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a b s t r a c t

Spiral waves are ubiquitous spatiotemporal patterns that occur in various excitable
systems. In cardiac tissue, the formation of these spiral waves is associated with life-
threatening arrhythmias, and, therefore, it is important to study the dynamics of these
waves. Tracking the trajectory of a spiral-wave tip can reveal important dynamical
features of a spiral wave, such as its periodicity, and its vulnerability to instabilities. We
show how to employ the data-driven spectral-decomposition method, called dynamic
mode decomposition (DMD), to detect the profile a spiral tip trajectory (TT) in three
settings: (1) a homogeneous medium; (2) a heterogeneous medium; and (3) with
external noise. We demonstrate that the performance of DMD-based TT (DMDTT) is
either comparable to or better than the conventional tip-tracking methods, such as the
isopotential-intersection method (IIM) and the integral method, in the cases (1)-(3):
(1) Both IIM and DMDTT capture TT patterns at small values of the image-sampling
interval τ ; however, IIM is more sensitive than DMDTT to the changes in τ . (2) In
a heterogeneous medium, IIM yields TT patterns, but with a background of scattered
noisy points, which are suppressed in DMDTT. (3) DMDTT is more robust to external
noise than IIM and is comparable in performance to the integral method. We also show
that the DMDTT can detect non-trivial dynamics of spiral waves, such as their drift and
the meandering; we show that DMDTT is comparable with the integral method in these
cases and outperforms it if there is external noise. We show, finally, that DMD can be
used to reconstruct, and hence predict, the spatiotemporal evolution of spiral waves in
the models we study.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

The spatiotemporal organization of nonlinear waves into spirals occurs in various excitable media [1–7]. In cardiac
issue, the formation of such spiral waves of electrical activation is associated with life-threatening cardiac arrhythmias
8–12]. A stable rotating spiral wave is linked to ventricular tachycardia (VT), i.e., rapid heart beats; a spiral wave,
ith a meandering core, can cause polymorphic VT (with aperiodic heart beats); and a multiple-spiral state is linked
o ventricular fibrillation (VF) and chaotic heart beats. These arrhythmias are a leading cause of death. It is, therefore,
rucial to understand the dynamics of a spiral wave in cardiac tissue. By tracking the trajectory of the phase singularity
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Fig. 1. (A) Pseudocolor plot of u, for the Barkley model [Eqs. (1) and (2)], showing a spiral wave, whose tip traces a circular trajectory (white curve).
he yellow star indicates the point at which we record the time series of u to obtain the frequency of the spiral waves; (B) a plot of the time series

of u recorded from the point indicated by the yellow star; such plots yield the frequency of the spiral wave.

at the tip of a spiral wave, we can reveal some of its dynamical features. For example, the tip of a stably rotating spiral
wave, with one fundamental frequency, typically traces a circular trajectory; a spiral wave that rotates with two or more
incommensurate fundamental frequencies can exhibit complicated tip-trajectory (TT) patterns [13–15], which can lead
to irregular heart rates. Such complicated TTs are prone to instabilities [14] that cause the spiral wave to break up into
multiple daughter spiral waves, which lead in turn to a spiral-turbulent state. Therefore, tracking the TT of a spiral wave
yields valuable insights into its dynamics; and the detection of phase singularities of spiral waves, in ex-vivo and in-vivo
experiments and in in silico studies of mathematical models, is of great importance [12,16–18]. In particular, the location
of such phase singularities, with high specificity and selectivity, can be employed for accurate ablation, which can help
in the termination of life-threatening arrhythmias.

We show that the data-driven spectral-decomposition method known as dynamic mode decomposition (DMD), which
has been used to analyze complex spatiotemporal evolution in a variety of spatially extended non linear systems [19–25],
can be used fruitfully in excitable media (a) to identify spiral-wave TTs and (b) to study the spatiotemporal evolution of
spiral waves. Although the DMD method has been used to uncover coherent structures in fluid flows, to the best of our
knowledge it has not been used to study nonlinear waves in mathematical models for cardiac tissue. Two studies have
applied DMD to spiral waves: one that deals with the extraction of an approximate governing equation for the spiral
waves [26]; and the other study that extracts observables that are possible candidates for Koopman operators [22]. Our
application of DMD to spiral waves in mathematical models for excitable media and cardiac tissue leads to new insights
into spiral-tip trajectories and the prediction of the dynamics of these waves.

We use DMD to investigate the spatiotemporal evolution of spiral waves in two mathematical models for cardiac
tissue; and we show that DMD can be used effectively (a) to identify TT patterns and (b) to reconstruct and predict the
spatiotemporal evolution of spiral waves by using the DMD eigenmodes. There are conventional methods of tracking TT
in in-silico studies, among which the most common is the isopotential-intersection method (IIM) [13]. We compare the
versatility of the DMDTT method relative to the IIM technique in three different settings: (1) a homogeneous medium; (2)
a heterogeneous medium; and (3) with external noise. We compare the performance of DMD-based TT (DMDTT) with the
conventional isopotential intersection method (IIM) [13] and show that the former is either comparable to or better and
more versatile than the latter: In case (1), both IIM and DMDTT capture TT patterns at small values of the image-sampling
interval τ ; however, IIM is more sensitive than DMDTT to changes in τ . In case (2), we find that IIM yields TT patterns, but
with a background of scattered noisy points; by contrast, DMDTT does not lead to such noise. In case (3), we show that
DMDTT is more robust to external noise than IIM. We also show that the DMDTT can detect non-trivial dynamics of spiral
waves, such as their drift and the meandering; we demonstrate that DMDTT is comparable with the integral method [27]
in these cases and outperforms it if there is external noise. We show, finally, that DMD can be used to reconstruct, and
hence predict, the spatiotemporal evolution of spiral waves in the models we study.

The remainder of our paper is organized as follows. In Section 2, on Models and Methods, we describe the mathematical
models, numerical schemes, DMD, and the tip tracking IIM that we use in our study. We present the findings of our study
in Section 3. Finally, in Section 4, we summarize our conclusions and provide a discussion of our results in the light of
earlier studies.

2. Models and methods

We begin with a description of the mathematical models we use in Section 2.1. In Section 2.2 we present a brief
overview of the conventional IIM. We give a short introduction to the DMD methods we use in Section 2.3.
2
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Fig. 2. Illustrative plots, for the Barkley model [Eqs. (1) and (2)], showing four different types of tip-trajectories (TTs). In each one of the panels
(A)–(D), the sub-figures in the left columns show the TTs obtained from the IIM (see text), those in the middle columns show, pseudocolor plots,
the modulus of a DMD eigenmode Φ (see text), with eigenvalue λ, that contains an imprint of the TT, and those in the right column show the
power spectrum, obtained from the time series of u (cf. Fig. 1). The circular TT in (A) arises from periodic motion, with a fundamental frequency
ωD = 0.05, which appears clearly in the power spectrum along with its higher harmonics. The TTs in (B)–(D) arise from aperiodic motions with
more than one fundamental frequency (see text).

2.1. Reaction–diffusion models for electrical-excitation waves in cardiac tissue

We use two mathematical models for cardiac tissue to illustrate the application of DMD to the study of spiral waves
in excitable media. The first is the set of two-variable coupled partial differential equations (PDEs) called the Barkley
model [28]; and the second is the biophysically realistic O’Hara-Rudy (ORd) model [29]. The Barkley-model PDEs are:

∂u
∂t

=
1
ϵ
u(1 − u)(u −

v + b
a

) + D∇
2u; (1)

dv
dt

= u − v. (2)

u and v are the fast-excitation and slow-recovery variables, respectively, at the point r and time t; the time-scale
separation between u and v is controlled by the value of ϵ; the parameter a sets the duration of excitation, and b

a sets the
threshold of excitation. D is the diffusion constant of the medium (we use D = 1). We solve Eqs. (1) and (2) by using the
orward-Euler method for time marching and a five-point stencil for the Laplacian. The temporal and spatial resolutions
re set to be ∆x = 0.2 (arbitrary units au) and ∆t = 0.005 au.
For our study with inexcitable obstacles in the medium, we use the O’Hara-Rudy (ORd) model [29] for cardiac myocytes.

n a homogeneous medium, the ORd model uses the following PDE for the transmembrane potential Vm(r, t):
∂Vm

∂t
= D ∇

2Vm −
Iion
Cm

;

Iion = INa + Ito + ICaL + ICaNa + ICaK + IKr + IKs
+ IK1 + INaCa + INaK + INab + ICab
+ IKb + IpCa; (3)

ere, Cm is the membrane capacitance, D the diffusion coefficient (for simplicity, chosen to be a scalar), and the total ionic
urrent Iion is a sum of the following ion-channel currents: the fast inward Na+ current INa; the transient outward K+

urrent Ito; the L-type Ca2+ current ICaL; the Na+ current through the L-type Ca2+ channel ICaNa; the K+ current through the
-type Ca2+ channel ICaK ; the rapid delayed rectifier K+ current IKr ; the slow delayed rectifier K+ current IKs; the inward
ectifier K+ current IK1; the Na+/Ca2+ exchange current INaCa; the Na+/K+ ATPase current INaK ; the Na+ background
urrent INab; the Ca2+ background current ICab; the K+ background current IKb; the sarcolemmal Ca2+ pump current IpCa;
or a full list of these currents and the equations that govern their evolution we refer the reader to Refs. [29–31], which
lso describe the finite-difference numerical methods that we use. In both the models we study, we restrict ourselves to
wo spatial dimensions and we employ no-flux boundary conditions.

Excitation waves in the Barkley model [Eqs. (1) and (2)] have small wavelengths, so they are vulnerable to wavebreaks,
specially in the presence of heterogeneities in the medium. In contrast, the ORd model [Eq. (3)] yields waves with
arge wavelengths; these waves are more stable in heterogeneous media than their Barkley-model counterparts. As our
bjective is to investigate the detection of the phase singularity of a stable spiral wave, we use the ORd model for our
tudy with a heterogeneous medium; the coupling between cells in the presence of inexcitable obstacles is modeled as
n Refs. [31,32].
3
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2.2. Isopotential intersection method (IIM)

The tracking of the tip of a spiral wave, as described in Ref. [13], is based on the idea that the normal velocity of the
piral wave at its tip is zero. We illustrate this for the Barkley model Eqs. (1)–(2), in which du/dt = 0 at the spiral tip. We
hoose isopotential lines with value uiso = 0.4 − 0.5; we then track the intersection point of u(x, y) with uiso at different
imes, i.e., we record the position (x, y), at a given time, where.

u(x, y) − uiso = 0. (4)

he locus of these intersection points gives the spiral TT.

.3. Dynamic Mode Decomposition (DMD)

The data-driven DMD method employs a linear operator to model the spatiotemporal evolution of fields in a complex,
ypically nonlinear, system. If xn represents the vector form of some spatial data (typically an image) at the nth time
nstant, then the best estimate of the linear operator L that translates xn to its value xn+1, at the next time step, follows
rom the minimization problem

min
L

{
m−1∑
n=o

∥L xn − xn+1∥2

}
, (5)

here ∥.∥2 represents the L2-norm, andm is the total number of images (spatial data), each one of which is separated from
ts predecessor and successor by the sampling-time interval τ . The eigenvalues and eigenvectors of L contain useful infor-
ation about the evolution of the system and can be calculated efficiently by using singular value decomposition [23,33].

n our analysis we choose m such that it is greater than all the macroscopic time-scales (spiral–rotational periods) that are
resent in our system. We construct a matrix X1, with column vectors of images at discrete times labeled 0, 1, . . . , (m−1),
nd a similar matrix X2, with column vectors of images at discrete times labeled 1, 2, . . . ,m as follows:

X1 =

[
| |

x0 ... xm−1
| |

]
; X2 =

[
| |

x1 ... xm
| |

]
. (6)

The operator that best fits Eq. (5) is

L = X2X
†
1 , (7)

where X†
1 is the Moore–Penrose pseudoinverse [34,35]. By using the DMD algorithm [23], we get the following spectral

decomposition:

LΦi = λi Φi; (8)

here, λi and Φi denote the eigenvalue and eigenmode of L, respectively. Depending on whether |λi| > 1, |λi| = 1, or
λi| < 1, the corresponding eigenmode Φi grows, remains constant, or decays, respectively, in time. In Section I of the
upplemental Material [36] we give the SVD-based method that we use to get a low-rank version of L and thence the
ominant eigenmodes. We refer the reader to [23] for a detailed discussion of DMD.

. Results

We begin with our results for TT via DMD in Section 3.1. In Section 3.2 we present our DMDTT results in a
eterogeneous-cardiac-tissue model and also in the presence of external noise. We then give a short introduction to
ow DMD can be used to reconstruct spiral-wave dynamics in Section 3.4.

.1. Spiral TT in a homogeneous medium

We characterize spiral-wave dynamics here by spiral-TT patterns and the wave-rotation frequencies. We illustrate this
or the Barkley model [Eqs. (1) and (2)]. To obtain the frequencies of a spiral wave, we record the time series of u, Fig. 1
B), from a representative point, which is marked by a yellow star in the simulation domain [Fig. 1(A)]. From the power
pectrum E(ω) of this time series we obtain the most important frequencies, like the frequency ωD of the highest peak in
his spectrum. We then use the IIM and DMD methods to obtain the TTs. In the illustrative plots of Fig. 2 we show four
ifferent types of TTs, in each one of the panels (A)–(D); the sub-figures in the left columns show the TTs obtained from
he IIM; those in the middle columns show, via pseudocolor plots of the modulus of a DMD eigenmode Φ , with eigen value
λ| = 1, that contains an imprint of the TT; the right columns show the power spectra E(ω). The circular TT in Fig. 2 (A)
rises from periodic motion, with a fundamental frequency ωD = 0.05, which appears clearly in the power spectrum along
ith its harmonics. The TTs in Figs. 2 (B), (C), and (D) exhibit meandering patterns with petals on a circular trajectory,
osettes, and a rectangular trajectory with petals, respectively; these patterns arise from aperiodic motions with more
4
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Fig. 3. Illustrative TT patterns: (Top row) Pseudocolor plots of the modulus of a DMD eigenmode Φ , with eigenvalue λ, display high intensity along
he tip trajectory. (Bottom row) TTs obtained via the conventional IIM (see text). We use four different values of the non-dimensionalized sampling
nterval τ (see text) and the rosette pattern of Fig. 1 (C) for the Barkley model [Eqs. (1) and (2)]; IIM TTs are more sensitive to changes in the
alue of τ as compared to their DMD counterparts.

Fig. 4. Pseudocolor plots of (A) u, for the Barkley model [Eqs. (1) and (2)], showing a multiple-spiral-wave state, and (B) the modulus of one of the
MD eigenmodes, showing the location of the phase singularities in this multiple-spiral-wave state and also the boundaries between the domains
n this state.

Table 1
The values of the sampling time τ that are used in Fig. 3 for the rosette
TT (Fig. 2(C)); T is the number of iterations between successive images
(e.g., x0 and x1); we obtain ωD from Fig. 2(C); ∆t (arbitrary units au) is
the time step in our numerical simulations.
τ = T × ∆t × ωD T

0.002 10
0.008 50
0.011 70
0.015 90

than one fundamental frequency; e.g., the peaks in the E(ω) in Fig. 2 (B) can be labeled as n1ωD + n2ω2, with n1 and n2
ntegers (positive or negative), ωD ≃ 0.253 and ω2 ≃ 0.246, and the ratio ω2/ωD ≃ 0.97 an irrational number. We show
ther TT patterns, for different parameter sets, in Fig. S2 in the Supplementary Material [36]. From Fig. 2 we conclude
hat both IIM and DMD methods can detect complicated TT patterns well in a homogeneous medium; the former yields
he trajectory of the tip; the latter contains an imprint of the regions traversed by the TT.

We show, in Fig. 3, how the TT patterns vary with the non-dimensionalized sampling interval τ = T × ∆t × ωD
Table 1) in both the IIM and DMD methods. For specificity, we use the rosette pattern in Fig. 3 (C). The TT pattern is
oughly conserved as we increase τ ; however, the IIM yields noisy TTs for τ ≥ 0.015, whereas the DMD method yields a
T pattern that is less noisy than its IIM counterpart.
We now demonstrate that DMD can be used to determine the positions of phase singularities (PSs) even when there

re multiple spiral waves in the medium. For the Barkley model [Eqs. (1) and (2)], we illustrate this in Fig. 4 (A), which
hows a pseudocolor plot of u in a multiple-spiral state; and Fig. 4 (B) depicts the modulus of a DMD eigenmode Φ that
xhibits clearly the locations of the phase singularities that are present in this pseudocolor plot. In Fig. 4 (B) we also see
he boundaries between the domains with spiral waves.

The DMDTT uses pseudocolor plots of the relevant DMD eigenmode [see, e.g., Figs. 2(A)–(D)]; these show intense
eaks (that appear red) in the regions traversed by the spiral tip [or, equivalently, the PS]. The variations in these peak
ntensities are maximal when there are multiple spirals, because the wavelengths are much smaller than the domain
5
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Fig. 5. The detection of TT patterns, via IIM and DMD, with Po = 20% (left panel) and Po = 30% (right panel) heterogeneities (inexcitable obstacles) in
he ORd model [Eq. (3)]: (Top row) Pseudocolor plots of Vm showing spiral waves; black dots indicate inexcitable obstacles. (Middle row) Pseudocolor
lots of the modulus of a DMD eigenmode Φ display high intensity along the tip trajectory. (Bottom row) TTs tracked by the IIM; in addition to
he TT, this IIM shows randomly scattered points, which do not appear in the DMD eigenmode.

ize (see, e.g., Fig. 4 (A)); if the spiral wavelength and extent of the TT is comparable to that of the domain size (see,
.g., Fig. 2(A)) the intensity fluctuations are less.

.2. Spiral TT in the presence of heterogeneities in the medium or noise

We use the O’Hara-Rudy model [29] of cardiac excitation waves for our study of TTs in a heterogeneous medium. Fig. 5
hows how DMD and IIMs track TT in the medium with two different percentages Po of obstacles. We find that, although
oth methods can locate the region where the TT is confined, the TT plot from the IIM is associated with randomly
cattered points in the background, which are suppressed in the TT pattern extracted by the DMD eigenmode. Moreover,
e check how these two methods perform in the presence of noise in the signal. Such noise can arise in the data-collection
rocesses in real experiments. Fig. 6 shows TTs for three different values of signal-to-noise (SNR). It shows that IIM is
ore sensitive to noise and it fails to track the TT for SNR < 22, whereas DMD can still capture the TT pattern. DMD can
roduce the TT pattern up to SNR ≃ 16. In summary, our results demonstrate that, with external noise, DMDTT is a more
obust and versatile method for tracking TTs than IIM.

In Fig. S3 (Supplemental Material [36]), we show the drifting spiral waves, with external noise and for different values
f the SNR, with TT via (a) DMD and (b) the integral method of Ref. [27]. The DMD method again outperforms the integral
ethod in this case with external noise.

.3. Drifting and meandering spirals

In addition to the types of dynamical behaviors that we have studied above, we can also have (a) drifting and (b)
eandering of spiral waves. We now show that their dynamics can also be captured by using DMD. We have used the

wo-variable Aliev–Panfilov model [37] to obtain and study drifting and the meandering spirals. In the first row of Fig.
4 of the Supplemental Material [36], we show pseudocolor plots of the relevant DMD eigenmode for the drifting-spiral
ase for different values of τ ; the corresponding plots of the TT from the IIM and the integral method [27] are given
n the second and third rows, respectively. Figure S5 of the Supplemental Material [36] is the counterpart of Fig. S4 for
he meandering-spiral case. From these two figures we observe that DMDTT method is comparable to both the IIM and
ntegral method for the low values of τ ; overall, the integral method provides the cleanest TTs except in the presence of
xternal noise [Fig. S3 of the Supplemental Material [36]], in which case the DMDTT provides robust results.
6
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Fig. 6. Pseudocolor plots of (top row) u for the Barkley model [Eqs. (1) and (2)] and (middle row) the modulus of a DMD eigenmode Φ that
isplays high intensity along the tip trajectory; these plots are for cases with external noise and different values of the signal-to-noise ratio (SNR).
Bottom row) TTs tracked by the IIM; the TTs from the IIM are more sensitive to external noise than their counterparts in the DMD eigenmode.

Fig. 7. Pseudocolor plots at a representative time of (A) u, for the Barkley model [Eqs. (1) and (2)], showing a spiral wave from our simulations; (B)
he DMD-reconstructed spiral wave (uP in Eq. (9); and (C) the error u−uP in the DMD-based prediction. Movie M1 in the Supplemental Material [36]
hows the complete spatiotemporal evolutions of (A), (B), and (C).

.4. DMD prediction of spiral-wave dynamics

The DMD technique can also be used to reconstruct (approximately), and hence predict, the spatiotemporal evolution
f the spiral waves in the models we consider. For this reconstruction we require the eigenmodes Φi, their eigenvalues

λi, and the amplitudes bi associated with every mode Φi (see, e.g., Ref. [25]). We illustrate this for the Barkley model
[Eqs. (1) and (2)], where we predict the spiral-wave dynamics as follows; at any instant of time t , the predicted solution
uP (r, t) is

uP (r, t) =

m∑
i=1

biΦi(r)λt
i , (9)

where the coefficient bi = (Φ†
i Φi)−1Φ

†
i (r)x0, the † denotes Hermitian adjoint, m is the number of columns in X1, and x0 is

the first column in X1 (Eq. (6)). We show in Figs. 7(A), (B), and (C) pseudocolor plots of u(r, t) [from Eqs. (1) and (2)], the
DMD prediction uP (r, t) [from Eq. (9)], and the error u(r) − uP (r, t), respectively. From the plots in Figs. 7(A), (B), and (C)
we conclude that the DMD-based spiral-wave reconstruction works well here because the error u(r, t)− uP (r, t) ≃ 10−2.
The DMD method, in general, and DMD-based prediction, in particular, works efficiently if there are well-defined coherent
structures. A spiral wave is such a structure. In this method we provide voltage snapshots (pseudocolor plots) of spiral
waves; DMD eigenmodes Φi and eigenvalues λi are then obtained as we have explained in Section 2.3. The spatial
information is provided by Φi, the coefficients bi are given below Eq. (9), and the time dependence follows from λt

i . This
type of DMD-based reconstruction should also work for spiral waves in the ORd model, but, given the complexity of this
model, a large memory requirement poses some computational challenges. We suggest that such a DMD-based prediction
can be used mutatis mutandis with potentiometric voltage data for spiral waves from ex-vivo and in-vitro experiments.
7
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4. Discussion and conclusions

The DMD method has been used to extract coherent structures in various fluid-dynamical experiments [19,21] and
imulations [23]. It has been applied in the study of spatially extended systems to analyze spatiotemporal patterns
merging from the evolution of nonlinear PDEs [23]. The working principles of DMD have been linked to the Koopman
perator theory of dynamical systems [22,38,39]. Furthermore, DMD provides a data-driven approach for reduced-order
odeling of high-rank dynamical systems [19–25].
One of the important points about the DMD technique is that it employs a linear operator to model the spatiotemporal

volution of fields in a complex, typically nonlinear, system. From the eigendecomposition of this linear operator we can
xtract the dynamics of any coherent structures that are present. The eigenmodes of DMD, as been discussed in various
pplications [22,23,25], captures these invariant structures. In the models we study spiral waves and their tips (or PS) can
e studied via DMD, as we have elucidated above for a variety of cases.
We have demonstrated that DMD provides a powerful method for (a) the detection of spiral-wave TT patterns and

b) spiral-wave reconstruction in excitable media such as cardiac tissue, for which we employ the two-variable Barkley
odel [Eqs. (1) and (2)], the two-variable Aliev–Panfilov model [37], and the biophysically realistic ORd model [Eq. (3)].
uch a detailed application of the DMD method to the study of spiral-wave evolution in excitable media has not been
ttempted hitherto. [Two studies have applied DMD to spiral waves: one discusses the extraction of an approximate
overning equation for the spiral waves [26]; and the other extracts observables that are possible candidates for Koopman
perators [22].] Our application of DMD to spiral waves in mathematical models for excitable media and cardiac tissue
hows leads to new insights into spiral-tip trajectories and the prediction of the dynamics of these waves. Furthermore,
ur methods can be used, in both experimental and numerical investigations, of such waves in all excitable and oscillatory
edia.
We have carried out a comparison of the conventional IIM and our DMD-based TT for mathematical models of cardiac

issue in (a) a homogeneous medium, (2) with heterogeneities in the medium, and (c) in the presence of external noise
n the signal. We find that both DMDTT and IIM can track various patterns, including the circular and complicated ones
hown in Figs. 2 and 3, if the sampling interval τ is small. However, for a large value of τ , the IIM fails to track the
T, whereas DMD can still capture the TT pattern. We show, furthermore (Fig. 4), that DMD can be used to locate (a)
hase singularities, even when there are multiple spiral waves, and (b) the domain boundaries between different spiral
aves. In a medium with heterogeneities, both DMD and IIM can track TTs; however, TT plots from the IIM can show
andomly scattered points in the background, which are suppressed in the TT patterns we obtain via DMD. Finally, in the
resence of external noise in the signal, which can be present in experimental data, we show that IIM fails to track TT for
he signal-to-noise ratio SNR < 22; by contrast, our DMD method can capture TT patterns up until SNR ≃ 16, so DMD
rovides a more robust method to track TTs, in the presence of noise, as compared to IIM. We have also compared our
MDTT with the integral method of Iyer and Gray [27] for drifting and meandering spirals (see Section 3.3 and Figs. S3-S5
n the Supplemental Material [36]).

We have noted already that the accurate tracking of the tip of a spiral wave and the mapping of phase singularities
an give valuable information about its evolution of the spiral waves [12,16–18]. Complicated meandering TT patterns
re vulnerable to spiral-wave instabilities [14,40]; TTs can provide insights into the underlying mechanisms of transitions
rom single- to multiple-spiral states, which are of great interest in the study of cardiac arryhthmias [40]. Therefore, it
s important to develop versatile methods for tracking TTs; these methods should be applicable in varied experimental
ettings. We have carried out a comparison of DMDTT with the IIM and the integral method [27]; the latter two methods
ield clean tip trajectories in the absence of external noise; if noise is present, DMDTT yields robust results.
We expect that the DMD methods, which we have elucidated above, can be used to study electrical-activation

atterns in mammalian hearts, at least in ex-vivo optical-mapping experiments with Lagendroff-perfused hearts. These
ethods can be applied on a set of optical images, collected successively at certain intervals of time, for the detection
f phase singularities. The precise location of such phase singularities can be used for accurate ablation, which can
elp in terminating life-threatening cardiac arrhythmias. Furthermore, our DMD methods can be used fruitfully for such
ingularity detection in conjunction with conventional phase-singularity-mapping methods [18,41].
We have demonstrated how to carry out spiral-wave reconstruction in excitable media, such as cardiac tissue, by

sing the DMD eigenmodes Φi [see Eq. (9) and Fig. 7]. Such a DMD-based prediction can be used mutatis mutandis with
experimental data for spiral waves of electrical activation from ex-vivo and in-vitro experiments. We hope our work will
lead to such experimental investigations, which have the potential to play an important role in the field of life-threatening
cardiac arrhythmias.

We emphasize that our study is not focussed only on tip tracking and on the PS detection. Our aim is to highlight
how DMD, a method that has been fruitfully used to extract coherent structures in various nonlinear systems, can also be
implemented to detect coherent patterns of activation in excitable media such as the rotating spiral waves. Furthermore,
given the DMD eigenmodes, we have shown how to use them for the prediction of spiral-wave dynamics.

We end our paper by discussing some limitations of our study. Here, we have focused only on the detection of the phase
singularity of a spiral wave and its TT; however, other forms of activation patterns have been implicated in the occurrence
of arrhythmias, such as focal or multiple-wave activation patterns [30,42,43]. In future work we will conduct a detailed
analysis of how DMD can be used to characterize such activation patterns and how DMD can discriminate such patterns
from spiral waves. Moreover, our study is restricted to two-dimensions. We will extended this to three-dimensional and
anatomically realistic domains, which display rich forms of spatiotemporal organizations like scroll waves of excitation
(see, e.g., Refs. [44–47]).
8
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