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In equilibrium liquid crystals, chirality leads to a variety of spectacular three-dimensional structures, but
chiral and achiral phases with the same broken continuous symmetries have identical long-time, large-scale
dynamics. In this Letter, starting from active model H�, the general hydrodynamics of a pseudoscalar in a
momentum-conserving fluid, we demonstrate that chirality qualitatively modifies the dynamics of layered
liquid crystals in active systems in both two and three dimensions due to an active “odder” elasticity.
In three dimensions, we demonstrate that the hydrodynamics of active cholesterics differs fundamentally
from smectic-A liquid crystals, unlike their equilibrium counterpart. This distinction can be used to
engineer a columnar array of vortices, with an antiferromagnetic vorticity alignment, that can be switched
on and off by external strain. A two-dimensional chiral layered state—an array of lines on an
incompressible, freestanding film of chiral active fluid with a preferred normal direction—is generically
unstable. However, this instability can be tuned in easily realizable experimental settings when the film is
either on a substrate or in an ambient fluid.
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Chiral molecules form a spectacular range of liquid-
crystalline phases [1–3] at thermal equilibrium, of which
the best known is the cholesteric with a helical structure in
which the molecular orientation, described by a headless
unit vector called the director n̂, spontaneously twists at a
uniform rate q0 along the pitch axis [3]. This uniform
periodic modulation does not break translational invari-
ance: unlike in a density wave, all surfaces of constant
phase are equivalent, and an arbitrary translation along the
pitch axis can be compensated by a rotation about it.
Nevertheless, at scales much larger than 1=q0, the mechan-
ics of a cholesteric is precisely the same as that of a smectic
A that has an achiral one-dimensional density modulation.
That is, microscopic chirality leads to a one-dimensional
periodic structure, but the asymptotic long-wavelength
elasticity and hydrodynamics of this structure show no
signature of chirality [4–6]. In this Letter, we show that this
equivalence does not carry over to active cholesteric and
smectic-A phases [7,8] when chirality couples nontrivially
to the active drive. Thanks to the presence of a mix of
solid and liquidlike directions, we predict an effect odder
than odd elasticity [9] in the form of a linear elastic force,
even at zero strain, in directions in which there is no
displacement field.
Recall that active systems are materials with a sustained

supply of free energy, and hence broken detailed balance,
at the scale of their constituents. This microscale drive
manifests itself macroscopically as nonequilibrium currents
and forces [10–19]. Continuum hydrodynamic theories
of fluid [20], liquid-crystalline, and crystalline phases

[7,8,14,16,21–23] of active matter have been constructed,
including extensions with chiral asymmetry [9,24–32]. In
this Letter, we construct theories of layered active chiral
systems. Our hydrodynamic theory starts from an active
model H�—the chiral and active variant of model H [33]
that describes the coupled dynamics of a conserved scalar
order parameter and a conserved momentum density
field—and applies generically to active versions of any
one-dimensional spatially modulated chiral state and not
only to cholesterics in the traditional sense. A two-
dimensional active model H� also leads to the theory of
an active two-dimensional chiral smectic which could arise
if three-dimensional chiral particles were restricted to a thin
film with a distinguished normal direction.
Our central finding is that active cholesterics possess a

chiral stress corresponding to a nonexistent component of
the strain tensor that yields a force density tangent to the
contours of the constant mean curvature of the layers. As a
result of this odder than odd elasticity, the undulational
instability created by active stresses [7,8] leads to a
spontaneous vortical flow arranged in a two-dimensional
array, with the vorticity aligned along the pitch axis and
alternating in sign in the plane (Fig. 1). This vortex-lattice
state can be switched on or off by means of an externally
imposed uniaxial stress. Lastly, a two-dimensional active
cholesteric is unstable with an activity threshold that goes
to zero for an infinite system. This tilted-varicose instability
(Fig. 2) is, however, not inevitable, as we discuss later.
We now show how we obtain these results. A pattern-

formation framework [34] offers a foolproof approach to
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the construction of the hydrodynamic equations for
active cholesterics that is equivalent to the traditional route
[7,8]—starting with the equations of motion for an ori-
entation field and eliminating the fast degrees of freedom—
but here circumventing the need to identify and remove the
nonhydrodynamic mode. Accordingly, we begin by extend-
ing [35,36] to define active model H�: the coupled
dynamics of a pseudoscalar density ψ governed by a
conservation law ∂tψ ¼ −∇ · J and a momentum density
ρv whose dynamics in the Stokesian regime is governed by
∇ · σ ¼ 0, with current J ¼ ψv −M∇μþ Ja þ Jc and
stress tensor σ ¼ −η½∇v þ ð∇vÞT � þ σψ þ pI − σc − σa,
where subscripts a and c denote active achiral and
chiral contributions, respectively. Here, M is a mobility,

μ ¼ δF=δψ is a chemical potential expressed in terms of a
free-energy functional F½ψ �, η is a viscosity, the passive
force density −∇ · σψ ¼ −ψ∇μ is the Onsager counterpart
to ψv [37], and the pressure p imposes overall incom-
pressibility ∇ · v ¼ 0. Ja ¼ λ1ψ∇ψ∇2ψ þ λ2ψ∇ð∇ψÞ2, as
will be familiar from active models B and H [35,36,38–41].
In what follows we ignore the chiral currents Jc, whose
effects on the dynamics of layered states arise at subleading
order in wave number [42]. The achiral active stress [35,36]
in both two and three dimensions is σa ¼ ζH∇ψ∇ψ , while
the chiral active stress is

ðσcÞij ¼ z̄c∂lðϵijk∂kψ∂lψÞ; d ¼ 3;

σc ¼ ζ̄c½ε ·∇ψ∇ψ −
1

2
εð∇ψÞ2�; d ¼ 2; ð1Þ

where d ¼ 2 can correspond to a thin film of 3D chiral
material with a distinguished normal taken to be along
N≡þŷ, thus inheriting uniquely the two-dimensional
antisymmetric tensor ε with components εij ¼ ϵikjNk.
Though here written as an antisymmetric stress, ðσcÞij
can be given in an equivalent symmetric form and is
allowed in momentum-conserving systems [31,42,49,50].
A Swift-Hohenberg free-energy functional F [42,51]

allows model H� to describe the dynamics of spatially
modulated states ψ ¼ ψ0 þ ψ1 in which ψ1, with zero
spatial average, represents a modulation with wavelength
2π=qs about a uniform background ψ0. We consider the
dynamics about a steady state with a one-dimensional
spatial modulation, ψ1¼ψ0

1ðeiϕþe−iϕÞ, with ϕ¼qsðz−uÞ
describing a periodic array of parallel lines or planes of
constant phase in d ¼ 2 or 3, respectively, with normal
along ẑ and small fluctuations uðr; tÞ. We begin with d ¼ 3.
Defining the scaled phase-gradient vector, which is parallel
to the normal of the fluctuating layers, as n ¼ ∇ϕ=qs ¼
ẑ −∇uðx; y; z; tÞ, we obtain the dynamical equation of
the displacement field of the layers from their mean
positions [42]:

∂tu ¼ v · nþ Λ1n · ∇Eþ Λ2∇ · nð1 − 2EÞ − Γu
δF½u�
δu

;

ð2Þ

where Λ1 ¼ −2ψ02

1 q
2
sðλ1 þ λ2Þ and Λ2 ¼ 2ψ02

1 q
2
sλ2 are

active, achiral permeative terms, the final term is a passive
permeation with Γu ¼ −Mq2s , and E ¼ ∂zu − ð1=2Þð∇uÞ2
is the covariant strain. Finally, F½u� ¼ ð1=2Þ R ½BE2 þ
Kð∇2uÞ2� is the rotation-invariant free energy [3,52] that
would have controlled the relaxational dynamics of the
cholesteric state in the absence of activity, with B being
the layer-compression modulus and K being the bending
rigidity of the layers that can be expressed in terms of the
coefficients in the Swift-Hohenberg free energy [42]. The
force balance for our system takes the form

FIG. 2. Active instabilities in two-dimensional layered states.
(a) Instability arising from the chiral active force (ζc, here
positive). The layers are indicated by dark red lines, while the
linear flow field at instability is overlaid (blue arrows). The thick
black lines indicate confining walls, which create a finite
threshold for the instability. (b) Instability arising from the achiral
active force (ζ) for comparison using the same stylings.

FIG. 1. The spontaneous vortex-lattice state: the chiral active
force density (governed by zc) generates counter-rotating circu-
latory flows, with vorticity Ωz obeying η∇2Ωz ¼ −zc∇2∇2⊥u,
around the undulations u of the active Helfrich-Hurault insta-
bility. Smectic layers (light gray) are shown only for the bottom
half of the cell for clarity; blue arrows show the active flows only
on the topmost visible layer. The bottom confining surface is
shown in gray, and the amplitude of the undulation varies as
sinðπz=dÞ, vanishing on both top and bottom surfaces.
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η∇2vi ¼ ni
δF½u�
δu

þ ∂ipþ ∂j½ζwij þ zc∂lðϵijkwklÞ�; ð3Þ

where wij encodes the active stresses from Eq. (1) and
preceding lines. To linear order in displacements, with ⊥
denoting directions transverse to ẑ, wz⊥ ¼ w⊥z ¼ ∇⊥u,
wzz ¼ 2∂zu, all other components are 0, ζ ¼ ψ02

1 q
2
sζH,

zc ¼ ψ02

1 q
2
s z̄c, and the pressure p enforces three-

dimensional incompressibility ∇ · v ¼ 0. The term propor-
tional to zc in Eq. (3) is the chiral active force density. It is
the curl of the vector ∂lwkl and is therefore divergence-free.
Expressed as a vector, this chiral active force density is
−zcẑ ×∇⊥ð∇2⊥uþ ∂2

zuÞ and is directed (primarily) tan-
gentially to the contours of the constant mean curvature of
the layer undulation, driving the vortical flow shown in
Fig. 1. Like odd elasticity, the zc term in Eq. (3) is a parity-
breaking stress in response to layer displacements. In-plane
gradients of layer mean curvature create responses in the
perpendicular in-plane direction like an “odd” Laplace
pressure gradient [53]. Unlike the odd elastic force density
of two-dimensional chiral active solids [9], which arises
from an antisymmetry in the linear relation between stress
and strain, this cholesteric chiral force density [Eq. (3)]
arises even when the strain E ¼ 0.
It might seem that zc does not affect the hydrodynamics

of the layered state as it appears at a higher order in
gradients than the achiral active force. Indeed, it does not
affect the linear dynamics of the displacement field at all:
the eigenfrequency for displacement fluctuations to leading
order in wave number, obtained by projecting Eq. (3)
transverse to the wave vector and solving for the velocity
field, is ω ¼ −ði=ηq4ÞðBq2zq2⊥ − ζq2⊥q2Þ. Therefore, as
noted in [7,8], the dynamics of the displacement field of
cholesterics and smectics are indeed equivalent, with the
layered state having long-range order in three dimensions
for ζ < 0 (unlike their equilibrium counterparts, which
only have quasi-long-range order in three dimensions), and
being unstable for ζ > 0. However, the hydrodynamics of
active cholesterics differs crucially from that of smectics
through the effect of the chiral active force on the velocity
field in the plane of the layers.
The vortical flow caused by the chiral active force can be

used to control and create a vortex-lattice state [54] with
a well defined lattice constant in an active cholesteric
system. This hinges on a mapping between an externally
imposed stress and an internal and active achiral stress.
An external stress can be imposed via a free-energy
term Fext½u� ¼

R
σ0E, which gives rise to a force

−σ0∇ · ðw þ EIÞ [42]. As a consequence, an achiral active
stress acts identically to an external stress with σ0 ¼ ζ up to
an isotropic piece, which can be absorbed into the pressure
in an incompressible system, and the instability of an active
layered state for ζ > 0 maps onto the Helfrich-Hurault
instability of a passive layered state under dilative stress
[55,56]. In the externally stressed instability, a square

lattice undulated pattern u ¼ u0 cos qpx cos qpy (an egg-
crate-like structure) is realized [57,58], and because of this
mapping, the same pattern should be realized beyond the
achiral active instability as well. Because of the chiral
active force ∝ zc, the egg-crate-like undulation leads to an
in-plane vorticity Ωz ∝ ðzcq2pu0=ηÞ cos qpx cos qpy arising
spontaneously from the active instability. This is the vortex
lattice depicted in Fig. 1.
The correspondence between an external stress and the

active achiral stress allows for a quantitative measurement
of the activity. The critical threshold for a layered state of
finite extent d in the z direction is ζ þ σ0 ¼ ð2π=dÞ ffiffiffiffiffiffiffi

BK
p

,
with the instability setting in at wave vector qp≈
ðπ2B=4d2KÞ1=4. When ζ is negative, the layered state
is stable to the activity, and a dilatative external stress,
σ0 > 0, can be applied until the Helfrich-Hurault
instability sets in [59]. This measures the active stress
ζ ¼ ð2π=dÞ ffiffiffiffiffiffiffi

BK
p

− σcr0 . Conversely, for ζ > 0, the smallest
jσ0j that suppresses the spontaneous Helfrich-Hurault
instability σcr0 yields the active stress ζ ¼ jσcr0 j þ
ð2π=dÞ ffiffiffiffiffiffiffi

BK
p

, from which we can calculate the strength
of the achiral active stress using the knowledge of the
thickness of the sample, compressibility, and bending
modulus. The magnitude of the vorticity is ∝ zc=η. The
chiral active force should scale as zc ∼ ζl, where l is the
length of an elementary active unit (both ζ and zc are also
likely to be functions of the concentration of the active
units). Therefore, in principle, we can estimate both the
chiral and achiral active stress if an active cholesteric is
prepared using living liquid crystals [60], which can be
engineered, for instance, by suffusing a passive cholesteric
with bacteria. The wavelength of the passive Helfrich-
Hurault instability [55,58] can be controlled by tuning
the anchoring strength at the boundaries [58,61,62],
which can be used to engineer a vortex array with a desired
lattice constant.
We now turn to a two-dimensional layered state—an

array of lines in the x − z plane with normals on average
along ẑ—in a chiral, internally driven fluid. As in the
three-dimensional cholesteric state, we obtain the coupled
dynamics of the displacement and velocity field equations
to leading order in gradients ∂tu ¼ vz and

η∇2v ¼ ẑ
δF½u�
δu

þ∇pþ∇ · ðζw − ζcε · wÞ; ð4Þ

where, to linear order in u, wzz ¼ −wxx ¼ ∂zu and
wzx ¼ wxz ¼ ∂xu, ζ ¼ ðψ0

1qsÞ2ζH, and ζc ¼ −ðψ0
1qsÞ2ζ̄c

[42]. In Eq. (4), the chiral active force ∝ ζc appears at the
same order in gradients as the achiral active force, unlike in
three-dimensional cholesterics. Further, again unlike in
three-dimensional cholesterics, it will be shown to affect
the displacement field dynamics at linear order. In fact, the
term ∝ ζc is fundamentally distinct from the force ∝ zc in
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Eq. (3); it is not obtained by averaging a thin x − z slice of a
three-dimensional cholesteric. It leads to a chiral active
force along the layers in response to both curvature and
compression of the layers, i.e., a pure ẑ deformation leads
to a force along x̂ in a direction determined by the sign of
ζc, which is only possible since the film has a distinguished
normal breaking the three-dimensional rotation invariance,
and the layered state breaks rotation (and translation)
invariance in the plane of the film. This effect is related
to the odd elasticity [9] of chiral active solids but is odder
still. A smectic breaks translation invariance only along one
direction, so the (linearized) strain is simply ½0

0
0∂zu

�.
Ordinary odd elasticity would create a stress ∝ ½0

0

∂zu
0

�
acting along the layers of the smectic in a direction where
there is no elastic mode. Instead, the chiral activity ζc
produces both a simple shear stress σxz ¼ σzx ¼ −ζc∂zu in
response to strain and a pure shear stress σxx ¼ −σzz ¼
−ζc∂xu in response to tilt. The chiral active stress implies
that a localized compression of the layer spacing produces a
shear flow parallel to the layers.
We now demonstrate that a periodic array of lines in a

two-dimensional film is generically destabilized due to
the chiral active force. Eliminating the pressure using the
incompressibility constraint in Eq. (4), solving for the
velocity field and writing the wave vector q≡ ðqx; qzÞ ¼
qðsin θq; cos θqÞ, where θq is the angle between the layer
normal and the wave vector, we obtain the eigenfrequency
to Oðq0Þ

ω ¼ −
i
4η

ðB sin2 2θq − 4ζ sin2 θq − 2ζc sin 2θqÞ þOðq2Þ:

ð5Þ

This implies an instability of the layered state for wave
vector direction θq just above (just below) zero for ζc > 0

(< 0). This generic chiral instability for either sign of ζc is
distinct from the spontaneous Helfrich-Hurault [3] insta-
bility of active smectics or cholesterics, which is achiral,
arises for positive ζ [7,8], and grows fastest at θq ≈ π=2.
Equation (5) implies that in a system confined at a scale d
along x̂ so that the smallest qx ∼ 1=d, the minimum value
of the chiral active stress for which the layered state is
unstable is ∼1=d. Further, this instability requires both
momentum conservation and incompressibility. It is elim-
inated if the film is supported on a substrate that would add
a wave-vector-independent damping −Γv to Eq. (4). The
eigenfrequency for the displacement fluctuations then
vanishes at small q as Oðq2Þ, and the permeative [3] terms
∇∇u in the displacement equation, subdominant for a
freestanding film, now enter at the same order in gradients.
Of these, terms ∝ ∂2

zu are crucial, while others can be
absorbed into redefinitions of ζ and ζc. The resulting
eigenfrequency is

ω ¼ −
iq2

4Γ
ðBsin22θq þ Bcos2θq − 4ζsin2θq − 2ζc sin 2θqÞ;

ð6Þ

where B is the coefficient of the ∂2
zu permeative term

multiplied by the friction coefficient, and the instability
now occurs only if jζcj > ðB=2Þ þ B=2 − ζ for directions
θq ≈ π=4. Compressibility, as in a film bounded by bulk
fluid, at large enough scales [63] is also stabilizing [64]. A
detailed solution [42] of the tangent-plane velocity in this
case leads to the eigenfrequency for the displacement field

ω ¼ −
ijqj
4η

½ðBcos2θq − ζÞð1þ sin2θqÞ − 12ζc sin 2θq�:

ð7Þ

Equation (7) yields an instability if jζcj > ½ðB=2Þ − ζ�=8
for θq ≈ π=4 irrespective of the sign of ζc. We expand on
this in [42]. While a freestanding film with a generically
unstable chiral layered state may be difficult to access
experimentally, films supported on a substrate or immersed
in a bulk fluid can be engineered, and the instability seen in
Eqs. (6) and (7) may be observed.
In this Letter, we have developed the hydrodynamic

theory of active chiral, layered states in two and three
dimensions and demonstrated that the combination of
internal drive and broken parity qualitatively modifies
the dynamics and stability of these phases, unlike in their
equilibrium counterparts. This difference derives from the
“odder” elasticity of phases with a mixture of solid and
fluid directions. By adopting the framework of a scalar field
theory, active model H� offers a foolproof method for
obtaining the correct hydrodynamic description [65–67].
This general approach can be used beyond active choles-
terics to construct the hydrodynamic theory of any spatially
modulated active chiral state, such as active chiral solid or
columnar phases [68], and may present the simplest
framework to understand the dynamics of and (possibly
nonreciprocal) interactions between dislocations in these
phases [69]. Further, the one-dimensional spatially modu-
lated states discussed in this Letter appear due to micro-
phase separations in active model H�; the dynamics of
simple phase separation in this model [70] is also likely to
be distinct from either passive model H or achiral but active
model H.
We conclude with a brief discussion of proposals for

experimental realizations, applications, and possible exten-
sions. A three-dimensional active or living cholesteric can
be constructed by releasing swimming bacteria into passive
biocompatible cholesteric liquid crystals, yielding a system
that should display the vortex-lattice state we predict.
Similarly, introducing passive chiral particles in an active
but achiral fluid also leads to the chiral active forces
discussed in our work, allowing for the realization of a
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wide range of artificial active cholesteric materials.
Furthermore, multiple biological systems display choles-
teric organization, the most spectacular of which is DNA in
chromatin [71], which in vivo may be affected by DNA
polymerases, leading to chiral active forces of the form that
we describe here.
In addition to free surfaces or interfaces of three-

dimensional materials, there are numerous possibilities
for realizing a two-dimensional cholesteric phase—for
instance, via the melting of a chiral version [9] of
anisotropic active solids [23] along one direction analogous
to the emergence of (achiral) smectic phases due to an
anisotropic dislocation-mediated melting of two-
dimensional crystals in which dislocations unbind along
one direction [72–77] (see [69] for a description of
dislocations in chiral active solids). Two-dimensional
layered states are also observed in active nematic fluids
in experiments on motor-microtubule gels [78–80] and
simulations [81], and since these gels are known to be
chiral [82], the physics we describe for two-dimensional,
chiral layered states may be observable there. Chirality has
been shown to be important in epithelial cell layers [30],
and a density modulated phase in these systems will lead to
another realization of two dimensional cholesterics.
Nonreciprocal, two-species Cahn-Hilliard models [83,84]
also spontaneously form banded phases and chiral variants
of these models would lead to two-dimensional chiral
layered states. Finally, two-dimensional smectic phases
in parity-broken systems are possible in two-
dimensional electron gases [85] and, when they are
irradiated by microwave radiation [86], may have a
dynamics equivalent to the one described here.
Therefore, there are abundant possibilities for creating
two- and three-dimensional active cholesteric states.
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