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Abstract
Sb2Te3-basedmaterials are potential room-temperature thermoelectricmaterials. In the present
work, we choose polycrystalline Sb2Te3/Te nanocomposites and utilize PolyMethylMethacrylate
(PMMA) to reduce the thermal conductivity of Sb2Te3 samples. PMMAand polycrystalline
Sb2Te3/Tewerewellmixed using ballmilling. Pellets have beenmade by the cold pressmethod.
Thermoelectric transport properties of Sb2Te3/Te nanocomposites: composition,microstructure,
and analysis are found to be influenced by PMMA.With increasing PMMAconcentration a p-type to
n-type transition has been observed because there are fewer charge carriers or the composites have a
higher resistance. It is also observed that the thermal conductivity of Sb2Te3/Te nanocomposites
decreases as the PMMA increases. This research paves theway formaking the best thermoelectric
materials by reducing thermal conductivity through the use of polymers.

1. Introduction

One of the things we frequently encounter and are aware of is energy, which can take several forms. Various
forms of energy, including light, sound, electricity, heat, wind energy, etc can be converted into one another
directly or indirectly. Electrical energy can be converted into thermal energy with the help of thermoelectrics.
Thermoelectric (TE) energy conversion technology has recently attracted a lot of attention because of its
advantages over other energy conversionmethods. TEmaterials have a very low impact on the environment and
lackmoving components [1]. The dimensionless figure ofmerit, zT= S2σTκ−1, which takes the Seebeck
coefficient, electrical conductivity, absolute temperature, and thermal conductivity, respectively into account,
can be used to describe the performance of TEmaterials [2]. Polymer-based thermoelectricmaterials are gaining
much attention because of the ability of the polymer in altering themicrostructure which can help in tuning the
thermoelectric properties [3]. The TEproperties ofmaterials, Seebeck coefficient (S), electrical conductivity (σ),
and thermal conductivity (κ) are dependent on the quenchingmedium, i.e., the cooling rate ofmelt
solidification [4–6], annealing treatment [7, 8], the synthesis process [9, 10], and sintering process [11, 12].
Knowledge of the phase diagram is important in choosing the appropriate composition and process
temperature. The properties of the TEmaterials can be tuned by altering themicrostructure. By adding a
polymerwith TEmaterial, themicrostructure can bemodifiedwhich in turn can tune the physical properties of
thematerial [3].

Also, polymer-based TEmaterials and their composites can be utilized to produce flexible TEmaterial that
can be utilized as awearable thermoelectric generator for energy harvesting and formany other related
applications like temperature-controlled body suits [13, 14].

For room-temperature applications, Sb2Te3 is one of the best p-type thermoelectricmaterials [12, 15]. To
improve the TE efficiency of Sb2Te3 several efforts have beenmade like the formation of nanocomposite
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[16–23], doping [15], orientation engineering [24], and nanostructuring [25, 26]. The formation of
nanocomposite has gotmuch attention due to its advantage in reducing thermal conductivity whilemaintaining
a high value of power factor (PF= S2σ) [27, 28].

In recent years, polymer-based composites such as poly (3,4-ethylene dioxythiophene) (PEDOT) [3, 4],
polyaniline (PANI) [5, 6], and polythiophene [7]have been applied as TEmaterials due to their versatile
processability, low density, and low thermal conductivity, all of which are critical in improving TEproperties.
Recent research has concentrated on the synthesis of hybrid Sb2Te3 composites by the blending of inorganic and
organic ingredients to increase their application [29].

In recent years, inorganic-organic composites have attractedmuch attention as thermoelectricmaterials due
to their versatile advantages such as low thermal conductivity, low density, and easy processability. By using
inorganic-organic composites, bilateral benefits of good electrical conductivity with enhanced Seebeck
coefficient by decouplingσ and S through an energy filtering effect andwith low thermal conductivity can be
achieved. Several groups have demonstrated the improved thermoelectric properties of using inorganicmaterial
and polymer composites [29–37].

Numerous thermoplastic polymers such as polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC),
polyvinyl acetate (PVA), and polymethylmethacrylate (PMMA)were used as insulating polymermatrix to
fabricate compositematerials [29, 34–37]. Among them, poly (methylmethacrylate) (PMMA) has been one of
themostwidely studied polymermaterials due to its excellentmechanical, chemical, and thermal stability
properties. Conductive pathways can be generatedwith various inorganic fillers in the interfacial regions of the
polymericmatrix during processing [35, 36]. Because the arrangement of inorganicfillers with attractive
electrostatic force depends heavily on thematrix shape, the composite could demonstrate high performance
with a lined-up conductive pathway.

It is reported that composite formationwith polymer (polyvinylpyrrolidone (PVP)) has reduced theκ of
Bi2Te3-based nanofiber [30]. However, there are notmuchwork on the polymermixed Sb2Te3 nanocomposites.

Among several inorganicmaterials, the Bi2Te3/Sb2Te3-based thermoelectricmaterials were successfully
utilized in room-temperature thermoelectric device applications. numerous studies were investigated for n-type
Bi2Te3 polymer composites and on the other hand few studies only reported for the p-type Sb2Te3. In both the
n-type and p-type chalcogenides, reducing thermal conductivity and improving the Seebeck coefficient without
affecting their electrical conductivity is themainmotive to achieve high-performance thermoelectricmaterials.
In the present study, we intend to study the p-type Sb2Te3 and PMMApolymer composites due to the benefits of
easy processability, large-scale processing of bulk compoundswith excellentmechanical, chemical, and thermal
stability properties of PMMA towards the improvement of Seebeck coefficient and reduction of thermal
conductivity.

Among several inorganicmaterials, the Bi2Te3/Sb2Te3-based thermoelectricmaterials were successfully
utilized for in room-temperature thermoelectric device applications. numerous studies were investigated for
n-type Bi2Te3 polymer composites and on the other hand few studies only reported for the p-type Sb2Te3. In
both the n-type and p-type chalcogenides, reducing thermal conductivity and improving the Seebeck coefficient
without affecting their electrical conductivity is themainmotive to achieve high-performance thermoelectric
materials.

None of the investigations have been published to investigate the thermoelectric characteristics of PMMA-
mixed Sb2Te3 nanocomposites. The inorganicmaterial in this study is Sb2Te3/Te and the polymer used is
PMMAwhich is a non-conducting polymer. In the conducting pathways of Sb2Te3/Te, the polymerwill act as
an energy barrier that will restrict the transport of electrons aswell as scattering centers to restrict the heat flow
by scattering the phonons. It is well reflected in the temperature-dependent electrical conductivity and thermal
conductivity of Sb2Te3 and PMMApolymer composites. The thermal conductivity of Sb2Te3 nanocomposites is
found to be considerable. The variation in TE properties was understood based on the structural changes due to
the addition of polymer.

2. Experiments andmethods

Sb2Te3/5%Te nanocomposites were synthesized bymelting the rawmaterials, Sb andTe (99.99%purity, Sigma
Aldrich) bymelt quenchingmethod.Weighingwas done on the Sb andTe elemental powders according to the
Sb2Te3/5%Te composition. Theweighed powders were transferred in a quartz ampoule and sealed under a
vacuumof 10−6mbar. The ampoulewas heated to 1073 K at a rate of 5 Kmin−1 in a rocking resistive furnace.
The combinationwas subjected to a 10-hour rockingmotion at 20 rpmand then the ampoule was quenched in
an icewatermedium. The ingots were ground to powder and thenmixedwith PMMApowder according to
PMMAxSb2Te3/5%Te (x= 0.00, 0.01, 0.03, 0.05) ratio. Thesemixed powders were ballmilled for 6 h at 250 rpm
in a planetary ballmilling system and then cold pressed to produce pellets. The obtained pellets were sintered at
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423 K for 6 h under a vacuumof 10−3mbar. This sintering temperature was kept low to avoid any
decomposition ormelting of the polymer. The density of the sintered pellets wasmeasured usingArchimedes’
principle. For various structural and thermoelectric studies, thefinal samples were cut in the desired directions.
Under identical conditions, all the samples weremade twice and the structural andTE characterizations were
independently carried out on these two sets of samples and the average of the two being used.

X-ray diffraction (XRD)was used to determine the crystal structure and purity of the samples using the
Rigaku Smart Lab x-ray diffractometer with CuKα radiation source (λ= 1.5418 Å). The sample’s Raman spectra
were recorded using aHORIBA JOBINYVONHR800 confocal Raman spectrometer (λexc= 532 nm) and a
12 mW laser. For surface imaging, FEIQuanta 450 scanning electronmicroscopy (SEM)was used. Backscattered
electron (BSE) images were takenwith an FEI ESEM-Quanta 200. The powder samples were examined using a
JEOL 2000 FX-II transmission electronmicroscope (TEM). Energy-dispersive x-ray spectroscopy (EDX)was
used to determine the elemental compositions. The four probe and bridgemethods, respectively, were used to
measure the TE transport characteristics,σ and S in the temperature range of 300–390 Kusing a homemade
setup under a vacuumof 10−3mbar. The uncertainty in electrical resistivity (σ) and Seebeck coefficient
measurements (S) is±5%.Hall effectmeasurement has been done for all the samples at room temperature using
a homemade laboratory setup. The heat capacity was calculated using the formulaκ=αCpd, whereα is the
thermal diffusivity, d is the density, andCp is the heat capacity. In the temperature range 300–390 K, the thermal
transport properties, thermal diffusivity (α) under argon atmosphere, and heat capacity (Cp) under nitrogen
(N2) atmosphere, weremeasured using LINSEIS LFA 1000 and differential scanning calorimetry apparatus TA
SDT650, respectively. TheUncertainty in thermal conductivity (κ)measurements is±5%.

3. Results and discussion

3.1. PowderXRDanalysis
Figure 1 shows theXRDpattern of polymermixed Sb2Te3/Te nanocomposites. The indexing of all the XRD
peaks has been donewith p-type Sb2Te3 (space group:R3m̄ h, rhombohedral, PCDCardNo. 1216385) andTe
phase (space group: P3121, trigonal, PCDCardNo: 382599) [16]. Rietveld refinement analysis was carried out
using the Full Proof software. The graphs of theXRDRietveld refinement are displayed infigures 2(a)–(d). The
simulated experimental x-ray diffraction patterns are shownby the dark blue line and observed experimental
x-ray diffraction patterns are shown by the orange circles, respectively. The difference between the experimental
and simulated curves can be seen by the pink continuous line at the bottom. The Bragg positions are shown by
the thin, navy blue vertical lines. Table 1 lists the crystallite size, Lotgering factor, density aswell as refined lattice
parameters (a, b, c, andV). These values are found to be closelymatchingwith the Sb2Te3 lattice parameters that
have been reported [16]. As vacancies tend to shorten the lattice parameters, the pure Sb2Te3 lattice
monotonically decreases with increasing polymer content. Twomajor phases are present in prepared samples as
revealed by the Rietveld refinement. Sb2Te3 phase has been found as themain phase andTe has been found as a

Figure 1.XRDpatterns of PMMAxSb2Te3/5%Te (x= 0.00, 0.01, 0.03, 0.05) indexedwith the rhombohedral phase andmarkedwith
secondary phase peaks.
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secondary phase. A trace amount of the secondary phase of Tewas observed in all the samples, due to the high
amount of nonreactive Te present in the prepared samples.

The Rietveld refinement results show that the increase of polymer content in the Sb2Te3/Te composite tends
to decrease the Sb2Te3 phase and increases the Te phase. This is clearly evident in the observation of the presence
of the Te phase (%)which increased from8% to 18%and a simultaneous decrease in the Sb2Te3 phase from91%
to 81%with the increase of polymer content from (0 to 0.05%). These observations show that the addition of
polymermay segregate the Te phase from the Sb2Te3 phase. In addition to this, the crystallite size, crystallite
volume, and density of the polymer composite tend to decrease with the increase of PMMAcontent. There is a
difference in the intensity of the (015) peak and (0015)peak is also observed, suggesting that the polymermixed
samples show a significant anisotropy of grain orientationwithout changing the crystal structure. The Lotgering

Figure 2. (a)–(d)Rietveld refinement of PMMAxSb2Te3/5%Te (x= 0.00, 0.01, 0.03, 0.05) samples.

Table 1.Estimated refined lattice parameters, crystallite size, Lotgering factor, density, carrier
concentration, andmobility of PMMAxSb2Te3/5%Te (x= 0.00, 0.01, 0.03, 0.05).

Parameter Sb2Te3 Sb2Te3 (1%) Sb2Te3 (3%) Sb2Te3 (5%)

a= b (Å) 4.2701 4.2625 4.2658 4.2593

c (Å) 30.5095 30.4437 30.4467 30.4533

V(Å3) 481.7686 479.8149 479.0163 478.4668

Lotgering factor 0.0109 0.0281 0.8726 0.7548

Density (g/cm3) 5.8532 (90%) 5.6235 (86%) 5.4056 (83%) 5.0648 (77%)
Crystallite size (nm) 40.01 36.61 35.96 28.82

Sb2Te3 Phase (%) 91.29 83.52 82.20 81.32

Te Phase (%) 8.71 16.46 16.83 18.04

TeO2Phase (%) 0.00 0.02 0.97 0.64

nc (×1020) 1.27 −0.89 −4.83 −25.19

μ 67.21 5.43 0.18 0.065
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factor (F) is determined to confirm the anisotropic orientation from theXRDpatterns of polymermixed
samples.

FromXRDpeak intensity data, the degree of crystal grain orientation i.e. the Lotgering factor (F) is calculated
in the case of layered structurematerials since they are arrangedmostly along the c-axis. The F is as follows

F P P

P1
0

0
= -

-
Where, P I l I hkl00( ) ( )/= å å and P I l I hkl00 ;0 0 0( ) ( )/= å å Po can be calculated from the peak

data of the JCPDS card. The F value is zero (F= 0) for a crystallographic isotropic (randomly oriented) sample
i.e. the value ofP isPo, and the F value is one (F= 1) for a completely oriented sample. F is increasing by
increasing the polymer quantity which indicates the orientation of planes in a particular direction. Figure 1
shows that after adding the polymer the prepared samples have been oriented on the c-axis. FromXRDdata, the

crystalline sizes (table 1) of the samples are calculated using theDebye–Scherrer’s equation D K

cos
= l

b q
whereD

is the crystallite size,K is the shape factor (usually, the value ofK is 0.94),λ is the x-raywavelength (0.15418 nm),
andβ is the full-width half-maximum (FWHM) of the diffraction peak at θ, which is the diffraction angle.
Crystalline size shows amonotonic decrease with increasing polymer content because of the shrinking of the
vacancies. Anti-site defects are highly prevalent in the Sb2Te3 system, and Sb atomsmay occupy Te sites (SbTe)
[38]. Thismay also be a reason behind the decreasing trend of the volume of prepared samples. Therefore, as
described in the section on thermoelectric transport properties, the addition of polymer to the Sb2Te3 system
may significantly affect the TE properties of Sb2Te3/Te nanocomposites.

3.2.Microstructural analysis
Figures 3(a)–(e) displays SEM images ofmelt-quenched polymer (PMMA)mixed Sb2Te3/Te nanocomposites.
The grains have a sheet-like shape, as shown in thesemicrographs. Figures 3(b)–(d) shows the polymermixed
SEM images. The polymer has shown in (b), (c), and (d) images inwhite color. By increasing the polymer
content excess Te has increased because the polymer addition developed inhomogeneity in the nanocomposites.
The EDX spectra displayed infigure 3 show the presence of toomuchTe alongwith the Sb2Te3matrix. It is
obvious that the Te distribution is not constant throughout the polymermixed samples. Te-Te defects are
produced by the secondary Te phase in compositematerials, and these defects significantly affect the TE
characteristics [39–42]. High-resolution TEM images have been taken to check the phase formation of the
Sb2Te3matrix (figure 4(a)). The selected area electron diffraction (SAED)pattern also confirms the phase
formation of Sb2Te3. The ring pattern indicates the polycrystalline nature of thematerials. Distance between the
(015) planes has been calculated by ImageJ software and it hasmatchedwith the reported data of the Sb2Te3
matrix. Figure 4(c) shows the Backscattered-Electron (BSE) image of the Sb2Te3/Te nanocomposite. Te has
shown in dark black colour infigures 4(d)–(f). The addition of polymer increases the nonreactive Te in Sb2Te3
which is clearly visible infigures 4(d)–(f). These images reveal that themixing of polymer (PMMA) has amajor
impact on themicrostructure. Te typically has nanograin sizes in the 30 to 50 nm range. The phononmeans free
path of Sb2Te3 is in the range of nanoscale, whichmakes the Te nanograins effective in phonon scattering [43].
However, a clear difference has been observed between the pristine and polymermixed samples. The following
discussion discusses howmicrostructuralmodifications affect TE characteristics.

3.3. Raman andXPS analysis
To studymore about the nanocomposites’molecularmode of vibration, Raman spectroscopywas used.
Figures 5(a)–(d)displays the Raman spectra of the polymermixed Sb2Te3/Te composites for x= 0, 0.01, 0.03,
and 0.05 that were obtained using a 532 nm laser at room temperature. The silicon standard, which has a Raman
peak of 520.5 cm−1, was used to calibrate the Raman spectra.With the use of aGaussian line profile, Raman
peakswere fitted.

Raman scattering is used to identify the three Raman-active phonons (A ,g1
1 E ,g

2 and A g1
2) present in

Sb2Te3-related compounds. These compounds have a rhombohedral structuremade up of hexagonal close-
packed atomic layers stacked along the c-axis [26]. The Raman spectra of Sb2Te3/Te nanocomposites
(figures 5(a)–(d)) clearly display the Raman active vibrationalmodes at∼65 cm−1,∼87 cm−1,∼116 cm−1,
∼137 cm−1, and∼164 cm−1 belonging to A ,g1

1 E’, E ,g
2 A1, and A g1

2 respectively [26]. The existence of both
Sb2Te3 andTe phases is further demonstrated by the fact that three of these vibrationalmodes A ,g1

1 E ,g
2 and

A g1
2 were formed fromSb2Te3, whereas the other twomodesE’ andA1 were produced by Te as shown in

figure 5(e). This is again an agreement with the XRD results.
Out-of-plane and in-plane vibrations, respectively, are represented by the A1g and Egmodes. Out-of-plane

(A1g) vibrations are found to be influenced by the addition of polymer to the Sb2Te3/Te composite. Raman
peaks of A1g plane vibrations are increasingwith increasing polymer content indicating that the samples are
oriented along the c-axis. It suggests that themixing polymerwith Sb2Te3/Te composite has amajor impact on
the thermal transfer, i.e., phonon transport.
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TheXPS of Sb 3d andTe 3d are displayed infigures 5(f) and (g), respectively. Using theGaussian-Lorentzian
(GL) function, the XPSPEAK41 programdeconvoluted the generatedXPS peaks. Sb 3d has three peaks at
∼530 eV,∼532 eV, and∼539 eV, which correspond to the ground state (3d5/2), O 1 s state, and excited state
(3d3/2), respectively, while Te 3d exhibits two peaks at∼576 eV and∼586 eV, which correspond to the ground
state (3d5/2), and the excited state (3d3/2), respectively. The oxidation states of Sb is 3+ and that of Te is 2- are
confirmed by the energy gap between the excited state and ground state (E= 3d3/2–3d5/2=∼9.3 eV for Sb and
∼10.4 eV for Te, respectively) [44]. This XPS results again confirm the phase formation of the Sb2Te3/Te
composite.

3.4. Thermoelectric transport properties
The electrical transport properties of polymermixed Sb2Te3/Te nanocompositesmeasured in the temperature
range 300–400 Kwere presented infigure 6.

Figure 6(a) shows the temperature-dependent electrical conductivity of polymer-mixed Sb2Te3/Te
nanocomposites. All the samples showmetallic behavior with a decrease in electrical conductivity with
increasing temperature. Thismight be caused by the interaction of the scatteringmechanisms known as grain
boundary/interfacial (metal-semiconductor) potential barrier scattering and acoustic phonon scattering (APS).

Figure 3. (a)–(e) SEM images of PMMAxSb2Te3/5%Te (x= 0.00, 0.01, 0.03, 0.05)nanocomposite prepared bymelt-quenching
process (a) 0.00, (b) 0.01, (c) 0.03, (d) 0.05, (e)EDX composition ratio.
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[39–42]. The pristine Sb2Te3 sample shows a higher electrical conductivity value of 70× 103 S m−1 compared to
other polymermixed samples. The electrical conductivity value displays a decreasing trendwith increasing the
polymer content from1% to 5%. From figure 6(a), the polymermixed samples show a lower electrical
conductivity due to hindrance in the transport of electrons between themetal and polymer interface. At a
specific temperature, the observedfluctuation in the electrical conductivity value is directly related to the
variation in carrier concentration (nc) and carriermobility (μ) and is represented asσ= nceμ [41, 42]. TheHall
measurements were performed for all the samples at room temperature and themeasuredHallmobility and
carrier concentration values were presented in table 1. The carriermobility shows a decreasing trend from the
value of 67.21 cm2/V.s to 5.43, 0.18, and 0.065 cm2/V.s for 1%polymer, 3%polymer, and 5%polymer
nanocomposites respectively. Pristine Sb2Te3/Te and polymermixed nanocomposite show carrier
concentration values in the range of 1020 cm−3. The decrease in both carrier concentration and carriermobility
values of polymermixed nanocomposites resulted in low electrical conductivity values.

Figure 6(b) shows the temperature-dependent Seebeck coefficient values for the pristine and polymer-mixed
nanocomposites. The pristine sample shows p-type conductivity whereas the polymermixed Sb2Te3/Te
nanocomposites shown-type conductivity. Asmentioned in table 1, the ‘Te’ phase is increased from8% to 18%
and the atomic percentage of ‘Te’ increased from60.4 at% to 63.6 at%. This increase in ‘Te’ segregation can be
directly correlatedwith the carrier concentration (table I) and Seebeck coefficientmeasurements (figure 6(b)). It
is clearly evident, that the carrier type has been changed from ‘p-type’ to ‘n-type’ in Seebeck coefficient
measurement aswell as the electron concentration increases from0.89× 1020 to 25.19× 1020 with increasing
PMMAcontent. In the case of increased ‘Te’ content in the Sb2Te3/Te polymer composites, the reduction in
hole density of the compositemight be due to the following reasons (i)The density of states (DOS) of ‘Te’ is
smaller than theDOS of Sb2Te3 and hence in the condition of increasing ‘Te’ contribution, the overall DOS and
the releasing of holes to the polymer composites can be reduced. (ii) In the case of Sb vacancy, Sb atoms fromTe
sites will return back to Sb sites, andTe vacancywill become dominant and contributes excess electrons. Hence,
we can conclude that with increasing PMMA, the ‘Te’ getsmore segregation and the associated defects such as
antisite defects, and vacanciesmay enhance the concentration of electrons and reverse the conductivity fromp to
n-type [26, 45]. All the samples follow a similar trend, i.e., themagnitude of the S values increases with
temperature, indicating ametallic behavior. This temperature-dependent trend is consistent with the reduction
ofσwith an increase in temperature. The linear temperature dependency of Smaymean that the dominant
mechanismof carrier transportation under a temperature gradient is diffusive in nature [42, 46]. The
enhancement in the Seebeck coefficient with temperature in polymermixed Sb2Te3 compositesmay be
attributed to thefiltering of low energy charge carriers by the addition of PMMAembedded inside the Sb2Te3
grain boundaries. The transition fromp-type to n-type in the polymermatrix with the increase of PMMAmight

Figure 4. (a)HR-TEM image (b) SAEDpattern and (c-f)BSE images of PMMAxSb2Te3/5%Te (x= 0.00, 0.01, 0.03, 0.05)
nanocomposite prepared by themelt-quenching process.
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Figure 5. (a)–(d)Raman spectra images of polymermixed Sb2Te3/Te nanocomposite with PMMAx-Sb2Te3/Te (x= 0.00, 0.01, 0.03,
0.05)weight% ratio of total Sb2Te3/Te, (e)Raman activemodes of Sb2Te3 andTe, (f)XPS of Sb, and, (g)XPS image of Te of polymer
mixed Sb2Te3/Te nanocomposite prepared by themelt-quenching process.

Figure 6.PMMAx-Sb2Te3/Te (x= 0.00, 0.01, 0.03, 0.05), temperature-dependent of (a)Electrical conductivity, (b) Seebeck
coefficient, (c) electronic part of thermal conductivity, (d)Lattic part of thermal conductivity (e)Total thermal conductivity, and (f)
zT.
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be the cause of an increase in segregated Te phases which is clearly evident inXRD analysis. The observed results
including carrier concentration, carriermobility, and Seebeck coefficient supports the transition fromp-type to
n-type.

Figure 6(e) shows how thermal conductivity varies with temperature (κc). In the case of narrow bandgap
materials, i.e., Sb2Te3 andBi2Te3, the total thermal conductivity is the sumof carrier (κc), phonon (κp), and
bipolar thermal conductivity (κb), i.e., it can be expressed asκT=κc+κp+κb [39–41, 44]. At low temperature,
below 423 K,κb is negligible. Theκc value is estimated fromWiedemann–Franz relationκc= LσT, L is the
Lorenz number in this case. [39–41, 44]. The single parabola band (SPB)-APS approximation is used to
determine the L values from the S values. [40–42, 45–47]. Theκc shows a similar trend of electrical conductivity,
the decrease in carrier thermal conductivity with increasing temperature. Another reason for decreasing the
electrical part of thermal conductivity is the density of thematerial. The decrease in density of Sb2Te3 upon the
addition of polymer affects the carrier transport. Fromfigure 6, it can be seen thatκc contributes around∼15%,
whereasκp dominates theκ value, contributing around∼85%of totalκ. In general, theκ dropswith rising
temperature as a result of phonon-phonon scattering, phonon-carrier scattering, and phonon interface
scattering at Te nanograins [41, 42]. The temperature-dependent phonon thermal conductivity (κp) and total
thermal conductivity (κT) plots are depicted infigures 6(d) and (e) respectively. Both the plots show a decreasing
trendwith increasing temperature. The total thermal conductivity of the pristine Sb2Te3/Te sample shows a
value of 2.75Wm−1 K−1. However, with the increase of polymer content in Sb2Te3/Te, the thermal
conductivity values are found to decrease up to 0.4W/m/K for 5%polymer.

It should bementioned that though the polymer addition brings interesting changes like reduction in
thermal conductivity and conduction reversal fromp to n-type, the figure ofmerit is found to decrease as shown
infigure 6(f). In the present study, the higher zT value of 8× 10−2 was obtained for the pristine sample, and it
almost decreased nearly to zero for the polymer added samples. In summary, the addition of polymerwith
Sb2Te3/Te nanocomposites resulted in a decrease in density, electrical conductivity, conduction reversal fromp
to n-type, and a reduction in thermal conductivity values.

4. Conclusions

The thermoelectric properties of polymethylmethacrylate (PMMA) polymermixed Sb2Te3/Te
nanocompositesmade bymelt-quenching followed by ballmilling processes have been studied. The addition of
polymer has a considerable impact on Sb2Te3/Te nanocomposites thermoelectric characteristics studied in the
temperature range 300 to 390 K. A 30% reduction in thermal conductivity with the 5%PMMAcomposites has
been observed. On the other hand, the polymer addition has significantly decreased the electrical conductivity.
The addition of polymer also changes the conduction type fromp to n-type. The positive impact of polymer
addition in reducing thermal conductivitymay help in designing high-performance thermoelectricmaterials
based on Sb2Te3 composites.
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