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Multi‑qubit quantum computing 
using discrete‑time quantum walks 
on closed graphs
Prateek Chawla 1,2*, Shivani Singh 1,5, Aman Agarwal 1,3, Sarvesh Srinivasan 1,4 & 
C. M. Chandrashekar 1,2,6

Universal quantum computation can be realised using both continuous‑time and discrete‑time 
quantum walks. We present a version based on single particle discrete‑time quantum walk to realize 
multi‑qubit computation tasks. The scalability of the scheme is demonstrated by using a set of walk 
operations on a closed lattice form to implement the universal set of quantum gates on multi‑qubit 
system. We also present a set of experimentally realizable walk operations that can implement 
Grover’s algorithm, quantum Fourier transformation and quantum phase estimation algorithms. An 
elementary implementation of error detection and correction is also presented. Analysis of space and 
time complexity of the scheme highlights the advantages of quantum walk based model for quantum 
computation on systems where implementation of quantum walk evolution operations is an inherent 
feature of the system.

Quantum computing is poised to provide supremacy over classical computing using quantum mechanical 
phenomena such as superposition, interference and entanglement. Physical systems like, superconducting 
 circuits1–4, nuclear magnetic resonance (NMR)  systems5–9, ion  traps10,11, ultra-cold atoms in optical  lattice12,13 
and  photonics14–18 have been successfully engineered to demonstrate small scale quantum processors and imple-
ment quantum simulations and computational tasks. The noisy-intermediate scale quantum processors we have 
today are still far from the one that can be used for performing useful tasks that are inaccessible by the existing 
powerful classical computers. Different models for quantum computation and the engineering of different physi-
cal systems and architecture to build scalable processors has been explored for a long time now. For example, 
measurement based quantum computing  model19–22, adiabatic quantum computing  model23–27, and KLM-linear 
optical quantum  computing15 are some of the examples in addition to standard circuit based quantum compu-
tation model. The use of quantum  walks28–31, which are part of several quantum  algorithms32–34 developed to 
outperform classical algorithms at computational tasks has also been proposed to develop a scheme for universal 
quantum computation model.

A quantum walk based quantum computing model was first introduced on unweighted graphs using the 
continuous-time quantum  walk35 and a corresponding scheme using discrete-time quantum walk was pro-
posed  later36. Recently, we proposed a new scheme using a single qubit discrete-time quantum walk on a closed 
lattice  setting37. Compared to the earlier discrete-time quantum walk scheme which requires a large number 
of real qubits and higher dimensional coin operations, our scheme defines computation purely as a sequence 
of position dependent coin and shift operations on a system with a single real qubit and position space as an 
additional computational basis. With the advent of photonics-based quantum computing  systems17,38 and the 
efficient realization of quantum  walks39, the potential realizability of our proposed scheme gains more relevance. 
Decreased resource requirements for implementation of this scheme is one of the major factors that make it 
experimentally more feasible to implement in any hardware platform where controllable discrete-time quantum 
walks have been demonstrated.

Here we present a detailed extension of the simple, implementable quantum computing scheme using a single 
particle discrete-time quantum walk which can be scaled to higher  dimensions37. Along with the position Hilbert 
space on which the quantum walks are defined, the discrete-time quantum walk provides additional degree of 
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freedom in the form of coin Hilbert space that can be exploited to achieve control over the states to perform 
computing operations. This model can be implemented on a photonic or lattice based quantum systems where 
one photon or free particle can act as coin that can be used to perform computation when entangled with the 
position space. We propose the use of multiple sets of closed graph with four sites and four edges to act as a system 
with 2(N−1)-dimensional position space. Each graph is equivalent to a two-qubit state and n-sets of closed graph 
provides 2n-qubit equivalent states. With the help of the coin and shift operations, the coin and position state of 
the particle can be evolved into the desired output  state40. We also demonstrate the effectiveness of our scheme 
by presenting a combination of quantum walk operations to implement the quantum algorithms like Grover’s 
search algorithm, quantum Fourier transformation and phase estimation algorithms. Further, an elementary 
implementation of single qubit error detection (3-qubit code) for both bit-flip and phase-flip errors, and error 
correction using a 5-qubit code is presented. We also discuss the space and time complexity of the scheme in a 
generic sense to highlight the possible advantages of the quantum walk based scheme.

In “Quantum walk on higher-qubit equivalent systems“, we present a brief discussion on the discrete-time 
quantum walk and show the scalability of the single qubit quantum computational scheme to N-qubit equiva-
lent system by expanding the position space. “Implementing hadamard, phase, and controlled-NOT gates on 
N-qubit equivalent system" shows the implementation of universal gates on this N-qubit equivalent system, and 
in “Grover’s search algorithm on three qubit equivalent quantum walk scheme", “Quantum Fourier transforma-
tion on three-qubit equivalent quantum walk scheme" and “Phase estimation algorithm on three qubit equiva-
lent quantum walk scheme" we present schemes for realization of Grover’s search algorithm, quantum Fourier 
transformation and phase estimation algorithm on the DTQW-based system, respectively. We discuss the space 
and time complexity of quantum walk based scheme in “Quantum space and time complexity", and explore a 
basic implementation of quantum error detection and correction codes in “Single-qubit error detection". We 
present our conclusions and future outlook for this work in  “Conclusion".

Quantum walk on higher‑qubit equivalent systems
The dynamics of the discrete-time quantum walk on a closed graph is defined on a Hilbert space H = Hc ⊗Hp 
where, Hc is the coin Hilbert space with internal degrees of freedom and Hp is the position Hilbert space 
defined by closed set of points in the position  space41. For the computation model proposed in this work, we 
choose the position Hilbert space to be defined by the multiple sets of closed graphs of 4-states spanned by 
|x� = {|0�, |1�, |2�, |3�} . The evolution operation on this setup of discrete-time quantum walk is described by 
the action of the unitary quantum coin operation Ĉ on the coin state followed by the conditional position shift 
operation on the desired set of closed graph of the position space.

The general form of position shift operator for discrete-time quantum walk on a closed graph, that translates 
to the left or right conditioned on the coin states with µ internal degrees of freedom is given as,

Here, {|α�, |β�} ∈ Hc are the basis states of coin Hilbert space Hc and |l� are the basis states of posi-
tion Hilbert space Hp . The general form of the quantum coin operator with two internal degree of freedom 
Hc = span{|0�, |1�} is given by SU(2) operator of the form,

This set of operators along with the identity operator I can be considered a generic set of operators that 
describes the scalable quantum computation scheme using discrete-time quantum walk, hereafter called the 
quantum walk in this text.

Quantum computation using quantum walk. The scheme presented for universal quantum computa-
tion on quantum walk for three qubit equivalent  system37 can be scaled to a larger qubit system by using the same 
coin in conjunction with different sets of closed graph of the position space. This method will expand the shift 
operator with the increase of the number of closed graphs of four-sites, but can be scaled as far as the scheme 
goes.

The form of shift operators which is used throughout for scaling of the universal computation model for input 
state |k�

⊗n
i=1 |mi� will be given as,

where n is the total number of closed graphs and j indicates the closed graph on which the shift operation is 
performed. {|k�,

∣

∣p
〉

} ∈ Hc are states in the coin Hilbert space with two internal degree of freedom and |l� repre-
sents the four states on the four-site closed graph, and number of closed graph is n. The number of states for this 
case will be equivalent to the number of states in the combined state of the Hilbert-space Hc ⊗Hp , where Hp 
has dimension 2(N−1) , and N is the total number of qubits in the system. The evolution operation on this system 
can be interpreted as the shift operation on the jth closed graph representing the ‘selected’ position space and 
identity operation on the rest of the closed sets of the position space, as shown in Fig. 1.
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This can be then used to derive the Ŵ operator, in order to implement the Hadamard gate on N-qubit system 
and a specific case of this Ŵ-operator is used in Ref.37. An N-qubit system will require n =

[

(N−2)
2

]

 sets of four-
site closed graph and one set of two-site graph with one edge if N is even, and n =

[

(N−1)
2

]

 sets of four-site closed 
graphs if N is odd. In order to simplify notation, we choose 

∣

∣mj

〉

 to represent the position state of the jth set of 
closed graphs. The complete state of the position space is given by |m� , which is defined as,

Then, the Ŵ operators on state 
∣

∣mj

〉

 with 1 < j < n is defined as,

A note on notation Here, uppercase letters are used to represent a particular qubit and lowercase letters refer to 
the order of the closed graph. It may also be observed from Fig. 1 that the Ith qubit belongs to the closed graph 
of order i = I

2 if I is even and i = I−1
2  if I is odd.

In an abbreviated notation, the shift operator is written as,

Implementing Hadamard, Phase, and controlled‑NOT gates on an N‑qubit 
equivalent system
Hadamard gate. In this scheme, the Hadamard gate can be implemented on any qubit of N-qubit equiva-
lent system by redefining the Hadamard gates Ĥ2 and Ĥ3 in Ref.37. Hadamard operation on the jth level of the 
closed graph, when the coin state is |k� and position state is |m� as given by Eq. (4), can be implemented on the 
quantum walk scheme by evolving the initial state by using Eq. (8) when the Hadamard gate is applied on the 
(2j)th-qubit and by using Eq. (9) when the Hadamard gate is applied on the (2j + 1)th-qubit.
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j,±|k�|m� =



(σx ⊗ |m��m| + I⊗
�

l �=m

|l��l|)S1j,±
�

σz ⊗ I
⊗n

�



|k�|m�.

(7)Skj,± =
∑

l,m

[

|k��k| ⊗
∣

∣lj ± 1 mod 4
〉〈

lj
∣

∣+ |m �= k��m| ⊗ Ip

]

.

(8)

Ĥk
2,j|k�|m� =

[
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Figure 1.  Scaling of the quantum walk scheme to N−qubit systems. (a) Case where N is even, and (b) the 
case where N is odd. When N is even (case (a)), then (N/2− 1) graphs with four sites and one graph with two 
sites are required. In case (b), (N − 1)/2 graphs with four sites are required to implement universal quantum 
computation.
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Thus, the Ĥ corresponds to a position-dependent evolution operator in quantum walk scheme which applies 
to the appropriate vertices of the desired closed graph in the scaling diagram as shown in Fig. 1. Here the eigen-
states of the 2-qubit equivalent jth closed system are 

∣

∣mj

〉

,m = {0, 1, 2, 3} . The Hadamard on any qubit Q > 1 
can be expressed on discrete-time quantum walk scheme in the form of evolution operator Ĥk

i,j , where i ∈ {2, 3} 
and j is the level of the closed graph such that the relation between j and Q is j = ⌊Q2 ⌋ , i.e.,

A special case arises when the last qubit Q = N is even and scaling is illustrated by Fig. 1(a). In this case,

In case Q = 1 , the Hadamard gate can be reduced to a coin operation Ĥ1 = Ĉ
(

0, 0, π4
)

=
[

1 1
1 − 1

]

 with an 

identity shift operator.

nnPhase gate. The phase gate can be implemented on an N-qubit equivalent system in a manner similar 
to the Hadamard gate. Therefore, phase applied to the Qth qubit ( Q ∈ {2, 3, . . .N} ) can be expressed in terms of 
the level j of the closed graph as,

where P̂2,j and P3,j are given as,

For the special case when Q = N is even, analogous to the Hadamard gate, phase gate can be given as,

When Q = 1 , the phase operation on the first qubit is simply a coin operation, C =
[

1 0
0 eiφ

]

 with an identity 

operation on the position space.

Controlled‑NOT gate. Since, controlled-NOT gate (CNOT) is a two qubit gate (unlike Hadamard and 
phase gate), the gate implementation scheme changes form based on which two qubits are being addressed in 
the N-qubit equivalent system. The different cases which will cover all the possibilities of controlled-NOT gate 
between control qubit Qc (here assumed to be on the ith level) and target qubit Qt (assumed to be on the jth level) 
on N-qubit equivalent system (with n levels) are:

Case 1: Qc = 1 or Qt = 1. Case 1a: Qc = 1 , Qt is even, and j = n,

Case 1b: Qt = 1 , Qc is even, and i = n,

Case 1c: Qc = 1 , Qt is even, and is on jth level, with j  = n,

Case 1d: Qc = 1 , Qt is odd, and on the jth-level for j  = n,

Case 1e: Qt = 1 , for even Qc such that Qc is on the ith-level, and i  = n,
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Q = Ĥk
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Case 1f: Qt = 1 , for odd Qc such that Qc is on the ith-level and i  = n,

Case 2: Qc and Qt are on the same level i.e., i = j.. Case 2a: Qc is odd and Qt is even, 

Case 2b: Qc is even and Qt is odd,

Case 3: i  = j , where Qc and Qt are on ith and jth levels, respectively, and Qt  = N if N is even. Case 3a: Qc is odd 
and Qt is odd,

Case 3b: Qc is odd and Qt is even,

Case 3c: Qc and Qt are both even,

Case 3d: Qc is even and Qt is odd,

Case 4: i  = j , where Qc and Qt are on ith and jth level, respectively, and Qt = N , for even N. Case 4a: Qc is even,

Case 4b: Qc is odd,

based on the two qubit on which CNOT gate is applied, different cases from above can be selected. A different 
scheme of implementing the universal set of quantum gates on the same quantum walk scaling model is shown 
in Supplementary information Sec. S1. This shows that on this model of quantum walk, we can have different 
forms of the evolution operators to achieve desired operation based on the suitability of the available quantum 
processors. This above scheme can be very easily implemented on photonic system with different sets of four-
sited closed graph.

Grover’s search algorithm on three qubit equivalent quantum walk scheme
For searching a target state |x� , Grover’s search algorithm uses an oracle Ô on state |�� =

∑

x ψx|x� of the form,
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Grover’s algorithm requires an oracle for the task of marking the targeted state by applying a negative sign 
to the desired search result state.

The possible states of three-qubit system are |000�, |001�, |010�, |011�, |100�, |101�, |110�, |111� . On three qubit 
equivalent quantum walk scheme, we need one real qubit on square lattice (closed graph of four sites). Oracle can 
be implemented by applying a position dependent evolution operator. The operator involves the coin operation,

and the form of oracle on quantum walk scheme is shown in Fig. 2.
Quantum walk scheme for three qubit Grover’s search algorithm, when the coin and position state is initial-

ized to |0�c ⊗ |x = 0� , involves following steps, 

1. A quantum walker starts with an equal superposition of all the states of the form |ψc� ⊗ |x� in both coin and 
position space. It can be achieved by applying operation Ĥ2Ĥ3 on position state according to the quantum 
walk scheme as given in Ref.37 and then Hadamard operation on coin state.

2. The oracle is applied on the walker according to Fig. 2 to search for the desired marked state.
3. Hadamard operation is again applied on the coin state followed by the operation Ĥ3Ĥ2 on position state 

according to quantum walk scheme.
4. The iteration method can be applied on the walker using position dependent N̂  operators as defined in 

Eq. (31) and illustrated in Fig. 3 which will perform a conditional phase shift on every state except |000�.

(30)̂O |�� →
{

−|x� , when x is the target element
|x� , else

(31)

N̂1 = σz ⊗ I

N̂0 = Ĉ(0, 0,π)⊗ I

Ĉ(ξ , ζ , θ) =
[

eiξ cos(θ) eiζ sin(θ)
e−iζ sin(θ) − e−iξ cos(θ)

]

.

Figure 2.  A schematic illustration of the oracle operation on the position state of the three-qubit equivalent 
quantum walk system using position dependent operators. The states below each square correspond to the target 
states of Grover’s search. The definition of the various N operators have been defined in Eq. (31).

Figure 3.  A schematic illustration of the iteration operation on the position basis of the three qubit system 
using position dependent operators. All the states except |000� will get a negative sign in this one step operation. 
The definition of the various N operators have been defined in Eq. (31).
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5. Again apply Hadamard operation on the coin state followed by the operation Ĥ3Ĥ2 on position state accord-
ing to quantum walk scheme.

6. Repeating steps 2 and 5 (also called the Grover iteration) for less or equal to 
⌈

π
4

√

U
V

⌉

 times where, V = 

number of target entries in the search space and U = 2N . For N = 3 and V = 1 , 
⌈

π
4

√

U
V

⌉

 is ≤ 3 = 2.

7. Measurement in coin and position basis will give us our target state.

Section S1 of the supplementary file verifies the quantum walk based search algorithm by taking an example on 
search space of three qubit.

Quantum Fourier transformation on three‑qubit equivalent quantum walk scheme
The quantum Fourier transform is defined on orthonormal basis |0�, |1� . . . |X − 1� as a linear operator of the 
form,

It can be transformed into a more easily implementable format as,

where X = 2N and N is the number of qubits in the system. Quantum Fourier transformation on three-qubit 
quantum walk scheme requires a controlled-SWAP operation which, on quantum walk scheme can be obtained 
by applying the following operations,

where Ŝk1,± are conditional shift operators in the position space of the walker and are given by Eq. (1) on the 
position state |m� conditioned on the state of coin |k� and σ̂m

x  is given by,

Equations (35) and (34) and Fig. 4 outlines the operations which swaps two qubits.
Thus, quantum Fourier transformation on quantum walk scheme can be given by the operation as shown in 

Fig. 5, after producing the initial state, where,

(32)|α� = 1√
X

X−1
∑

l=0

e2π iαl/X |l�

(33)

|α� −→ 1√
X

X−1
∑

l=0

e2π iαl/X |l�

−→ 1√
X
(1|0� + e2π i0.αN |1�)(1|0� + e2π i0.αN−1αN |1�)...(1|0� + e2π i0.α1...αN−1αN |1�)

[e2π iα1....αN−1αN = e2π i0.αN ]

(34)

Â0
+|k,m� = σ̂m+1

x Ŝ01,+|k,m�
Â1
+|k,m� = σ̂m+1

x Ŝ11,+|k,m�
Â0
−|k,m� = σ̂m−1

x Ŝ01,−|k,m�
Â1
−|k,m� = σ̂m−1

x Ŝ11,−|k,m�
T̂+|k,m� = Ŝ11,+Ŝ

1
1,+Ŝ

0
1,+Ŝ

0
1,+|k,m�;

(35)σ̂m
x = σ̂x ⊗ (|m��m|)p + I⊗

∑

j �=m

(
∣

∣j
〉〈

j
∣

∣)

Figure 4.  A schematic illustration of the controlled swap gate operation on the position basis of the three qubit 
equivalent quantum walk system using position dependent operators. The definition of the various A and T 
operators have been defined in Eq. (34).
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 and operator Ĥ2, Ĥ3 and P̂(φ), �̂(φ) on the quantum walk scheme is given in the Ref.37. Â0
+,−, Â

1
+,− are given 

by Eq. (34) and Ĥ1 is Hadamard operation on coin operation.

Phase estimation algorithm on three qubit equivalent quantum walk scheme
To estimate the phase ϕ induced by an operator Û on one of its eigenvectors |ψ� using single qubit on three-qubit 
equivalent quantum walk system, we consider the eigenvector |ψ� as the coin state and the position Hilbert 
space represents the state of the control qubits. The quantum circuit for phase estimation on three-qubit system 
is given in Fig. 6.

Algorithm for phase estimation on quantum walk scheme according to quantum circuit as given in Fig. 6, 
when coin and position state is initialised to state |0�c ⊗ |x = 0� is, 

1. Bringing the position states in equal superposition by implementing Hadamard operation H2 and H3 on 
second and third qubit, respectively. The state after this operation will have form, 

2. Bringing the coin state to |ψ�c using unitary operation G such that |ψ�c = G|0�c . Here, |ψ�c is an eigenvector 
of the unitary operator U with eigenvalue e2π iϕ , where the value of ϕ is unknown. The state after this opera-
tion will have form, 

3. The effect of the controlled Û-operations can be thought of as different powers of Û  being operated on each 
of the position states as position-dependent coin operation given by, 

 The form of the state after this operation is 

(36)

QFT00 = Â1
+Ĥ3Ĥ2Ĥ1

QFT01 = Â0
−Ĥ3Ĥ2P̂(π/4)Ĥ1

QFT11 = Â0
+Ĥ3�̂(π/2)Ĥ2P̂(π/4)P̂(π/2)Ĥ1

QFT10 = Â1
−Ĥ3Ĥ2�̂(π/2)Ĥ1

(37)
|φ1� = |0�c ⊗

|00� + |01� + |10� + |11�
2

= |0�c ⊗
|x = 0� + |x = 1� + |x = 3� + |x = 2�

2

(38)|φ2� = |ψ�c ⊗
|0� + |1� + |2� + |3�

2

(39)
Ĉ′
U = IC ⊗ |0��0| + Û ⊗ |1��1|

+ Û2 ⊗ |3��3| + U3 ⊗ |2��2|.

Figure 5.  A schematic illustration of quantum Fourier transformation on three-qubit equivalent quantum walk 
scheme using position dependent operators.

Figure 6.  Schematic of quantum circuit for phase estimation procedure on three qubit system. The state of the 
first qubit of the system is equivalent to the coin state and last two qubit shows the equivalence to the position 
states of the quantum walk scheme.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:12078  | https://doi.org/10.1038/s41598-023-39061-1

www.nature.com/scientificreports/

4. Then applying inverse quantum Fourier transformation in the standard basis such that final state is, 

The position dependent evolution operator for inverse Fourier transformation on state |φ3� in quantum walk 
scheme is given as,

where G is the operator given in step-2 of the algorithm and the form of Vx
1  and Vx

2  position dependent operator 
is given as,

and

Using this scheme on quantum walk, phase ϕ induced by an operator Û  on one of its eigenvectors |ψ�c can 
be estimated upto a certain accuracy. The accuracy in the estimation can be increased by using large position 
Hilbert space.

Quantum space and time complexity
An analysis of complexity is mainly concerned with the inherent cost of solving a problem, where the cost is 
measured in terms of some well-defined resources. In this section, we shall be considering two ways of expressing 
complexity, namely quantum space complexity and quantum time complexity. We define these terms as follows. 

1. Quantum space complexity is defined as the number of real qubits required to implement the circuit. This 
is analogous to the classical space complexity.

2. Quantum time complexity is defined as the smallest number of time steps required to perform a compu-
tation on the circuit. In other words, it describes the least number of simultaneous elementary operations 
required to perform a single computation on the circuit. This is also in direct analogy to classical time com-
plexity.

Note that these definitions are expressed keeping in mind the specific discrete-time quantum walk-based scheme 
presented in this manuscript. In the circuit model of quantum computation, they are equivalent to the notions of 
circuit width and depth, respectively. Complex multi-qubit gates can be composed of elementary gates from the 
universal gate set, and we define the complexity of implementing a (complex) multi-qubit gate as the quantum 
time-complexity of the equivalent circuit constructed with elementary operations.

In case of a standard circuit model, an elementary operation can be a single-qubit Hadamard gate, a single-
qubit phase gate, or a two-qubit CNOT operation. Every other gate may be composed of these gates as they form 
a universal  set35.

In case of our model based on the quantum walk, an elementary operation is defined as a walk operation, 
i.e. a coin operation, followed by a shift operation. In case multiple quantum walk operations can be done with 
a common step, then the time complexity reduces.

As an example, consider the sequence of steps �̂( π2 )P̂(
π
4 )P̂(

π
2 ) , as used in the definition of QFT11 . With the 

way that � and P gates are described in Ref.37, all the gates can effectively be implemented by a coin operation, 
and can thus be combined into a single P operation with a global phase. Thus, the time complexity of this 3 gate 
sequence is actually 1 time step.

(40)

|φ3� = Ĉ′
U |φ2�

= |ψ�|0� + Û |ψ�|1� + Û2|ψ�|3� + Û3|ψ�|2�
2

= |ψ� ⊗ |0� + eiϕ |1� + e2iϕ |3� + e3iϕ |2�
2

(41)
∣

∣φf
〉

= QFT−1|φ3�
= |ψ�|ϕ̃�

(42)QFT−1 = (G ⊗ I)Vx
2V

x
1 (G

† ⊗ I),

(43)

Vx=0
1 = Ŝ+1 (Ĥ ⊗ I)

Vx=1
1 = Ŝ−1 (Ĥ ⊗ I)

Vx=3
1 = Ŝ−1 (Ĥ ⊗ I)

Vx=2
1 = Ŝ+1 (Ĥ ⊗ I)

(44)

Vx=0
2 = Ŝ−1 (Ĥ ⊗ I)

Vx=1
2 = Ŝ+1 (Ĥ ⊗ I)(�̂− π

2
σ̂x ⊗ I)

Vx=3
2 = (σ̂x ⊗ I)Ŝ+0 (Ĥ ⊗ I)

Vx=2
2 = (σ̂x ⊗ I)Ŝ−0 (Ĥ ⊗ I)(�̂ π

2
σ̂x σ̂z ⊗ I).
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Compared to the earlier universal quantum computation scheme with quantum  walks36, our scheme defines 
computation purely as a sequence of walks that achieve the same effect as certain gates, instead of actually 
simulating gates from quantum walk steps, and then creating mirroring the circuit model. The existing models 
thus impose significant resource requirements to achieve the implementations of algorithms, thereby becoming 
prohibitively resource-intensive.

We now detail an analysis of circuits for implementation of quantum algorithms considered in this paper, 
both in terms of the standard circuit model and our proposed quantum walk model of computation.

Grover’s search. In this work, have considered Grover’s search algorithm for 3 qubits, and have searched 
for the state |011� as an example.

Quantum space complexity The proposed quantum walk model of computation requires 3 qubits for imple-
mentation of the walk, however, only one qubit is a real (particle) qubit. The other two qubits are implemented 
with the position space. Thus, the quantum space complexity is 1. In case of the standard circuit model (Fig. 7), 
the implementation requires 3 qubits for the algorithm, and 1 ancilla qubit, thus making the total quantum space 
complexity to be 4.

Quantum time complexity In our quantum walk model, the generation of the initial superposition (done by the 
operator H2H3 ) takes 6 time steps. The oracle operation requires 1 time step, each ensuing Hadamard operation 
requires 3 time steps, and the final iteration operator needs another 2 time steps. Since 2 Grover iterations are 
required for a 3-qubit implementation, the total quantum time complexity becomes 39.

In the standard circuit, the superposition requires 4 parallel single-qubit gates on all 4 qubits and can be 
achieved in 1 time step. The various gates required to implement the algorithm on a 3-qubit system are the 
4-qubit CCCNOT, which requires the Toffoli (CCNOT) gate implementation, the single qubit X gate, and the 
CCZ gate. The various gates and their quantum time complexities are shown in Figs. 8, 9, 10 and 11. Accounting 
for everything, the complete implementation has a quantum time complexity of 72.

Figure 7.  Schematic of quantum circuit for implementation of Grover’s search algorithm on a three qubit 
system. The oracle is designed here to search for the state |011�.

Figure 8.  Schematic of quantum circuit for implementation of the CCCNOT gate on a 4-qubit system. This gate 
has a quantum time complexity of 45.

Figure 9.  Schematic of quantum circuit for implementation of the Toffoli gate on a three qubit system. The 
quantum time complexity of this implementation is 13.



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:12078  | https://doi.org/10.1038/s41598-023-39061-1

www.nature.com/scientificreports/

Quantum Fourier transform. We have considered the problem of computing the quantum Fourier trans-
form for a 3-qubit system.

Quantum space complexity In our circuit, we require 1 real qubit to achieve a 3-qubit quantum Fourier trans-
form. The standard circuit model requires 3 real qubits.

Quantum time complexity In our quantum walk-based model, the operations Ai
± are essentially a single step of 

the walk, and can be implemented in one time step. The Ai
± operation is then followed by the sequence H1H3H2 , 

which requires 7 time steps to implement. The maximum time is required by QFT01 and QFT11 operators each of 
which require 9 time steps. This is due to the fact that the position-dependent Phase operations may be applied 
simultaneously, as they are all simply coin operations. Thus, the quantum-walk based model can implement this 
algorithm in 9 time steps.

In the standard circuit, the QFT is implemented as shown in Fig. 12. The circuit begins with a Hadamard 
gate, followed by two controlled phase gates on the first qubit. The implementation of a controlled phase gate is 
shown in Fig. 13. From Fig. 13, it may be seen that a single controlled phase gate requires 5 time steps to imple-
ment. The final gate we require to implement is a two-qubit swap gate, which can be implemented efficiently as 
a series of 3 two-qubit CNOT gates, which requires 3 time steps to implement. The circuit is shown in Fig. 14. 
As a result, the standard circuit will require a total of 21 steps to implement.

Figure 10.  Schematic of quantum circuit for implementation of the Pauli X gate on a single qubit. This gate has 
a quantum time complexity of 3.

Figure 11.  Schematic of quantum circuit for implementation of the CCZ gate on a three qubit system. This 
implementation is similar to the 3-qubit Toffoli gate, except it has a few less operations. The quantum time 
complexity of this gate is thus 11.

Figure 12.  Schematic for the quantum circuit model implementation of the quantum Fourier transform on a 
three qubit system. The quantum time complexity of this implementation is 21.

Figure 13.  Schematic for the quantum circuit model implementation of the controlled phase gate on two 
qubits. The quantum time complexity of this gate is 5.
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Phase estimation algorithm. We apply the phase estimation algorithm to an unknown unitary operation 
U.

Quantum space complexity In our circuit, we require only 1 real qubit in order to implement phase estimation. 
In a standard circuit, we need 3 real qubits to implement this algorithm.

Quantum time complexity In our circuit, the initial superposition required can be made in 6 time steps by the 
application of the operator H2H3 . 1 time step is then required to implement the operator G, required to bring 
the coin into the correct state. It is sure that this will require only 1 time step as the coin qubit can be affected 
by a coin operator and an identity shift operator on the system. The controlled-U operations are then realised 
as position-dependent operations, which require 3 time steps to implement (assuming U will require 1 step to 
implement). The inverse Fourier transform on a 2-qubit system requires a worst case time of 7 steps. The complete 
quantum time complexity of this circuit thus becomes 17.

In a standard circuit as shown in Fig. 6, the two initial Hadamard gates require one time step to implement, 
as they can be implemented in parallel. Going by the reduction for a controlled-U gate, as shown in Fig. 15, the 
controlled-U and controlled-U2 gates would require 5 time steps each. The remaining circuit for an inverse QFT 
on two qubits requires 1 time step each for the Hadamard gates, 5 time steps for the controlled Phase, and 3 time 
steps for the swap gate. In total, the circuit requires 21 time steps to be implemented.

By this analysis, proposed quantum walk scheme uses a lesser number of real qubits to implement algorithmic 
operations than the circuit model. It also requires a lesser number of time steps than the circuit model in order 
to implement the algorithms shown here.

Single‑qubit error detection
The proposed model of quantum computation also lends itself to an elementary representation of a quantum 
encoding. In this section, we present two examples of [3, 1] codes, and an example of a [5, 1] code. The [3, 1] 
code is able to detect either one of single-qubit errors, namely, bit-flip and phase-flip errors, and the [5, 1] code 
saturates the quantum Hamming bound, and is thus able to protect against arbitrary single-qubit errors.

Bit‑flip code. The [3, 1] bit-flip encoding and decoding in the circuit model of computation is realised as 
shown in Fig. 16. The encoding uses 2 auxiliary qubits to generate error syndromes which can be corrected by 
the decoding circuit, which is shown post the introduction of error. The decoding of the syndrome and correc-

Figure 14.  Schematic for the quantum circuit model implementation of the swap gate on two qubits. The 
quantum time complexity of this gate is 3.

Figure 15.  The circuit model of a controlled-U gate, where U is an unknown unitary, as given in Ref.42. Here 
P(φ) represents the phase gate as described  in37, and A,B,C,φ satisfy eiφAXBXC = U , and ABC = 1 . X is the 
Pauli-X operation.

Figure 16.  A circuit-model representation of the bit-flip code, implemented on a 3-qubit system. The figure is 
based on from the code as described  in42.
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tion of error in a single qubit case requires the implementation of a Toffoli gate as shown. The Toffoli gate may 
be implemented with the gates belonging to the universal set as shown in Fig. 9.

The equivalent operation on a 3-qubit quantum walk system as detailed  in37 may be performed by the opera-
tions CNOT1,2 and CNOT1,3 applied to the system. The final correction step is implemented with the Toffoli gate 
as demonstrated in Fig. 17.

Phase‑flip code. The phase flip encoding is also a [3, 1] code, and is able to detect and correct single-qubit 
phase flip errors. The circuit representation for encoding and decoding in the phase flip code is shown in Fig. 18. 
The circuit for the phase flip code is similar to that used for the bit flip encoding, except that it requires an extra 
Hadamard operation on each qubit after the bit-flip encoding. On a 3-qubit equivalent quantum walk system, 
this corresponds to applying the operations H1 , H2 , and H3 on the system after applying the bit-flip encoding.

Error correcting code. Figure 19 shows a circuit model implementation of a [5, 1] encoding, a more elabo-
rate description of which was given by Laflamme et al.43. The code enables error correction, and is able to correct 
against general single-qubit errors. This encoding may be implemented on a 2-level (5-qubit equivalent) graph 
in a quantum walk system, with one level consisting of a two-site closed graph and the second level being a four-
site closed graph. This setup would require 2 real qubits to implement this code, however, in order to reduce the 
space complexity, it is possible to use a pair of 4-site closed graphs with a single particle executing a discrete time 
walk on them.

The quantum walk implementation would also require the implementation of the twin CNOT gate, the 
controlled-controlled-Z (CCZ) gate, and the CCCZ gate with two of the inputs inverted. The circuit model 
implementation of these gates is shown in Figs. 11 and 20. The sequence of steps required to achieve the CCZ 
gate on a quantum walk system is the same as illustrated  in37. The CCCZ implementation will vary depending 
on the system topology chosen, however, it is illustrated here considering a 2-level implementation, where the 

Figure 17.  A possible realization of the bit-flip encoding in the quantum walk paradigm. The figure (a) 
describes the steps in encoding, and (b) describes the decoding steps. The quantum time complexity of the 
complete encoding and decoding scheme is 5 (2 for encoding and 3 for decoding). In the circuit formalism, the 
quantum time complexity becomes 15 (1 for encoding, 14 for decoding). The reason for this disparity is that the 
quantum walk formalism allows for a simple realization of the Toffoli gate.

Figure 18.  A circuit-model representation of the phase-flip code, implemented on a 3-qubit system. The figure 
is based on from the code as described  in42. This circuit is very similar to the bit-flip code, except that it requires 
an extra Hadamard operation on each qubit during both the detection and correction steps.
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both levels are 4-site graphs, traversed by a single particle. The forms of the operators required are illustrated in 
detail in “Implementing hadamard, phase, and controlled-NOT gates on N-qubit equivalent system". The twin 
CNOT gate may be designed in both the models in the same way, namely, by applying two CNOT operations 
simultaneously.

The CCCZ-gate requires a modified form of the controlled phase operation, which is given by the operator 
P̃3,j , which will cause a conditional phase to be applied in case the control qubit is in the state |0� . This is described 
in Fig. 21. The form of the complete operation is given by Eq. (45).

where j denotes the level at which the operation is applied, Q is the first qubit in the system (assuming the qubit 
to be encoded is mapped to the real qubit), and the operation P̃3,j=2 is as illustrated in Fig. 21.

The error correcting codes considered here are based on models of decoherence, as the error on a physical 
qubit can be modeled as a decoherence-inducing process. Since the proposed scheme uses a single physical sys-
tem in configuration of position space, the whole computation is a bit less susceptible to errors due to reduced 
interactions between multiple components of physical systems.

(45)CCCZQ,b̄,c̄,d = 1Q ⊗
(

|00�j=1 + |10�j=1

)

⊗ P̃3,j=2 + 1Q ⊗
(

|01�j=1 + |11�j=1

)

⊗ 1j=2,

Figure 19.  The quantum circuit for computing syndromes according to the [5, 1] code described  in43. The 
circuit for recovery of the original qubit |φ� is exactly the reverse of this circuit. The empty circle for the control 
qubit implies that the gate is activated if the qubit is in the |0� state. Gates are applied from the left column to the 
right column. Gates in a single column may be applied simultaneously.

Figure 20.  A circuit-model realization of the modified CCCZ-gate as required for implementing the [5, 1] 
quantum error-correcting code. In order to realize the CCCZ-gate which activates as usual, i.e. when all 
inputs are |1� , one may substitute the single qubit pauli X rotations executed at the first time step with identity 
operations in this figure. The method to create this realization has been described  in44.

Figure 21.  The modified form of the controlled-phase operation in the quantum walk regime. This operator 
applies the phase when the control qubit is |0� . The operation � adds a global phase, and is defined as described 
 in37.
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Conclusion
In this paper, we have presented a more generalized form of the quantum computation using single particle 
quantum  walk37, and have shown the scaling of the scheme. Our proposed model can be scaled to system of a 
higher number of qubits by considering different sets of three-qubit equivalent closed graph as position space. 
To implement quantum universal gates on larger qubit equivalent system, the coin operation will control the 
evolution of the walker’s position space by changing the probability amplitude of the targeted closed set. Using 
appropriate conditional position dependent evolution operators, the quantum walk based quantum computing 
scheme can be easily implemented. We have also shown that on this scheme on an N-qubit system, universal 
gate implementation technique is not unique but can be changed according to the available resources. Since 
quantum walks on closed graph have been experimentally implemented on photonic system  before45,46, with the 
help of available photonic quantum processors, universal gates model based on single particle quantum walk 
can be implemented.

We have also presented the scheme for implementing quantum algorithms such as Grover’s search, quan-
tum Fourier transform and quantum phase estimation on this scheme for three-qubit equivalent system. A 
comparison of circuit complexity and circuit depth shows that the proposed quantum walk scheme reduces the 
complexity when compared to circuit model in all of the cases. However, with a careful designing of position 
dependent evolution operators one can engineer the implementation of various quantum computational tasks.
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