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We consider Bell inequalities in 2-2 scattering of photons, gravitons, fermions, and pions. We choose
measurement settings that give maximum Bell violation for maximally entangled states and calculate the
relevant Bell inequalities for these processes. For photon scattering at low energies, quantum electro-
dynamics exhibits Bell violation for all scattering angles except for a small transverse region. This leads to a
fine-tuning problem. Incorporating a light axion/axionlike particle removes the fine-tuning problem and
constrains the axion-coupling–axion-mass parameters. Allowing for graviton exchange and demanding
Bell violation in photon scattering, we find that the weak-gravity conjecture is satisfied. Quantum gravity
effects on axion coupling is discussed. For 2-2 graviton scattering, we find that CEMZ bounds allow for, at
most, small Bell violations. Restriction on the Weinberg angle is found by demanding Bell violation in
Bhabha scattering. We use recent S-matrix bootstrap data for pions and photons to study the Bell parameter
in the space of allowed S-matrices. In the photon case, we study the Bell parameters as a function of energy
and find support for the effective field theory observations. We discuss Bell parameter for pion S-matrices,
which are qutrits. For pions, we find that there is a minimization of a suitable Bell parameter for S-matrices
which exhibit Regge behavior.
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I. INTRODUCTION

Einstein, Podolsky, and Rosen famously argued that
special relativistic locality should imply that quantum
mechanics is incomplete [1], suggesting that it could be
completed by introducing hidden variables. The ingenious
Bell inequalities [2,3] led to a way to experimentally test if
this is possible. The violation of these inequalities signifies
that there is no local hidden-variable description of the
underlying physics. These inequalities and their general-
izations have led to significant theoretical and experimental
progress over the last five decades (1970–2023) [4,5]. The
theoretical underpinnings of the Bell inequalities for
quantum field theories have been less explored [6–12]—
see also [13–16]. In all these contexts, in order to calculate
theoretical expectations, one assumes knowledge of the
Lagrangian. Our attitude in this paper will be orthogonal
to such efforts. We will ask if the Bell inequalities can
be gainfully employed to constrain the theory space.
Specifically, we will determine the boundary between
Bell violating theories and Bell nonviolating theories if
interesting theories lie on such boundaries. The answer will
turn out to be yes.

We will study Bell inequalities in the context of
2-2 scattering, which is arguably one of the most basic
processes in quantum field theory for photons (γ), gravitons
(g), fermions (f), and pions (π). We will consider effective
field theories (EFTs), leaving the Wilson coefficients
unfixed and ask what lessons we can learn about them
using the Bell inequalities. There has been a substantial
amount of work during the last few years which has
focused on constraining Wilson coefficients using
dispersion techniques (see [17] for a review).

A. Basic setup

Our basic setup will comprise of unentangled initial
states of the same species of particles whose polarizations
are fixed, in four spacetime dimensions. These undergo
scattering and in certain situations will lead to entangled
final states. We will consider the situation where we get the
same species of final state particles as what was being
scattered. The entanglement will be in helicity for the
massless photons and gravitons and spin for fermions.
For γ, g, and ψ , there will be either two helicities or two
spin components and hence we can think of these states at
fixed momenta to be qubits. For qubits, the Bell inequality
that we will consider is the Clauser, Horne, Shimony, Holt
(CHSH) inequality [18] (more appropriately, an equivalent
counterpart proposed by Collinsand, Gisinand, Lindenand,
Massar, Popescu (CGLMP) [19]). As we will review below,
we will fix the measurement settings to be such that the Bell
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parameter is maximized for the maximally entangled states
1ffiffi
d

p
P

d−1
i¼0 ji; ii, with d ¼ 2 for qubits. This ensures that the

Bell parameter is single-valued in theory space as discussed
in detail in the Appendix. We will work with the same
settings used in [19]—in the Appendix we will justify why
these settings will lead to optimal bounds on the EFT
parameters.

B. Findings: EFTs

Our question will focus on how much Bell violation
(if any) do we get for all the processes described above. In
other words, we will be treating the Bell parameter as a kind
of “order parameter” in theory space. We will find several
remarkable features which we summarize here:

(i) We consider γγ → γγ in an EFT where the electron
has been integrated out. Light by light (LbyL)
scattering, specifically γγ → γγ in a low energy
effective field theory (EFT) is described by the
famous Euler-Heisenberg Lagrangian [20–22],
whose first few terms are given by

L ¼ −
1

4
FμνFμν þ g2 þ f2

16
ðFμνFμνÞ2

þ g2 − f2
16

ðFμνF̃μνÞ2 þ…; ð1Þ

with F̃μν ¼ 1
2
ϵμνρσFρσ and the coefficients f2 and g2,

called Wilson coefficients, are known up to Oðα3Þ,
with α ¼ e2=ð4πÞ ¼ 1=137 [22]. Their ratio is
given by

f2
g2

����
SM

≈ −0.2727|fflfflffl{zfflfflffl}
1-loop

− 0.0008|fflfflffl{zfflfflffl}
2-loop

≈ − 0.274: ð2Þ

For LbyL scattering, there has been a lot of recent
interest in constraining such Wilson coefficients
using positivity arguments [23–27] (see e.g., [28,29]
for recent work exploiting nonlinear unitarity to
constrain the theory space). However, none of the
existing arguments can zoom into the QEDvalue.We
find that if we demand that there is Bell violation for
all values of the final state angle in the center-of-mass
frame, then the ratio f2=g2 obtained in this manner,
which we will call ðf2=g2ÞBell is remarkably close to
the 1-loop QED (Euler-Heisenberg) value. In fact,
putting in the 2-loop correction, pushes ðf2=g2ÞQED
towards ðf2=g2ÞBell. In LbyL scattering, we find that
Bell violation for all scattering angles implies

0.276≲ jf2=g2jBell ≲ 1.21: ð3Þ

The first observation is that the upper bound is quite
close to the theory space bound jf2=g2j ≤ 1 although
the considerations used are quite different. The

second and important observation is that the standard
model value 0.274 is quite close to the lower bound
obtained from Bell violation. Since there are many
possible maximally entangled state (MES) settings,
we can ask for a given f2=g2, what is the probability
that we get Bell violation for a random choice of
the scattering angle. When jf2=g2j≳ 0.276, then the
probability becomes 1. However, for the standard
model satisfying Eq. (2), the probability dips to
0.9995. This appears to be a fine-tuning (or simplic-
ity) problem, apparently distinct in origin from the
strong CP problem [30], which is solved by the
axion [31–33].

Can this fine-tuning problem be alleviated such
that the probability alluded to above changes from
0.9995 to 1? Accounting for an axion or axionlike
particle (ALP) allows for a region in the axion-
coupling—axion-mass plane, where this is possible
[see Fig. 4]. It could have so happened that the
coupling mass needed lie in the experimentally
excluded region. Strikingly, the allowed region is
going to be experimentally probed in the near
future [34,35].

(ii) In the case LbyL, if we allow for a graviton
exchange, and examine Bell violation, we find

e
m

≥
13.8σ−1=4

MP
; ð4Þ

where σ ¼ Λ2=M2
P ≪ 1., with Λ being an UV cutoff

and Mp is the Planck mass. This is reminiscent of
the weak-gravity conjecture (WGC) which says that
when there are interactions mediated by gauge
bosons (e.g., electromagnetic interactions mediated
by the photon) as well as by gravitons, then gravity
will be the weakest force [25,26,36–38]. The above
condition means that σ ≪ 1 will guarantee that the
WGC is satisfied. More conservatively, we find that
if the WGC does not hold then Bell violation does
not occur.

(iii) If we allow for both graviton and axion exchange,
and examine Bell violation, we find

ga ≳ 1.22δ−1=2

MP
; ð5Þ

where ga axion-photon coupling, δ ¼ μ2=m2
a. with μ

being the energy scale of observation below the
axion mass ma This bound arises so that quantum
gravity effects do not overwhelm the axion contri-
bution.

(iv) In a situation, where we are scattering gravitons in an
EFT, we find for Einstein gravity, there is no Bell
violation (since only the MHV process is allowed).
If we turn on a six derivative α3M2
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term (there is no R2 correction in four spacetime
dimensions as it can be field redefined away), then
we find that the condition 46.71≳ jα3jM4 ≳ 1.37
leads to Bell violation. However, Bell violation is
never maximal. Here M is the mass of the lightest
higher-spin massive particle. This inequality is
reminiscent of the CEMZ bound [39]. Recent work
in [40] uses arguments based on dispersion relations
to get numerical bounds.

C. Findings: Bootstrap

Next we summarize the key features that we observe
using the S-matrix bootstrap. Over the last few years,
attempts have been made to revive the old S-matrix
bootstrap program using clever numerical techniques
(see [41] for a review). This program is still in its infancy
and no doubt there will be exciting progress to be made
over the next several years. Nevertheless, we will take what
numerical bootstrap data is readily available and use that
to examine the Bell inequalities. We begin with photons.
In [42], 2-2 scattering of photons was bootstrapped by
assuming that the amplitudes arise in a unitary theory
where the massive particles have been integrated out. This
gives a theory space which is distinguished by low-energy
Wilson coefficients, the dominant one being the ratio
f2=g2. One of the main goals of [42] was to examine
bounds on the ratios of these Wilson coefficients that arise
using the full nonperturbative untarity, which includes
contributions from loops. It was shown that−1 ≤ f2=g2 ≤ 1
which is the same that arises from dispersive considerations
[23,24,27]. The S-matrix data is publicly available. We use
this data and focus on the S-matrices that lie on the
boundary of the allowed theory space. Our main focus
will be the theory space (in the notation of [42,43]) spanned
by the normalized 12-derivative Wilson coefficient g4=g22
and the normalized 8-derivative Wilson coefficient f2=g2.
The QED 1-loop values give f2=g2 ¼ − 3

11
¼ −0.27,

while g4=g22 ∼ 1=α2 ≫ 1. The theory space boundary found
in [42] was anOð10−2Þ lower bound on g4=g22 as a function
of f2=g2 ∈ ½−1; 1�. This essentially means that QED sits
deep inside the allowed region and not on the boundary.
However, at low energies we do not expect the higher
Wilson coefficients to contribute much, and as such
the EFT analysis should continue to hold even for these
S-matrices, which can be thought of as strongly coupled
cousins of QED.
The main conclusion that we have for the photon

bootstrap data is that we find the same EFT boundary
mentioned above which separates Bell-violating theories
from Bell nonviolating theories, valid not just at low
energies but up to a scale that is roughly 30 times the
electron mass. This is not unexpected for two reasons.
First, α runs with energies. As mentioned above, including
the 2-loop value [22] f2=g2 ¼ − 3

11
− 130α

363π ≈ −0.2736, using

α ¼ 1=137. Since α becomes larger at higher energies, we
can expect that the value for jf2=g2j which determines the
Bell-violating boundary will become bigger than −0.2736.
The numerical S-matrix data appears to supports this
expectation. Next, as we mentioned above QED is deep
inside the allowed region. At higher energies, the contri-
bution of the higher Wilson coefficients will become
important.
For pions, we use the numerical data in [44] obtained

following [45,46]. In such a setup, we assume that the pion
scattering respects crossing symmetry and unitarity.
We also incorporate the location of the first massive
resonance ρ meson. Then to parametrize the space of
allowed S-matrices, we use the Adler zeros s0, s2. If in
addition to these, we enlarge the set of constraints by allow
S- and D-wave inequalities that is obeyed by chiral pertur-
bation theory (χPT) as well as respected by experimental
data, then we get a more interesting space of allowed
S-matrices, which was dubbed as the “river” in [44].
Regge behavior (where the spin of the resonances, J and
the squared masses obey a linear relationship) was observed
in two small regions on the boundary of the theory space.
One region included the χPT value and lived on the upper
bank of the river while another region was distinct from χPT
and lived on the lower boundary. For the pion bootstrap, we
observe that there is a distinct drop in the Bell parameter
(obtained using the CGLMP version, since pions are qutrits)
near the χPT location. In [44], it was pointed out that a drop
in entanglement (specifically the entanglement power)
is correlated with the emergence of Regge behavior.
An argument as to why this is plausible was presented
in [47]. Our findings give further support to this observation
but in a clearer manner than what was possible in [44]. It
appears to us that the Bell parameter is a better “order
parameter” to distinguish theories. In [48], entanglement
minimization was used to derive the parameters of Einstein
gravity.

II. BELL INEQUALITIES IN 2-2 SCATTERING

We briefly discuss Bell inequalities [2,18,19] in the
context of 2-2 scattering. First we will focus on qubit
system. The general-dimensional system will be discussed
in Sec. VII. Our setup is illustrated in Fig. 1. After
scattering, one particle reaches Alice (A) and another
reaches Bob (B). Alice decides to measure one of two
physical properties, A1 or A2, taking values 0,1. Similarly
Bob can measure B1 or B2, taking values 0,1. The joint
probability for Alice measuring A1 ¼ j and Bob measuring
B1 ¼ l is given by PðA1 ¼ j; B1 ¼ lÞ. Similar interpreta-
tion follows for PðA1 ¼ j; B2 ¼ mÞ, PðA2 ¼ k; B1 ¼ lÞ,
and PðA2 ¼ k; B2 ¼ mÞ. Specific combinations of the joint
probabilities can be written which give an upper bound for
local hidden variable theories, which can be violated in a
quantum theory. We follow [19] to define the CGLMP
version of the Bell parameter:
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I ¼ ½PðA1 ¼ B1Þ þ PðB1 ¼ A2 þ 1Þ þ PðA2 ¼ B2Þ
þ PðB2 ¼ A1Þ� − ½PðA1 ¼ B1 − 1Þ þ PðB1 ¼ A2Þ
þ PðA2 ¼ B2 − 1Þ þ PðB2 ¼ A1 − 1Þ�; ð6Þ

where the probability PðAa ¼ Bb þ kÞ is defined using the
joint probabilities via [49],

PðAa¼BbþkÞ≡X1
j¼0

PðAa¼ðjþkÞmod 2;Bb¼ jÞ: ð7Þ

For a local deterministic hidden variable theory, one has
B1−A1 ¼ l− j;A2−B1¼ k− l;B2−A2¼m−k;A1−B2 ¼
j−m, which add to zero. Thus, any three probabilities in
the first line of (6) and one in the second line, or vice versa,
can hold [19]. In such a theory, −2 ≤ I ≤ 2. In a quantum
mechanical theory, one finds that jIj > 2 is possible and the
maximum value of the Bell parameter jIjmax ¼ 2

ffiffiffi
2

p
. Bell

violation in a quantum theory means

2 < jIj ≤ 2
ffiffiffi
2

p
: ð8Þ

Quantum observables are Hermitian operators. Since we
are considering a qubit system, the general form of the
operators Â1; Â2 and B̂1; B̂2, measured by Alice and Bob
are a linear combination of Pauli operators σ1, σ2, σ3.
The coefficients in these combinations are called measure-
ment parameters. For example CGLMP [19] choose
Âa¼−cosπαaσ1þsinπαaσ2;B̂b¼−cosπβbσ1þsinπβbσ2
where the measurement parameters are α1 ¼ 0; α2 ¼ 1=2;
β1 ¼ 1=4; β2 ¼ −1=4. After, we have the operators for
measurements, and given the quantum states jψi of two-
dimensional entangled systems, we calculate the joint
probability, and hence the Bell parameter I. For example,
the choice in [19] gives the value of I to be 2

ffiffiffi
2

p
for the

maximally entangled state ðj0; 0i þ j1; 1iÞ= ffiffiffi
2

p
. There are

multiple measurement parameters that can give the maxi-
mum value of the Bell parameter jIjmax ¼ 2

ffiffiffi
2

p
.

A. MES setting

We define an MES setting as a particular set of
measurement parameters that give jIj ¼ 2

ffiffiffi
2

p
for a max-

imally entangled state. Why the MES settings take a
distinguished position is explained in Appendix.

III. THE 2-2 SCATTERING AMPLITUDES

In this section we introduce the basic notion for 2-2
scattering amplitudes. Let the initial state and final state be
jp1; λ1;p2; λ2i and jp3; λ3;p4; λ4i respectively, where λ1,
λ2, λ3, and λ4 helicity indices, take the values λi ¼ þh;−h,
with h ¼ 1 for photons and h ¼ 2 for gravitons. We will
assign þh → 1;−h → 0, for notational convenience. For
the pion scattering the λi are isospin indices taking values
0, 1, 2. The S-matrix (in-out convention) is defined as

hp3; λ3;p4; λ4jSjp1; λ1;p2; λ2i
¼ 1þ iδ4ðp1 þ p2 − p3 − p4ÞMλ3λ4

λ1λ2
ðs; t; uÞ; ð9Þ

where s, t, u are the usual Mandelstam variables such that
sþ tþ u ¼ 0 for photons or gravitons, while sþ tþ u ¼
4m2 for pions and electrons. We will be interested in
situations where the initial states have undergone scattering
and hence, Mλ3λ4

λ1λ2
ðs; t; uÞ is the object of interest.

A. Photons and gravitons

There are total sixteen photon or graviton transition
scattering amplitudes. Since we are considering scattering
of identical particles and we assume parity symmetry, there
are only five distinct center-of-mass amplitudes [42]. We
will denote then as

Φ1ðs; t; uÞ≡Mþþ
þþðs; t; uÞ; Φ2ðs; t; uÞ≡M−−þþðs; t; uÞ;

Φ3ðs; t; uÞ≡Mþ−
þ−ðs; t; uÞ; Φ4ðs; t; uÞ≡M−þ

þ−ðs; t; uÞ;
Φ5ðs; t; uÞ≡Mþ−

þþðs; t; uÞ: ð10Þ

Due to crossing symmetry only the amplitudes are inde-
pendent are Φ1, Φ2, and Φ5, while the Φ3ðs; t; uÞ and
Φ4ðs; t; uÞ can be related to Φ1ðs; t; uÞ as

Φ3ðs; t; uÞ ¼ Φ1ðu; t; sÞ; Φ4ðs; t; uÞ ¼ Φ1ðt; s; uÞ:

The rest of the helicity configurations are related to Φi’s as
follows:0
BBBBB@
Mþ−

þ− Mþþ
þ− Mþ−

−− Mþþ
−−

M−−þ− M−þ
þ− M−−

−− M−þ
−−

Mþ−
þþ Mþþ

þþ Mþ−
−þ Mþþ

−þ
M−−þþ M−þ

þþ M−−
−þ M−þ

−þ

1
CCCCCA¼

0
BBBBB@
Φ3 Φ5 Φ5 Φ2

Φ5 Φ4 Φ1 Φ5

Φ5 Φ1 Φ4 Φ5

Φ2 Φ5 Φ5 Φ3

1
CCCCCA:

ð11Þ

FIG. 1. Two particles jp1; σ1i and jp2; σ2i scatter and one
particle (jp3; σ3i) reaches Alice and another (jp4; σ4i) reaches
Bob, where jpi; σii denotes a state of momentum pi and helicity
σi ≡�.
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B. Fermions

In this section we will consider 2-2 fermion scattering,
namely for illustration we consider Bhabha scattering of
electron-positron pair with photon, Z-boson and graviton
exchange. The amplitude for a generic exchange with the
explicit spin index, can be written as

Ms3;s4
s1;s2 ¼ v̄s2ðp2ÞΓfAgus1ðp1ÞEfAg;fBgūs3ðp3ÞΓfBgvs4ðp4Þ

− ð2 ↔ 3Þ; ð12Þ

where fAg; fBg are proxy for summed dummy index (there
can be more than one).
For photon exchange the coupling and propagator is

given by

ΓfAg ¼ ieγμ; ΓfBg ¼ ieγν; EfAg;fBg ¼
ημ;ν
s

:

For Z-boson exchange the coupling and propagator is
given by is given by

EfAg;fBg ¼
ημ;ν

s −M2
z
; ΓfAg ¼ i

g
cos θW

γμðgfV − gfAγ
5Þ;

ΓfBg ¼ i
g

cos θW
γνðgfV − gfAγ

5Þ;

where g ¼ e
sin θw

, gfV ¼ −1=4, gfA ¼ −1=4þ sin2θw, with θw
being the Weinberg angle.
For graviton exchange the coupling is given by is given

by [50]

ΓfAg ¼ −
iκ
4
ðγμpν

1 þ pμ
2γ

νÞ;

ΓfBg ¼ −
iκ
4
ðγαpρ

3 þ pα
4γ

ρÞ;

EfAg;fBg ¼
1

2s
ðgμαgνρ þ gμρgνα − gμνgαρÞ;

with κ ¼ ffiffiffiffiffiffiffiffiffi
8πG

p
. We tabulate the amplitudes for each little

group index in the Appendix in various limits of energy and
angles, which will be frequently used in the upcoming
sections.

IV. BELL INEQUALITY IN 2-2 PHOTON
SCATTERING

Photons have two helicities þ and −. We will
consider entanglement among the helicity states for 2-2
photons scattering. In our considerations, we fix the
incoming two photons helicity to be þþ or −−. After
the scattering takes place, the final helicities can be
þþ;þ−;−þ, and −−, and we will denote the transition
amplitudes Mþþ

þþ;M
þ−
þþ;M

−þ
þþ, and M−−þþ respectively, as

functions of s, t, u Mandelstam variables such that
sþ tþ u ¼ 0. The subscript refers to the in-state helicities

while superscript refers to the out-state helicities. We refer
the reader to Appendix for a discussion on S-matrices of
2-2 photon scattering. At low energies, the contributions
M−þ

þþ ≈ 0;Mþ−
þþ ≈ 0 are negligible. Let us denoteMþþ

þþ ¼
Φ1;M−−þþ ¼ Φ2. The final state works out to be jψi ¼
N ðΦ1j0; 0i þΦ2j1; 1iÞ, with N ¼ ðjΦ1j2 þ jΦ2j2Þ−1=2.
We shall calculate the Bell parameter I for different
measurement parameters. As explained above, our choice
is the MES parameters. One particular case of MES
parameters, given in [19] and reviewed above, leads to

I ¼ Iþþ ¼ I−− ¼ 2
ffiffiffi
2

p ðΦ1Φ�
2 þΦ2Φ�

1Þ
jΦ1j2 þ jΦ2j2

: ð13Þ

The superscripts on I indicate polarizations of the incoming
photons. For a general measurement setting, the expression
for I can be found in Appendix. In an EFT, the low-energy
transition amplitudes Φ1, Φ2 are real functions in general
and can be written in terms of the Wilson coefficients [42]
(ignoring graviton exchange for now) Φ1ðs; t; uÞ ¼
g2s2 þOðs3Þ, Φ2ðs; t; uÞ ¼ f2ðs2 þ t2 þ u2Þ þOðstuÞ.
The condition (8) leads to

ffiffiffi
2

p
− 1 ≤

����Φ1

Φ2

���� ≤ ffiffiffi
2

p
þ 1: ð14Þ

Even though Eq. (14) is derived using the measurement
parameters in [19], a crucial point is that this is the optimal
bound on the ratio j Φ1

Φ2
j for any MES setting. The derivation

is given in Appendix.
At low energies we have j Φ1

Φ2
j ¼ 2jf2=g2jð1 − sin2 θ

2
þ

sin4 θ
2
Þ, for a scattering angle 0 ≤ θ ≤ π. The θ dependent

part has maximum value 1 and minimum value 3
4
. This

translates to

0.276 ≈
2

3
ð

ffiffiffi
2

p
− 1Þ ≤

���� f2g2
���� ≤

ffiffiffi
2

p þ 1

2
≈ 1.21: ð15Þ

A. Including the graviton

Let us consider graviton exchange in LbyL scattering.
The transition amplitudes now are given by Φ1 ≃ s3=
ðM2

PtuÞ þΦ1;SM, Φ2 ≃Φ2;SM. In this case Mþ−
þþðs;t;uÞ¼

M−þ
þþðs;t;uÞ¼Φ5≃αðs2þ t2þu2Þ=ð360πm2

eM2
PÞ, where

the subscript SM indicates what we have been using so
far and MP is the Planck mass. The Bell parameter I
for the measurement settings in [19] and used so far
works out to be I ¼ Iþþ ¼ I−− ¼ 2

ffiffiffi
2

p ðΦ1Φ�
2 þΦ2Φ�

1Þ=
ðjΦ1j2 þ jΦ2j2 þ 2jΦ5j2Þ. Now I is a function of ẽ≡ e

mMP,
the scattering angle θ and s. Due to the graviton pole at
t ¼ 0, Bell inequalities are obeyed in the forward limit.
Interestingly, now there is a critical ẽc below which there
is no violation for 0 ≤ θ ≤ π. An approximate formula
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for critical value ẽc at s ¼ Λ2 is ẽc ≈ 13.8σ−1=4, where
σ ¼ Λ2=M2

P ≪ 1. We see that lower the energy, bigger the
critical value ẽc. To have Bell violation for some scattering
angle θ, we must have

e
m

≥
ẽc
MP

: ð16Þ

(16) is reminiscent of the weak gravity conjecture [36,37]

which states that e
m ≥

ffiffi
2

p
MP

. If the weak-gravity conjecture is
not satisfied then the Bell inequality is satisfied.

B. The need for an axion/ALP

As stated above, the QED 1-loop answer for f2=g2 ¼
− 3

11
≈ −0.2727 and after adding the 2-loop results [22],

one has f2=g2 ≈ − 3
11
− 130α

363π ≈ −0.2736, which is closer to
saturating the Bell violation condition in Eq. (3). One might
wonder if the 3-loop contribution will push it further.
Unfortunately, this has not been calculated so far [22] but it
is possible to argue that this will not affect f2=g2 at the third
decimal place, which is where the difference with Eq. (15)
lies. For 3-loop QED, we expect to have − 3

11
− 130α

363π − cα2,
where c is at most an Oð1Þ number, in keeping with the
2-loop result, and will contribute at most to the fourth
decimal place.
Any additional contribution from the standard model

will not change the result. To see this, simply note that on
dimensional grounds, we expect these contributions to be
suppressed by ðme=MÞ4 where M is the mass of the
additional particle incorporated in the discussion. Such a
particle can be a lepton, W-boson [51] or pion [52]. The
muon and pion both will be suppressed by 10−10 while the
other contributions will be more so. Hence, none of SM
particles can change the f2=g2 at the third decimal place.
In Fig. 2, we have shown a zoomed plot for I versus the

scattering angle for the settings in [19]. As is clear, except
for a small region near θ ¼ π=2, jIj ≥ 2 in the standard
model. We can reinterpret the situation differently. Let us
imagine experimentalists making Bell correlation measure-
ments with any of the MES settings and at some randomly
chosen θ. What is the probability of obtaining Bell
violation? Figure 3 addresses this question. The region
of interest is the transverse region as away from this region,
Bell violation happens for any θ. Various theories are
indicated in the figure; Born-Infeld action in string theory
and supersymmetric QED have f2=g2 ¼ 0. Except for the
standard model, all theories shown either have probability
zero or probability unity. The inset figure makes it clear that
for the standard model, where the main contribution comes
from QED, Bell violation happens for all θ except near
θ ¼ π=2. The probability of finding Bell violation for some
randomly chosen θ in the standard model is simply the area
under the green curve divided by π—this works out to be
approximately 0.9995. We can also consider an entangled

initial state cospj1; 1i þ sinpj0; 0i with 0 ≤ p ≤ π=2.
Here the probability of finding Bell violation for some
initial state of the above form and at a randomly chosen
scattering angle turns out to be 0.999998.
Can this probability be made unity to avoid this apparent

fine-tuning? From Table 1 in Appendix, this appears to need
either the pseudoscalar, or parity-odd spin-2. The pseudo-
scalar is the simplest and most well-motivated possibility as
it corresponds to the axion/ALP. In the low-energy EFT, the
contribution of a single ALP to the Euler-Heisenberg
Lagrangian is [53] La;EFT ¼ g2aγγ

32m2
a
ðFμνF̃μνÞ2 where gaγγ is

FIG. 2. Bell parameter I vs the scattering angle θ for the settings
in [19]. Standard model (red) violates the Bell inequality for all
0 ≤ θ ≤ π except for a tiny region around θ ¼ π

2
.

FIG. 3. Main: The probability of Bell violation in transverse
direction (θ ¼ π=2) for random MES parameters as a function of
jf2=g2j. jf2=g2j ≈ 0.276 is indicated by a black dashed line while
the standard model is indicated in red. Inset: The probability
of Bell violation in the standard model for random MES
parameters [50] as a function of θ.
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theALP-photon coupling andma is themass of theALP.The
contribution to g2, f2 is given by

f2
g2

≈ −
3

11
−
130α

363π
−
90g2aγγm4

e

121α2m2
a
: ð17Þ

Now in order to saturate the f2
g2
≈ −0.276, we must have [54]

���� gaγγðGeV−1Þ
maðeVÞ

���� ∼ 1.66 × 10−6: ð18Þ

The situation is explained in Fig. 4 along with the exper-
imental data available [34].
Remarkably, (18) allows for a parameter region which is

going to be probed in near-future experiments [34]. If the
axion saturates f2=g2 ≈ −0.276, then it should lie on the
gray band indicated in Fig. 4. An axion in the white region
can explain Bell violation for all θ. Strictly speaking, so that
the axion contribution does not overwhelm the one-loop
answer, a narrower band close to the gray band should be
considered. Such an axion can potentially explain the
horizontal band (HB) star luminosity [56] and high-energy
gamma transparency of the Universe [57].
Can the axion/ALP that we are predicting be the one that

solves the strong CP problem? In Fig. 4, the standard
QCD axion is indicated by the orange band, which is
in the region incapable of explaining any putative Bell

violation at θ ¼ π=2. However, for phenomenological
considerations [55] considered a model with an enhanced
axion coupling that arises due to integrating out a mag-
netically charged heavy fermion. Essentially, the enhance-
ment is due to the Dirac charge quantization condition
whereby the magnetic charge is inversely proportional to α.
This leads to the yellow band, which was dubbed as
AdS/QCD in [55], as the strong coupling in the calculation
was restricted using AdS/QCD. Our prediction is close to
this band. Such an axion is indeed capable of solving the
strong CP problem.

C. Quantum gravity effects

The transition amplitudes now are given by
Φ1 ≃Φ1;ðγ;aÞ þ s

M2
P sin

2ðθÞ, Φ2 ≃Φ2;ðγ;aÞ, where MP is the

Planck mass and the subscript ðγ; aÞ indicates contribution
from photons and axions. Note that Φ1;ðγ;aÞ ≈ #s2 in the
low-energy limit. Hence for a fixed θ the gravity term
dominates. For simplicity we will fix θ ¼ π=2.
The Bell parameter I for the measurement settings

in [19] and used so far works out to be

I ¼ Iþþ ¼ I−− ¼ 1.98899 −
1.41413

gðQEDÞ2 M2
Ps

þ 3.8388g2am4
e

α2m2
a

:

We expect that the axion contribution will dominate over
quantum gravity effects, hence we find

ga ≳ 1.22
δ−1=2

MP
; ð19Þ

at a energy s ¼ δ ×m2
a, in order to have a third decimal

place change in I. For example if δ ¼ 0.1, we have
ga ≳ 10−18 GeV−1. A similar observation was made in [58].

V. BELL INEQUALITY IN 2-2 GRAVITON
SCATTERING

For the case of graviton, the low-energy amplitudes Φ1,
Φ2, and Φ5 can be written as [40,59]

Φ1ðs;t;uÞ¼ s4
�
8πG
stu

þ2πβ23Gtu
s

−
β2ϕ
s
þg2þg3s

�
þOðs6Þ;

Φ2ðs;t;uÞ¼ stuð40πβ3G−3β2ϕÞþf0

þf2ðs2þ t2þu2ÞþOðs4Þ;

Φ5ðs;t;uÞ¼ s2t2u2
�
4πβ3G
stu

þh3

�
þOðs7Þ: ð20Þ

We can consider all the higher-derivative terms to be turned
off such that only β3 and G survives. This gives us

Astrophysics

CAST

Ad
S/
QC
D

KS
VZ
/D
FS
Z

Astrophysics

CAST

Be
ll b
ou
nd
s

KS
VZ
/D
FS
Z

Be
ll b
ou
nd
s

FIG. 4. jgaγγjðGeV−1Þ vsmaðeVÞ constraints. TheCASTexperi-
ment exclusion region is given in red; the green exclusion region
comes from astrophysical observations of gamma rays from
SN87A, NGC1275 [34]. The orange band is the KSVZ/DFSZ
QCD axion which solves the strong CP problem. The blue
horizontal band indicates possible allowed parameter space which
can explain HB star luminosity and high energy gamma trans-
parency of theUniverse. The yellow band is aQCD axion obtained
by integrating out amagnetically charged heavy fermion [55]. Bell
saturation gives the narrow gray band; an axion in thewhite region
will remove the fine-tuning described in the text.

BELL INEQUALITIES IN 2-2 SCATTERING PHYS. REV. D 108, 025015 (2023)

025015-7



Iþþ ¼ I−− ¼ 80
ffiffiffi
2

p
β3s2t2u2ðβ23t2u2 þ 4Þ

β43s
4t4u4 þ 8β23s

4t2u2 þ 16s4 þ 408β23t
4u4

:

ð21Þ

Note that Bell parameters are zero for s ¼ 0 as well as
θ ¼ 0. We find that for any finite χ, s such that t=s ¼
χ ¼ finite, we find that the above has maximum Iþþ ¼
I−− ¼ 20ffiffiffiffi

51
p ¼ 2.80056 [for example cosðθÞ ¼ −0.44,

β3 ¼ 2.43, s ¼ 1.89] and minimum is − 20ffiffiffiffi
51

p ¼ −2.80056
[for example cosðθÞ ¼ −0.28, β3 ¼ −4.67, s ¼ 1.09].
We can write β3 ¼ c3=M4, where M is the mass of the

lightest higher-spin massive particle. We can compute
the Bell inequalities for s ¼ M2. For physical values of
the angles 0 ≤ θ ≤ π, we find −1.37 < c3 < 1.37 leads to
no Bell violations. There can be large values jc3j ≳ 46.71
which will again give no violation. Bell violation
happens only in the window 1.37≲ c3 ≲ 46.71 and
−1.37≳ c3 ≳ −46.71, and away from the forward/
backward limit. The situation is depicted in figure 5. If
we demand Bell violation then we must have
1.37 < jc3j < 46.71, which implies that the CEMZ [39]

condition holds, namely β3 ≈
Oð1Þ
M4 . The take-home state-

ment is then “Bell violation condition implies CEMZ-like
condition” in this case. Further we find that for finite t, s
has maximum I−þ ¼ Iþ− ¼ ffiffiffi

2
p

and minimum is 0. For
tree-level superstring theory, it turns out [60] that
Iþþ ¼ 0 ¼ I−þ.

VI. BELL INEQUALITY IN BHABHA
SCATTERING

Let us now consider Bhabha scattering eþe− → eþe−
with the initial state polarizations þþ or −− allowing for
photon and Z-boson (with mass MZ) exchange at low
energies. We find that near s ∼ 4m2

e, I ¼ Iþþ ¼
I−− ¼ −2

ffiffiffi
2

p þOððs − 4m2
eÞ2Þ, so we always have Bell

violation for all angles. For photon and graviton exchange
the answer is the same (for photon exchange see

also [62]). Interestingly, near s ¼ M2
Z, we find that

I ≈ −2
ffiffiffi
2

p
sin2 θ=ðð4 sin2 θW − 1Þ2 þ 1Þ, where sin θW is

the Weinberg angle and we have used MZ=me ≫ 1. In
order to have Bell violation for some physical scattering
angle 0 ≤ θ ≤ π, one must have 0.09≲ sin2 θW ≲ 0.41
and for maximal violation jIj ¼ 2

ffiffiffi
2

p
one must have

sin2 θW ¼ 0.25, which is very close to the experimental
value 0.223. Maximal concurrence leads to the value
sin2 θW ¼ 0.25 [63]. This agreement is expected, since
for qubits there is a one-to-one correspondence between
maximum Bell violation and maximum concurrence.
In the case of Bhabha scattering with graviton exchange

since the exchange pole is a massless pole, we don’t see any
noticeable change in the Bell parameters. The reason is that
to excite the pole contribution we have to probe the energy
regime around the pole, which is s ¼ 0. This is not a
physical regime as s ≥ 4m2

e in this case. We always find
Iþ−
3 ¼ I−þ3 ¼ 0 in the forward limit and Iþ−

3 ¼ I−þ3 ¼
Oðs − 4m2

eÞ2 in the low-energy limit.

VII. BELL INEQUALITY IN 2-2 PION
SCATTERING

Since pion system is a qutrits system (three-dimensional
system), here we discuss the Bell CGLMP parameter for
general d-dimensional system.

A. Bell inequality for general-dimensional system

We will consider d-dimensional systems. Each meas-
urement can have d possible end results: A1; A2; B1; B2 ¼
0;…; d − 1. The Bell CGLMP parameter for general
d-dimensional system is defined as

Id ¼
X½d=2�−1
k¼0

�
1−

2k
d− 1

�

ð½PðA1 ¼ B1 þ kÞ þPðB1 ¼ A2 þ kþ 1Þ
þPðA2 ¼ B2 þ kÞ þPðB2 ¼ A1 þ kÞ�
− ½PðA1 ¼ B1 − k− 1Þ þPðB1 ¼ A2 − kÞ
þPðA2 ¼ B2 − k− 1Þ þPðB2 ¼ A1 − k− 1Þ�Þ; ð22Þ

where we have defined the probability PðAa ¼ Bb þ kÞ
as [64,65]

PðAa ¼ Bb þ kÞ≡Xd−1
j¼0

PðAa ¼ jþ k mod d; Bb ¼ jÞ:

ð23Þ

We consider quantum states of d-dimensional entangled
systems

FIG. 5. Iþþ vs θ for graviton in leading order in EFTs. For
1.37 < jc3j < 46.71 there will be Bell violation.
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jψi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
d−1
m;n¼0 jμm;nj2

q Xd−1
m;n¼0

μm;njmiA ⊗ jniB; ð24Þ

where we have normalized such that hψ jψi ¼ 1. We
will assume [19] that the operators Aa; a ¼ 1, 2 and
Bb; b ¼ 1, 2, measured by Alice and Bob respectively
have the nondegenerate eigenvectors

jkiA;a ¼
1ffiffiffi
d

p
Xd−1
j¼0

XðaÞ
j;k jjiA;

jliB;b ¼
1ffiffiffi
d

p
Xd−1
j¼0

YðbÞ
j;l jjiB; ð25Þ

with XðaÞ
j;k ¼ expði2πd jðkþαaÞÞ, YðbÞ

j;l ¼ expði 2πd jð−lþ βbÞÞ
and where α1 ¼ 0, α2 ¼ 1=2, β1 ¼ 1=4, and β2 ¼ −1=4.
As explained in [19], the measurements correspond to
giving the states jjiA and jjiB a phase which depends on the
choice of measurement followed by a measurement in the
Fourier transform basis or an inverse Fourier transform
basis. For the purpose of our paper, we will be content with
using the resulting Bell parameter I3 as a kind of “order
parameter” to distinguish theories in the S-matrix space.
Above, we have quoted the measurement settings given
in [19], which is what we will use. A potential generali-
zation of this analysis is to replace αa, βb by αaj; βbj and
maximize I3 over this 12 parameter space for a given state
jψi. General choice of αaj; βbj will be discussed in
Appendix. In the setup used in [19] and summarized
above, we obtain

PðAa¼ k;Bb ¼ lÞ¼ hψ jðjkiA;a ⊗ jliB;b A;ahlj⊗B;b hkjÞjψi

¼N
Xd−1

m;n;m0;n0¼0

μm0;n0μ
�
m;nX

ðaÞ
m;kX

�
m0;kY

ðbÞ
n;l Y

�
n0;l

¼N

���� Xd−1
m;n¼0

μm;nX
ðaÞ
m;kY

ðbÞ
n;l

����
2

; ð26Þ

with N ¼ 1

d2
P

d−1
m;n¼0

jμm;nj2
. We can put the above probability

in Eq. (23), and then Eq. (6) will give I3 for generic μm;n.

B. Bell inequality in 2-2 pion scattering

The pion transition amplitude can be written as [44]

Ma3a4
a1a2ðs; t; uÞðs; t; uÞ ¼ Aðsjt; uÞδa1a2δa3a4

þ Aðtju; sÞδa1a3δa2a4
þ Aðujs; tÞδa1a4δa2a3 ; ð27Þ

where the index ai runs over 0, 1, 2. Crossing symmetry on
Aðsjt; uÞ is given by Aðsjt; uÞ ¼ Aðsju; tÞ. Now the external
states are isospin eigenstates. In nature, pions appear in
mass eigenstates defined via

jπ0i¼ j0i; jπþi¼ j1iþ ij2iffiffiffi
2

p ; jπ−i¼ j1i− ij2iffiffiffi
2

p : ð28Þ

There are six independent in-states, namely π0π0; πþπ0;
π−π0; πþπ−; πþπþ; π−π−.
We will consider a generic final states, a generic

superposition in isospin basis. Hence we find six different
Bell expressions with different μm;n

π0π0
; μm;n

πþπ0 ; μ
m;n
π−π0

; μm;n
πþπ− ;

μm;n
πþπþ ; μ

m;n
π−π− . For example μm;n

πþπ− can be figured out in

the following manner:

μm;n
πþπ− ¼ hmj ⊗ hnjMjπþi ⊗ jπ−i

¼ Mm;n
1;1 þMm;n

2;2 − iMm;n
1;2 þ iMm;n

2;1

2
: ð29Þ

Similarly one can find out all other μ’s. Hence using
these six set of μππ , we can easily find Iππ3 using (23), (26),
and (6). We find that

Iπ
þπ0

3 ¼ Iπ
−π0

3 ¼ 0; Iπ
þπþ

3 ¼ Iπ
−π−

3 ¼ −
1ffiffiffi
3

p :

The nontrivial two are Iπ
þπ−

3 and Iπ
0π0

3 ,

Iπ
þπ−

3 ¼ 1

9ð2jM0j2 þ 3jM1j2 þ jM2j2Þ
½8ð2

ffiffiffi
3

p
þ 3ÞjM0j2 − 2ð

ffiffiffi
3

p
þ 6ÞjM2j2 þ 2ð

ffiffiffi
3

p
− 3ÞðM0M�

2 þM2M�
0Þ�

Iπ
0π0

3 ¼ 1

9ðjM0j2 þ 2jM2j2Þ
½4ð2

ffiffiffi
3

p
þ 3ÞjM0j2 − 4ð

ffiffiffi
3

p
þ 6ÞjM2j2 − 2ð

ffiffiffi
3

p
− 3ÞðM0M�

2 þM2M�
0Þ�; ð30Þ

where M0 ¼ 3As þ At þ Au, M1 ¼ At − Au, M2 ¼
At þ Au and we have shortened Aðsjt; uÞ ¼ As and so on.
We can write a low-energy expansion of Aðsjt; uÞ

Aðsjt;uÞ¼ s
f2π

þb3s2þb4ðt−uÞ2
f4π

þOðs3ÞþLoops ð31Þ

For a finite angle 0 ≤ θ ≤ π and around s ≈ 4, we get

Iπ
þπ−

3 ¼ 2.87293 − 0.75138
b4
f2π

þO

�
1

f3π

�
;

Iπ
0π0

3 ¼ 2.87293þ 1.50275
b4
f2π

þO

�
1

f3π

�
: ð32Þ
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For Iπ
þπ−

3 when the Bell inequality is violated, we have
0 ≤ b4

f2π
≲ 1.16, while for Bell violation of Iπ

0π0
3 , we must

have 0 ≥ b4
f2π
≳ −0.58. The positivity bound is

0 < b4
f2π
≲ 0.41, see [66–68]. In order to satisfy the positivity

bounds, there will be Bell violations at s ≈ 4. For χPT the
experimental value ðb4f2πÞχPT ¼ 0.00967, which will violate

the Bell inequalities at s ≈ 4.

VIII. S-MATRIX BOOTSTRAP: DISTINGUISHING
THEORIES

In this section we will consider the Bell parameter in
pion scattering and photon scattering but in theory space
generated by the S-matrix bootstrap. We have different
expectations for the two cases. In the pion case, we expect
resonances. The ρ-resonance was put in by hand and it
can be expected that other resonances, for instance the f0
resonance will emerge for a theory that approximates QCD.
Near a resonance, there will be an enhancement of of the
amplitude in such a way that the final state is approximately
a direct product state. Thus, near the QCD point in theory
space, we may expect a decrease in the Bell parameter.
While this intuition bears out, we should point out that the
correlation between the Bell parameter and other entangle-
ment measures like concurrence, negativity and entangle-
ment entropy is indirect—we show this in the Appendix.
For the photon case, at low energies we expect the same
findings as we obtained in the EFT analysis. However, here
we can probe further and ask up to what scale will the QED
f2=g2 value serve as a boundary between Bell violating
theories and non-Bell violating theories. We should expect
that at least until other massive states like vector bosons
become important in the analysis, the EFT findings
should hold.

A. Pion scattering

For various S-matrix amplitudes in [44], we can plot
Iπ

þπ−
3 and Iπ

0π0
3 vs Adler zero s0 for different values of s (see

Fig. 6 for details). The low-energy behavior of Iπ
þπ−

3 shows
an interesting dip, which is exhibited for s ¼ 4.1 to 10.1 in
the forward limit, in Fig. 6(a), while for high-energy values
we show in Fig. 6(b) for various values of angles θ. We
define an averaged I3,

Îπ
þπ−

3 ¼ 1

smax − 4

Z
smax

4

dsIπ
þπ−

3 ; ð33Þ

which is presented in Fig. 6(b) with smax ¼ 90. We find that
the behavior is same for various s, θ values form Figs. 6(a)
and 6(b). More interestingly both plots show a universal
global minimum around s0 ≈ 0.4, which is very close to the
QCD value s0 ¼ 0.42 (see [44]). Further, the location of the
minimum coincides with the S-matrices exhibiting Regge

behavior, i.e., the spin J vs m2 of the real part of the
resonances lie approximately on a straight line [44].

B. Photon scattering

For various S-matrix amplitudes in [42], we can plot
Iþþ ¼ I−− vs f2=g2 for different values of s. Note that
I−þ ¼ Iþ− ¼ 0 since ϕ5 ≈ 0 for these S-matrices. We plot
the nonzero Bell parameter for the S-matrices obtained in
[42] by minimizing [69] ḡ4 vs f̄2 in 7. Low-energy behavior
of jIþþj vs θ for various f̄2 is shown in Fig. 7(a). We choose
the energy [70] to be s ¼ 0.01. In [42], discrete values of
f2=g2 have been used. We use the I3 for these values and
find an interpolating function. We find that at low energy,
Bell violation starts when j f2g2 j > 0.276, which is the very

close to the QED value ðf2g2ÞQED ¼ −0.2736. We see from

the figure that our EFT analysis is in complete agreement.
General profile of f2 vs s for which Iþþ > 2 allowing all
values of θ is shown in Fig. 7(b)—in this figure, we have
kept the f2=g2 values as the discrete choices used in [42].
We see from Fig. 7(b), that to have minimum Bell violation
for high energy one must have jf̄2j ≈ 0.3, which is close to
the QED value.

IX. DISCUSSION

In this paper, we have investigated Bell violation in
various scattering processes and have made very interesting
observations.

FIG. 6. The Iπ
þπ−

3 and Iπ
0π0

3 vs Adler zero s0 for different values
of s; θ; smax.
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The most interesting one pertains to LbyL scattering. For
LbyL scattering at low energies, we have exhibited a novel
fine-tuning problem in the Bell parameter, namely that the
probability of detecting Bell violation using a continuous
family of naturally motivated measurement settings at a
randomly chosen scattering angle is very close to unity.
Incorporating an axion or ALP removes this fine-tuning
problem and predicts a line in the coupling-mass parameter
plane on which the putative axion should lie. This pre-
diction can be tested in near-future experiments that have
already been designed to probe this parameter space. A
direct measurement of the Bell parameter in LbyL scatter-
ing at low energies seems prohibitively difficult. The
smallness of the fine-structure constant and the fact that
the process happens at one-loop makes the probability of
scattering extremely tiny, being proportional to α4ðs=m2

eÞ2.
As such, the simplistic set-up where one scatters photons
off each other and sits with detectors off forward limit,
gives time scales that are many times larger than the age of
the Universe. It will be interesting to revisit this calculation
in the context of heavy-ion collisions [71] where the energy

scale is larger and hence the probability of scattering is
bigger. However, this will be outside the purview of the
effective field theory considerations used in this paper,
where the energy scales considered are assumed to be lower
than the hypothetical axion mass in the problem. Another
point that needs further consideration is the inclusion of the
graviton in the calculation. If the graviton fluctuates, then
the notion of an angle becomes fuzzy and there should be
some averaging over this fuzziness. We have not taken this
into consideration in our analysis. We have simply assumed
that quantum gravity effects should be suppressed com-
pared to the axion physics.
In the S-matrix bootstrap approach, it will be interesting

to constrain the theory space by maximizing the Bell
parameter for the MES settings to see what the resulting
S-matrices look like. One of the main motivations for us to
examine Bell inequalities was to ask the question: How do
we distinguish consistent theories from one another and
why should a specific theory be the one that describes
observed physics? To reiterate, we found nothing interest-
ing in the entanglement measures such as entanglement
entropy, negativity and concurrence which would distin-
guish the standard model from other theories. However,
there was an almost definitive signature in the Bell
parameter analysis, although we were not able to account
for the sign. In the bootstrap, we assume Born rule to hold
and typically impose unitarity and crossing symmetry as
constraints. It will be interesting to revisit the analysis of
this paper by relaxing some of these assumptions.
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APPENDIX A: THE MES MEASUREMENT
PARAMETERS

1. General measurement settings

We consider the measurement operators are of linear
combinations of Pauli matrices as

Â1 ¼ γ1I2 þ C⃗1 · σ;
!

Â2 ¼ γ2I2 þ C⃗2 · σ⃗;

B̂1 ¼ δ1I2 þ D⃗1 · σ⃗;

B̂2 ¼ δ2I2 þ D⃗2 · σ;
! ðA1Þ

FIG. 7. The behavior of Iþþ obtained from S-matrix bootstrap
data [42], for various energy s, angle θ and f̄2. (a) Low-energy
behavior of jIþþj vs θ for various f̄2. We choose low energy to be
s ¼ 0.01. The Bell violation starts at j f2g2 j > 0.276, which are
indicated in red. (b) The profile of f2 vs s for which Iþþ > 2 for
all allowed values of θ using bootstrap data [42].
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where I2 is the 2 × 2 identity matrix and σ1, σ2, σ3 are Pauli matrices. Restricting to eigenvalues of �1, we set
γi ¼ δi ¼ 0 and jC⃗ij ¼ jD⃗ij ¼ 1. We parametrize C⃗a ¼ fsin θa cosϕa; sin θa sinϕa; cos θag and D⃗a ¼ fsin θ0a cosϕ0

a;
sin θ0a sinϕ0

a; cos θ0ag. This gives for the state ðj00i þ xj11iÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
(for notational simplicity, we denote the −1;þ1

eigenstates by j0i; j1i, respectively)

I ¼ cos θ2ðcos θ02 − cos θ01Þ þ cos θ1ðcos θ01 þ cos θ02Þ þ
2x

x2 þ 1
½sin θ2 cosϕ2ðsin θ02 cosϕ0

2 − sin θ01 cosϕ
0
1Þ

þ sin θ2 sinϕ2ðsin θ01 sinϕ0
1 − sin θ02 sinϕ

0
2Þ þ sin θ1 cosϕ1ðsin θ01 cosϕ0

1 þ sin θ02 cosϕ
0
2Þ

− sin θ1 sinϕ1ðsin θ01 sinϕ0
1 þ sin θ02 sinϕ

0
2Þ�; ðA2Þ

where x ¼ Φ1

Φ2
. Thus the general form of I is

I ¼ γ þ β
x

x2 þ 1
: ðA3Þ

If we demand maximum Bell violation for the maximally
entangled state, x ¼ 1, we have γ ¼ 2

ffiffiffi
2

p
− β

2
. Further we

must have β ≤ 4
ffiffiffi
2

p
in order to avoid jIj > 2

ffiffiffi
2

p
for

x ¼ −1. The minimum value of β subject to the MES
condition is 2

ffiffiffi
2

p
. This can be found using the explicit

expression in terms of the angles given in (A2). Now
we can dial 2

ffiffiffi
2

p
≤ β ≤ 4

ffiffiffi
2

p
and ask the range of x for

which jIj > 2. For example when β ¼ 2
ffiffiffi
2

p
, we have

0.217 < jxj < 4.612. The optimal bound on x comes from
β ¼ 4

ffiffiffi
2

p
, which gives

ffiffiffi
2

p
− 1 ≤ jxj ≤ ffiffiffi

2
p þ 1, with the

corresponding value of I ¼ 4
ffiffi
2

p
x

x2þ1
. This is what we have

found using our choice of measurement parameters, see
Eq. (8) in the main text.

2. Why MES settings?

Why are we not considering all possible measurement
settings? In order probe the theory space, we need IðxÞ
to be single-valued in x, to be able to distinguish theories. If
we consider a stateN ðΦ1j00i þΦ2j11iÞwith x ¼ Φ1=Φ2,
then the maximum value of I over all measurement
settings can be shown to be ImaxðxÞ≡ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4x2=

p
ð1þ x2Þ2 ≤ 2

ffiffiffi
2

p
, with equality only for x ¼ �1.

The maximum Bell violation I ¼ 2
ffiffiffi
2

p
is clearly only for

the maximally entangled state. If for x ¼ 1 we have
jIj ¼ 2

ffiffiffi
2

p
− δ, for 2

ffiffiffi
2

p
− 2 > δ > 0, then there is always

some solution to ImaxðxÞ ¼ 2
ffiffiffi
2

p
− δ for x ≠ �1 for

some settings and hence IðxÞ will not be single valued
(see Fig. 8). What can be checked is that if we restrict to
settings with jIðx ¼ 1Þj fixed, then IðxÞ is indeed
single valued. Furthermore, we would like maximum
probability for Bell violation for SM. This is given by the
MES settings.

3. Details of simulations

In the main text, we have given the statistics for
randomly choosing MES measurement parameters. We
ask if we take some random MES measurement
parameters, what is the probability of Bell violation in
transverse direction. We use Mathematica to carry out the
simulation. Note that (A2) has eight variables. We can
randomize all eight variables and give I. From here we
select those which give I ¼ 2

ffiffiffi
2

p
to some desired accuracy

for x ¼ 1. We found this to be very time consuming. An
easier way is the following. First, we randomize four
variables in (A2) and for x ¼ 1 maximize with respect to
the other four variables in (A2). This way is significantly
faster.

4. Qutrit scenario

Let us now address the qutrit scenario. Here we show an
example which will explain why we choose our measure-
ment parameters to be α1 ¼ 0, α2 ¼ 1

2
, β1 ¼ 1

4
, β2 ¼ − 1

4
. Let

us consider the I3’s for 2-loop χPT. Once we fix the
parameters we get the I3’s as a function of s. Now we
consider that α1; α2; β1β2 are arbitrary, then maximize the
I3s for each values of s, see Fig. 9. The dashed lines are the
I3 correspond to the maximizing the I3’s for each values

FIG. 8. I vs x for various jIðx ¼ 1Þj ¼ 2
ffiffiffi
2

p
− δ, for

2
ffiffiffi
2

p
− 2 > δ > 0, then there is always some solution to

ImaxðxÞ ¼ 2
ffiffiffi
2

p
− δ for x ≠ �1 for some settings and hence

IðxÞ will not be single-valued. If we don’t fix the maximally
entangled state to be 2

ffiffiffi
2

p
− δ then we can get multivalued

answer.
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of s. During this maximization process, we get a profile
α1ðsÞ; α2ðsÞ; β1ðsÞ; β2ðsÞ. Now we can compute I3 for the
maximally entangled state using these parameters, which is
shown in Fig. 9(b). We see from the figure that all other
parameter choices will always give lower (most cases) or
equal (few points) values of I3 for the maximally entangled
state with the choice of parameters α1 ¼ 0, α2 ¼ 1

2
,

β1 ¼ 1
4
, β2 ¼ − 1

4
.

APPENDIX B: ENTANGLEMENT ENTROPY,
CONCURRENCE, AND NEGATIVITY

In this section, we compute entanglement entropy SðψÞ,
concurrence CðψÞ, and entanglement negativity N ðψÞ for
the d-dimensional system of Alice and Bob [72]. We use
Schmidt decomposition jψi ¼ P

λjjαjβji of ψ , where the
local Schmidt bases jαjβji, is obtained by local unitary
transformations from local bases jmiA ⊗ jniB. The for-
mulas for SðψÞ, CðψÞ, and N ðψÞ are given by

SðψÞ ¼ −
X

λ2j logðλ2jÞ; CðψÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j<k

λ2jλ
2
k

s
;

N ðψÞ ¼
X
j<k

λjλk: ðB1Þ

1. For pions

As we discussed in the main text that there are six mass
eigenstates for two external pions, namely jψiπ0π0 ; jψiπþπ0 ;
jψiπ−π0 ; jψiπþπ− ; jψiπþπþ ; jψiπ−π− . Out of theses six states,

we focus on jψiπ0π0 ; jψiπþπ− as discussed in Sec. VIII A.
One can compute μπ

0π0
m;n ; μπ

þπ0
m;n ; μπ

−π0
m;n ; μπ

þπ−
m;n ; μπ

þπþ
m;n ; μπ

−π−
m;n

using the prescription in Sec. VIII A. Once we have these
μm;n we can compute the Schmidt decomposition and find
λπ

0π0
j ; λπ

þπ0
j ; λπ

−π0
j ; λπ

þπ−
j ; λπ

þπþ
j ; λπ

−π−
j . Figure 10 shows the

behavior of S, C, N for various S-matrices that arise from
the bootstrap [44] as a function of s in the forward limit.
From these figures, we see that there is a correlation
between where the dip in I3 happens and the change in
behavior in S, C, N . However, it is apparent that N and S
have features in common while C behaves differently.

2. For photons

We will compute the entanglement entropy, concurrence
and entanglement negativity for photon amplitudes. They
are given in Fig. 11, which shows the behavior of S, C, N
for various S-matrices as a function of s in the forward
limit. From the Figs. 11(a), 11(b), 11(d), and 11(c) we see
that S, C, N exactly mimic the behavior of I, which
is expected for qubits. In the plots we have used the
S-matrices in [42] which minimize ḡ4 vs f̄2.

APPENDIX C: BOSONIC STRING AMPLITUDES
AND BELL INEQUALITIES

In this section we examine the tree-level bosonic string
amplitudes for graviton scattering. We want to examine
how the Bell parameter behavior changes due to the
presence of stable resonances.
The 2-2 graviton scattering amplitudes are specified via

FIG. 9. The choice of measurement parameters. (a) Solid lines are using α1 ¼ 0, α2 ¼ 1
2
, β1 ¼ 1

4
, β2 ¼ − 1

4
. The dashed lines are the I3

correspond to the maximizing the I3’s for each values of s. (b) I3 for maximally entangled state using the parameters which maximize
Iπ

0π0
3 for each value of s. The dashed line is the value of I3 ¼ 2.87293 for maximally entangled state using α1 ¼ 0, α2 ¼ 1

2
, β1 ¼ 1

4
,

β2 ¼ − 1
4
.
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FIG. 10. Cπ
þπ− ; Iπ

þπ−
3 ;N πþπ− ;Sπþπ− vs the Adler zero s0 labeling the S-matrices in [44].

FIG. 11. The Iþþ; Cþþ;N þþ;Sþþ vs f̄2 for various values of s.
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Φ1ðs; t; uÞ ¼
α4s4

256

0
B@1 −

α2su

16
�
αt
4
þ 1

�
1
CA

2
sin

�
παt
4

�
Γ
�
− sα

4

�
Γ2
�
− tα

4

�
Γ
�
− uα

4

�
Γ
�
sα
4
þ 1

�
Γ
�
uα
4
þ 1

� ;

Φ2ðs; t; uÞ ¼
α6s2t2u2

4096

�
1 −

1
αs
4
þ 1

−
1

αt
4
þ 1

−
1

αu
4
þ 1

�
2 sin

�
παt
4

�
Γ
�
− sα

4

�
Γ2
�
− tα

4

�
Γ
�
− uα

4

�
Γ
�
sα
4
þ 1

�
Γ
�
uα
4
þ 1

� ;

Φ5ðs; t; uÞ ¼
α6s2t2u2

4096

sin
�
παt
4

�
Γ
�
− sα

4

�
Γ2
�
− tα

4

�
Γ
�
− uα

4

�
Γ
�
sα
4
þ 1

�
Γ
�
uα
4
þ 1

� : ðC1Þ

We find Iþþ and I−þ as shown in the Fig. 12. We have considered α ¼ 1. We observe that at low energies, the Bell
constraints are satisfied. As the resonances are approached, the Bell parameter begins to show characteristic dips and peaks
indicative of the resonances.

APPENDIX D: GAUSS-BONNET GRAVITY IN HIGHER DIMENSIONS

In this section, we briefly consider adding a Gauss-Bonnet term in higher dimensions (d ≥ 5). We follow the notation
in [73]

Φ1ðs; t; uÞ ¼ −
8ðd − 4Þs3C2

GB

ðd − 2ÞΛ4
− 18β23s

3

�ðd − 4Þs2
d − 2

þ 2stþ 2t2
�
þ s3

tu

Φ2ðs; t; uÞ ¼
12

Λ4

�
5β3 −

2ðd − 4ÞC2
GB

d − 2

�
stu

Φ5ðs; t; uÞ ¼
6β3
Λ4

stu: ðD1Þ

If we are interested in only CGB, we can put β3 ¼ 0. We find that

Iþþ ¼ 96
ffiffiffi
2

p ðd − 4Þχ2ðχ þ 1Þ2c2GBð−8ðd − 4Þχðχ þ 1Þc2GB − dþ 2Þ
64ðd − 4Þ2χ2ðχ þ 1Þ2ð9χ2ðχ þ 1Þ2 þ 1Þc4GB þ 16ðd − 4Þðd − 2Þχðχ þ 1Þc2GB þ ðd − 2Þ2 ; ðD2Þ

where cGB ¼ CGB
s
Λ2. We find I−þ ¼ 0. For −1 ≤ χ ¼ 1þ 2t=s ≤ 0, since the Bell parameter vanishes at χ ¼ 0 there is no

choice of cGB where Bell violation occurs for all physical angles. For the range

FIG. 12. Bell inequalities Iþþ and I−þ vs χ of tree-level bosonic graviton amplitudes for various s.
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jcGBj≲ 0.42

ffiffiffiffiffiffiffiffiffiffiffi
d − 2

d − 4

r
or 0.62

ffiffiffiffiffiffiffiffiffiffiffi
d − 2

d − 4

r
≲ jcGBj ≲ 0.85

ffiffiffiffiffiffiffiffiffiffiffi
d − 2

d − 4

r
ðD3Þ

there is no Bell violation, while there will always be some violation for some values of χ for cGB outside this range. In d ¼ 4

for the R3 case, we find similar bounds.

APPENDIX E: BHABHA SCATTERING AMPLITUDES

In the low-energy limit s ≈ 4m2 and generic scattering angle χ ¼ 1þ 2t=ðs − 4m2Þ, we have

M−−
−−ðs; tÞ ¼ Mþþ

−− ðs; tÞ ¼
8e2m2 − κ2m4

2χðs − 4m2Þ þOððs − 4m2Þ0Þ;

M−þ
−−ðs; tÞ ¼ Mþ−

−−ðs; tÞ ¼
ið8e2ð2χ þ 5Þ þ 3κ2m2ð2χ þ 1ÞÞ

16
ffiffiffiffiffiffi
χ

χþ1

q þOðs − 4m2Þ; ðE1Þ

where κ ¼ ffiffiffiffiffiffiffiffiffi
8πG

p
. For small scattering angle χ, we have

M−−
−−ðs; tÞ ¼ Mþþ

−− ðs; tÞ ¼
8e2m2 − κ2m4

2χðs − 4m2Þ þOðχ0Þ;

M−þ
−−ðs; tÞ ¼

ið16e2ð3mþ ffiffiffi
s

p Þ þ κ2mð6m2 þ 2m
ffiffiffi
s

p
− sÞÞ

8
ffiffiffi
χ

p ð2mþ ffiffiffi
s

p Þ þOðχ0Þ;

Mþ−
−−ðs; tÞ ¼

ið16e2ðmþ ffiffiffi
s

p Þ þ κ2mð2m2 þ 2m
ffiffiffi
s

p þ sÞÞ
8

ffiffiffi
χ

p ð2mþ ffiffiffi
s

p Þ þOðχ0Þ: ðE2Þ

Around the pole s ¼ M2
z , we have up to Oððs −M2

zÞ0Þ

M−−
−−ðs; tÞ ¼

2e2mcsc2ð2θwÞðmð−2 cos ð2θwÞ þ cos ð4θwÞ − 2χðχ þ 1Þ þ 1Þ þ χðχ þ 1ÞMzÞ
s −M2

z
;

Mþþ
−− ðs; tÞ ¼

2e2mcsc2ð2θwÞðmð2ðχ2 þ χ þ 1Þ − 2 cos ð2θwÞ þ cos ð4θwÞÞ − χðχ þ 1ÞMzÞ
s −M2

z
;

M−þ
−−ðs; tÞ ¼

ie2m
ffiffiffi
χ

p ffiffiffiffiffiffiffiffiffiffiffi
χ þ 1

p
csc2ð2θwÞ

�
ð2χ þ 1ÞðMz − 2mÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

z − 4m2
p

ð1 − 2 cos ð2θwÞÞ
�

s −M2
z

;

Mþ−
−−ðs; tÞ ¼ −

ie2m
ffiffiffi
χ

p ffiffiffiffiffiffiffiffiffiffiffi
χ þ 1

p
csc2ð2θwÞ

�
ð2χ þ 1Þð2m −MzÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

z − 4m2
p

ð1 − 2 cos ð2θwÞÞ
�

s −M2
z

: ðE3Þ

APPENDIX F: EFFECTIVE FIELD THEORY LAGRANGIANS

For convenience, we present here the Lagrangians and relate the parameters appearing therein to the parameters used in
the amplitudes. More details can be found in [24,40,42,59].

1. Euler-Heisenberg Lagrangian

Keeping in mind the 2-2 scattering of photon, the form of Lagrangian density we consider

LEFT ¼ −
1

4
FμνFμν þ L8 þ L10 þ…; ðF1Þ

the mass dimension n part Ln reads as

L8 ¼ c1ðFμνFνμÞðFαβFβαÞ þ c2ðFμνFνρFρσFσμÞ; L10 ¼ c3ðFαβ∂
βFμν∂

αFνρFρ
μÞ þ…: ðF2Þ
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The EFT is valid up to some cutoff Λ. In four spacetime
dimensions, we have

FμνFνσFσρFρμ ¼ 1

4
ðFμνF̃μνÞ2 þ

1

2
ðFμνFμνÞ2;

with F̃μν ¼ 1
2
ϵμνρσFρσ. The coefficients ci are called Wilson

coefficients, they are related to g2, f2, h3 as

g2¼2ð4c1þ3c2Þ; f2¼2ð4c1þc2Þ; h3¼
3

3
c3: ðF3Þ

The Wilson coefficients are given in table I for various
theories, m being the mass of the particle integrated out
while α is the coupling between this particle and photons in
the original theory. Of the particles listed in the table, only
the axion and parity-odd spin-2 can achieve saturation of
the Bell violation. The spinor case leads to an overall
common factor that drops out in f2=g2. We focus on the
simplest and well-motivated axion case.

2. Effective Lagrangian for gravity

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p 	
R −

β3
3!

Rð3Þ þ…



þ Smatter

where we defined Rð3Þ ¼ Rμν
ρσRρσ

αβRαβ
μν.
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