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Machine learning non-Hermitian topological phases
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Non-Hermitian topological phases have gained widespread interest due to their unconventional properties,
which have no Hermitian counterparts. In this work, we propose to use machine learning to identify and
predict non-Hermitian topological phases, based on their winding number. We consider two examples—non-
Hermitian Su-Schrieffer-Heeger model and its generalized version in one dimension and non-Hermitian nodal
line semimetal in three dimensions—to demonstrate the use of neural networks to accurately characterize the
topological phases. We show that for the one-dimensional model, a fully connected neural network gives an
accuracy greater than 99.9% and is robust to the introduction of disorder. For the three-dimensional model, we
find that a convolutional neural network accurately predicts the different topological phases.
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I. INTRODUCTION

The Hermitian nature of the Hamiltonian is a central pos-
tulate of quantum mechanics [1]. However, the investigation
of systems with departure from Hermiticity has a long history
[2–8]. Study of such open systems has been widely applied in
nuclear reactions, quantum optics, photonics, and mesoscopic
systems [9].

The interest in non-Hermitian systems has seen a resur-
gence with a vibrant interaction with the field of topological
phases—this has resulted in a rapid flurry of activity on
non-Hermitian topological phases [10–16]. These exhibit
remarkable properties with no counterparts in Hermitian sys-
tems, such as exceptional points [17], non-Hermitian skin
effects [18–21], and breakdown of bulk-boundary correspon-
dence [22–26], to name just a few. In addition to the rapid
advancements in the theory of non-Hermitian topological
systems, there have been several exciting developments in
their experimental study. Photonic crystals [27–31], optical
systems [32,33], and topoelectrical circuits [34] have been
demonstrated to be versatile platforms to investigate non-
Hermitian topological phases.

In recent years, machine learning techniques have been
applied, with success, to a number of physical settings
[35,36]. In particular, the study of different phases and phase
transitions has been actively pursued in the last few years
using machine learning methods [37–41]. Excitingly, these
techniques have also been employed in identification and
characterization of Hermitian topological phases of matter.
These topological phases are novel phases of matter, which
cannot be classified by conventional Landau-Ginzburg sym-
metry breaking paradigm [42–44]. Neural networks have been
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successfully used to learn topological invariants [45–47]. Un-
supervised machine learning has been demonstrated to be
useful for identifying topological phases [48,49]. Further-
more, real space formulations of the topological invariants
have been studied using artificial neural networks [50,51].
Recently, new insights into machine learning of topological
quantum phase transitions have been gained [52].

In this contribution, we introduce machine learning
for non-Hermitian topological phases. Using two differ-
ent examples—non-Hermitian Su-Schrieffer-Heeger model in
one dimension and non-Hermitian nodal line semimetal in
three dimensions—we demonstrate that machine learning can
be used for identifying non-Hermitian topological phases
based on their winding number. We discover that for the one-
dimensional case, a fully connected neural network yields an
excellent prediction accuracy of greater than 99.9%. We show
that these predictions are robust upon introducing noise to the
training data. On the other hand, for the three-dimensional
example, we find that the overall accuracy for the fully con-
nected network is less than 50%. We demonstrate that use of a
convolutional neural network gives an excellent performance
for this higher dimensional case, yielding an accuracy exceed-
ing 99.8%.

II. SU-SCHRIEFFER-HEEGER MODEL

We begin our analysis by considering the Su-Schrieffer-
Heeger (SSH) model—the paradigmatic non-Hermitian
model exhibiting topological phases [14,53]. The Hamiltonian
reads

H (k) = (t1 + t2 cos k)σx + (t2 sin k + iγ /2)σy, (1)

where σi (i = x, y, z) are the Pauli matrices and k denotes
the momentum. Here t1 and t2 are hopping strengths and a
finite γ introduces a non-Hermiticity to the Hamiltonian. The
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FIG. 1. Fully connected neural network for the non-Hermitian Su-Schrieffer-Heeger model. A fully connected neural network with two
hidden layers was constructed. The hidden layers were comprised of 100 and 32 neurons, respectively. The training set consisted of 105

samples. (a) The loss or cost with each epoch of training. The network was tested on a set of 104 samples, not seen by the network during the
training. (b) The predicted winding number Wp (in blue) and its rounded off value (in pink) for the test set. The network was able to predict
with an accuracy of 99.98%. The dashed vertical lines show the analytical value of t1 at the phase transition. Here we have chosen γ = 4/3
and t2 = 1.

non-Hermitian topological phase of this model is character-
ized by the winding number, W = 1, while the trivial phase
has W = 0 [14]. The model features several interesting as-
pects including the non-Hermitian skin effect as well as a
breakdown of the bulk-boundary correspondence.

We rewrite our Hamiltonian in the form H (k) = hx(k)σx +
hy(k)σy and use it as an input for our neural network at P
different points. Here hx = t1 + t2 cos k, hy = t2 sin k + iγ /2,
and k = 2πn/P (n = 0, ..., P). The input data can also be
written as (P + 1) × 2 matrices of the form(

hx(0) hx(2π/P) ... hx(2π )
hy(0) hy(2π/P) ... hy(2π )

)T

. (2)

The winding number, W , is defined as

W = −(i/2π )
∮ 2π

0
U ∗(k)∂kU (k)dk, (3)

where U (k) = hx(k) + ihy(k). For discretized data, the above
winding number equation can be rewritten as

W = (1/2π )
P∑

n=1

��(n), (4)

with ��(n) = [�(n) − �(n − 1)] mod 2π and �(n) =
arg[U (2πn/P)].

With this input, we constructed a fully connected, i.e.,
dense, neural network with two hidden layers. We used 100
neurons in the first hidden layer and 32 neurons for the second
hidden layer. Rectified linear unit (ReLU) activation function
was used for the hidden layers. To train our neural network
we generated a training set with 105 samples. For generating
the training set, we set t2 = 1, γ = 4/3 and t1 was chosen ran-
domly from the range [−3, 3]. The network was trained with
2000 batches, with each batch having a size of 50. The training
was performed 50 times, i.e., number of epochs is 50. The loss
(or cost) with each epoch of training is shown in Fig. 1(a). We
note that the neural network converges rapidly. We checked
the accuracy with each training cycle for both training and test
sets and found that their accuracy are approximately equal,
which rules out overfitting.

After having trained the neural network on the training
set, we use the network to predict the winding number on
a test set which consisted of 104 samples not seen by the
network during the training. The predicted winding number
Wp is presented in Fig. 1(b). We note that our trained neural
networks yield winding numbers close to integer values and
we also plot the output rounded off to the nearest integer,
as is common practice [46]. We find that our trained neural
networks show a very high accuracy of more than 99.9%. In
particular, it is able to correctly predict the values of t1 at
which the topological phase transition from W = 1 to W = 0
takes place.

Our randomly sampled Hamiltonian does not include any
noise. On the other hand, data collected from experiments
would invariably show some degree of noise. To simulate
this scenario, we artificially incorporated noise in our training
data. To do so, we added a value between [−0.5t2, 0.5t2] to hx

or hy. We checked the robustness of the network by training
the network on training sets with 1%, 5%, and 10% noise and
testing it on a separate test set. The resulting predictions for
the winding number and their rounded off value are shown in
Fig. 2. Remarkably, the trained neural network is very robust
and we obtain a very high accuracy greater than 99.7% in all
these cases. This suggests that our neural network approach
could be reliable even in the presence of noise in the input
training data. We note that disorder which breaks translational
symmetry is not described by the momentum space picture
and consequently by the winding number—our method is not
directly applicable to these cases.

III. NON-BLOCH WINDING NUMBER

Next, we consider the generalized non-Hermitian SSH
Hamiltonian [54]

H (k) = [t1 + (t2 + t3) cos k + i(γ2/2) sin k]σx

+ [(t2 − t3) sin k + iγ1/2 − i(γ2/2) cos k]σy. (5)

This reduces to our earlier model for t3 = γ2 = 0 and γ1 =
γ . The generalized Bloch Hamiltonian is obtained by the
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FIG. 2. Effect of noise on the predicted winding number. Ran-
domly sampled Hamiltonian from a computation lacks noise. Data
collected from experiments would invariably show noise. To simulate
this, noise was artificially introduced in the training data. This was
achieved by randomly adding a value between [−0.5t2, 0.5t2] to hx

or hy. The robustness of the network was checked by training the
network on training sets with 1%, 5%, and 10% noise and testing it
on a separate test set. Predicted winding numbers and their rounded
off value, for training with 1% (in magenta), 5% (in red), and 10%
(in green) noise, are shown in (a) and (b), respectively. We obtained
very high accuracy of 99.92%, 99.90%, and 99.70%, respectively.
The vertical dashed lines are the analytically obtained values of t1 at
the phase transition.

replacement eik → β. Expressed in terms of β, the Hamil-
tonian becomes H (β ) = R+σ+ + R−σ−, where σ± = (σx ±
iσy)/2 and R± read

R+ = (t2 − γ2/2)β−1 + (t1 + γ1/2) + t3β,

R− = t3β
−1 + (t1 − γ1/2) + (t2 + γ2/2)β. (6)

The eigenvalue equation is R+R− = E2, which has four so-
lutions, βi (i = 1, 2, 3, 4), in general. The trajectory satisfying
the condition |β2| = |β3| traces the generalized Brillouin zone
labeled by Cβ [14,54]. The non-Bloch winding number is then
defined as

W = −w+ − w−
2

, (7)

where w± = [argR±]Cβ
/2π . Here [argR±]Cβ

denotes the
change of phase of R± as β traverses Cβ [54]. Next, we
discretize these quantities over points on Cβ and construct a
fully connected neural network. We trained the network using
105 samples, with t1 ∈ [−3, 3], t2 = 1, t3 = 1/5, γ1 = 4/3,
and γ2 = 0. We next test the network on 104 samples, which
were previously not seen by the network, and calculate the
non-Bloch winding number over the Cβ . The results are shown
in Fig. 3. Our trained neural network performs very well,
yielding an accuracy of 99.8%. This shows that our formalism

FIG. 3. Learning the non-Bloch winding number for generalized
SSH model. The predicted winding number (in blue) and the rounded
off value (in pink) for the generalized non-Hermitian SSH model. A
total of 105 training samples were generated with t1 ∈ [−3, 3], t2 =
1, t3 = 1/5, γ1 = 4/3, and γ2 = 0. The network was tested on 104

samples, not seen by the network during training. An accuracy of
99.8% was obtained. The inset shows the generalized Brillouin zone
Cβ for t1 = 1.1.

is successful in learning this non-Bloch winding number and
is thus applicable in a more general setting.

IV. NODAL LINE SEMIMETAL MODEL

We now consider a higher dimensional model to under-
stand if the network is able to learn the winding number and
phase transitions in a more general setting. The non-Hermitian
continuum model for a nodal line semimetal reads [25]

H = (m − Bk2)σx + (vzkz + iγz )σz, (8)

where k =
√

k2
x + k2

y + k2
z and vz is the Fermi velocity. The

parameters m and B control the existence and radius of
the nodal line in the Hermitian limit. This model shows
a rich phase diagram with winding numbers 0, −1/2, and
−1, in addition to exceptional rings and the non-Hermitian
skin effect [25]. For this more general case, the input
Hamiltonian is H (kz ) = hx(kz )σx + hz(kz )σz, where hx = m −
B(k2

x + k2
y + k2

z ) and hz = vzkz + iγz. We treat kx and ky as
parameters and discretize kz = 2πn/P where n ∈ Z, such
that n = −P,−P + 1, ..., P − 1, P and n �= 0. The input data
can be expressed as 2P × 2 matrices. Analogous to the
Su-Schrieffer-Heeger model, the winding number for dis-
crete data can be computed using W = (1/2π )

∑
n ��(n).

Here ��(n) = [�(n) − �(n − 1)] mod 2π and �(n) =
arctan(hx/hz ). Using this input data, we first constructed a
fully connected neural network. Our training set consisted of
8 × 105 Hamiltonians with kx and ky uniformly distributed
in the range [−1, 1]. The network was subsequently used to
predict winding numbers on a test set which consisted of
2 × 105 Hamiltonians in the same range of kx and ky. Test
samples were not seen by the network during the training.
Surprisingly, we found that the overall accuracy of our fully
connected network for this higher dimensional model is less
than 50%, which is no better than a random guess. We were
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FIG. 4. Convolutional neural network for non-Hermitian nodal
line semimetal model. (a) Computed and (b) predicted winding num-
ber as a function of kx and ky, when m = 0.4, γz = 0.2, vz = B = 1,
and kz = 0. Areas with winding numbers 0, −1/2, and −1 are shown
in green, blue, and red, respectively. We obtained an accuracy of
99.95%. In (b) the incorrect predictions are marked in magenta.
These occur predominantly near the phase boundaries. (c) Schematic
of our convolutional neural network with two convolutional layers,
with 80 and 64 filters and kernel size of 2 × 2 and 1 × 1, followed
by a fully connected layer with 20 neurons before the output layer,
which was used to predict the winding numbers.

unable to improve the accuracy of the predictions of the fully
connected network by changing its architecture.

To overcome this limitation, we next constructed a more
sophisticated convolutional neural network with two convo-
lutional layers, each comprised of 80 and 64 filters with a
kernel size of 2 × 2 and 1 × 1, followed by a fully con-
nected layer with 20 neurons before the output layer [see
Fig. 4(c)]. We used similar training as in the case of the
fully connected network and employed the trained network
to predict the winding numbers on a test set. Our results are
presented in Fig. 4, where a comparison between the calcu-
lated [panel (a)] and predicted [panel (b)] phase diagrams is
shown. The green, blue, and red regions in the kx − ky plane
correspond to winding numbers of 0, −1/2, and −1, respec-
tively. The two plots bear a remarkable resemblance and our
overall prediction accuracy is 99.95%, using only 50 training
cycles. We also notice a few tiny patches of incorrect predic-
tions (shown in magenta), which occur predominantly near
the phase boundaries between regions with different winding
numbers. Overall, our convolutional neural network is reliable
and suitable for predictions involving higher dimensions and
several topological phases.

To gain more insight into our convolutional neural network,
whose schematic is shown in Fig. 4(c), we investigate the

details of its learning. Our convolutional neural network con-
sists of three hidden layers, two convolutional layers, and one
fully connected layer. The first layer in the network is a convo-
lutional layer with 80 filters, hence 80 different convolutions
are performed with respect to the input Hamiltonian.

Bi(n) = f (Ai
11hx(2π (n − 1)/P) + Ai

12hz(2π (n − 1)/P)

+ Ai
21hx(2πn/P) + Ai

22hz(2πn/P) + Ai
0, (9)

where Ai
αβ is a 2 × 2 kernel, i = 1, ..., 80, n ∈ Z and n =

[−P + 1, 0) ∪ (0, P], α, β = 1, 2 and f (x) is the activation
function. The second layer is also a convolutional layer with
64 filters. Here the convolutions are performed using a 1 × 1
kernel, Ci. The output of this layer,

Di(n) = f

(
N∑

i=1

CiBi(n) + Ci
0

)
, (10)

is equivalent to the ��(n) of the winding number formula. In
the third and the final hidden layer, which is fully connected,
the network attempts to add all ��(n) to output the winding
number. In the final layer, all the 20 neurons of the last hidden
layer are mapped onto a single output neuron to yield the
predicted winding number

Wp =
20∑

q=1

FqEq + G. (11)

In the above, En = f (
∑N

i=1 MqnD(n) + Nq) with q =
1, ..., 20. The network successfully determines all the fitting
parameters, Ai, Ci, Mqn, Nq, Fq, and G, during the training.
With these insights, we can conclude that the network is
capable of learning the winding number formula in cases with
co-existence of several different topological phases. This is a
reliable and efficient approach to characterize non-Hermitian
topological phases and the understanding gained from the
scrutiny of its inner workings would be useful for formulating
extensions to other systems. It would further be interesting to
explore the application of machine learning to other intrigu-
ing properties of non-Hermitian systems, such as exceptional
points and non-Hermitian skin effects.

V. SUMMARY AND OUTLOOK

We demonstrated the use of machine learning to iden-
tify non-Hermitian topological phases, characterized by their
winding numbers. For the one-dimensional non-Hermitian
SSH model, we trained a fully connected neural network to
predict the different phases with an accuracy greater than
99.9%. For a three-dimensional non-Hermitian nodal line
semimetal model, we constructed and trained a convolutional
network to yield excellent accuracy in predictions of the topo-
logical phases. Our proposed methods could be potentially
useful for machine learning of other non-Hermitian topo-
logical phases [55–62] and could be generalized to include
those with disorder [63,64]. Furthermore, we envisage that our
methods could be applied for identification of non-Hermitian
topological phases in future experiments.

Note added. Recently, we became aware of complementary
studies in Refs. [65,66].
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