = 1

3(I + λT + λ2T 2).

(2) T = P −Q ± iR, T 3 ∓ iT 2 − T ± iI = 0, and 

⎧⎪⎪⎨
⎪⎪⎩
P = 1

4((1 ± i)T 2 + 2T + (1 ∓ i)I)
Q = 1

4 ((1 ∓ i)T 2 − 2T + (1 ± i)I)
R = 1

2 (I − T 2).

(3) T = P ± iQ −R, T 3 ∓ iT 2 − T ± iI = 0, and 

⎧⎪⎪⎨
⎪⎪⎩
P = 1

4((1 ± i)T 2 + 2T + (1 ∓ i)I)
Q = 1

2 (I − T 2)
R = 1 ((1 ∓ i)T 2 − 2T + (1 ± i)I).
4
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(4) T = P ± iQ ∓ iR, T 3 − T 2 + T − I = 0, and 

⎧⎪⎪⎨
⎪⎪⎩
P = 1

2 (I + T 2)
Q = 1

4 ((−1 ± i)T 2 ∓ 2iT + (1 ± i)I)
R = 1

4 ((−1 ∓ i)T 2 ± 2iT + (1 ∓ i)I).
For each of the above cases, we also have P⊕Q ⊕R = I, that is, PQ = QR = PR = 0 and P+Q +R = I.

Proof. Suppose 1 ≤ p < ∞. As in the proof of Theorem 4.3, there exist distinct scalars λ1, λ2 ∈ T \{1} and 
non-zero projections Q, R ∈ B(Hp(T 2)) such that P ⊕Q ⊕R = I and T := P + λ1Q + λ2R is a surjective 
linear isometry. Moreover

P = (T − λ1I)(T − λ2I)
(1 − λ1)(1 − λ2)

, Q = (T − I)(T − λ2I)
(λ1 − 1)(λ1 − λ2)

, R = (T − I)(T − λ1I)
(λ2 − 1)(λ2 − λ1)

, (5.3)

and

T 3 − (1 + a)T 2 + (a + b)T − bI = 0, (5.4)

where

a = λ1 + λ2 and b = λ1λ2.

By (5.1), there exist τ ∈ Aut(D), unimodular function σ ∈ L∞(T ), and α ∈ T such that

Tf(z, w) = α(τ ′(z))
1
p f(τ(z), wσ(z)),

for all f ∈ Hp(T 2) and z, w ∈ T . With the notation introduced preceding the statement of this theorem, 
we have

Tf = ατ0f(τ, wσ) (f ∈ Hp(T 2)), (5.5)

and, it follows that

T 2f = α2τ0τ1f(τ2, wσσ1) (5.6)

and

T 3f = α3τ0τ1τ2f(τ3, wσσ1σ2),

for all f ∈ Hp(T 2). The identity in (5.4) then yields

α3τ0τ1τ2f(τ3, wσσ1σ2) − (1 + a)α2τ0τ1f(τ2, wσσ1) + (a + b)ατ0f(τ, wσ) − bf = 0, (5.7)

for all f ∈ Hp(T 2). As in the proof of Theorem 4.3, we again conclude about the following three possible 
cases:

(1) τ = id.
(2) τ 	= id and τ2 = id.
(3) τ, τ2 	= id and τ3 = id.
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Case 1: Suppose τ, τ2 	= id and τ3 = id. We find by using calculations similar to those used in the proof of 
Case 1 of Theorem 4.3 that T 3 = I and

P = 1
3(I + T + T 2), Q = 1

3(I + λ2T + λT 2), R = 1
3(I + λT + λ2T 2).

Case 2: Assume that τ 	= id and τ2 = id. Since τ2 = id, it follows that τ2 = τ0 and σ2 = σ. Therefore, (5.7)
yields

α3τ2
0 τ1f(τ, wσ2σ1) − (1 + a)α2τ0τ1f(id, wσσ1) + (a + b)ατ0f(τ, wσ) − bf = 0, (5.8)

for all f ∈ Hp(T 2). In particular, if f = zm, m ≥ 0, then

α3τ2
0 τ1τ

m − (1 + a)α2τ0τ1z
m + (a + b)ατ0τm − bzm = 0, (5.9)

and hence, for f = 1, we obtain

α3τ2
0 τ1 = (1 + a)α2τ0τ1 − (a + b)ατ0 + b. (5.10)

This is the identity (4.9) obtained in Case 2 during the proof of Theorem 4.3. Performing the same compu-
tation for Case 2 in the proof of Theorem 4.3 results in

λ1 = −1, or λ2 = −1, or λ1 = −λ2. (5.11)

Similarly, if f = wm, m ≥ 0, then (5.8) implies

α3τ2
0 τ1(σ2σ1)m − (1 + a)α2τ0τ1(σσ1)m + (a + b)ατ0σm − b = 0. (5.12)

If m = 1, then α3τ2
0 τ1(σ2σ1) − (1 + a)α2τ0τ1(σσ1) + (a + b)ατ0σ− b = 0, and hence, using (5.10), it follows 

that

(1 + a)α2τ0τ1(σ2σ1 − σσ1) − (a + b)ατ0(σ2σ1 − σ) + b(σ2σ1 − 1) = 0.

By (4.11), we know that b = −(1 +a)α2τ0τ1. As we are in the same setting as Case 2 of proof of Theorem 4.3, 
we have

−b(σ2σ1 − σσ1) − (a + b)ατ0(σ2σ1 − σ) + b(σ2σ1 − 1) = 0.

After cancelling similar terms, we finally get to the identity

b(σσ1 − 1) = (a + b)ατ0(σ2σ1 − σ). (5.13)

Consider the identity (5.12) again, this time with m = 2:

α3τ2
0 τ1(σ2σ1)2 − (1 + a)α2τ0τ1(σσ1)2 + (a + b)ατ0σ2 − b = 0.

In view of (5.10), we know α3τ2
0 τ1 = (1 + a)α2τ0τ1 − (a + b)ατ0 + b, and hence, the above equality yields

(1 + a)α2τ0τ1((σ2σ1)2 − (σσ1)2) − (a + b)ατ0((σ2σ1)2 − σ2) + b((σ2σ1)2 − 1) = 0.

Substituting b = −(1 + a)α2τ0τ1 (see (4.11)) in the above, we derive
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b((σ2σ1)2 − (σσ1)2) + (a + b)ατ0((σ2σ1)2 − σ2) − b((σ2σ1)2 − 1) = 0.

When we rearrange and simplify by canceling common terms, we get

b((σσ1)2 − 1) = (a + b)ατ0((σ2σ1)2 − σ2).

Applying (5.13) to this, we find

b((σσ1)2 − 1) = b(σσ1 − 1)(σ2σ1 + σ).

The equality simplifies further and finally admits the following form:

(σσ1 − 1)(σσ1 + 1)(σ − 1) = 0.

Therefore, we conclude that

σσ1 = −1, or σσ1 = 1, or σ = 1. (5.14)

This combined with (5.11) results in nine subcases. We summarise them in three subcases. We proceed in 
the following manner. First, we recall that (see (4.12))

α2τ0τ1 = −(a + b). (5.15)

Subcase (i). σσ1 = −1: Let λ1 = −1. Then a + b = −1, and hence (5.15) implies α2τ0τ1 = 1. By (5.6), it 
follows that

(T 2f)(z, w) = f(z,−w) (z, w ∈ T ),

for all f ∈ Hp(T 2). Since λ1 = −1, by (5.3) implies R = 1
λ2

2−1 (T 2 − I). Then

Rf(z, w) = 1
λ2

2 − 1(f(z,−w) − f(z, w)),

from which, we further conclude that

R2f(z, w) = 2
(λ2

2 − 1)2 (f(z, w) − f(z,−w)),

for all f ∈ Hp(T 2) and z, w ∈ T . Since R2 = R, we have

0 =
( 2
λ2

2 − 1 + 1
)
(f(z, w) − f(z,−w)) = λ2

2 + 1
λ2

2 − 1(f(z, w) − f(z,−w)),

that is, −(λ2
2 + 1)(Rf)(z, w) = 0 for all f . Equivalently, λ2 = ±i. Using (5.4) we get T 3 ∓ iT 2 − T ± iI = 0. 

If λ2 = i, then T = P − Q + iR, and consequently T 2 = P + Q − R. From these two equations we get 
P = 1

2 (T 2 + T + (1 − i)R) = 1
4 ((1 + i)T 2 + 2T + (1 − i)I). The similar conclusions hold for λ2 = −i. Using 

(5.3) we observe that Q = 1
4 ((1 ∓ i)T 2 − 2T + (1 ± i)I), R = 1

2 (I − T 2).
Next, assume that λ2 = −1. Here too, α2τ0τ1 = 1, and a calculation similar to the one above implies that

Qf(z, w) = 1
2

(
f(z,−w) − f(z, w)

)

λ1 − 1
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and

Q2f(z, w) = 2
(λ2

1 − 1)2
(
f(z, w) − f(z,−w)

)
,

for all f ∈ Hp(T 2) and z, w ∈ T , and finally, (λ2
1 + 1)Q = 0. Equivalently, λ1 = ±i. Using (5.4) we observe 

T 3 ∓ iT 2 − T ± iI = 0. If λ1 = i, then T = P + iQ − R and consequently T 2 = P − Q + R. We obtain 
P = 1

2(T 2 +T +(1 − i)Q) = 1
4 ((1 + i)T 2 +2T +(1 − i)I). The similar conclusions hold for λ1 = −i. Applying 

(5.3) we get Q = 1
2 (I − T 2), R = 1

4 ((1 ∓ i)T 2 − 2T + (1 ± i)I).
Finally, assume that λ1 = −λ2. Then a + b = −λ2

1 and hence α2τ0τ1 = λ2
1. Hence T 2f(z, w) = λ2

1f(z, −w). 
By (5.3), we have P = 1

1−λ2
1
(T 2 − λ2

1I), which implies that

Pf(z, w) = λ2
1

1 − λ2
1

(
f(z,−w) − f(z, w)

)
,

and

P 2f(z, w) = 2
(

λ2
1

1 − λ2
1

)2(
f(z, w) − f(z,−w)

)
,

for all f ∈ Hp(T 2) and z, w ∈ T . Since P 2 = P , it follows that

2
(

λ2
1

1 − λ2
1

)2(
f(z, w) − f(z,−w)

)
= λ2

1
1 − λ2

1

(
f(z,−w) − f(z, w)

)
,

for all f ∈ Hp(T 2) and z, w ∈ T . We deduce therefore that (λ2
1+1)P = 0, and hence λ1 = ±i. Applying (5.4)

we observe T 3−T 2+T−I = 0. Suppose λ1 = i. Then λ2 = −i and hence T = P+iQ −iR and T 2 = P−Q −R. 
Moreover, P = 1

2 (I + T 2). Similarly, if λ1 = −i, then T = P − iQ + iR and T 2 = P − Q − R, and again 
P = 1

2(I+T 2). Applying (5.3) we obtain Q = 1
4 ((−1 ±i)T 2∓2iT+(1 ±i)I), R = 1

4 ((−1 ∓i)T 2±2iT+(1 ∓i)I).
Subcase (ii). σσ1 = 1: Recall from (5.15) that α2τ0τ1 = −(a + b). If λ1 = −1 or λ2 = −1, then (a + b) = −1, 
and hence α2τ0τ1 = 1. Then (5.6) implies T 2 = I, and hence, by (5.3), R = 0 (if λ1 = −1) or Q = 0 (if 
λ2 = −1). Similarly, if λ1 = −λ2, then α2τ0τ1 = λ2

1. This implies T 2 = λ2
1I, and hence, by (5.3), P = 0.

Subcase (iii). σ = 1: As in the previous subcase, λ1 = −1 or λ2 = −1 imply R = 0 or Q = 0, respectively. If 
λ1 = −λ2, then again α2τ0τ1 = λ2

1, which implies that T 2 = λ2
1I, and consequently P = 0.

Case 3: Suppose τ = id. Then σ1 = σ2 = σ and τ1 = τ2 = τ0, and hence (5.7) yields

α3τ3
0 f(τ, wσ3) − (1 + a)α2τ2

0 f(τ, wσ2) + (a + b)ατ0f(τ, wσ) − bf(τ, w) = 0, (5.16)

for all f ∈ Hp(T 2). In particular, if f = 1, then

α3τ3
0 − (1 + a)(ατ0)2 + (a + b)(ατ0) − b = 0,

and hence α = τ−1
0 , λ1τ

−1
0 , λ2τ

−1
0 . In addition, we also have three alternatives:

(1) σ = 1.
(2) σ 	= 1 and σ2 = 1.
(3) σ 	= 1, σ2 	= 1, and σ3 = 1.

Indeed, if σ(z0), σ(z0)2, σ(z0)3 	= 1 for some z0 ∈ T , then there exists a Lagrange polynomial L such that 
L(w0σ(z0)) = L(w0σ(z0)2) = L(w0σ(z0)3) = 0 and L(w0) = 1. If we set f(z, w) = L(w), z, w ∈ T , in (5.16), 
then



R. Maurya et al. / J. Math. Anal. Appl. 530 (2024) 127698 19
α3τ3
0L(w0σ(z0)3) − (1 + a)α2τ2

0L(w0σ(z0)2) + (a + b)ατ0L(w0σ(z0)) − bL(w0) = 0,

implies that b = λ1λ2 = 0: a contradiction. We now move on to the three following subcases.
Subcase (i). σ = 1: If α = τ−1

0 or α = λ1τ
−1
0 , then T = I or T = λ1I respectively. Hence R = 0 = Q or 

P = 0 = R. Similarly, if α = λ2τ
−1
0 , then T = λ2I, which implies that P = 0 = Q.

Subcase (ii). σ 	= 1, σ2 = 1: By (5.16), we get

α3τ3
0 f(τ, wσ) − (1 + a)α2τ2

0 f(τ, w) + (a + b)ατ0f(τ, wσ) − bf(τ, w) = 0.

That is

(α3τ3
0 + (a + b)ατ0)f(τ, wσ) − ((1 + a)α2τ2

0 + b)f(τ, w) = 0.

Since σ 	= 1, there exists z0 such that σ(z0) 	= 1. We choose Lagrange polynomials, f(z, w) = Li(w) ∈
Hp(T 2), i = 1, 2 such that f(z0, w0σ(z0)) = L1(w0σ(z0)) = 1, f(z0, w0) = L1(w0) = 0 and f(z0, w0σ(z0)) =
L2(w0σ(z0)) = 0, f(z0, w0) = L2(w0) = 1. Then we have

α3τ0(z0)3 + (a + b)ατ0(z0) = 0,

and

(1 + a)α2τ0(z0)2 + b = 0.

From these two equalities we have

(1 + a)(a + b) − b = (1 + λ1 + λ2)(λ1 + λ2 + λ1λ2) − λ1λ2 = 0.

We get, λ1 = −1 or λ2 = −1 or λ1 = −λ2. We consider this with other three possibilities α =
τ−1
0 , λ1τ

−1
0 , λ2τ

−1
0 as follows:

(1) α = τ−1
0 : If λ1 = −1 or λ2 = −1, then R = 0 or Q = 0. If λ1 = −λ2, then P = I.

(2) α = λ1τ
−1
0 : Suppose λ1 = −1 or λ1 = −λ2 imply R = 0 or P = 0. If λ2 = −1, then Q = I.

(3) α = λ2τ
−1
0 : Let λ1 = −1 then R = I. If λ2 = −1 or λ1 = −λ2, then Q = 0 or P = 0 respectively.

So these subcases are not possible.
Subcase (iii). σ 	= 1, σ2 	= 1, σ3 = 1: By (5.16), we get

α3τ3
0 f(τ, w) − (1 + a)α2τ2

0 f(τ, wσ2) + (a + b)ατ0f(τ, wσ) − bf(τ, w) = 0.

Since σ 	= 1, σ2 	= 1, then there exists z0 such that σ(z0) 	= 1 and (σ(z0))2 	= 1. We choose Lagrange 
polynomials, f(z, w) = Li(w) ∈ Hp(T 2), i = 1, 2, such that

f(z0, w0σ(z0)2) = L1(w0σ(z0)2) = 1, f(z0, w0) = L1(w0) = 0,

f(z0, w0σ(z0)) = L1(w0σ(z0)) = 0, and f(z0, w0σ(z0)) = L2(w0σ(z0)) = 1,

f(z0, w0) = L2(w0) = 0, f(z0, w0σ(z0)2) = L2(w0σ(z0)2) = 0.

Then −(1 + a)α2(τ0(z0))2 = 0, and (a + b)α(τ0(z0)) = 0. Using these two equations we have, 1 + a = 0 and 
a + b = 0. We observe that λ1 = λ and λ2 = λ2. Therefore, by (4.1) and (4.2), it follows that T 3 = I and
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P = I + T + T 2

3 , Q = I + λ2T + λT 2

3 , and R = I + λT + λ2T 2

3 ,

which completes the proof of the theorem for 1 ≤ p < ∞. The argument for p = ∞ case is also similar. In 
this case, one needs to use (5.2). This completes the proof of the theorem. �

Given the results presented in this paper, representing surjective linear isometries of vector-valued Hp-
spaces on the bidisc for all 1 ≤ p ≤ ∞, p 	= 2 is an intriguing problem. However, see [3] for the answer in 
the scalar case.
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