ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Activity Schedule Modeling Using Machine Learning

Koushik, A and Manoj, M and Nezamuddin, N and Prathosh, AP (2023) Activity Schedule Modeling Using Machine Learning. In: Transportation Research Record, 2677 (8). pp. 1-23.

[img] PDF
tra_res_rec_2677-8_1-23_2023.pdf - Published Version
Restricted to Registered users only

Download (5MB) | Request a copy
Official URL: https://doi.org/10.1177/03611981231155426


A novel data-driven approach for activity schedule modeling is presented in this paper. The paper’s contribution is twofold. First, the activity schedule is modeled as a time series to facilitate simultaneous prediction of activity participation, start times, and duration. Simultaneous prediction helps avoid assuming a predefined decision structure and allows all possible interdependencies among these choice facets to be modeled. The time series representation also ensures time budget constraints are automatically satisfied. Second, a machine learning tool called long short-term memory (LSTM) network is used to model the time series. The LSTM’s ability to model long-term dependencies ensures that activity patterns are generated considering the influence of distant and recent past. A bidirectional LSTM is used to capture the effect of (planned) future activities on the present activity participation. The model derives all the relations from the data without requiring assumptions by the modeler on the decision-making behavior. Further, the problems arising from class imbalance in the schedule caused due to less frequently performed activities are also explored and addressed. The models are calibrated and validated using the activity-travel diary data from the OViN 2016 dataset. To evaluate the robustness of the model, it is also tested on a time budget dataset with 23 different activity types. The results indicate that the proposed method can predict the distributions of activity start times and duration with reasonable accuracy. The results demonstrate that the proposed method can efficiently model activity schedules and can be a useful tool for travel demand modeling. © National Academy of Sciences: Transportation Research Board 2023.

Item Type: Journal Article
Publication: Transportation Research Record
Publisher: SAGE Publications Ltd
Additional Information: The copyright for this article belongs to the SAGE Publications Ltd.
Keywords: Brain; Budget control; Decision making; Forecasting; Time series, Activity participation; Activitybased modeling (ABM); Imbalanced dataset; Long short-term memory network; Machine-learning; Memory network; Neural-networks; Time budget; Times series; Travel demand models, Long short-term memory
Department/Centre: Division of Electrical Sciences > Electrical Communication Engineering
Date Deposited: 07 Nov 2023 10:34
Last Modified: 07 Nov 2023 10:34
URI: https://eprints.iisc.ac.in/id/eprint/83046

Actions (login required)

View Item View Item