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Lq(Hn, |x|βq) to Lr(Hn, |x|−γr). Also, analogous sharp results 
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1. Introduction

Fractional integral operators are classical objects in analysis pertaining to the study 
of smoothness of functions, potential theory and embedding theorems. Recall that, for 
0 < λ < n, the fractional integral operator on Euclidean space, Rn, is defined as follows
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Iλf(x) =
∫
Rn

f(y)
|x− y|n−λ

dy, x ∈ Rn.

The operators Iλ are bounded off-diagonally, that is, Iλ : Lp(Rn) → Lq(Rn), where 
1/q = 1/p − λ/n, 1 < p < n/λ. In 1958, Stein and Weiss introduced the following 
weighted Hardy–Littlewood–Sobolev inequality which is now commonly known as the 
Stein–Weiss inequality. We recall it here. The inequality∣∣∣∣∣

∫
Rn

∫
Rn

f(x)g(y)
|x|α|x− y|λ|y|β dx dy

∣∣∣∣∣ � ‖f‖Lp(Rn)‖g‖Lq(Rn), (1.1)

holds, where 1 < p, q < ∞, 0 < λ < n, α + β ≥ 0, 1/p + 1/q + (α + β + λ)/n = 2 with 
α < n/p′, β < n/q′. Here, p′ := p

p−1 and q′ := q
q−1 . Subsequently, Muckenhoupt and 

Wheeden in [13] extended the inequality (1.1) beyond power weights and characterized 
weights for which Iλ : Lp(wp) → Lq(wq), with 1/q = 1/p − λ/n, 1 < p < n/λ. The 
appropriate class of weights are denoted as Ap,q weights.

The operator Iλ and its analogues are also investigated beyond the Euclidean setting. 
In this article, we are interested in bilinear analogue of Iλ on the Heisenberg group Hn. 
Let us begin with the bilinear fractional integral operator BIλ on Rn defined as

BIλ(f, g)(x) =
∫
Rn

f(x− y)g(x + y)
|y|n−λ

dy, 0 < λ < n.

These operators are well studied, for example we refer to the works [4,9,12]. They also 
share similarities with the bilinear Hilbert transform of Lacey and Thiele (see [11]). It 
was proved in [9] that BIλ is bounded from Lp(Rn) ×Lq(Rn) to Lr(Rn) provided 1/r =
1/p +1/q−λ/n > 0 and 1 < p, q ≤ ∞, and also the expected weak type inequality holds 
if either p or q is 1. It is not difficult to see that using Hölder’s inequality and weighted 
boundedness of Iλ, we can obtain that BIλ : Lp(wp

1) × Lq(wq
2) → Lr(wr

1w
r
2) provided 

1/r = 1/p + 1/q − λ/n, 1 < r, s < ∞ and wp/s
1 , wq/s

2 ∈ As,r, where 1/s = 1/p + 1/q. 
However, the above approach is not useful when r < 1 and it was also pointed out in 
the influential work of Lerner et al. (see [10]) that linear Muckenhoupt classes are not 
the appropriate weights while studying these bilinear operators. In [10], multilinear A�P

weights are introduced in connection with the multilinear Hardy–Littlewood maximal 
operator and multilinear Calderón–Zygmund operators. Subsequently, Kabe Moen [12]
has initiated the study of fractional multilinear weights and proved the following: BIλ
maps Lp(wp

1) × Lq(wq
2) → Lr(wr

1w
r
2) boundedly, when 1 < p, q < ∞, 1/r = 1/p + 1/q −

λ/n > 1, and �w ∈ Ap,q,r. Though it is not yet known whether the condition Ap,q,r is 
also necessary for the boundedness of BIλ. But importantly, if we only consider power 
weights then the author in [8] has obtained both necessary and sufficient conditions on α
and β such that BIλ is bounded from Lp(Rn, |x|αp) ×Lq(Rn, |x|βq) to Lr(Rn, |x|(α+β)r). 
Let us state their result.
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Theorem 1.1 (Theorem 1, [8]). Let 1 < p, q < ∞, 0 < λ < n, 1
r = 1

p + 1
q − λ

n > 0, and

α <
n

p′
, β <

n

q′
and − n

r
< α + β. (1.2)

Further, assume that

(I) α ≤ n− λ, (II) β ≤ n− λ, (III) − n + λ ≤ α + β. (1.3)

Then, there exists a constant K > 0, such that

‖ |x|(α+β)BIλ(f, g)‖Lr(Rn) ≤ K‖|x|αf‖Lp(Rn)‖|x|βg‖Lq(Rn), (1.4)

for all f ∈ Lp(Rn, |x|αp) and g ∈ Lq(Rn, |x|βq).

It is also proved in [8] that the conditions (1.3) are necessary for (1.4) to hold. 
However, in the general case of exponents, the authors have only provided sufficient 
conditions on the exponents α, β, and γ such that the bilinear fractional operator BIλ
maps Lp(Rn, |x|αp) × Lq(Rn, |x|βq) to Lr(Rn, |x|−γr).

Our primary goal in the present article is to obtain a complete characterization of α, β, 
and γ such that the bilinear fractional operator is bounded from Lp(|x|αp) × Lq(|x|βq)
to Lr(|x|−γr) on the Heisenberg group, Hn. Our methods also produce the analogous 
sharp characterization of exponents α, β and γ such that the bilinear fractional operator 
BIλ is bounded from Lp(Rn, |x|αp) ×Lq(Rn, |x|βq) to Lr(Rn, |x|−γr). More precisely, we 
have the following.

Theorem 1.2 (Characterization of power weights on Euclidean space). Let 1 < p, q < ∞, 
0 < r < ∞ and 1

r ≤ 1
p + 1

q . Let 0 < λ < n and

α <
n

p′
, β <

n

q′
and γ <

n

r
. (1.5)

Further, assume 1
r = 1

p + 1
q − λ−α−β−γ

n > 0.
Then, the following are equivalent:

(a) There exists a constant K > 0, such that

‖ |x|−γBIλ(f, g)‖Lr(Rn) ≤ K‖|x|αf‖Lp(Rn)‖|x|βg‖Lq(Rn), (1.6)

for all f ∈ Lp(Rn, |x|αp) and g ∈ Lq(Rn, |x|βq);
(b) The exponents α, β and γ satisfy

(I) −n+λ ≤ β+γ, (II) −n+λ ≤ γ+α, (III) −n+λ ≤ α+β, and (IV) α+β+γ ≥ 0.
(1.7)
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We would like to remark that previously sufficient conditions on α, β, and γ for (1.6)
were also obtained in the works [6] (Theorem 10.1) and in [1] (Theorem 4.4). Our result 
improves all of them.

We now prepare to state our results on the Heisenberg group Hn, Theorem 1.3 and 
Theorem 1.4, below. Let us recall that the linear fractional integral operator Iλ on the 
Heisenberg group Hn is defined as

Iλf(x) :=
∫
Hn

f(xy−1) dy

|y|Q−λ
, 0 < λ < Q,

where, |y| denotes the Korányi norm of y ∈ Hn and Q is the homogeneous dimension of 
the group Hn.

These operators have a long history, starting with the foundational work of Folland and 
Stein in [3], where the authors have proved Hardy–Littlewood–Sobolev inequality on the 
Heisenberg group, that is, Iλ : Lp(Hn) �→ Lq(Hn) with 1/q = 1/p − λ/Q, 1 < p < Q/λ. 
The natural end-point boundedness Iλ : L1(Hn) �→ LQ/(Q−λ),∞(Hn) was also obtained 
in [3]. In recent times, in [2], Frank and Lieb studied Hardy–Littlewood–Sobolev in-
equality on Hn and obtained the sharp constant and existence of unique optimizer in 
the Hardy–Littlewood–Sobolev inequality on Hn. Also, we enlist the article [5] where 
analogues of Stein-Weiss inequality (1.1) are studied in the context of the Heisenberg 
group. It is thus very natural to study the aforementioned aspects for the bilinear ana-
logues of Iλ, and for that purpose, let us define bilinear fractional integral operator 
on Hn.

Definition 1.1. For 0 < λ < Q, the bilinear fractional integral operator Bλ on Hn is 
defined as follows

Bλ(f, g)(x) =
∫
Hn

f(xy−1) g(xy) dy

|y|Q−λ
, x ∈ Hn.

On the Heisenberg group, our first result addresses the unweighted boundedness of 
the operator Bλ, therefore, we have the following extension of the result by Kenig and 
Stein to the Heisenberg group.

Theorem 1.3 (Unweighted boundedness). Let 0 < λ < Q, 1
r = 1

p + 1
q − λ

Q > 0, and that 
f ∈ Lp(Hn), g ∈ Lq(Hn), 1 ≤ p, q ≤ ∞. Then,

(a) If 1 < p, q ≤ ∞, there exists a constant K > 0 such that

‖Bλ(f, g)‖Lr(Hn) ≤ K ‖f‖Lp(Hn)‖g‖Lq(Hn), (1.8)

for all f ∈ Lp(Hn) and g ∈ Lq(Hn).
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(b) If 1 ≤ p, q ≤ ∞ with either p = 1 or q = 1, there exists a constant K > 0 such that

‖Bλ(f, g)‖Lr,∞(Hn) ≤ K ‖f‖Lp(Hn)‖g‖Lq(Hn), (1.9)

for all f ∈ Lp(Hn) and g ∈ Lq(Hn).

Now, we present the main result of this article concerning the sharp characterization 
of power weights for the boundedness of Bλ. Theorem 1.4 can also be realized as an 
extension of the Stein-Weiss inequality in the bilinear setting on the Heisenberg group. 
Precisely, we obtain the following:

Theorem 1.4 (Characterization of power weights on Heisenberg group). Let 1 < p, q < ∞, 
0 < r < ∞ and 1

r ≤ 1
p + 1

q . Let 0 < λ < Q and

α <
Q

p′
, β <

Q

q′
and γ <

Q

r
. (1.10)

Further, assume 1
r = 1

p + 1
q − λ−α−β−γ

Q > 0.
Then, the following are equivalent:

(a) There exists a constant K > 0, such that

‖ |x|−γBλ(f, g)‖Lr(Hn) ≤ K‖|x|αf‖Lp(Hn)‖|x|βg‖Lq(Hn), (1.11)

for all f ∈ Lp(Hn, |x|αp) and g ∈ Lq(Hn, |x|βq);
(b) The exponents α, β and γ satisfy

(I) −Q+λ≤β+γ, (II) −Q+λ≤γ+α, (III) −Q+λ≤α+β, and (IV) α+β+γ ≥ 0.
(1.12)

The conditions (1.10) are necessary for (1.11) to hold. The conditions α < Q/p′ and 
β < Q/q′ ensure that f, g ∈ L1

loc(Hn), whereas γ < Q/r guarantees the local integrability 
of the weight |x|−γr. The necessity of 1

r ≤ 1
p + 1

q will be addressed in Subsection 4.2.
We are not aware of any work, even in the linear case, where counterexamples are 

created in order to have a complete characterization of exponents for Stein-Weiss type 
inequalities on Hn. As far as we know, this is the first time where counterexamples 
are constructed on Hn to obtain necessary conditions on the exponents so that Bλ

is bounded from Lp(Hn, |x|αp) × Lq(Hn, |x|βq) to Lr(Hn, |x|−γr). In the linear case, 
Theorem 1.1 in [5] addresses only sufficient conditions on the power weights for Iλ. 
Moreover, our counterexamples can be modified for the linear case but we left that for 
interested readers.

There are essentially two major difficulties in proving Theorem 1.4. Firstly, the singu-
larity of the kernel, namely |y|−Q+λδ(x · y), is spread along the diagonal. On the other 
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hand, while constructing counterexamples, it requires a better understanding of the pre-
cise description of the sets of the form x ·supp(f) ∩supp(g) ·x−1, which demands delicate 
analysis due to the non-commutative nature of the Heisenberg group. We will provide the 
proof of Theorem 1.4 and skip the proof of Theorem 1.2, since the proof of the latter is 
relatively simpler and follows from the proof of Theorem 1.4 with some obvious changes.

In the next section, we briefly recall the necessary preliminaries to prove our main 
results. Section 4 is dedicated to the proof of our main result, Theorem 1.4. Throughout 
this article, we write A � B and B � A to abbreviate A ≤ CB for some constant C
independent of A and B, and A 
 B means both A � B and A � B. For E, F ⊂ Hn, 
the notation E · F represents the set {x · y : x ∈ E, y ∈ F}, and E2 = E · E. As usual, 
Lp(X, w) denotes the space of all measurable functions on X such that 

∫
X
|f |pw < ∞.

2. Preliminaries

The Heisenberg group, Hn, is the two step nilpotent Lie group with underlying man-
ifold Cn ×R associated with the group law

(z, t) · (w, s) :=
(
z + w, t + s + 1

2�(z.w̄)
)
, for all (z, t), (w, s) ∈ Hn. (2.1)

We have a family of non-isotropic dilations defined by δr(z, t) := (rz, r2t), for all (z, t) ∈
Hn, for every r > 0. The Korányi norm on Hn is defined by

|(z, t)| :=
(
‖z‖4 + t2

) 1
4 , (z, t) ∈ Hn,

which is homogeneous of degree 1, that is |δr(z, t)| = r |(z, t)|. Here, ‖z‖ denotes the 
Euclidean norm of z ∈ Cn. The Haar measure on Hn coincides with the Lebesgue 
measure dzdt. Let B(0, r) := {(z, t) ∈ Hn : |(z, t)| < r} be the ball of radius r with 
respect to Korányi norm. One has its measure |B(0, r)| = CQ rQ, where Q = (2n + 2)
is known as the homogeneous dimension of Hn. The convolution of f with g on Hn is 
defined by

f ∗ g (x) =
∫
Hn

f(xy−1)g(y)dy, x ∈ Hn.

We denote the Euclidean convolution of f and g on R2n+1 by

f ∗e g(x) :=
∫

R2n+1

f(y)g(x− y) dy, x ∈ R2n+1.

Most of these notions are very standard and we refer to [14] for more details. The 
following simple observations will be important for our purpose.
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Lemma 2.1. Let x = (z, t) and y = (w, s) ∈ Hn with 2|y| ≤ |x|. Then there is a universal 
constant κ such that

|(z + w, s + t)| ≥ κ|x|. (2.2)

Proof. Let ‖w‖ denote the Euclidean norm of w ∈ Cn. Since 2|y| ≤ |x| so ‖w‖ ≤ |x|/2
and |s| ≤ (|x|/2)2. If ‖z‖ ≥ |x|/21/4 then

|(z + w, t + s)|4 = ‖z + w‖4 + (t + s)2

≥ (‖z‖ − ‖w‖)4 + (t + s)2

≥ (2−1/4|x| − ‖w‖)4

≥
(

23/4 − 1
2

)4

|x|4,

whereas if |t| ≥ |x|2/21/2 then

|(z + w, t + s)|4 ≥ (t + s)2 ≥
(

21/2 − 1/2
2

)2

|x|4.

Therefore, (2.2) holds with κ = (23/4 − 1)/2. �
The following bilinear interpolation theorem will be very useful for our purpose.

Theorem 2.2 ([7], Theorem 3 [9] ). Suppose that a bilinear operator T : Lpi,1 × Lqi,1 →
Lri,∞, where 0 < pi, qi ≤ ∞, 0 < ri ≤ ∞, for three points 

(
1
pi
, 1
qi

)
, i = 1, 2, 3 in R2, 

that are non-collinear. Suppose, further, that there are θ0, θ1, θ2 ∈ R with θ1, θ2 > 0 so 
that 1

ri
= θ0 + θ1

pi
+ θ2

qi
, i = 1, 2, 3. Then,

T : Lp × Lq → Lr,

provided 1 ≤ p, q ≤ ∞, 1
p + 1

q ≥ 1
r and 

(
1
p ,

1
q ,

1
r

)
lies in the open convex hull of (

1
pi
, 1
qi
, 1
ri

)
.

3. Proof of Theorem 1.3

We first prove part (b) in Theorem 1.3 when p = q = 1. This is the key estimate for 
proving Theorem 1.3. Let us introduce the following operators which are pieces of the 
operator Bλ.

B(f, g)(x) =
∫

f(xy−1)g(xy)dy,

|y|�1
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and

Bk(f, g)(x) =
∫

|y|�2−k

f(xy−1)g(xy)dy.

Our primary ingredients to prove Theorem 1.3 are the following bounds for the pieces 
Bk.

Lemma 3.1. The following statements hold:

(i) ‖B(f, g)‖L1/2(Hn) � ‖f‖L1(Hn) ‖g‖L1(Hn).
(ii) ‖B(f, g)‖L1(Hn) � ‖f‖L1(Hn) ‖g‖L1(Hn).
(iii) ‖Bk(f, g)‖L1/2(Hn) � 2−Qk ‖f‖L1(Hn) ‖g‖L1(Hn).
(iv) ‖Bk(f, g)‖L1(Hn) � ‖f‖L1(Hn) ‖g‖L1(Hn).

Proof of Lemma 3.1. The statements (iii) and (iv) follow from (i) and (ii), respectively, 
by scaling: Set (δrf)(x) = f(δrx). Let r = 2−k, then

δr−1 [B(δrf, δrg)] = r−Q Bk(f, g), Q = 2n + 2.

We assume, without loss of generality, that f ≥ 0, g ≥ 0. We begin with proving (i). 
For a ∈ Z2n+1, let Qa = a ·Q0, where Q0 = [0, 1)2n+1. Then,

‖B(f, g)χQa
‖L1/2(Hn)

≤
∫
Qa

B(f, g)(x)dx ≤
∫

x∈Qa

∫
y ∈B(0,1)

f(xy−1) g(xy) dy dx

y→y−1·x=
∫
Qa

∫
y∈x·B(0,1)

f(y) g(xy−1x) dy dx

≤
∫
Qa

∫
y∈Qa·B(0,1)

f(y) g(xy−1x) dy dx

=
∫

y ∈Qa·B(0,1)

f(y)
∫

x∈Qa

g(xy−1x) dx dy

x→x·y=
∫

y∈Qa·B(0,1)

f(y)
∫

x∈Qa·y−1

g(x2y) dx dy (3.1)

=
∫

f(y)
∫

−1

g((2x) · y) dx dy
(
since, x2 = x · x = 2x

)

y ∈Qa·B(0,1) x∈Qa·y
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x→x/2= 2−2n−1
∫

y∈Qa·B(0,1)

f(y)
∫

x∈2(Qa·y−1)

g(xy) dx dy,

≤ 2−2n−1
∫

y∈Qa·B(0,1)

f(y)
∫

x∈(Qa·y−1)2

g(xy) dx dy,

x→x·y−1

= 2−2n−1
∫

y∈Qa·B(0,1)

f(y)
∫

x∈(Qa·y−1)2·y

g(x) dx dy

≤ 2−2n−1
∫

y∈Q∗
a

f(y) dy
∫

x∈Q∗
a

g(x) dx,

where Q∗
a := a ·Q0 ·B(0, 1) ·Q−1

0 .Q0 ⊂ a ·
(
[−4, 4]2n × [−16, 16]

)
.

Observe that Qa and Q∗
a have bounded overlapping and covers whole of Hn. Indeed, 

let (z, t) = (x + iy, t) ∈ Hn. Choose an a′ ∈ Z2n such that a′ ≤ (x, y) < a′ + (1, · · · , 1), 
component wise. Having chosen a′, choose integer, say a2n+1 such that t − 1

2�(a′.z̄) ∈
[a2n+1, a2n+1 + 1). Then we have an a = (a′, a2n+1) ∈ Z2n+1 such a−1 · (z, t) ∈ Q0. So 
Hn = ∪a∈Z2n+1Qa. For bounded overlapping of Qa, let us fix an a ∈ Z2n+1 and consider 
ã ∈ Z2n+1 such that

a ·Q0 ∩ ã ·Q0 �= ∅.

Equivalently, Q0 ∩ a−1ã · Q0 �= ∅. Let (z, t) = a−1 · ã and (w, s) ∈ Q0. Let ‖z‖ denote 
the Euclidean norm of z ∈ Cn. Then, if ‖z‖ > 2

√
n, then (z, t) · (w, s) = (z + w, t + s +

1
2�(z.w̄)) /∈ Q0. If ‖z‖ ≤ 2

√
n but |t| > 2n +2, then |t +s + 1

2�(z.w̄)| ≥ 2(n +1) −(n +1) =
n + 1. So, again (z, t) · (w, s) /∈ Q0. If ‖z‖ ≤ 2

√
n and |t| ≤ 2n + 2, then for fixed a, we 

are, at most, counting the number of lattice points ã ∈ Z2n+1 such that ã ∈ a ·B(0, 4
√
n)

which is, clearly, 
 nQ/2. Similarly, we can argue for the sets Q∗
a.

So,

‖B(f, g)‖1/2
L1/2(Hn) 


∑
a∈Z2n+1

‖B(f, g)χQa
‖1/2
L1/2(Hn)

�
∑

a∈Z2n+1

‖f χQ∗
a
‖1/2
L1(Hn) ‖g χQ∗

a
‖1/2
L1(Hn)

≤
( ∑

a∈Z2n+1

‖f χQ∗
a
‖L1(Hn)

)1/2 ( ∑
a∈Z2n+1

‖g χQ∗
a
‖L1(Hn)

)1/2


 ‖f‖L1(Hn) ‖g‖L1(Hn),

establishing (i).
Next, (ii) follows from using the same set of change of variables and Fubini’s theorem 

as in (3.1). Thus, completing the proof of Lemma 3.1. �
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Returning to the proof of part (b) in Theorem 1.3, when p = q = 1, 1
r = 2 − λ

Q . Let 
‖f‖L1(Hn) = ‖g‖L1(Hn) = 1. Let us decompose the operator Bλ as

Bλ(f, g)(x) 

∑
k∈Z

2k(Q−λ)Bk(f, g)(x)

=
∑
k≤k0

+
∑
k≥k0

=: F1 + F2.

For F1 and F2 we have, using (iii) and (iv) in Lemma 3.1, the following

‖F1‖L1(Hn) ≤
∑
k≤k0

2k(Q−λ)‖Bk(f, g)‖L1(Hn) �
∑
k≤k0

2k(Q−λ) 
 2k0(Q−λ)

and

‖F2‖1/2
L1/2(Hn) ≤

∑
k>k0

2
k(Q−λ)

2 ‖Bk(f, g)‖1/2
L1/2(Hn) �

∑
k>k0

2
k(Q−λ)

2 2−
kQ
2 
 2−λ

2 k0 .

Then, for all t > 0,

|{Bλ(f, g) > t}| ≤
∣∣∣∣{F1 >

Ct

2

}∣∣∣∣ +
∣∣∣∣{F2 >

Ct

2

}∣∣∣∣
�

‖F1‖L1(Hn)

t
+

‖F2‖1/2
L1/2(Hn)

t1/2

� 2k0(Q−λ)

t
+ 2−λ

2 k0

t1/2
.

Optimising the right hand side of the above with respect to k0, that is, choosing k0 such 
that 2k0(Q−λ)/t = 2−λ

2 k0/t1/2, yields the desired estimate

|{Bλ(f, g) > t}| � 1
tr
,

1
r

= 2 − λ

Q
,

which settles the proof of part (b), in Theorem 1.3 when p = q = 1. To finish part (b), 
observe that, if g ∈ L∞(Hn), we have

Bλ(f, g)(x) ≤ ‖g‖L∞(Hn)

(
f ∗ 1

|y|Q−λ

)
(x), x ∈ Hn.

So, from linear fractional integration on Hn,

‖Bλ(f, g)‖Lr,∞(Hn) ≤ ‖g‖L∞(Hn)

∥∥∥∥f ∗ 1
|y|Q−λ

∥∥∥∥
Lr,∞(Hn)

� ‖g‖ ∞ n ‖f‖ 1 n ,
L (H ) L (H )
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if 1
r = 1 − λ

Q which is, indeed, the situation when p = 1, q = ∞. If g ∈ Lq(Hn), 
1 < q < ∞, then (b) follows from linear interpolation, by fixing f ∈ L1(Hn), and using 
the boundedness of Bλ : L1(Hn) × L1(Hn) → Lr,∞(Hn) (the key estimate) and that of 
Bλ : L1(Hn) × L∞(Hn) → Lr,∞(Hn) (the sub case discussed above).

The part (a) is obtained from (b), by applying bilinear interpolation, Theorem 2.2. 
For the sake of completeness, we briefly explain this point from [9]. Consider the open 
convex set in R2,

C :=
{

(x, y) ∈ R2 : x + y >
λ

Q
, 0 < x, y < 1

}
, 0 < λ < Q.

Observe that C is precisely the union of interior of triangles whose vertices lie on different 
sides of the square [0, 1]2 intersected with the closure of C. Thus, by symmetry and part 
(b), it suffices to establish the “weak-type” inequality for p = ∞ and 1 < q < ∞. For 
f ∈ L∞(Hn), we have

Bλ(f, g)(x) ≤ ‖f‖L∞(Hn)

(
g ∗ 1

|y|Q−λ

)
(x), x ∈ Hn.

Therefore,

‖Bλ(f, g)‖Lr(Hn) ≤ ‖f‖L∞(Hn)

∥∥∥∥g ∗ 1
|y|Q−λ

∥∥∥∥
Lr(Hn)

� ‖f‖L∞(Hn) ‖g‖Lq(Hn),

where in the last inequality we have used the strong type boundedness of Iλ on Hn, 
since in this case we have 1

r = 1
q − λ

Q > 0, 1 < q < ∞.

4. Characterization of power weights

In this section, we provide the proof of Theorem 1.4. Let us start with proving the 
sufficient part. In contrast with the proof of [8], we provide a unified approach to deal 
with the operator Bλ irrespective of the signs of α and β.

4.1. Proof of the sufficient part

Proof of (1.12) =⇒ (1.11): Since |Bλ(f, g)| ≤ Bλ(|f |, |g|), throughout this proof we will 
assume that f, g are non-negative functions. First we will prove the following weak type 
estimate

‖S(f, g)‖Lr,∞(Hn) ≤ K‖f‖Lp(Hn)‖g‖Lq(Hn), (4.1)

where,
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S(f, g) = Sα,β,γ(f, g)(x) := |x|−γ

∫
Hn

f(xy−1)
|xy−1|α

g(xy)
|xy|β

dy

|y|Q−λ
.

Once the proof of (4.1) is complete, as an application of bilinear interpolation, we can 
conclude the strong type estimate ‖S(f, g)‖Lr(Hn) ≤ K‖f‖Lp(Hn)‖g‖Lq(Hn), which is 
equivalent to estimate (1.11).

Our proof involves delicate analysis of singularities of the operator S. We decompose 
the operator S into three parts, namely, S(f, g)(x) =

∑3
i=1 Ji(x), where

J1(x) := |x|−γ

∫
y∈B(0, |x|

2 )·x

f(xy−1)
|xy−1|α

g(xy)
|xy|β

dy

|y|Q−λ
,

J2(x) := |x|−γ

∫
y∈x−1·B(0, |x|

2 )

f(xy−1)
|xy−1|α

g(xy)
|xy|β

dy

|y|Q−λ
,

J3(x) := |x|−γ

∫
Hn\

[
B(0, |x|

2 )·x
⋃

x−1·B(0, |x|
2 )

]
f(xy−1)
|xy−1|α

g(xy)
|xy|β

dy

|y|Q−λ
.

Estimate for J1: Let y ∈ B(0, |x|2 ) · x, then |xy| 
 |x|. Indeed, for such y, one has 
y = ξ · x for some ξ ∈ B(0, |x|2 ). Further, observe that xy = x · ξ · x = 2x + ξ. So, in view 
of Lemma 2.1, |xy| = |2x + ξ| � |x|. Moreover, |xy| ≤ 5

2 |x|. Again, observe that |y| 
 |x|. 
Incorporating these estimates, we obtain

J1(x) 
 |x|−γ−β−Q+λ

∫
y∈B(0, |x|

2 )·x

f(xy−1)g(xy)
|xy−1|α dy. (4.2)

Let us consider the case when −Q +λ < β+γ. This together with α < Q/p′ ensures that 
there exists μ > 0 such that Q(1 − 1

p −
1
q ) < μ < Q(1 − 1

p ) and α < μ < α+β+γ+Q −λ. 

Indeed, observe that Q(1 − 1
p ) > α and α + β + γ + Q − λ > Q 

(
1 − 1

p − 1
q

)
. The latter 

inequality being equivalent to Qr > 0, so the two intervals intersect.
Therefore,

J1(x) 
 |x|−γ−β−Q+λ

∫
y∈B(0, |x|

2 )·x

|xy−1|μ−α f(xy−1)g(xy)
|xy−1|μ dy

� |x|−γ−β−Q+λ+μ−α

∫
y∈B(0, |x|

2 )·x

f(xy−1)g(xy)
|xy−1|μ dy

y→y−1·x
� |x|−γ−β−Q+λ+μ−α

∫
f(y)g(xy−1x)

|y|μ dy
R2n+1
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= |x|−γ−β−Q+λ+μ−α

∫
R2n+1

f(y)g(2x + y−1)
|y|μ dy, (since x y−1x = 2x + y−1),

= |x|−γ−β−Q+λ+μ−α

(
f

| · |μ ∗e g
)

(2x).

Set 1
s = 1

p + 1
q − 1 + μ

Q , then 1
r = 1

s + α+β+γ+Q−μ−λ
Q . This implies

‖J1‖Lr,∞(Hn) � ‖|x|−γ−β−Q+λ+μ−α‖
L

Q
α+β+γ+Q−λ−μ

,∞(R2n+1)

∥∥∥( f

| · |μ ∗e g
)∥∥∥

Ls,∞(R2n+1)
.

Define 1
t := 1

p + μ
Q , then 1

s = 1
t + 1

q − 1. By Young’s inequality, we obtain

‖J1‖Lr,∞(Hn) �
∥∥∥ f

| · |μ
∥∥∥
Lt,∞(R2n+1)

‖g‖Lq(R2n+1)

� ‖f‖Lp(Hn)‖g‖Lq(Hn),

where the last inequality follows from Hölder’s inequality for the weak-type spaces. This 
completes the case −Q + λ < β + γ.

We are left with the case when β + γ = −Q + λ. As a consequence of the condition 
α + β + γ ≥ 0, we obtain α ≥ Q − λ > 0. Now, (4.2) implies

J1(x) �
∫

y∈B(0, |x|
2 )·x

f(xy−1)g(xy)
|xy−1|α dy �

(
f

| · |α ∗e g
)

(2x).

Observe that in this case 1
r = 1

p + 1
q −1 + α

Q . Define 1
t := 1

p + α
Q , therefore 1

r = 1
t + 1

q −1. 
Again, by Young’s inequality and Hölder’s inequality for the weak-type spaces, we obtain

‖J1‖Lr,∞(R2n+1) �
∥∥∥( f

| · |α ∗e g
)∥∥∥

Lr,∞(R2n+1)

�
∥∥∥ f

| · |α
∥∥∥
Lt,∞(R2n+1)

‖g‖Lq(R2n+1) � ‖f‖Lp(Hn)‖g‖Lq(Hn).

Estimate for J2: This case is similar to J1, so we skip it.

Estimate for J3: Let us denote the set Hn \
[
B(0, |x|

2 ) · x
⋃

x−1 ·B(0, |x|
2 )

]
by Gx. One 

can decompose J3 as follows:

J3(x) ≤ J31(x) + J32(x), where,

J31(x) := |x|−γ

∫
f(xy−1)
|xy−1|α

g(xy)
|xy|β

dy

|y|Q−λ
,

{y:|y|≥2|x|}
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J32(x) := |x|−γ

∫
{y∈Gx:|y|<2|x|}

f(xy−1)
|xy−1|α

g(xy)
|xy|β

dy

|y|Q−λ
.

Observe that for y such that |y| ≥ 2|x|, we have |xy−1| 
 |y| and |xy| 
 |y|. First, let us 
consider the case when −Q + λ = α + β. Therefore,

J31(x) � |x|−γ(f ∗e g)(2x).

We also have γ ≥ −α−β = Q −λ > 0. Moreover, 1
r = 1

p + 1
q − 1 + γ

Q . So, using Hölder’s 
inequality for the weak-type spaces and Young’s convolution inequality subsequently, we 
obtain ‖J31‖Lr,∞(Hn) � ‖f‖Lp(Hn)‖g‖Lq(Hn), which is the required estimate.

Next, when −Q + λ < α + β then from the condition γ < Q/r, we can ensure that 
λ −α− β < Q( 1

p + 1
q ). Hence, choosing μ > 0 such that μ ∈ (λ −α− β − γ, Q( 1

p + 1
q )) ∩

(λ − α− β, Q), we conclude the following

J31(x) 
 |x|−γ

∫
{y:|y|≥2|x|}

f(xy−1)
|y|α

g(xy)
|y|β

dy

|y|Q−λ
,

= |x|−γ

∫
{y:|y|≥2|x|}

|y|−α−β+λ−μ

|y|Q−μ
f(xy−1)g(xy) dy

� |x|−γ−α−β+λ−μBμ(f, g)(x). (4.3)

Define 1
s := 1

p + 1
q − μ

Q , then it is trivial to see that 1
r = 1

s + α+β+γ+μ−λ
Q . Denote 

h(x) = |x|−γ−α−β−μ+λ. Using Hölder’s inequality for weak-type spaces, we obtain

‖J31‖Lr,∞(Hn) � ‖h‖
L

Q
α+β+γ+μ−λ

,∞‖Bμ(f, g)‖Ls,∞ � Kα,β,γ,Q,λ‖f‖Lp(Hn)‖g‖Lq(Hn),

where we have used Theorem 1.3 in the last inequality. This completes the estimate for 
J31.

To estimate J32, observe that for points y ∈ Gx with |y| < 2|x|, we have |xy−1| =
|yx−1| 
 |x| and |xy| 
 |x|. Assuming that α+β+γ > 0, one can choose μ1 ∈ (0, Q( 1

p+1
q ))

such that −α− β − γ + λ < μ1 < λ. Therefore,

J32(x) � |x|−γ−α−β

∫
{y:|y|<2|x|}

|y|λ−μ1

|y|Q−μ1
f(xy−1)g(xy) dy

� |x|−γ−α−β+λ−μ1Bμ1(f, g)(x).

At this point, we follow the argument provided after inequality (4.3) to conclude that 
‖J32‖Lr,∞(Hn) � ‖f‖Lp(Hn)‖g‖Lq(Hn). Similarly, if α + β + γ = 0, we have J32(x) �
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Bλ(f, g)(x), then also we have the required estimate, by invoking Theorem 1.3. This 
completes the proof of the “weak-type” estimate (4.1).

Once we have the week type inequalities, achieving the strong type inequality just 
uses the multilinear interpolation, Theorem 2.2. We explain it here. For fixed α, β and 
γ in Theorem 1.4, we have

0 <
1
p
< min

[
1, 1 − α

Q

]
, and 0 <

1
q
< min

[
1, 1 − β

Q

]
. (4.4)

The condition 1r ≤ 1
p+ 1

q is equivalent to α+β+γ ≤ λ, which combined with 0 ≤ α+β+γ, 
gives 0 ≤ α + β + γ ≤ λ. Further, the conditions r < ∞ and γ < Q

r being, respectively, 
equivalent to λ−(α+β+γ)

Q < 1
p + 1

q and −α−β+λ
Q < 1

p + 1
q , lead to

−α− β + λ

Q
+ max

[
− γ

Q
, 0

]
<

1
p

+ 1
q
.

Therefore, consider the open convex set in R2,

Cα,β,γ :=
{

(x, y) ∈ (0, 1)2 : x + y >
−α− β + λ

Q
+ max

[
− γ

Q
, 0

]
,

0 < x < min
[
1, 1 − α

Q

]
, 0 < y < min

[
1, 1 − β

Q

]}
.

Depending on the sign of α, β and γ, the set Cα,β,γ ⊆ (0, 1)2 changes. But, in all cases, 
for each point ( 1

p , 
1
q ) in Cα,β,γ one can always choose three non-collinear points inside 

Cα,β,γ such that ( 1
p , 

1
q ) is contained in the interior of the solid triangle inside Cα,β,γ, 

determined by these three points. Therefore, in view of Theorem 2.2, it suffices to show 
the “weak-type” inequality for ( 1

p , 
1
q ) in Cα,β,γ . �

4.2. Proof of the necessary part

This subsection is dedicated to constructing counterexamples on the Heisenberg group 
which imply the necessity of the conditions (1.12) for the boundedness of Bλ. In [8], some 
counterexamples were constructed to conclude necessary conditions for the boundedness 
of BIλ on the real line. Here, we construct them on the Heisenberg group Hn of any 
dimension.

Proof of (1.11) =⇒ (1.12): Recall that the inequality (1.11) is equivalent to the follow-
ing unweighted boundedness

‖Sα,β,γ(f, g)‖Lr(Hn) ≤ K‖f‖Lp(Hn)‖g‖Lq(Hn), (4.5)

where the operator Sα,β,γ(f, g) is defined as follows
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Sα,β,γ(f, g)(x) = |x|−γ

∫
Hn

f(xy−1)
|xy−1|α

g(xy)
|xy|β

dy

|y|Q−λ
. (4.6)

Necessity of −Q + λ ≤ α + β in Theorem 1.4: On the contrary, suppose that α + β <

−Q + λ. Since γ < Q
r , whence

(−α− β −Q + λ), Q

r
− γ > 0. (4.7)

Also, recall that

1
r

= 1
p

+ 1
q
− λ

Q
+ α + β + γ

Q
, (4.8)

which implies that 1
p + 1

q > 1.

Let N, M � 1 to be specified later. For a ∈ Z2n+1 \ {0}, consider sets

Ea := a ·Q(0, ra) · a.

Here, ra := |a|−N−1, with |a| denoting the Korányi norm of a ∈ Z2n+1 \ {0} ⊆ Hn and 
Q(0, s) := [0, s]2n × [0, s2], 0 < s < ∞. Observe that

Ea = 2a + Q(0, ra).

Here, “+” denotes usual addition in R2n+1. Consider the functions

f(ξ) :=
∑

a∈Z2n+1\{0}
|a|M/p χEa

(ξ), ξ ∈ Hn,

and

g(ξ) :=
∑

a∈Z2n+1\{0}
|a|M/q χEa

(ξ), ξ ∈ Hn.

Since, Ea’s are disjoint sets, so

‖f‖pLp(Hn) =
∑

a∈Z2n+1\{0}
|a|M |Ea| =

∑
a∈Z2n+1\{0}

|a|M |Q(0, ra)|



∑

a∈Z2n+1\{0}

1
|a|Q(N+1)−M



∫

{(z,t)∈Hn: |(z,t)|≥1}

1
|(z, t)|Q(N+1)−M

dz dt < ∞

if Q(N + 1) −M > Q.
Therefore, the functions f ∈ Lp(Hn) and g ∈ Lq(Hn) if

M < QN. (4.9)
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We will show that for these choices of functions, Sα,β,γ(f, g)(x) χ|x|
1 /∈ Lr(Hn).

Fix x ∈ R2n+1
+ := (0, ∞)2n+1 such that |x| � 1 and choose Λ � 1 such that (Λ +

1)−N−1 ≤ |x| < Λ−N−1. For a ∈ Z2n+1 \ {0} such that |a| < Λ/2, consider sets

Ẽa,x := Ea · x ∩ x−1 · Ea.

By definition, whenever y ∈ Ẽa,x then yx−1, xy ∈ Ea.
Since |a| < Λ/2, we see that |Ẽa,x| � rQa = |a|−QN−Q. Indeed, we observe that

Ẽa,x = x−1 · (x · Ea · x ∩ Ea) = x−1 ·
(
[2x + 2a + Q(0, ra)]

⋂
[2a + Q(0, ra)]

)
.

Thus, |Ẽa,x| =
[∏2n

j=1(ra − 2xj)
]

(r2
a − 2x2n+1). From our choice of Λ, we have x2n+1 ≤

Λ−2(N+1), whence r2
a − 2 x2n+1 ≥ |a|−2(N+1) −2Λ−2(N+1) � |a|−2(N+1) = r2

a, since 
|a| < Λ/2. Similarly, ra − 2xj � ra, j = 1, . . . , 2n. Altogether, we have |Ẽa,x| � rQa .

For y ∈ Ẽa,x, we have |xy|, |yx−1|, |y| 
 |a|. Indeed, since xy ∈ Ea, so xy = a · ξ · a =

2a +ξ for some ξ ∈ Q(0, ra). Thus, |xy|4 =
[∑2n

j=1(2aj + ξj)2
]2

+(2a2n+1+ξ2n+1)2 ≥ |a|4. 
So, we have |a| ≤ |xy| ≤ |x| + |y| which gives |y| ≥ |a| − |x| � |a|. Since y ∈ Ea · x, so 
|y| � |a| which in turn implies |xy|, |y| 
 |a|. Similarly, |yx−1| 
 |a|.

Further, for fixed |x| � 1, the collection {Ẽa,x}a∈Z2n+1 is a disjoint family 
of sets. Indeed, Ẽa,x’s are disjoint if and only if the sets x · Ea · x ∩ Ea =
[2x + 2a + Q(0, r)]

⋂
[2a + Q(0, r)] are disjoint, which is true since |x| � 1.

Therefore, for |x| � 1,

Sα,β,γ(f, g)(x) � |x|−γ
∑

a∈Z2n+1\{0}:|a|<Λ/2

∫
y∈Ẽa,x

f(yx−1)
|yx−1|α

g(xy)
|xy|β

dy

|y|Q−λ

� |x|−γ
∑

a∈Z2n+1\{0}:|a|<Λ/2

|a|(−α−β−Q+λ)+M
(

1
p+ 1

q

)
|a|−QN−Q.

Assuming,

M

(
1
p

+ 1
q

)
−QN > 0, (4.10)

we are dealing with the sum of the form∑
a=(a′,a2n+1)∈Z2n+1\{0} :

(
|a′|4+a2

2n+1
)1/4≤Λ/2

|a|R−Q 
 ΛR, R > 0.

Hence,

Sα,β,γ(f, g)(x) � |x|−γ−
(−α−β−Q+λ)+M

(
1
p

+ 1
q

)
−QN

N+1 χ|x|
1,
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which implies ‖Sα,β,γ(f, g)‖Lr(Hn) will diverge if

γ +
(−α− β −Q + λ) + M

(
1
p + 1

q

)
−QN

N + 1 ≥ Q

r

⇐⇒ γ(N + 1) −Q(N + 1) + λ− (α + β) + M

(
1
p

+ 1
q

)
≥ Q

r
+ QN

r
= Q

r
+ QN

(
1
p

+ 1
q

)
−Nλ + (α + β + γ)N

⇐⇒ (−α− β −Q + λ)(N + 1) >
(
Q

r
− γ

)
+ (QN −M)

(
1
p

+ 1
q

)
.

Here, we have used (4.8). First pick out N � 1. Since 1
p + 1

q > 1, we can choose M close 
to QN such that (4.9) and (4.10) are satisfied. Subsequently, the last inequality holds 
true for large N because of (4.7). Thus, we arrive at a contradiction. Therefore, we must 
have α + β ≥ −Q + λ.

Necessity of −Q + λ ≤ β + γ in Theorem 1.4: On the contrary, assume −β−γ−Q +λ >
0. For x ∈ R2n+1

+ such that |x| � 1, consider the following portion of Sα,β,γ(f, g)(x):

∫
y ∈Q(0,|x|/2√n)·x

|x|−γ

|xy|β |y|Q−λ
f(xy−1)g(xy) dy

|xy−1|α . (4.11)

Arguing as in the previous example, we see that if y ∈ Q(0, |x|/2√n) · x then |xy|, |y| 

|x|.

Therefore, (4.11) is bounded below by a constant times of the following

|x|−β−γ+λ−Q

∫
y∈Q(0,|x|/2√n)·x

f(xy−1)g(xy) dy

|xy−1|α . (4.12)

Take f(y) = |y|−s χQ(0,1)(y) with s < Q
p so that f ∈ Lp(Hn). Substituting this choice of 

f and performing the change of variable y → y · x, (4.12) reduces to

|x|−β−γ+λ−Q

∫
y∈Q(0,|x|/2√n)

g(x · y · x) dy

|y|α+s
. (4.13)

Let N be a large positive real number to be specified later. Next, we choose the function 
g as follows:

g(ξ) :=
∑

2n+1

|a|Q(N−1)/q (log |a|)−2/q
χEa

(ξ), ξ ∈ Hn,

a∈Z :|a|>e
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where Ea := a · Q(0, ra) · a, with ra = 1
|a|N . The function g ∈ Lq(Hn), which follows 

from disjointness of the sets Ea = 2a +Q(0, ra), a ∈ Z2n+1 \ {0} and from the fact that 
|Ea| = |Q(0, ra)| 
 |a|−QN .

Setting Ẽa := a1/2 ·Q(0, ra/4) · a1/2, where the notation (z, t)1/2 means (z/2, t/2) for 
(z, t) ∈ Hn.

If x ∈ Ẽa = a1/2 · Q(0, ra/4) · a1/2 and y ∈ Q(0, ra/2), then xyx ∈ Ea =
a · Q(0, ra) · a and |x| 
 |a|. Indeed, for such x and y, we have xyx = 2x +
y ∈ 2 

(
a1/2 ·Q(0, ra/4) · a1/2) + Q(0, ra/2) = 2 [a + Q(0, ra/4)] + Q(0, ra/2) ⊂ 2a +

2Q(0, ra/4) + Q(0, ra/2) ⊂ 2a + Q(0, ra) = a · Q(0, ra) · a = Ea. Also, x = a + ξ, 
for some ξ = (ξ′, ξ2n+1) ∈ [0, ra4 ]2n × [0, ( ra4 )2]. Writing a = (a′, a2n+1), we have 
|x|4 = ‖a′+ξ′‖4 +(a2n+1 +ξ2n+1)2 ≥ |a|4, where ‖a′‖ is the Euclidean norm of a′ ∈ R2n.

Further, since Ẽa = a1/2 · Q(0, ra/4) · a1/2 = a + Q(0, ra/4), so clearly |Ẽa| =
|Q(0, ra/4)| 
 rQa = |a|−QN and {Ẽa}a∈Z2n+1 is a disjoint collection.

Incorporating the above, (4.13) implies

‖Sα,β,γ(f, g)‖rLr(Hn) �
∑
|a|>e

∫
x∈Ẽa

|x|(−β−γ+λ−Q)r

∣∣∣∣∣∣∣
∫

y∈Q(0,ra/2)

g(x · y · x) dy

|y|α+s

∣∣∣∣∣∣∣
r

dx

�
∑
|a|>e

|a|(−β−γ+λ−Q)r|a|
rQ(N−1)

q (log |a|)−
2r
q |a|(s+α−Q)Nr|a|−QN .

Therefore, ‖Sα,β,γ(f, g)‖Lr(Hn) diverges provided

(−β − γ + λ−Q)r + rQ(N − 1)
q

+ (s + α−Q)Nr −QN > −Q

⇐⇒ −β − γ + λ−Q + Q(N − 1)
q

+ (s + α−Q)N >
Q(N − 1)

r

⇐⇒ −β − γ + λ−Q + Q(N − 1)
q

+ (s + α−Q)N

>

(
QN

p
− Q

p

)
+ Q(N − 1)

q
+ (N − 1)(α + β + γ − λ)

⇐⇒ N

(
(−β − γ −Q + λ) −

(
Q

p
− s

))
>

Q

p′
− α.

Since −β−γ−Q +λ > 0, we choose s < Q
p sufficiently close to Qp so that (−β−γ−Q +

λ) −
(

Q
p − s

)
> 0 and then, taking N large, we have that the last inequality holds true.

Necessity of α + β + γ ≥ 0 in Theorem 1.4: Contrarily, suppose γ0 := α + β + γ < 0. 
Then, the homogeneity condition takes the form of 1

r = 1
p + 1

q − λ−γ0
Q > 0.

On the set {y ∈ Hn : |y| � |x|}, one has |x| � |xy|, |xy−1| ≥ | |x| − |y| | � |x|. 
Therefore,
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Sα,β,γ(f, g)(x) � |x|−γ0

∫
{y∈Hn|y|
|x|}

f(xy−1)g(xy) dy

|y|Q−λ
. (4.14)

Take N � 1, to be specified later, and consider functions

f(y) =
∑

a∈Z2n+1:|a|>e

|a|Q(N−1)/p (log |a|)−2/p
χEa

(y),

and

g(y) =
∑

a∈Z2n+1:|a|>e

|a|Q(N−1)/q (log |a|)−2/q
χEa

(y), y ∈ Hn,

with Ea := a · B(0, ra)2, ra = 1
|a|N . Observe that |Ea| = |B(0, ra)2| ∼ rQa = 1

|a|NQ and 
that {Ea : a ∈ Z2n+1 \ {0}} is a disjoint collection of sets. Therefore, f ∈ Lp(Hn) and 
g ∈ Lq(Hn).

Define sets Ẽa := a · B(0, ra). For x ∈ Ẽa and y ∈ B(0, ra), we have xy−1, xy ∈
a ·B(0, ra)2 = Ea. Therefore, from (4.14),

‖Sα,β,γ(f, g)‖rLr(Hn) �
∑
|a|>e

∫
x∈Ẽa

∣∣∣∣∣∣∣|x|−γ0

∫
|y|<ra

f(xy−1)g(xy) dy

|y|Q−λ

∣∣∣∣∣∣∣
r

dx

�
∑
|a|>e

∫
x∈Ẽa

|x|−γ0 r|a|rQ(N−1)( 1
p+ 1

q ) (log |a|)−2r( 1
p+ 1

q ) 1
|a|Nλr

dx

�
∑
|a|>e

|a|−γ0 r+rQ(N−1)( 1
p+ 1

q )−rNλ (log |a|)−2r( 1
p+ 1

q ) 1
|a|NQ

=:
∑
|a|>e

|a|R (log |a|)−2r( 1
p+ 1

q )
,

which diverges if R > −Q, wherein we have used that the family {Ẽa : a ∈ Z2n+1 \ {0}}
is a disjoint collection of sets, and that for x ∈ Ẽa = a ·B(0, ra), |x| ∼ |a|.

Therefore, in view of the homogeneity condition, it suffices to check whether

− γ0 r + rQ(N − 1)
(

1
p

+ 1
q

)
− rNλ−NQ > −Q

⇐⇒ −γ0 + Q(N − 1)
(

1
p

+ 1
q

)
−Nλ >

(N − 1)Q
r

⇐⇒ −γ0 −Q

(
1
p

+ 1
q

)
+ QN

(
1
p

+ 1
q
− λ

Q
− 1

r

)
+ Q

r
> 0

⇐⇒ −γ0 −Q

(
1 + 1

)
− γ0 N + Q

> 0,

p q r
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which is true for N sufficiently large, since γ0 < 0.

Necessity of 1
r ≤ 1

p + 1
q in Theorem 1.4:

On the contrary, let us assume 1
r > 1

p + 1
q . Take f(x) := |x|−Q/p(log |x|)−τ1χ{|x|>16}

and g(x) := |x|−Q/q(log |x|)−τ2χ{|x|>16}. It is not hard to see that f ∈ Lp(Hn) and 
g ∈ Lq(Hn) provided τ1 > 1/p and τ2 > 1/q, respectively. For |x| � 1, we see that

Sα,β,γ(f, g)(x) � |x|−γ

∫
B(0, |x|

2 )

f(xy−1)
|xy−1|α

g(xy)
|xy|β

dy

|y|Q−λ

� |x|−(α+β+γ)
∫

B(0, |x|
2 )

f(xy−1)g(xy) dy

|y|Q−λ

� |x|−(α+β+γ)−Q( 1
p+ 1

q )+λ(log |x|)−τ1−τ2 = |x|−Q/r(log |x|)−τ1−τ2 .

The above implies that ‖Sα,β,γ(f, g)‖Lr(Hn) = ∞ if we choose τ1 > 1/p and τ2 > 1/q
such that (τ1 + τ2) ≤ 1

r and which is possible thanks to the assumption 1
r > 1

p + 1
q . For 

example, one can choose τ1 = 1
p+ε and τ2 = 1

q +ε with ε > 0 such that 0 < 2ε < 1
r−

1
p−

1
q . 

Thus, we arrive at a contradiction. �
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