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With artificially engineered systems, it is now possible to realize the coherent interaction rate, which can
become comparable to the mode frequencies, a regime known as ultrastrong coupling (USC). We
experimentally realize a cavity-electromechanical device using a superconducting waveguide cavity and a
mechanical resonator. In the presence of a strong pump, the mechanical-polaritons splitting can nearly
reach 81% of the mechanical frequency, overwhelming all the dissipation rates. Approaching the USC
limit, the steady-state response becomes unstable. We systematically measure the boundary of the unstable
response while varying the pump parameters. The unstable dynamics display rich phases, such as self-
induced oscillations, period-doubling bifurcation, and period-tripling oscillations, ultimately leading to the
chaotic behavior. The experimental results and their theoretical modeling suggest the importance of
residual nonlinear interaction terms in the weak-dissipative regime.
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Introduction.—Radiation-pressure interaction is funda-
mental to the cavity-optomechanical systems consisting of
a mechanical mode coupled to an electromagnetic mode
(EM) [1]. With technological advancements, cavity opto-
mechanical devices have been successful in controlling the
low-frequency mechanical mode down to their quantum
regime [2]. Several demonstrations pertaining to the quan-
tum state preparation [3–6] and entanglement [7–10],
signal transduction [11–13], and topological physics using
the mechanical modes have been shown [14,15].
The coherent coupling rate, characterizing the interaction

between the EM mode ðωcÞ and the mechanical mode
ðωmÞ, is a key figure of merit in such devices [1,2]. The
energy dissipation rates of the two modes ðκ; γmÞ capture
the incoherent coupling with their thermal baths. Based on
the relative strengths of these rates, several interesting
scenarios are feasible. When the coherent coupling rate (g)
exceeds the dissipative coupling rates of the two modes
ðg ≫ κ; γmÞ, the two modes hybridize, resulting in new
eigenstates [16,17]. Further, when the coherent coupling
rate becomes a significant fraction of the mode frequencies,
the composite system enters the “ultrastrong coupling”
(USC) limit [18]. In this limit, the two modes hybridize in a
nontrivial way leading to an entangled ground state in the
quantum regime [19,20]. The USC limit has been exper-
imentally demonstrated in several systems where two
modes interact nearly resonantly [21,22].
In cavity optomechanical systems, however, the

EM mode and mechanical mode interact dispersively
ðωc ≫ ωmÞ. The nonlinear radiation-pressure interaction
can be described by Hi=ℏ ¼ −g0a†aðbþ b†Þ, where g0 is
the single-photon coupling strength and aðbÞ’s are the
ladder operators for the cavity(mechanical) mode. In the
presence of a strong coherent pump, the interaction

Hamiltonian can be linearized to Hi=ℏ ≃ −gðaþ a†Þ×
ðbþ b†Þ, where g ¼ g0

ffiffiffiffiffi

nd
p

is the parametric coupling
rate and nd is the number of the pump photons in the cavity.
With the ability to control the parametric coupling rate,
several regimes, such as quantum coherent coupling, and
steady-state quantum entanglement between the two modes
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FIG. 1. (a) The schematic of the parameter space of a cavity-
electromechanical system in the steady state marking the USC
regime and the region of unstable response. This study has been
marked by star. (b) Comparison of the sideband-resolution
parameter of this study and the earlier studies on instabilities.
The data points A to F are from Refs. [24–29], respectively.
The symbols g, ωm, κ, and Δ represent the optomechanical
coupling strength, the mechanical frequency, cavity dissipation
rate, and the pump detuning from the cavity resonant frequency,
respectively.
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can be reached [10,17,23]. Ultimately, owing to the non-
linear nature of the radiation-pressure interaction, the res-
ponse becomes unstable, as shown schematically in Fig. 1.
Indeed, various phenomena in the unstable region such as

limit cycle, period doubling bifurcations, and chaos have
been extensively studied [30–34]. Experimentally, these
effects have been primarily explored in the strong dissipative
regime ðωm ≲ κÞ or with the blue-detuned pump [24–29,35]
(see Fig. 1). The instabilities near the ultrastrong coupling
limit, however, allow one to explore the nonlinear dynamics
of the cavity optomechanical system in the weakly dissipa-
tive limit (γm; κ ≪ 2g≲ ωm). The nonlinear dynamics with
weak dissipation is unique and is predicted to show transient
chaos, a quasiperiodic route to chaos, and lower threshold
powers for the onset of chaos [36,37].
Here, we use a cavity-electromechanical device in the

microwave domain to probe the route to chaos when it is
operated into the USC limit. We first demonstrate the USC
by performing the spectroscopic and time-domain mea-
surements. We probe the stability of the device when the
pump detuning near the red sideband and injected power
are varied. The unstable region shows very rich phases in
the parameter space, such as the self-induced oscillation,
period-doubling bifurcations, period-tripling oscillations,
and chaotic behavior [32,36,37]. We find that the measured
threshold powers for the onset of instabilities are lower than
the ones predicted from a nonlinear model considering the
optomechanical interaction and a Kerr-term in the cavity.
Experimental details.—We use the three-dimensional

cavity-based platform to realize the cavity-electromechanical
device [38–40]. The waveguide cavity-based electromecha-
nical device offers a higher dynamic range for the pumped
photons, which is highly desirable to reach the USC limit
[40,41]. As shown in Figs. 2(a) and 2(b), the device con-
sists of a rectangular waveguide cavity, and a drumhead-
shaped mechanical resonator in the form of a parallel plate
capacitor patterned on a sapphire chip. The patterned
sapphire chip fabricated with aluminum is placed at the
center of the cavity. The electrical pads to the drumhead are
then directly wire-bonded to the cavity walls to integrate
with the cavity mode [40].
The sample-mounted cavity is cooled down to 20mK in a

dilution fridge. Figure 2(c) shows the measurement of the
cavity transmission at the base temperature. The bare cavity
is designed to have the fundamental resonant mode fre-
quency of 7.5 GHz. However, the electromechanical capaci-
tor perturbs the mode shape significantly, and lowers the
mode frequency toωc=2π ≈ 4.86 GHz. The reduction in the
resonant frequency of the cavity results from the electro-
mechanical capacitance and the inductance of the connect-
ing electrodes introduced after the addition of a patterned
sapphire chip.Wemeasure the input, output, and the internal
dissipation rates of κe1=2π ≈ 90 kHz, κe2=2π ≈ 190 kHz,
and κi=2π ≈ 100 kHz, respectively.At low temperatures,we
estimated that the gap between the electromechanical

capacitor plates reduces to approximately 32 nm due to
thermal contraction [42,43], which helps in achieving a
single photon coupling rate g0=2π of 165 Hz.
Ultrastrong coupling regime.—We measure the trans-

mission coefficient jS21ðωÞj through the cavity using a
weak probe tone while injecting a pump detuned near the
red sideband ωc − ωm. At relatively lower pump powers,
the optomechanically induced absorption setup allows us to
determine the mechanical frequency ωm=2π ≈ 6.32 MHz
[44]. At relatively higher pump powers, the response turns
into two well-separated peaks confirming the new eigenm-
odes of the system as shown in Fig. 3(a). The peak
separation being 0.81ωm marks the ultrastrong coupling
between the mechanical resonator and the cavity. The
transmission measurement shows the presence of an addi-
tional weakly coupled mechanical mode, indicated by the
red arrow. Two more features arising from the interference
of the down-scattered pump signal and the probe signal can
be seen. Figure 3(b) shows the measurement of jS21j as the
frequency of the pump is varied while maintaining a
constant power at the signal generator.
The presence of a strong intracavity pump field leads to a

static shift of the equilibrium position of the mechanical
resonator, given by xs ¼ ð2g0nd=ωmÞxzp, where xzp is the
zero-point motion of the mechanical resonator. The shift in
the equilibrium position of the mechanical resonator leads
to a Kerr shift of the cavity frequency by −2g20nd=ωm. The
total shift in the cavity frequency comes from the static
nature of the radiation-pressure force and nonlinear kinetic
inductance of the superconducting aluminum film. We
emphasize here that at high pump powers, the Kerr shift of
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FIG. 2. (a) Image of thewaveguide cavity along with a patterned
substrate. The cavity has dimensions of 26 × 26 × 6 mm3.
(b) False color image of the mechanical resonator forming a
parallel plate capacitor with another plate on the substrate. The
separation between the capacitor plates at room temperature is
approximately 200 nm. (c) Measurement of the voltage trans-
mission coefficient jS21j of the device at the base temperature. The
inset shows the equivalent circuit diagram of the cavity electro-
mechanical device.
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the cavity becomes significant, and it must be considered to
capture the cavity transmission faithfully. In this case, we
found a cavity shift of ∼1.76 MHz at the maximum pump
power used in the experiment. It corresponds to an
optomechanical Kerr coefficient of 8.6 mHz=photon and
a kinetic inductance Kerr coefficient of approximately
5 mHz=photon at the maximum pump power (see the
Supplemental Material [45]).
To theoretically model the cavity transmission, we

expand the interaction Hamiltonian Hi around the mean
field of the pump and obtain the quantum-Langevin
equations of motion. Without using the rotating-wave

approximation and by retaining the static Kerr shift of
the cavity frequency, the steady-state response can be
obtained from the inverse of the mode-coupling matrix
(see the Supplemental Material [45]). The solid line in
Fig. 3(a) and colorplot in Fig. 3(c) show the calculated
transmission coefficient using the experimentally deter-
mined device parameters. While in general, additional
weakly coupled mechanical modes can also be included
in the calculations, we neglect them here for simplicity.
The onset of the strong coupling allows for a coherent

swap of the excitations between the cavity and the
mechanical mode. It thus enables the high-speed optome-
chanical swap gates in the ultrastrong coupling limit. To
explore the maximum speed of the optomechanical swap,
we perform time-domain measurements in this limit. We
modulate the interaction strength gðtÞ, which is controlled
by the amplitude of the pump tone. The transmission
through the cavity is monitored by applying a weak
continuous probe signal near ωc. To demodulate the probe
signal, we first mix it down using an external mixer and
then sending it to a high-speed lock-in amplifier to further
demodulate the quadratures with a short integration time
(100 ns) (see the Supplemental Material [45]).
Figure 3(d) shows the measurement of the magnitude of

the demodulated signals ½IðtÞ; QðtÞ� as the interaction
strength gðtÞ is modulated. For this measurement, the
interaction strength is modulated to 1.55 MHz. The probe
frequency is detuned from the cavity resonant frequency by
ðωp − ωcÞ=2π ¼ 372 kHz. Therefore, the transmission is
small even when the pump tone is off (t < 0). In the
steady-state when the pump is turned on (t ≈ 10 μs), the
transmission is low again due to the formation ofmechanical-
polariton modes. Because of the strong static Kerr shift of the
cavity, the probe tone appears near the center of the split
peaks, resulting in low transmission.
When interaction is just switched on, the transient

response shows the oscillations arising from the coherent
energy exchange between the mechanical and the cavity
modes. The oscillation frequency of 3.1 MHz corresponds
to the characteristic swap time of 160 ns. The amplitude of
the oscillations decays at a rate of ≃κ=4 set by joint
dissipation of the two polaritons. When the pump is turned
off, the energy stored in the two polariton modes reemerges
near the probe frequency, and the amplitude decays at κ=2.
It is important to remark that as we operate close to the USC
limit, the modulated pump signal spectrally overlaps with
the probe signal and adds a small offset in the measure-
ment. Additional datasets are provided in the Supplemental
Material [45].
Parametic instabilities near ultrastrong coupling.—

After establishing the USC in the present experiment,
we now discuss the parametric instabilities arising at the
high pump powers. At the core of it, the instabilities stem
from the nonlinear interaction between the microwave field
and the mechanical motion. To experimentally investigate
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FIG. 3. (a) The normalized magnitude of the cavity trans-
mission jS21ðωÞj (red circles) while applying a strong pump near
the red sideband. The black line shows the calculated jS21ðωÞj
while including the static Kerr shift of the cavity. (b) The
colorplot of measured jS21ðωÞj as the pump frequency ωd is
varied at a fixed pump power of −31 dBm at the cavity. The black
arrow shows the position of the pump signal, while the red arrow
indicates another weakly coupled mechanical mode. A weak
probe signal −88 dBm at the cavity is used to generate the
colorplot. (c) Colorplot of jS21ðωÞj obtained from the calcula-
tions. (d) Measurement of the amplitude of the transmitted probe
signal in the time domain while modulating the interaction
strength. The pump frequency is set near the lower mechanical
sideband. The position of the probe signal is schematically
represented by the black arrows relative to the steady-state cavity
transmission curves (shown in gray).
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the phase space of the parametric instabilities and their
nature, we measure the microwave power spectral density
(PSD) using a spectrum analyzer while varying the pump
power Pi and pump detuning Δ ¼ ðωd − ωcÞ. As Pi is
increased, the self-induced oscillations appear as multiple
peaks separated by ωm in the microwave PSD. Figure 4(a)
shows the PSD of different kinds of responses. The top-left
panel corresponds to the instability due to the self-induced
oscillations where the peaks are separated by ωm. The
bottom-left panel corresponds to the first period-doubling
bifurcations (PDB), where the peaks are separated by
ωm=2. The top-right panel shows the period-tripled oscil-
lations where the peaks are separated byωm=3. The bottom-
right panel shows the response where the power is
uniformly distributed over a broad range of frequencies.
It corresponds to the chaotic vibration of the mechanical
oscillator undergoing aperiodic oscillations leading to a

continuous power spectrum in the output microwave field.
These different phases of unstable response are summarized
in Fig. 4(b). The gray-color region represents the parametri-
cally unstable response. The boundary of the gray region
marks the threshold power for the self-induced oscillations.
With a decrease in Δ, the circulating power in the cavity
decreases, and the threshold power for the onset of the
instability increases. The regions of first PDB, period-tripled
oscillations, and chaos are color coded within the unstable
region. A discussion on the measurement methodology is
included in the Supplemental Material [45].
To understand these results, we use the classical nonlinear

dynamics approach. We start with the full cavity opto-
mechanical Hamiltonian, i.e., Hi=ℏ ¼ −g0â†âðb̂þ b̂†Þ. In
addition, motivated by the observation of period-tripling
oscillations and the relevance of the kinetic inductance at
the high pump powers, we include a weak nonlinear term in
the cavity Hamiltonian, given by −ðαc=2Þðâ†âÞ2. Using the
semiclassical approximation, we obtain the classical equa-
tions of motion (EOM) for the cavity and the mechanical
quadratures. From EOMs, we find the fixed points and
perform a linear stability test, which is similar to the Routh-
Hurwitz criteria, i.e., the solutions are stable if and only if all
the eigenvalues of the evolution matrix of small perturba-
tions around the fixed points have a negative real part [48].
Calculation details are provided in the Supplemental
Material [45].
Results of these calculations in different limits are shown

in Fig. 4(b). We also include a dimensionless power P ¼
8g20n0=ω

4
m on the right y axis, where n0 is defined as the

number of photons when the pump is set at the cavity
frequency [32,37]. Clearly, the threshold power estimated
from the calculations is larger than the one measured in the
experiment. For comparison, the instability boundary
obtained while considering the optomechanical Kerr non-
linearity alone ðαc ¼ 0Þ, and two nonzero values of
αc=2π ¼ 5, 12.5 mHz=photon are also included. We note
that even a significantly higher value of αc does not fully
explain the experimental findings suggesting a different
origin. Thus, the nonlinearities arising from the optome-
chanical interaction and the kinetic inductance do not
completely capture the threshold for the unstable region
when a linear stability test is applied.
In addition, the numerical calculations do not show the

period-doubling bifurcations or chaotic behavior for the
pump parameters used in the experiment. In numerical
calculations, these effects appear at higher powers than
the ones observed in the experiment. It thus provides the first
experimental evidence that the route to chaos in the USC
limit or equivalently in the weakly dissipative limit is
different from the previously studied cases. It suggests that
the role of thermal fluctuations, and residual weak nonlinear
coupling terms might be relevant in determining the boun-
dary of the unstable region [49,50]. In particular, during
the transitions from self-oscillation to period-doubling
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FIG. 4. (a) Measurement of the single sideband microwave
power spectral density (PSD) for different injected pump powers
Pi. Different panels show the self-induced oscillations (black),
first period-doubling bifurcations (green), period-tripling oscil-
lations (red), and the chaotic behavior (blue). (b) The gray region
represents the boundary of self-induced oscillations. The black
circles are the experimentally measured points. At higher injected
pump powers, the region of period-doubling bifurcations is
represented by the green region. The period-tripled oscillations
are shown by the red-colored region. The region of chaotic
behavior is shown by the cyan-colored region. Experimentally
measured points are shown by the circles of different colors. The
solid blue line and the dashed lines show the unstable boundary
obtained from the theoretical calculation.
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oscillation and subsequently to chaotic regions, the mechani-
cal mode remains in a high amplitude state. In this case, the
role of mechanical Duffing nonlinearity, and resonantly
induced negative dissipation might become important [51].
Outlook and conclusion.—In conclusion, we have dem-

onstrated the ultrastrong coupling using a superconducting
waveguide cavity and a mechanical resonator, where the
splitting of the mechanical polaritons becomes nearly 81%
of the mechanical frequency. In the time domain, we
measure optomechanical swap time of 160 ns, which is
nearly 16 times shorter than the shortest dissipation time in
the device. With suitable modification to the thermalization
of the microwave signals, the cavity can be operated in the
quantum limit. It would enable a wide variety of experi-
ments such as the entangled ground state properties of the
cavity and the mechanical resonator [22], and high speed
optomechanical gates [43]. Using the pump in a pulse
mode, the parametric coupling can be pushed beyond the
USC regime [20,52]. In addition, the microwave frequency
comb generated using the optomechanical nonlinearity can
be a valuable resource for sensing applications [36]. The
experiment here, for the first time, explores the unstable
response in the steady state in the weakly dissipative limit
[37]. Clearly, the theoretical model based on optomechan-
ical and kinetic inductance nonlinearity does not account
for the lower threshold powers observed in the experiment.
It thus opens up the possibility of further exploring the role
of quantum fluctuations [32], and other weak residual
couplings in the interaction Hamiltonian [49].
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