
MNRAS 502, 4935–4952 (2021) doi:10.1093/mnras/stab382
Advance Access publication 2021 February 10

Shatter or not: role of temperature and metallicity in the evolution of
thermal instability

Hitesh Kishore Das ,1‹ Prakriti Pal Choudhury 1,2‹ and Prateek Sharma 3‹

1Department of Physics, Indian Institute of Science, Bangalore 560012, Karnataka, India
2Institute of Astronomy, University of Cambridge, Madingley Rd, Cambridge CB3 0HA, UK
3Department of Physics and Joint Astronomy Program, Indian Institute of Science, Bangalore 560012, Karnataka, India

Accepted 2021 February 7. Received 2021 February 7; in original form 2020 September 22

ABSTRACT
We test how metallicity variation (a background gradient and fluctuations) affects the physics of local thermal instability using
analytical calculations and idealized, high-resolution 1D hydrodynamic simulations. Although the cooling function (�[T, Z])
and the cooling time (tcool) depend on gas temperature and metallicity, we find that the growth rate of thermal instability is
explicitly dependent only on the derivative of the cooling function relative to temperature (∂ln �/∂ln T) and not on the metallicity
derivative (∂ln �/∂ln Z). For most of 104 K � T � 107 K, both the isobaric and isochoric modes (occurring at scales smaller and
larger than the sonic length covered in a cooling time [cstcool], respectively) grow linearly, and at higher temperatures (�107 K)
the isochoric modes are stable. We show that even the non-linear evolution depends on whether the isochoric modes are linearly
stable or unstable. For the stable isochoric modes, we observe the growth of small-scale isobaric modes but this is distinct from
the non-linear fragmentation of a dense cooling region. For unstable isochoric perturbations we do not observe large density
perturbations at small scales. While very small clouds (∼min[cstcool]) form in the transient state of non-linear evolution of the
stable isochoric thermal instability, most of them merge eventually.

Key words: Physical data and process – hydrodynamics – instabilities – galaxies: clusters: intracluster medium – galaxies: evo-
lution – galaxies: haloes – intergalactic medium.

1 IN T RO D U C T I O N

The hydrodynamics of optically thin astrophysical plasma under
a wide range of physical conditions is typically modelled using
a cooling function (�[T, Z]) that varies with the temperature
and the metallicity of the gas (Sutherland & Dopita 1993). The
temperature dependence of the cooling function determines whether
star formation within a galactic halo is efficient or whether star
formation happens via a slow ‘cooling flow’ (e.g. Rees & Ostriker
1977). Similarly, cooling and heating processes have been studied in
the context of the structure of the interstellar medium (ISM; McKee
& Ostriker 1977), and the dense solar corona which hosts solar
prominences and coronal rain (see Antolin 2020 for a review).

In this paper, we focus on the multiphase gas in haloes of galaxies
and clusters, although the physical principles apply broadly. This
gas is observed mainly in emission (e.g. Fabian et al. 2008) for
galaxy clusters and in absorption in background quasars for galactic
haloes (e.g. Hennawi et al. 2015; Lau, Prochaska & Hennawi 2016;
Muzahid et al. 2018; see also Arrigoni Battaia et al. 2019). Extended,
cospatial, warm/ionized, and cold/molecular gas in the cores of
galaxy clusters with small volume filling factors (Tremblay et al.
2018) implies multiple clumps/filaments dispersed across kpc scales.
Broad emission/absorption lines in the context of AGN (commonly
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explained by a collection of optically thick clouds orbiting around
the central engine) have been proposed to be due to ‘misty’ cold
gas drifting in the velocity field of a background hot medium (either
entrained by fast wind or suspended in the diffuse virialized gas;
see Section 3 in McCourt et al. 2018, and references therein). But
there are also observations of warm gas surrounding cold gas with
no direct indication of mist. Large O VI columns have been observed
in low-redshift Milky Way-like galaxies which can be attributed to
either large-scale cooling flows or spatially extended, low-density
photoionized cloud(s) (not necessarily fragmented; see McQuinn &
Werk 2018; see also Rudie et al. 2019 for high-redshift constraints).
Thus, the observed multiphase gas appears in diverse states, across
a wide range of haloes and redshifts.

Radiative cooling and heating are thought to play a fundamental
role in the multiphase intracluster medium (ICM) of cool-core
clusters (e.g. Sharma, Parrish & Quataert 2010; Prasad, Sharma &
Babul 2015). Local thermal instability can trigger the formation
of the observed dense H α (∼104 K; e.g. Fabian et al. 2008)
clumps/filaments within the inner hot ICM of dense clusters (Field
1965; Malagoli, Rosner & Bodo 1987; Kim & Narayan 2003). While
the temperature dependence of radiative cooling has been studied for
local thermal instability in global thermal balance (as inferred in cool
cores), the role of metallicity is largely unexplored. This, along with
the non-linear evolution of the multiphase gas, is studied in this paper.

It is well known that the stratification within stars in the mean
molecular weight significantly affects the convective stability as
expressed in terms of ∂ln T/∂ln p and ∂ln μ/∂ln p (Ledoux 1947;
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Kato 1966).1 Local thermal instability in a gravitationally stratified
medium, like cluster cores, appears as linearly overstable buoyancy
oscillations (Choudhury & Sharma 2016). Hence, spatial variation
of metallicity, mixing and thermal instability mutually affect each
other. For example, the variation of helium-to-hydrogen abundance
in cluster cores is expected to affect radiative cooling and X-ray
properties of cluster cores (Ettori & Fabian 2006; Peng & Nagai
2009; Berlok & Pessah 2015). This also implies that the inclusion
of metallicity variation is necessary to understand the nature and
evolution of local thermal instability.

Observations find spatially uniform metallicity profiles in galaxy
clusters (∼0.3 Z�; De Grandi & Molendi 2001; Molendi et al. 2016;
Truong et al. 2019) with a small negative radial gradient. There is not
much evidence for a significant evolution of the global metallicity
in clusters for redshifts �1.5 (McDonald et al. 2016). Thus, the
general picture of metallicity evolution in clusters includes an early
enrichment scenario in which most metals are produced by z ∼ 2. The
same enriched gas is ejected, accreted back and thus recycled multiple
times. As a result, metallicity remains fairly uniform throughout the
medium outside the central core (cool core clusters show a peak
in metallicity in the core because of enrichment due to current
star formation; Leccardi & Molendi 2008; Prasad, Sharma & Babul
2018). Although cluster metallicity is broadly uniform across radius
and redshift, stellar winds can locally enrich the surrounding gas (see
e.g. Million et al. 2010; Mernier et al. 2015). In this work, we find that
the metallicity dependence of the cooling function is not as significant
for local thermal instability as the temperature dependence.

The wavelength of isobaric modes is smaller than the scale over
which sound waves can propagate in a cooling time (∼cstcool). In
contrast, the isochoric modes are out of sonic contact over a cooling
time. The isobaric thermal instability has been studied in ICM
simulations with radiative cooling and various modes of feedback
heating (McCourt et al. 2012; Sharma et al. 2012; Li & Bryan 2014;
Prasad et al. 2015; Choudhury & Sharma 2016), magnetic fields (Ji,
Oh & McCourt 2018), rotation (Sobacchi & Sormani 2019), and
spatial entropy variation (Voit et al. 2017; Choudhury, Sharma &
Quataert 2019). Recently McCourt et al. (2018) investigated the fate
of an initially isobaric cloud cooling through temperatures �106 K
where the cooling time can be shorter than the sound crossing time
and cooling is in the isochoric limit. In this case, rather than cooling
monolithically, they argue that the cooling cloud should fragment
into cloudlets of smaller scale ∼cstcool which remain isobaric. The
length-scale for such an isobaric cloudlet at the peak of the cooling
curve is �0.1/n pc, much smaller than the global scale of the CGM.
The reason for this shattering into tiny cloudlets is a faster isobaric
growth rate compared to an isochoric one. We carry out extensive 1D
non-linear simulations to test some of these ideas. Waters & Proga
(2019a) suggest an alternative non-linear evolution for a growing
isochoric cloud that does not shatter. We examine both the isobaric
and isochoric regimes in this work and discuss when small-scale
condensation occurs, for a wide range of background temperatures
and metallicities.

The origin of the two end-states (clouds shattering into small
cloudlets versus a pulsating monolithic cloud) for isochoric clouds
has been discussed in Gronke & Oh (2020) using 3D hydrodynamic
simulations, in which the initial pressure contrast and overdensity
of the cloud govern the shattering phenomenon. They find that

1Note that the buoyancy oscillation frequency is still given by the same
expression, ω2 = (k⊥/k)2(g/γ ) d

dr
ln(p/ργ ), when expressed in terms of the

radial entropy gradient.

below a final density contrast (χ f = 300), the fragments tend to
merge together and the end-state appears to be monolithic. Above
the threshold of density contrast, shattering is visually evident in
their simulations. Instead of just classifying the cases of shattering
and no-shattering based on the final state of the cloud, in this paper,
we explore the fundamental cause of shattering starting with initially
linear perturbations (δρ/ρ < 1). We find that the stability (instability)
of a linear isochoric mode determines if small-scale cold gas will be
produced non-linearly (or not).

The local slope of the cooling function varies as a function of
temperature as different ions dominate radiative losses at various
temperatures. The various features in ∂ln �/∂ln T can result in
‘islands of stability’ amid an ‘ocean of instability’ (Pfrommer 2013;
see also Binney, Nipoti & Fraternali 2009). We highlight that the
‘instability/stability islands’ differ in the isobaric and isochoric
regimes and across temperatures. The growth/decay rates depend
not only on the cooling time-scale (tcool) but also on the temperature
dependence of the cooling function (through ∂ln �/∂ln T). The
isochoric modes are thermally stable for ∂ln �/∂ln T > 0, and non-
linearly these modes are prone to forming clouds separated by small
scales, unlike the isochorically unstable modes.

Our paper is organized as follows. In Section 2, we describe the
physical framework for studying gas evolution with cooling and
heating. In Section 3, we present the local linear analysis of thermal
instability in the isobaric and isochoric regimes. In Section 4, we
describe the simulation set-up and in Section 5 explain the simulation
results. In Section 6, we discuss our results and conclude.

2 PHYSI CAL SET-UP

We start with the simplest model to study the effects of metallicity on
the local thermal instability. For the ICM, we take typical density and
temperature for the cool core as observed in X-rays. This work does
not include gravity but it is well known that in presence of background
gravity, the internal gravity waves generated in the cores will be
overstable and will grow due to local thermal instability. Hence, the
results obtained in this work can be generalized to an optically thin,
radiatively cooling gas confined by background gravity.

The measurement of ICM metallicity and its gradient in observa-
tions (De Grandi & Molendi 2001; Million et al. 2010) motivates us
to include a background gradient in our study with a metallicity in
the range 0.2−0.6 Z�. Mergers, AGN jets (Kirkpatrick & McNamara
2015), stellar winds, ram pressure stripping, etc., can cause the metals
to mix beyond the cluster galaxies and even up to the virial radius.

We evolve a local patch of the ICM in time using the continuity,
momentum, and energy equations of hydrodynamics. Additionally,
we use tracers to evolve metallicity and H-abundance, and we do
not consider any source term for metal or hydrogen production; pre-
existing metals and hydrogen can be transported by fluid motion. The
assumption is that the current rate of metal enrichment is negligible.
The hydrodynamics equations that we solve are

∂ρ

∂t
+ ∇ · (ρv) = 0, (1a)

ρ
∂v

∂t
+ ρ (v · ∇) v = −∇p, (1b)

∂Z

∂t
+ (v · ∇)Z = 0, (1c)

∂X

∂t
+ (v · ∇)X = 0, (1d)

p

γ − 1

[
∂

∂t
+ v · ∇

]
ln

(
p

ργ

)
= −q− (ρ, T , Z) + q+, (1e)

MNRAS 502, 4935–4952 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/4/4935/6132250 by J.R
.D

. Tata M
em

orial Library, Indian Institute of Science, Bengaluru user on 26 July 2023
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where ρ is mass density, p is pressure, v is velocity, Z is metallicity
(ratio of metal mass to the total gas mass in a given fluid element),
X is the H mass fraction,2 γ = 5/3 is the adiabatic index, q+ is
the heating rate density, and q−(ρ, T, Z) = nine�(T, Z) (ne and ni

are electron and ion number densities, respectively) is the cooling
rate density. We assume an ideal gas equation of state p = nkBT.
In the cooling term, the cooling function �(T, Z) that we use is
given by

� (T , Z) = �H,He (T ) + �Z,� (T ) ne/nH
ne�/nH�

Z
Z� , (2)

where �H,He and �Z,�nenH�/(ne�nH) for different values of tempera-
ture between 100 and 9.6 × 108 K are used from tables of Wiersma,
Schaye & Smith (2009).

Since cool cores do not undergo catastrophic cooling, we include
a simple heating function that imposes global thermal balance,
crudely mimicking AGN feedback. This heating scheme is not
dependent on any state-variable (namely density, temperature) and is
well motivated for the ICM where the dissipation of mechanical
energy is the dominant heating source. The role of this heating
function in our model is to simply maintain the observed rough
global thermal balance. Therefore, the time-independent heating
rate density (q+[r]) is simply equal to the cooling rate density in
the unperturbed background with a given density, temperature, and
metallicity profile. Note that this heating scheme often causes over-
heating in diffuse gas at late times. Such unphysically hot/dilute gas
will be absent with stratification, where hot gas can expand and cool
adiabatically.

3 LINEA R STA BILITY ANALYSIS

We perform a linear WKB analysis for the local model of a static
ICM, with fluctuations in all variables including the metallicity and
H-abundance. For simplicity, we assume the background density and
pressure to be uniform, and the background velocity to be zero.
However, we allow a gradient in the background metallicity and H-
abundance. We consider plane wave perturbations varying as ei(kx − ωt)

(i.e. x-axis is chosen along the wavenumber direction).
Linearizing the hydrodynamical equations (excluding the energy

equation), we get

− ωδρ + kρ0δvx = 0, (3a)

ρ0ωδvx − kδp = 0, (3b)

iωδZ − δvx

∂Z0

∂x
= 0, (3c)

iωδX − δvx

∂X0

∂x
= 0, (3d)

and velocity fluctuations perpendicular to k vanish.
Let X, Y, and Z be the mass fractions of H, He, and metals (mostly

O). Assuming a fully ionized plasma, we can relate the electron and
ion number densities to these as follows:

ni = ρ

μimp
= ρ

mp

(
X + Y

4
+ Z

16

)
, (4a)

ne = ρ

μemp
= ρ

mp

(
X + Y

2
+ Z

2

)
. (4b)

2The He mass fraction is fixed by X + Y + Z = 1. The mass fractions X,
Y, Z satisfy the advection equation, implying that the mass fraction of a
Lagrangian fluid element is conserved. Of course, X, Y, Z can be different for
different fluid elements.

From equations (4a) and (4b), we get for the perturbed number
densities

δni = δρ

ρ0
ni0 + ρ0

mp

(
3

4
δX − 3

16
δZ

)
, and (5a)

δne = δρ

ρ0
ne0 + ρ0

mp

(
1

2
δX

)
, (5b)

where we have used δX + δY + δZ = 0 to eliminate δY.
Linearizing q− on the right-hand side of equation (1e), we get

δq−

q−
0

= �T

δT

T0
+ �Z

δZ

Z0
+ δni

ni0
+ δne

ne0
,

where �T ≡ (∂ln �/∂ln T)0, �Z ≡ (∂ln �/∂ln Z)0, and q−
0 =

ni0ne0�0.
Therefore, the linearized right-hand side of the energy equation

(equation 1e) becomes

− δq− + δq+ = −q−
0

(
�T

δT

T0
+ �Z

δZ

Z0
+ δni

ni0
+ δne

ne0

)
+ δq+.

In the background equilibrium state, q+
0 = q−

0 . And as mentioned
earlier, for simplicity, we assume that q+ depends only on position,
so its Eulerian perturbation vanishes; i.e. δq+ = 0. Note that as long
as there is global thermal balance, we expect a similar evolution and
saturation of local thermal instability even if there are fluctuations
in the heating rate (see section 5.4 in McCourt et al. 2012). Of
course, the thermal instability growth rate, in general, depends on
the assumed dependence of the heating rate density (q+) on density,
temperature, and metallicity (here we assume ∂q+/∂T = ∂q+/∂ρ =
∂q+/∂Z = 0; McCourt et al. 2012).

Using the expressions for δne and δni (equations 5b and 5a), the
right-hand side of the energy equation (equation 1e) becomes

−q−
0

[
�T

δT

T0
+ �Z

δZ

Z0
+ 2δρ

ρ0

+ ρ0

mpni0

({
3

4
+ ni0

2ne0

}
δX − 3

16
δZ

)]
.

After equating the left and right-hand sides of the linearized energy
equation (equation 1e), we have

− iω

[
δp

p0
− γ δρ

ρ0

]
= − (γ − 1) q−

0

p0

×
[
�T

δT

T0
+ 2δρ

ρ0
+ αδZ + βδX

]
,

where α = �Z/Z0 − 3ρ0/16mpni0 and β = (3/4 + ni0/2ne0)(ρ0/mpni0).
After introducing an equilibrium cooling time tcool,0 ≡

p0/[(γ − 1) q−
0 ], and expressing temperature fluctuations in terms of

pressure, density, and metallicity fluctuations, the linearized energy
equation becomes

− iω

[
δp

p0
− γ δρ

ρ0

]
= − 1

tcool,0

[
�T

δp

p0
+ (2 − �T ) δρ

ρ0

+ εδZ + ηδX

]
, (6)

where ε = α + 3ρ0�T/(16mpn0), η = β + 5ρ0�T/(4mpn0) and n0 =
ni0 + ne0.

From equations (3a)–(3d), we get k2δp = ω2δρ, δZ =
−iδρ(∂Z0/∂x)/kρ0, and δX = −iδρ(∂X0/∂x)/kρ0. Using expression
for δZ, rearranging the terms, and defining

tTI = γ tcool,0

(2 − �T )
, (7)
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we have(
iω + 1

tTI
− i

γ ktcool,0

[
ε
∂Z0

∂x
+ η

∂X0

∂x

])
δρ

ρ0

=
(

iω

γ
− �T

γ tcool,0

)
δp

p0
. (8)

Equations (3a)–(3d) and (6) are five linear equations and have
five roots in general, two corresponding to the oppositely travelling
sound waves and three entropy modes. Of course, all these modes are
modified by cooling and heating. Using the relation between δρ and
δp in equation (8) and ω2δρ = k2δp, we get the dispersion relation

ω3 + i�T

tcool,0
ω2 + c2

s k
2ω + c2

s k

γ ktcool,0

[
H−1 + ik(2 − �T )

] = 0, (9)

where H−1 = [ε(∂Z0/∂x) + η(∂X0/∂x)]. Equation (9) is a cubic
equation, which has three roots corresponding to two sound waves
and one entropy mode. These three roots are three out of the five
modes expected from equations (3a)–(3d). The remaining two modes
are trivial (ω = 0 with δX, δY �= 0) modes. We can simplify the linear
analysis for the condensation thermal instability modes in the limit
of fast and slow sound crossing times. The sound waves are generally
damped (unlike the entropy mode, which grows) for typical cooling
curves (Field 1965), so we focus on the condensation modes.

Note that

δp/p0

δρ/ρ0
= ω2

k2

γ

c2
s

∼ γ t2
snd

t2
cool

,

where t2
snd = 1/(k2c2

s ) (tsnd is the sound crossing time across the
mode), c2

s = γp0/ρ0, and we assume the modes to evolve on the
cooling time (ω ∼ t−1

cool).
In the isobaric limit, tsnd 	 tcool and δp/p0 	 δρ/ρ0, the dispersion

relation becomes

ω = i

tTI
+ 1

γ ktcool,0

(
ε
∂Z0

∂x
+ η

∂X0

∂x

)
, (10)

where tTI is given by equation (7). While in the isochoric limit, tsnd


 tcool and δp/p0 
 δρ/ρ0, the dispersion relation is

ω = −i�T

tcool,0
. (11)

In the isobaric limit, valid for small wavelength modes, we get an
oscillatory response in the presence of metallicity gradient. We note
that the growth rate in the isobaric and isochoric (valid for large-scale
modes) limits are identical to the expressions in absence of metallicity
gradients. Overall, the impact of metallicity gradient is expected to be
modest. This result is anticipated physically because the metallicity
gradient is rather small and the Lagrangian derivative of metallicity
vanishes (equation 1c), implying that the metallicity (unlike temper-
ature/density) is comparable in over- and underdense regions.

Fig. 1 shows the real and imaginary parts of the three non-
trivial roots of equation (9) for an intermediate (neither isobaric
nor isochoric) value of k. We use H−1 = 0, Z0 = 0.6 Z�, X0 =
1.01 X�, and k = 2π/(0.1 kpc) to calculate these roots. There are
some regions in temperature (shown as shaded regions in Fig. 1)
where the three modes couple. Outside these regions, the root with
zero real part corresponds to the entropy mode and the other two roots
correspond to sound waves. Also, the growth rate of the entropy mode
for an intermediate k lies between the asymptotic isochoric and the
asymptotic isobaric growth rates.

From equations (10) and (11), we see that there are three possible
regimes depending on the value of �T. The regime �T < 0
corresponds to unstable isobaric and isochoric modes, 0 < �T

Figure 1. Real and imaginary parts of solutions of equation (9) at dif-
ferent temperatures with H−1 = 0, Z0 = 0.6 Z�, X0 = 1.01 X�, and
k = 2π/(0.1 kpc). The different markers and their colours are consistent
among the two plots and can be used to distinguish the modes (blue crosses
and red diamonds usually correspond to the stable sound waves and orange
circles to the unstable entropy mode). The shaded regions are temperatures
where the distinction between the sound and entropy modes is not clear. Green
dotted and black dashed lines are the asymptotic isobaric and isochoric growth
rates from equations (10) and (11).

< 2 corresponds to unstable isobaric but stable isochoric modes,
and �T > 2 corresponds to stable isobaric and isochoric modes.
In Section 5.2, we highlight the differences in the non-linear
evolution in the first two of these regimes relevant for the CGM
and cool core clusters, respectively. We emphasize that there is
no explicit dependence of the thermal instability growth rate on
the metallicity via �Z (unlike �T) in both isobaric and isochoric
regimes.

4 SI MULATI ON SET-UP

We use the PLUTO code (Mignone et al. 2007) to solve the hydro-
dynamical equations (equations 1a–1e) on a one-dimensional (1D)
grid, starting from a given initial condition at t = 0. We carry out two
broad classes of simulations: ones to investigate linear evolution (see
Table 1 and Section 5.1), and others to study non-linear evolution
(see Table 2 and Section 5.2).

4.1 Initial conditions

For both the linear and non-linear simulations, the unperturbed
background density (ρ0 ≈ 0.062mp g cm−3; mp is proton mass) and
pressure (varies for different runs) are uniform across the entire
grid. In some of our simulations, we allow the metallicity to have a
mild gradient.

We seed fluctuations in all dependent variables, using eigenmodes
from our linear analysis in Section 3. For a given wavenumber k,
the frequency is obtained from the asymptotic dispersion relations
in equation (10) or (11), depending on whether tcool > or <1/(kcs),
the isobaric and isochoric limits, respectively. We use the frequency
obtained in equations (3a)–(3d) to calculate the perturbations in terms
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Table 1. Simulations to compare with linear theory.

Simulation k Limit
dZ0

dx
Z0 (max)

dX0

dx
Box size Initial Im(ω) Im(ω)

IDa (kpc−1) (Z� kpc−1) (Z�) (X� kpc−1)b (kpc) Tavg (106 K) (theory) (simulations)
(Myr−1) (Myr−1)

IB L2kpc π Isobaric − 2.5 × 10− 2 0.5 2.5 × 10− 5 8 8.89 0.00677 0.00677
IB L4kpc 0.5π Isobaric − 5 × 10− 3 0.5 2.5 × 10− 4 40 8.85 0.00683 0.00666
IB L20kpc 0.1π Isobaric − 5 × 10− 4 0.5 2.5 × 10− 5 400 8.85 0.00683 0.00708

IC L2Mpc 0.001π Isochoric − 2.5 × 10− 5 0.5 1.25 × 10− 6 8000 8.85 − 0.00075 − 0.00073
IC L4Mpc 0.0005π Isochoric − 5 × 10− 6 0.5 2.5 × 10− 7 40 000 8.85 − 0.00075 − 0.00079
IC L20Mpc 0.0001π Isochoric − 2.5 × 10− 6 0.5 1.25 × 10− 7 60 000 8.74 − 0.00072 − 0.00079

IC L200kpc 0.01π Isochoric − 5 × 10− 4 0.5 2.5 × 10− 5 400 8.85 − 0.00075 0.00157
IC L100kpc 0.02π Isochoric − 5 × 10− 4 0.5 2.5 × 10− 5 400 8.85 0.00075 0.00469
IB L100kpc 0.02π Isobaric − 5 × 10− 4 0.5 2.5 × 10− 5 400 8.85 0.00683 0.00278

F L20kpc 0.1π Isobaric − 5 × 10− 5 0.59 2.5 × 10− 6 400 31.08 0.00191 0.00198
LT L20kpc 0.1π Isobaric − 5 × 10− 5 0.3 2.5 × 10− 6 400 27.55 0.00192 0.00202
LZ L20kpc 0.1π Isobaric − 5 × 10− 5 0.35 2.5 × 10− 6 400 22.21 0.00246 0.00256

F L2Mpc 0.001π Isochoric − 2.5 × 10− 6 0.59 2.5 × 10− 7 6000 31.07 − 0.00056 − 0.00055
LT L2Mpc 0.001π Isochoric − 2.5 × 10− 6 0.35 2.5 × 10− 7 6000 27.54 − 0.00055 − 0.00053
LZ L2Mpc 0.001π Isochoric − 2.5 × 10− 6 0.3 2.5 × 10− 7 6000 22.21 − 0.00041 − 0.00039

Note. These simulations have a background density of 0.062mp g cm−3, initial δρ/ρ = 0.01, and 4096 grid cells in the simulation box. The growth rate measured
in simulations for intermediate ks does not match the asymptotic theory (see Fig. 5).
aIB: Isobaric initial conditions, IC: isochoric initial conditions, F: fiducial case, LT: same �T as fiducial case, LZ: same �Z as fiducial case. L100kpc: Denotes
the wavelength of the initial perturbations, in this case 100 kpc.
bX0 (min) = 1.01 X� for all simulations in this table.

Table 2. Non-linear simulations.

Simulation k Limit Initial Boundary
dZ0

dx

dX0

dx
Box size Initial tcool

IDa (kpc−1) conditions condition (Z� kpc−1)b (X� kpc−1)b (kpc) Tavg (106 K) (Myr)

NIC ST P 0.001π Isochoric Single eigenmode Periodic 0 0 6000 6.84 109.71
NIC UST P 0.001π Isochoric Single eigenmode Periodic 0 0 6000 1.95 11.79
NIC P LOWT 0.001π Isochoric Single eigenmode Periodic 0 0 6000 0.18 0.19

NIB OF 0.1π Isobaric Single eigenmode Outflow −5 × 10−4 2.5 × 10−5 400 8.85 134.26
NIC ST OF 0.001π Isochoric Single eigenmode Outflow −5 × 10−5 2.5 × 10−6 6000 6.80 109.22
NIC UST OF 0.001π Isochoric Single eigenmode Outflow −5 × 10−5 2.5 × 10−6 6000 1.98 12.32

NIC ST ME π , 0.001π Isobaric +
isochoric

Mixed eigenmode Outflow −5 × 10−5 2.5 × 10−6 6000 6.80 109.22

NIC UST ME π , 0.001π Isobaric +
isochoric

Mixed eigenmode Outflow −5 × 10−5 2.5 × 10−6 6000 1.98 12.32

NIC ST RN 0.001π Isochoric Random noise Outflow −5 × 10−5 2.5 × 10−6 6000 6.80 109.22
NIC UST RN 0.001π Isochoric Random noise Outflow −5 × 10−5 2.5 × 10−6 6000 2.27 18.02

NIC ST HR 2000π , 20π Isobaric +
isochoric

Mixed eigenmode Periodic 0 0 0.1 0.04 0.14

NIC UST HR 2000π , 20π Isobaric +
isochoric

Mixed eigenmode Periodic 0 0 0.1 0.30 0.45

NIC UST SQ NA Isochoric Non-linear square wave Periodic 0 0 400 10 (overdensity)
20 (ambient)

75.01

NIC ST SQ NA Isochoric Non-linear square wave Periodic 0 0 2000 30 (overdensity)
60 (ambient)

259.39

Note. All simulations have ρ0 = 0.062mp g cm−3, δρ/ρ0 = 10−5, and 8192 grid points (except HR which has δρ/ρ0 = 10−4 and 20 000 grid points; also, SQ
runs use a high-amplitude square wave density perturbation).
aNIB: Non-linear isobaric simulation, NIC: non-linear isochoric simulation, ST: stable isochoric mode, UST: unstable isochoric mode, P: periodic boundary
condition, OF: outflow boundary condition, ME: mixed eigenmode initial conditions, RN: random noise initial conditions, LOWT: low-temperature simulation
(T ∼ 105 K), HR: high-resolution simulations.
bZ0 (max) = 0.6 Z�, X0 (min) = 1.01 X� for all simulations in this table.
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4940 H. K. Das, P. P. Choudhury and P. Sharma

Figure 2. Isobaric initial condition with k = 2π /(100 kpc). The top panel
shows the metallicity, the second panel H-abundance, the third panel pressure,
and the lowest panel density as a function of radius. Both the background
without and with perturbations are shown. The perturbations are shown
separately for the metallicity and H-abundance which have a background
linear gradient. The green dot indicates the location used for measuring the
growth and oscillation rates in Section 5.1.

of the amplitude δρ and wavenumber k. Fig. 2 shows an example of
an isobaric initial condition used in our simulations.

4.2 Grid and boundary conditions

To study the linear evolution (see Section 5.1), we run the simulations
with 4096 grid points with different box sizes, depending on the value
of the wavenumber (k). We run our simulations in the isobaric and
isochoric regimes, with a corresponding value of k. All simulations
used to compare with the linear theory are listed in Table 1.

To study non-linear evolution (see Section 5.2), we run simulations
with isochoric initial conditions for t > 20tcool and those with isobaric
initial conditions for t ≈ 5tcool. We run the isobaric simulations for a
shorter duration as the isobaric instability grows faster and leads to
very high temperatures in the diffuse regions (because of the imposed
global thermal balance), which make the code time-step very small.
However, even our isobaric runs are deep into the non-linear regime.

For the non-linear runs, we use simulation boxes of different sizes
for isobaric and isochoric simulations. All non-linear simulations
(listed in Table 2) use 8192 grid points (except the high-resolution
[HR] simulations that use 20 000 grid points). The size of the simu-
lation box for the isochoric simulations is 6 Mpc, which is equal to
three wavelengths of the mode with wavenumber k = π/(103 kpc);
these wavelengths are unrealistically large but are carried out to
understand the evolution of isochoric modes. In reality, the isochoric
evolution occurs in the transient non-linear phase when temperature
is close to the peak of the cooling curve (∼105 K), but even the non-
linear evolution seems to be primarily governed by linear physics

Figure 3. Comparison of the growth rate in simulations and linear theory
for k = 2π /(2 kpc) (isobaric, solid lines) and 2π /(20 Mpc) (isochoric, dashed
lines). For exact comparison of the slope, we choose the same initial amplitude
for the simulation and the analytic eigenmode.

(cf. Section 6.2). On the other hand, the simulation box for isobaric
simulations extends 400 kpc, which can fit 20 wavelengths of the
mode with k = π/(10 kpc).

For simulations with no metallicity gradient, we use periodic
boundary conditions. With metallicity gradient, we use outflow
boundary conditions at both boundaries and have a buffer region
near boundaries where we turn-off heating and cooling. We put these
buffer regions to avoid condensation and heating near boundaries.
Buffer zones are not needed with periodic boundaries as the
background is translationally invariant. We set the cooling function
(�[T, Z]) to zero below 104 K and above 9 × 108 K to prevent the
formation of extremely cold and hot regions. We also impose a
temperature floor at 104 K.

5 SI MULATI ON R ESULTS

5.1 Comparison of linear theory and simulations

We compare the linear growth/decay rates of the modes in the
isobaric/isochoric regimes (k > 2π/[100 kpc], k < 2π/[200 kpc],
respectively, at T ≈ 9 × 106 K) with the initial evolution in our
simulations. From simulations, we calculate δρ/ρ0 at a fixed point in
space (indicated in Fig. 2) as (ρ − ρ0)/ρ0, where ρ0 is the background
density. For theoretical prediction, we calculate the corresponding
growth rate from linear theory (equations 10 and 11) at the same
point using the background density, temperature and metallicity.
Fig. 3 shows the normalized density perturbation amplitude as a
function of time. In the initial stage, the growth and decay rates of
the isobaric and isochoric modes match well with linear theory.

For further validation of linear theory, we check the dependence
of the linear growth rate on important parameters �T ≡ ∂ln �/∂ln T
and �Z ≡ ∂ln �/∂ln Z. According to Section 3, the linear growth rate
depends explicitly on �T but not on �Z. Fig. 4 shows the contours
of �T and �Z in the T−Z plane. We choose three combinations of
temperature and metallicity (represented by red circle, blue triangle,
and green diamond markers) for our runs to check the dependence
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Isobaric and isochoric thermal instability 4941

Figure 4. Contours of constant �T (solid lines) and �Z (dashed lines) shown
for different temperatures and metallicities with the values determined by the
colourmap. The red circle (the fiducial case), blue triangle (with the same
�T), and green diamond (with the same �Z) markers represent the three
simulations mentioned in Section 5.1 used to demonstrate the dependence
(independence) of the linear growth rate on �T (�Z).

of the linear growth rate on �T and �Z. The red circle lies on the
intersection of contours of �T = 0.3 and �Z = 0.2, while the other
two have a different �Z (blue triangle) and �T (green diamond)
compared to the intersection point. These combinations of (T, Z)
result in two pairs of systems. One pair has the same �T but different
�Z and the other pair has the same �Z but different �T.

Linear theory predicts the same growth rate (relative to t−1
cool,0)

for the pair with the same �T but different �Z both in isobaric and
isochoric regimes, while for the other pair the growth rates should
be different. This is indeed what is seen in the linear stage of the
corresponding simulations (Fig. 5).

Fig. 5 shows the growth rate obtained from simulations and
linear theory for a large range of ks. Note that the small-scale
fluctuations (large ks) are isobaric while the large-scale fluctuations
(small ks) are isochoric. To compare theory and simulations across
ks, we consider ln (δρ/ρ0) versus time as in Fig. 3 for each k and
calculate (within linear regime) the slope using a linear fit. We
repeat this process for all the simulations listed in Table 1 and
plot in Fig. 5. The simulation growth rates are shown with ‘circle’
markers in different colours. The ‘cross’ and ‘rhombus’ markers
show the corresponding values calculated from linear theory in
the isochoric and isobaric regimes, respectively. The inset plots
show the three cases with different �T and �Z shown in Fig. 4.
The green marker with the same �Z as the fiducial case (red
circle in Fig. 5) but a different �T, clearly has a higher (lower)
growth (decay) rate. Thus, the simulation results agree with the
analytic expectation that the linear growth rate of thermal instability
depends on �T but not on �Z. The case of k = π/(100 kpc)
and π/(50 kpc) are intermediate between the isobaric and iso-
choric regimes, and therefore the measured growth rate differs
from the asymptotic limits. This trend of the linear growth rate
versus wavenumber, going from the isochoric to isobaric regime,

Figure 5. The growth/damping rates for a range of wavenumbers (k) in
both the isobaric and isochoric regimes, at T ≈ 9 × 106 K. Orange circles
and crosses show the simulation and the theoretical (asymptotic) growth
rates, respectively, in the isobaric regime. Purple circles and diamonds show
the simulation and theoretical (asymptotic) growth rates, respectively, in the
isochoric regime. As expected, the simulations and linear theory agree in the
isobaric/isochoric limits. Inset: Comparison of the growth rates calculated
from simulations and linear theory for the three cases shown in Fig. 4 (with the
same colour code), in the isobaric and isochoric regimes. The growth/damping
rates change with �T but not with �Z, as expected from linear
theory.

matches existing simulations (see e.g. fig. 1 of Piontek & Ostriker
2004).

5.2 Non-linear evolution

Now that we have verified linear theory with simulations, we
proceed to study the non-linear evolution of thermal instability. We
find that the linear response also plays a crucial role in the non-
linear evolution of the condensation mode. Namely, the non-linear
growth of perturbations at small (isobaric) scales, within a large-
scale perturbation, is only possible if the isochoric mode is linearly
stable. For an unstable isochoric mode we do not observe growth of
multiphase gas at small scales.

Since linear behaviour is important to understand the non-linear
evolution of thermal instability, we start this section with Fig. 6,
which shows the theoretical (asymptotic) growth rates for the isobaric
and isochoric modes as a function of temperature with different
metallicities. Depending on the temperature and metallicity, we
define three regimes of thermal instability: stable isochoric and
isobaric modes (region I); unstable isochoric and isobaric modes
(region II, relevant for the CGM of the Milky way with T ∼ 106 K);
and stable isochoric and unstable isobaric mode (region III, relevant
for the ICM with T > few × 107 K). We investigate the two regions
with unstable isobaric modes in more detail. Fig. 7 illustrates the
different non-linear evolution of the stable and unstable isochoric
clouds, leading to the formation of cold gas in the two scenarios.
These scenarios presented in the cartoon are corroborated by the
non-linear simulations (see Table 2) presented next.
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4942 H. K. Das, P. P. Choudhury and P. Sharma

Figure 6. Analytic asymptotic growth rates for isobaric (solid lines;
equation 10) and isochoric (dashed lines; equation 11) modes as a func-
tion of temperature for different metallicities. The background density is
0.062mp g cm−3. The inset shows the theoretical growth rates at different
metallicities for a smaller temperature range. The shaded regions show
different regimes depending on the temperature (these regions change slightly
with metallicity; here shading corresponds to 0.6 Z�). In region I, both the
isobaric and isochoric modes are stable; in region II, both the isobaric and
isochoric modes are unstable; and in region III, the isobaric mode is unstable
and the isochoric is stable.

5.2.1 Periodic runs

To check for any difference in the non-linear evolution of the
stable (NIC ST) and unstable (NIC UST) isochoric runs, we run
them without a metallicity gradient and with periodic boundary
conditions (NIC ST P and NIC UST P, respectively). Note that in
the absence of metallicity and H-abundance gradients, there should
be no perturbation in metallicity and H-abundance (equations 3c and
3d). Moreover, for a passive scalar metallicity we do not expect the
metallicity profile to evolve.

Figs 8 and 9 show the density, pressure, temperature, and velocity
profiles for the stable and unstable isochoric runs (NIC ST P,
NIC UST P) with periodic boundary conditions at different times. It
is evident that the non-linear evolution for these two is very different.
For the stable isochoric run, the large-scale isochoric mode decays
but isobaric disturbances start growing at the grid scale close to the
density fluctuation extrema and zeros. The small-scale density peaks
in the non-linear state (right-hand panels of Fig. 8) are separated
by less than the wavelength of the initial isochoric mode. For the
unstable isochoric mode, on the other hand, the large-scale mode
becomes non-linear without much growth of isobaric modes at small
scales. The supersonic gas falling on to the cold isochoric regions
forms a radiative shock (see e.g. chapter 16 in Shu 1992), with a
large density jump at the boundary of the isochoric cold cloud. At late
times (right-hand panels of Fig. 9) the cold, underpressurized regions
collapse, and pressure equilibrium is established as the radiative
shocks merge. Notice the oscillations in the ambient hot gas launched
due to cloud-collapse. The final dense peaks in this case are separated
by the wavelength of the initial isochoric mode.

When the overdense regions are isobaric, the high (low) temper-
atures correspond to low(high)-density regions. However, this is not
true for the unstable isochoric modes till they shrink and become
isobaric at late times (right-hand panels of Fig. 9). For the unstable
isochoric modes (NIC UST P), we notice the formation of large

cold regions (∼100s kpc) which shrink in size with time (Fig. 9). For
all runs, the velocity becomes discontinuous and changes direction
in the non-linear state, indicating the accretion of matter on to the
dense regions. But for the unstable isochoric run NIC UST P, at
the onset of non-linearity (bottom-middle panel), we see a region
of zero velocity sandwiched by infalling gas with opposite signs.
The static cold sandwiched regions compress and later evolve into
a discontinuity similar to the non-linear isobaric structures (see e.g.
the isobaric run NIB OF in Fig. 10). This is different from the stable
isochoric run NIC ST P, where the velocity switches sign abruptly
across the thin cold layer even at early times (middle column of
Fig. 8).

5.2.2 Runs with metallicity gradient

To further investigate the non-linear evolution of the stable and
unstable isochoric modes, we add metallicity gradient and metallicity
perturbations with outflow boundary conditions.

Fig. 6 shows that for a given metallicity, the growth rate of isobaric
modes is always higher compared to the isochoric modes. In the run
with an initially isobaric mode with a background metallicity gradient
(NIB OF; Fig. 10), the overdense regions grow non-linearly and
eventually form dense peaks with densities three orders of magnitude
larger than the surrounding diffuse medium. The growth of non-linear
structure is the fastest in the highest metallicity regions because the
cooling time is the shortest there (and hence the growth rate of
thermal instability is the fastest). Non-linearly, the surrounding gas
cools and accretes on to the dense seeds. Also notice the stair-case
structure of metallicity in the extreme non-linear state (bottom-right
panel). These can be understood from the passive scalar equation
satisfied by metallicity (equation 1c) and by the tendency of matter
to accrete on to dense seeds in the non-linear state.

For the stable isochoric mode with an initial metallicity gradient
(NIC ST OF; left-hand panels of Fig. 11), the initially isochoric
mode decays, but the unstable isobaric peaks, seeded by truncation
errors, start to grow at small scales. In the non-linear state, we see
the formation of numerous other isobaric peaks (as in the periodic
stable isochoric modes in Fig. 8). For the unstable isochoric mode
with a background metallicity gradient (NIC UST OF; right-hand
panels of Fig. 11), we do not see the formation of isobaric peaks at
the beginning of the non-linear stage. The isobaric peaks formed in
the linear state (not shown) come close and merge to give rise to a
single dense peak for each initially isochoric overdense region.

The metallicity profiles show a stair-case pattern in the non-
linear steady state for all three cases (isobaric, and stable and
unstable isochoric with metallicity gradient). In the isobaric and
unstable isochoric modes with a metallicity gradient (NIB OF and
NIC UST OF), during the non-linear growth stage, the slope of the
metallicity profile decreases between discontinuities (bottom panels
of Figs 10 and 11). This is due to the infall of matter into overdense
peaks. In equation (1c), the gradient of metallicity has a negative
sign. Thus, the points where velocity is positive (negative), ∂Z/∂t
is positive (negative). From the initial metallicity profile and the
velocity profiles from the periodic runs, we deduce that this should
result in flattening of the metallicity profile between the overdense
peaks. In the stable isochoric run (NIC ST OF), the flattening of the
metallicity profile between density discontinuities is less pronounced
(bottom panels of Fig. 11) as profiles are shown at a much earlier
time in comparison to the unstable isochoric run with a metallicity
gradient (NIC UST OF). As in the periodic simulations (Figs 8 and
9), the metallicity profiles are discontinuous across the density peaks
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Isobaric and isochoric thermal instability 4943

Figure 7. Illustration of how isochoric clouds can evolve non-linearly, depending on the stability of the linear isochoric mode. The linear stability of an isochoric
cloud depends on the temperature (and metallicity to a smaller extent; Fig. 6). The large unstable clouds (the left pathway above) quickly lose pressure support
(on roughly a cooling time) isochorically (at a constant density) and cool to the stable temperature. Eventually, after the much longer sound crossing time across
the cloud, the underpressured clouds slowly collapse to smaller volumes, erasing all the small-scale isobaric growing modes. At the end of this collapse, the
cloud pressure overshoots, reflecting pressure (sound) waves as the gas achieves pressure equilibrium. The eventual cloud size is small (determined by mass
conservation of the collapsing volume) but the separation between clouds is of order the initial wavelength. On the contrary, the stable large-scale clouds (the
right pathway above) decay and become sites for the growth of ‘misty’ small-scale isobaric modes clustered closely (with cold gas again at the stable phase but
in pressure balance). While the cloudlets are small (∼min[cstcool]) in the transient state, most of them merge at late times (see Fig. 17).

for the stable isochoric run and they are unmodified within the cold
collapsing peaks for the unstable isochoric run.

5.2.3 Evolution of cold peaks

Fig. 12 shows the evolution of cold (< 104.1 K) gas with time
for the isobaric (NIB OF), and unstable (NIC UST OF) and stable
(NIC ST OF) isochoric runs. Colour indicates the metallicity of the
cold gas. Fig. 12 (left-hand panel) shows that cold gas condenses at
the positions of the initial overdense peaks, which then grow non-
linearlyl. Generally, the cold gas arises the earliest in the highest
metallicity region (this is not always the case, e.g. in the right-hand
panel the metallicity of the earliest cold gas is not the highest). The
initial density and temperature are also important factors, in addition

to metallicity. For the unstable isochoric mode, the dense peaks come
close together with time as the central cool region is underpressured
and collapses due to the external pressure (see the right-hand panels
of Fig. 11). In contrast, the stable isochoric mode shows the growth
of unstable isobaric mode and cold gas at smaller scales than the
wavelength of the initial mode (see the left-hand panels of Fig. 11).
On a much longer time-scale, we expect the dense peaks to merge
together because the regions surrounding them have a low pressure
due to radiative losses (see e.g. the right-hand panel of fig. 2 in
Sharma et al. 2010; see also, Waters & Proga 2019b).

5.3 Isochoric stability as the condition for small-scale cold gas

We observe different cold gas evolution for the stable and unstable
isochoric modes. For stable isochoric modes, we observe the growth
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Figure 8. Density, pressure, temperature, and velocity profiles for the stable
isochoric run with periodic boundary conditions (NIC ST P) at different
times showing the initial condition, non-linear growth, and the (quasi)steady
state. Grid-scale isobaric modes grow and dominate in the non-linear state,
resulting in dense, cold gas separated by less than the wavelength of the initial
isochoric perturbation.

Figure 9. Density, pressure, temperature, and velocity profiles for the
unstable isochoric run with periodic boundary conditions (NIC UST P) at
different times showing the initial condition, non-linear growth, and the
(quasi)steady state.

of small-scale isobaric thermal instability and cold gas with separa-
tion smaller than the wavelength of the isochoric perturbation. This
is different from the shattering envisaged in McCourt et al. (2018)
because we do not see the non-linear fragmentation of the densest
isochoric regions with short cooling times. For the unstable isochoric

Figure 10. Density and metallicity profiles for the isobaric modes with a
background metallicity gradient and outflow boundary conditions (NIB OF)
at different times. (We do not show the buffer zones close to boundaries where
cooling and heating are turned off.) The perturbations become non-linear first
at smaller x where the metallicity is largest and the cooling time is shortest.
The perturbations grow ‘in place’ and there is no fragmentation. Notice the
stair-case pattern in the metallicity at late times, which can be explained from
the advection of the background metallicity by flows on to dense regions.

Figure 11. Density and metallicity profiles for the stable and unstable
isochoric run with a background metallicity gradient and outflow boundary
conditions (NIC ST OF, left-hand panels; NIC UST OF, right-hand panels)
at different times. The initial profiles are shown with red dashed lines. (We do
not show the buffer zones where we turn-off cooling and heating.) Similar to
the stable isochoric mode with periodic boundary conditions (in Fig. 8), we
see the growth of isobaric perturbations at the grid-scale and the separation be-
tween the dense clouds less than the wavelength of the initial isochoric mode.
The ‘steps’ in the metallicity profile at late times are smaller because this run,
having isochoric modes, is not as deep into the non-linear state as compared
to the bottom-right panel in Fig. 10 (compare the density profiles in the two
cases). Unlike the stable isochoric mode, non-linearly we do not see growth of
multiphase gas at small scales in the unstable isochoric mode. Again we see
the stair-case pattern in metallicity at late times. Notice that the metallicity is
unchanged in the cold underpressured regions which have not collapsed yet.

modes, we do not observe any growth of small-scale (isobaric)
perturbations in the non-linear state but the eventual collapse of
the cold isochoric regions as they become isobaric and launch sound
waves in the process (as suggested by Waters & Proga 2019a). We
ran two simulations with identical initial conditions but different
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Isobaric and isochoric thermal instability 4945

Figure 12. Position of grid points with cold gas (<104.1 K) as a function of time for various runs: isobaric (NIB OF; Fig. 10), unstable isochoric (NIC UST OF;
Fig. 11), and stable isochoric (NIC ST OF; Fig. 11). Colour indicates the metallicity of the cold gas. This figure shows the difference in the evolution of cold
gas in the three cases. The growth of small-scale cold gas for stable isochoric mode and the absence of small-scale cold gas in the unstable isochoric mode
is easily seen. Non-linearly, the dense peaks can merge due to local pressure gradients, especially the cold, high-pressure peaks flanking the low-temperature,
underpressured region of the unstable isochoric run (middle panel).

power-law cooling functions (not discussed in detail) such that the
isochoric mode is stable or unstable for all temperatures. We observe
the same correlation between the stability of the isochoric mode and
the non-linear cold gas evolution.

5.3.1 Runs with a different background temperature

Fig. 6 shows that there are regions near 105 K where, depending on
the metallicity, the isochoric mode can be stable or unstable. This
dependence on metallicity is due to the dependence of the growth
rate on metallicity through �T (equation 11).

To test whether the stability or instability of the isochoric mode
determines the appearance of multiphase gas in the non-linear state,
we run a periodic simulation of a stable isochoric eigenmode with
the initial temperature ranging from ≈105 to ≈ 2.5 × 105K. Fig. 13
shows the profiles from this simulation. According to Fig. 6, the
isochoric mode is stable between 1.2 × 105 and 2.3 × 105 K. The
regions with maximum and minimum temperature, being isochori-
cally unstable, do not show the growth of small-scale isobaric modes.
While the intermediate temperature regions, sandwiched between the
temperature extrema, being isochorically stable, show the growth of
isobaric perturbations at small scales. Thus, we see that non-linear
evolution, even locally, depends on whether the isochoric mode is
linearly stable or unstable.

5.3.2 Mixed eigenmodes

We run additional simulations with mixed eigenmodes and random
noise initial conditions (two right-hand panels in Fig. 14), to test the
influence of the linear stability of the isochoric mode on the non-
linear evolution of multiphase gas. We also calculate the density
power spectrum (bottom panels of Fig. 14) for all the different
cases to quantify the structure of the multiphase gas in the non-
linear state. This figure repeats in columns 1 and 2 profiles from
the stable and unstable isochoric runs with and without metallicity
gradient for comparison (profiles of these runs are shown in Figs 8, 9,
and 11).

Two runs are initialized with stable and unstable isochoric large-
scale (k = 2π /[2 Mpc]) modes, respectively. In addition to these,
we also initialize small-scale (k = 2π /[2 kpc]) unstable isobaric

Figure 13. Density, pressure, temperature, and velocity profiles for the
periodic low-temperature run at different times with both stable and unstable
isochoric temperatures (NIC P LOWT). The locations with a temperature
range corresponding to the stable isochoric regime (1.2 × 105 K < T
< 2.3 × 105 K; see Fig. 6) show the growth of small-scale isobaric
perturbations. Thus, the linear properties of the isochoric mode also de-
termine the non-linear evolution of the cold gas. Note that the shaded
unstable isochoric temperature range does not undergo condensation at small
scales.

modes. These two runs use different temperatures (see Table 2)
to ensure that the isochoric mode is stable for one and unstable
for the other (NIC ST ME and NIC UST ME, respectively). We
initialize a sum of two eigenmodes from linear theory with equal
amplitude of the density perturbation, added with a zero phase
difference. Fig. 14 shows a comparison of density evolution of
various runs with stable and unstable isochoric modes. The non-
linear evolution of the mixed-mode run with an unstable isochoric
mode (NIC UST ME; blue-dashed lines in third column) is similar to
the single unstable isochoric mode run (NIC UST OF; blue-dashed
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Figure 14. The top three rows show the density profiles at various times for different runs with unstable (blue dashed lines) and stable isochoric modes (orange
solid lines; see Table 2). While the runs shown in the second column have a constant background metallicity, the others have a background metallicity gradient.
The last row shows the power spectrum of the density profiles shown in the third row. These plots show a significant difference between the runs with stable
and unstable isochoric modes. Namely, that the multiphase gas predominantly grows at small-scales if the isochoric mode is stable. The power spectrum plots
also corroborate this, which show much larger power at small ks if the isochoric mode is unstable. In the two right columns, with the stable isochoric modes,
the low-metallicity regions at large x have not become as non-linear as the high-metallicity regions at small x. This gives rise to a small increase in the density
power spectrum at small ks for these runs.

lines in the first column). Namely, there is no growth of small-scale
isobaric perturbations in the non-linear state. In contrast, for runs
with stable isochoric modes, multiphase gas is observed non-linearly
at small scales. This is true for all cases shown in Fig. 14. Thus, the
linear behaviour of the isochoric mode seems to determine whether
we see condensation at small scales non-linearly.

Fig. 15 shows the profiles of density, temperature and �T for the
mixed eigenmode run with an unstable isochoric mode (shown by
blue-dashed lines in the third column of Fig. 14). The snapshots
show the early and non-linear evolution of these quantities. At early
times �T < 0 and both the isobaric and isochoric modes grow. Non-
linearly, one can see that small-scale perturbations grow where the
isobaric mode is linearly unstable and the isochoric mode is stable.
At late times, the small-scale fluctuations are wiped out where the
isochoric mode is unstable. In regions where both the isochoric and
isobaric modes are stable, the small-scale fluctuations are slowly
damped away (see the third panel of Fig. 15). Thus, the late-time

evolution of the single and multimode perturbations with unstable
isochoric modes (blue dashed lines) first and third columns of Fig. 14)
is very similar. Namely, multiphase condensation at small scales is
suppressed.

5.3.3 Runs with random noise perturbations

To further test the robustness of our criterion for the growth of
isobaric modes at small scales, we initialize stable and unstable
isochoric background with small-amplitude (δρ/ρ0 = 10−5) random
density perturbations (drawn from uniform distribution in the range
ρ0 − δρ and ρ0 + δρ) at every grid point (see the last column
in Fig. 14). The other variables (velocity, pressure) are initialized
with an amplitude corresponding to an isochoric eigenmode with
k = 2π/[2Mpc]. For these NIC ST RN and NIC UST RN runs
we observe a very different evolution in the non-linear state. In
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Isobaric and isochoric thermal instability 4947

Figure 15. The profiles of density, temperature, and the logarithmic temper-
ature derivative of the cooling function (�T ≡ ∂ln �/∂ln T) for the unstable
isochoric mixed-eigenmode run (NIC UST ME) at different times. We label
the different regions along y-axis according to the stability of the isobaric
and isochoric modes. The stability (instability) of the isochoric (isobaric)
mode explains the non-linear growth of the small-scale isobaric modes only
at specific regions in space where 2 > �T > 0.

NIC ST RN, similar to the mixed eigenmode runs, we see that
the isobaric overdense peaks grow ‘in place’. In NIC UST RN, we
see that not all the overdense peaks grow and the peaks are more
distant from each other and have a larger amplitude in comparison to
NIC ST RN. To put it another way, we observe these peaks repeating
over a larger length-scale in NIC UST RN than in NIC ST RN, as
seen in other unstable isochoric simulations.

The various runs in Fig. 14 show that small-scale density pertur-
bations grow only when the isochoric mode is linearly stable and
not when it is linearly unstable. In the latter case, only large-scale
isochoric perturbations grow, which achieve pressure equilibrium
much later after a sound crossing time across the mode, as the cold
underpressured region collapses.

5.3.4 Power spectra

We calculate the power spectra of the various runs at late times in
Fig. 14 and show it in the bottom panel. We use uniform binning in
log (k). We calculate the power spectrum as

Eρ(ki) =
∑

ki≤k<ki+1

|ρ̃(k)|2
(ki+1 − ki)

, (12)

where kis are bin boundaries and Eρ(ki) is the power in the ki bin.
We note that all runs with unstable isochoric modes have a higher
fraction of their power in low ks in comparison to the runs with
stable isochoric modes. This indicates the presence of dense clouds
separated by a larger distance for an unstable isochoric mode and
small-scale multiphase gas with a stable isochoric mode. Note that
the power spectra in the bottom row of Fig. 14 lack any prominent
peaks corresponding to length-scales that can be seen in the density
profiles. This is similar to the power spectrum of a square wave of
varying width that also shows a broad power-law distribution.

6 D I SCUSSI ON AND C ONCLUSI ONS

In this paper, we study the linear and non-linear evolution of the
isobaric and isochoric local thermal instability in an optically thin
plasma and its dependence on the gas temperature and metallicity.
The role of metallicity on thermal instability has not been explored
earlier. The fragmentation of isochoric clouds and the broad implica-
tions of such clouds on the observations of warm/cold gas have been
discussed in McCourt et al. (2018) in detail. This paper invokes a
characteristic length-scale for the emergence of stable cloudlets (lcloud

∼ min[cstcool]; see also Burkert & Lin 2000) as a result of shattering.
More recently, thermal instability on large scales has been studied by
Waters & Proga (2019a) and Gronke & Oh (2020), who do not find
much evidence for shattering. We revisit this problem using linear
theory and high-resolution 1D hydrodynamic simulations and find
that the linear behaviour also determines the non-linear evolution
(see Fig. 7).

While the cooling function (�[T, Z]) varies with both gas tem-
perature and metallicity, we show that the temperature variation of
the cooling function plays a more crucial role than the metallicity
variation in the growth and non-linear evolution of cold gas. Although
we use high-resolution 1D hydrodynamic simulations, we note that
the study of condensation due to thermal instability requires a very
high resolution (Appendix A). Large volume cosmological/non-
cosmological simulations still cannot resolve the relevant small
scales. Even in our 1D study we have to use a combination of small
and large box simulations to study the appropriate length-scales.

6.1 Metallicity and thermal instability

Using linear theory and non-linear 1D simulations, we show that
the thermal instability does not explicitly depend on the variation of
the cooling function with metallicity (�Z = ∂ln �(T, Z)/∂ln Z). Of
course, a higher metallicity medium has shorter cooling and thermal
instability time-scales because of the metallicity dependence in the
cooling function (equation 2). Unlike metallicity, the variation of
the cooling function with temperature [�T = ∂ln �(T, Z)/∂ln T]
explicitly features in the expression for the isobaric thermal instabil-
ity growth rate, and hence determines the multiphase condensation
time-scale. This difference of thermal instability with respect to
�T and �Z can be understood intuitively. In isochoric conditions
(when the sound crossing time across a disturbance is longer than
the cooling time), the overdense region cools but there is negligible
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background compression and hence no change in density. In absence
of background fluid motion, the passive scalar metallicity of the
cooling blob remains unchanged. The perturbed temperature evolve
as dδT/dt∝ − �TδT, which implies isochoric instability for �T <

0 (see equation 11). In isobaric conditions, the overdense region
maintains pressure equilibrium with the background and there is
convergence on to it. But in the local limit (fluctuation scale
	 metallicity gradient scale), unlike temperature and density, the
passive scalar metallicity of the cooling blob does not change. The
temperature fluctuation satisfies dδT/dt∝ − δ(�/T2)∝ − (�T − 2)δT,
resulting in a growth rate given by equation (10). Thus, there is no
explicit dependence of the growth rate on �Z in either the isochoric
or isobaric limits.

In past, variation in metallicity has been invoked to suppress emis-
sion of metal lines below a keV (Morris & Fabian 2003), as required
by observations. But ours is the first attempt to explicitly study the
dependence of metallicity on the linear and non-linear evolution of
thermal instability. Non-linearly, in the simulations with background
metallicity gradient we find jumps in the metallicity across cold
gas (bottom-right panels of Figs 10 and 11). These occur because
metallicity evolves as a passive scalar advected by the background
flow. Because of this, the metallicity map reveals the regions in
the diffuse gas from which the cold gas is condensing. The mean
metallicity of the cold gas is the mass-weighted metallicity of the gas
that condenses from the surrounding regions. Thus, if the background
hot gas metallicity has variation, the metallicity of the cold gas is
closer to that of the diffuse region from which it is condensing (fig. 7
in Nelson et al. 2020 shows correlations between the cold gas density
and the background metallicity). The cold gas is not always expected
to occur at the local metallicity maxima but where the cooling time is
short (e.g. condensation can occur in high-density but low-metallicity
regions and not in high-metallicity dilute gas).

6.2 Absence of fragmentation cascade in isochoric clouds

McCourt et al. (2018) invoke a faster process to reach pressure
equilibrium for large clouds which cannot communicate pressure
forces rapidly because they are in the isochoric regime with the
sound crossing time longer than the cooling time. Such a cloud is
expected to break into a cascade of smaller isobaric fragments until
these cloudlets reach a stable characteristic scale ∼min(cstcool) near
104 K. We do not see a cascade of fragmentation in any of our non-
linear 1D simulations. While 1D simulations lack hydrodynamic
phenomena such as Rayleigh–TaylorKelvin–Helmholtz instabilities
and mixing, the above picture of hierarchical fragmentation due to
cooling is expected to be captured in 1D, if present. Although we do
not see the fragmentation of the dense isochoric regions, we do see
the growth of isobaric perturbations at small scales in the non-linear
state if the isochoric mode at the background temperature/metallicity
is linearly thermally stable. So in this case, we see cold gas arising at
small scales but this is different from what is envisaged in McCourt
et al. (2018).

Gronke & Oh (2020) carry out 3D simulations of isochoric clouds
collapsing due to radiative cooling. Even in their simulations the
cold clouds, in all regimes, cool and collapse non-linearly without
fragmenting in the process. However, fragmentation and shattering
are seen after the collapse of cloud to a small volume as it attains the
stable temperature.3 The late-time shattering is a result of the vorticity

3As seen in the movies associated with the paper: http://max.lyman-alpha.co
m/shattering/.

generated by the Richtmyer–Meshkov instability produced due to
the interaction of the rebounding shock and the density gradients
in the multiphase cloud (Richtmyer 1960; Meshkov 1969). This
instability causes a cascade of smaller cold gas structures in their 3D
simulations. Hence, these small-scale clouds are also not produced
by the mechanism of McCourt et al. (2018). Gronke & Oh (2020)
find small-scale structure in the cold gas for χ � 300 (the final
temperature ratio of the background and the stable phase). At later
times the small-scale cold clouds coagulate rather than fragment.
In reality, the structure of cold gas is determined by the complex
interplay of cooling and heating in a turbulent medium (Banerjee &
Sharma 2014; Mohapatra & Sharma 2019), with both fragmentation
and coagulation happening simultaneously.

6.2.1 Non-linear initial conditions

Gronke & Oh (2020) point out that there is no difference in the
fragmentation threshold χ f ∼ 300 for linear thermal instability
and non-linearly growing overdensities. Following this, we test if
our criterion of isochoric stability/instability depends on the initial
amplitude of perturbations. To do so, we initialize a square wave
density pulse with constant pressure across the domain and carry out
stable and unstable isochoric simulations (ST and UST; in both cases,
the set-up is isochorically stable and unstable, respectively, for all
temperatures between initial minimum and maximum temperatures).
We find that, unlike when we start from linear perturbations, the
dependence of non-linear evolution on the linear stability of the
isochoric mode breaks down if we start with non-linear perturbations
(Fig. 16). Hence, the isochoric stability/instability is expected to be
important only for clouds growing from small density perturbations,
δρ/ρ � 1. This result is expected because with spatially constant
heating the diffuse gas is heated overall rather than being in thermal
balance. This precludes the applicability of our result on connection
between linear behaviour and non-linear evolution for condensation
around pre-existing dense gas like accreting filaments in gaseous
haloes and tails of jelly-fish galaxies. Our results are applicable for
gas cooling out of a relatively uniform medium, e.g. the cool ICM
core, small-amplitude perturbations in outflows.

If we simply accept that Gronke & Oh’s (2020) threshold applies
for the origin of small-scale clouds (as discussed in section 3 of
Gronke & Oh 2020), and the cloud finally comes to pressure equilib-
rium with surroundings, then χ f = 300 translates to a background hot
gas at T ∼ 107 K (assuming cloud cools to the floor temperature Tflr

∼ 4 × 104 K). The ICM has a similar or a larger virial temperature, so
it is expected to be prone to multiphase fragmentation. Relating this
to our small-amplitude simulations, it is interesting to note that the
ICM is isochorically stable and is expected to show rapid growth of
small-scale isobaric clumps. However, this may also be a coincidence
since Fig. 16 shows a rather similar evolution for non-linear initial
perturbations, irrespective of the stability or instability of isochoric
modes. The origin of χ f ∼ 300 and its robustness need further
investigation.

6.3 Is there a characteristic length-scale in cold gas?

A key question in the non-linear evolution of thermal instability,
as it produces multiphase gas, is whether there is a characteristic
scale for the cold gas. Fig. 7 outlines the non-linear evolution of
the large isochoric clouds when the isochoric mode is unstable
(the left channel) and stable (the right channel). In the former case
that applies to the CGM with the virial temperature ∼106 K (see
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Figure 16. Density profiles at different times for the runs initialized with
large density square waves: NIC UST SQ (unstable isochoric regime; top)
and NIC ST SQ (stable isochoric regime; bottom) at different times, given
by different colours. The initial pressure is uniform across the box with
overdensity temperatures set at 1 × 107 K (NIC UST SQ) and 3 × 107 K
(NIC ST SQ), and the ambient temperatures at 2 × 107 K (NIC UST SQ)
and 6 × 107 K (NIC ST SQ). We find that with non-linear initial conditions,
the evolution is similar regardless of stability of the isochoric mode.

Fig. 6), the large isochoric cold clouds collapse on a long sound
crossing time (∼λ/cs,cold ∼ 1 Gyr[λ/10 kpc] for the 104 K cold
phase). Such large-scale, pre-collapse cold clouds at almost the
density of the hot ambient medium may explain the observation
of the low density/pressure ∼104 K gas in Werk et al. (2014, see
their fig. 12).

The possibility of finding a characteristic length-scale for cold gas
is numerically demanding (see Appendix A). Cooling gas can shrink
down to very small volumes as it attains pressure equilibrium, so that
the resolution required to resolve the cold gas is enormous. A region
of length l in the hot phase would eventually collapse to lχ−1 in 1D, a
factor of ∼1000 for the fiducial ICM parameters. The cold gas scale is
not so small ∼lχ−1/3 for isotropic collapse in 3D. Given this and other
crucial differences in 1D and 3D, the question of characteristic length
in the CGM can only be answered quantitatively in 3D. Here, we
perform high-resolution 1D simulations to investigate the question
of characteristic length of cold gas in the context of thermal instability
in 1D.

We carry out two simulations, one with a background temperature
≈4 × 104 K for a stable isochoric cloud (see the stability trough

in Fig. 1 around such temperatures) and another at temperature
≈3 × 105 K for an unstable isochoric cloud. The two runs have
the same intermediate wavenumber k = 2π /100 pc−1. Resolving the
smallest length-scales is difficult if we initialize the asymptotic (kcs

	 1) isochoric modes at a higher temperature since the initial cloud
sizes are very large. We carry out simulations of the two isochoric
cases in a 100 pc box to follow the evolution of the largest and
the smallest cloud sizes in the simulations (see the right column in
Fig. 17). These simulations have 20 000 grid cells. The initial profiles
in both cases have small-scale isobaric eigenmodes (λ = 1 pc) seeded
within the large-scale isochoric mode (these are similar to the mixed-
eigenmode simulations of Section 5.3.2). We also dynamically follow
the expected characteristic length-scale, the minimum lcloud,shatter ∼
cstcool (see Burkert & Lin 2000) over the domain, as the clouds
gradually cool down to lower temperatures. We verify that the results
of Fig. 17 are similar whether we use a lower order RK2/linear or a
higher order RK3/parabolic method.

In our simulations, lcloud,shatter ∼ min(cstcool) is initially larger than
the smallest overdensities. In the unstable isochoric run (top panels
of Fig. 17), we see that the smallest cloud follows the evolution of
the smallest characteristic length-scale till ∼4 Myr. The size of the
largest cloud is larger than lcloud,shatter ∼ min(cstcool) throughout the
entire time. The size of the biggest cloud intermittently reduces to
slightly smaller size (possibly due to the pressure wave oscillations
at the interface of the cloud and the surrounding in-falling gas; see
Waters & Proga 2019a) but never reaches lcloud, shatter or the grid scale.
Note that the smallest and the largest clouds merge after 4 Myr and
the resultant cloud remains stable at ∼5–10 times larger size than
lcloud,shatter.

In our 1D stable isochoric simulations (shown in the lower panels
of Fig. 17), we find that the initial overdensities are smaller than
lcloud,shatter. As condensation proceeds, lcloud,shatter reduces, closely
followed by the smallest cloud in the simulation. Although our
stable isochoric evolution indeed shows small-scale growth and
the emergence of a characteristic scale for the smallest cloud,
the isochoric cloud does not fragment. Thus, our fragmentation is
different in nature than the picture of McCourt et al. 2018. In our
simulations, small-scale features grow within a large cloud if and
only if the linear isobaric mode is growing and the isochoric mode
is decaying.

Fig. 17 shows that the density profiles and the power spectra
of the two isochoric simulations agree with our previous results
(see Fig. 14). Namely, a larger number of small-scale peaks in the
stable isochoric case co-exist for a long time. The stable isochoric
simulation has higher power in large ks at all times, which verifies that
small-scale growth is generally not seen within a growing isochoric
mode. The smallest cloud size often follows the characteristic length-
scale (min[cstcool]) scale for the transient state in both (stable/unstable
isochoric) cases as this is the only relevant length-scale in the
problem. Moreover, at late times the small clouds merge and lead to
much larger clouds than this scale. On the other hand, larger clouds
are not uncommon (red lines in the right column). Thus, our 1D
simulations indicate that a characteristic length-scale of cold gas
may not generically exist. The length-scale of cold gas will depend
on the total mass of cold gas and the number of clouds (which
decreases with time as the clouds merge; see Fig. 7) that are in
pressure equilibrium with the ambient medium at late times. The
cold clouds are very likely supported by non-thermal components
such as magnetic fields and cosmic rays at a scale much larger than
this characteristic length-scale (e.g. Sharma et al. 2010; Nelson et al.
2020).
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Figure 17. The density profiles (left column) and the density power spectra (middle column) at different times for the isochoric unstable (top panels) and
isochoric stable (bottom panels) low-temperature high-resolution (20 000 grid points) simulations with isochoric + isobaric initial fluctuations. The right-hand
panels show the size of the smallest and largest cold (T < 104.1 K) clouds, the characteristic length-scale of cold gas (min[cstcool]), and the grid size (dashed
line); the solid lines are the rolling averages of the actual values (shown as dotted lines) over five time-steps centred at each time-step. Many more dense clouds
separated by small distances (reflected in a shallower power spectrum), which eventually merge, are seen in the stable isochoric run. A single dense cloud is
seen for the unstable isochoric run after ≈4 Myr. In both cases, only a few dense clouds exist at late times as a result of mergers. A reduction in the largest cloud
size at late times is likely a result of the increase in the ambient pressure because of heating of the diffuse medium.

6.4 Conclusions

Following are the main conclusions of our 1D linear and non-linear
study:

(i) From local WKB analysis, we find that the growth rate of
the local thermal instability does not have an explicit dependence
on metallicity. The growth rate with a higher metallicity is larger
because the cooling time is shorter for a higher metallicity gas. We
verify the theoretical growth rates of both isobaric and isochoric
modes with simulations in the linear regime.

(ii) We find two regimes of non-linear evolution depending on the
linear stability of the isochoric mode: we observe growth of cold
gas with small separation for the isochoric mode when it is linearly
stable; for linearly unstable isochoric cloud we do not observe cold
gas separated by small scales in the non-linear state. Our non-linear
evolution, even in the stable isochoric regime, is somewhat different
from the one envisaged by McCourt et al. (2018) as we do not observe
the dense isochoric cloud break into several isobaric fragments.
Instead, we observe the growth of isobaric modes at small scales.
We see no condensing cold gas at small scales in runs with unstable
isochoric modes, as suggested in Waters & Proga 2019a. In the
unstable isochoric runs, we see the formation of a large cloud that
shrinks and eventually forms an isobaric overdense region. The
isobaric mode is thermally unstable for all temperatures �104 K,
but the isochoric mode is stable for a temperature �107 K and for
small ‘islands’ between 104 and 107 K (see Fig. 6). The production
of small-scale cold gas for stable isochoric modes may explain the
result from the 3D simulations of Gronke & Oh (2020), who find
fragmentation of cold gas for density contrast χ � 300 (correspond-
ing to a temperature of �107 K). However, we also find that the
correspondence between non-linear evolution and the linear stability
of isochoric modes breaks down if the initial density perturbations
are already non-linear (δρ/ρ � 1). We test the robustness of our result
by using different initial conditions such as mixed eigenmodes and
random noise. We also compare the power spectra of density profile

in different cases. We find the results in each case to be consistent
with our pure eigenmode simulations.

(iii) The observed cold gas in our non-linear simulations does
not generically show a characteristic scale even when we resolve
the expected characteristic cold gas radius of min(cstcool) (see
Fig. 17). The minimum cloud size in our 1D simulation in the
growing/transient state is comparable to min(cstcool) (as this is the
only length-scale in the problem) but merger of cold clouds leading
to larger clouds is common at late times.

(iv) The passive scalar nature of metallicity can help us connect
the cold gas with its source in the diffuse CGM. The condensing
gas inherits the metallicity of the diffuse gas from which it is
condensing.
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APPENDI X A : NUMERI CAL DI FFUSI ON AT
H I G H WAV E N U M B E R S

In some of our simulations with a small growth rate of the local
thermal instability, we observe large deviation between the theoreti-
cal and numerically measured growth rates. In all cases, the growth
rate in simulations is lower than the theoretically expected value.
In some cases, we measure damping of the eigenmode instead of
growth, even though linear analysis suggests otherwise. For a given
resolution, the deviation from the theoretical expectation increases
with the wavenumber (k) as shown in the first panel of Fig. A1.
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Figure A1. Top panel: Linear growth rates and the rates measured from
numerical simulations initialized with large-k eigenmodes. Bottom panel: The
deviation of the measured growth rate from the theoretical value for different
ks. For a given resolution, the deviation from the theoretically expected growth
rates increase with the wavenumber (k), which follows a power law in k. For
higher resolutions, the power remains the same but with a smaller coefficient.

We find that the deviation from the theoretical growth rate follows
a power law in k, as shown in the second panel of Fig. A1.
This deviation is due to numerical diffusion, which is expected to
introduce a dissipation rate increasing rapidly with k (a constant
numerical diffusion should give a damping rate ∝k2); the numerically
measured deviation is steeper. On increasing resolution, the effects of
numerical diffusion decrease, resulting in a better agreement between
the theoretical and numerical values, as seen in Fig. A1. Because of
the long cooling time, compared to the sound crossing time across a
grid cell (�x is the grid size) in some cases, the numerical dissipation
rate ∼(cs�x)k2 can significantly damp the growth rate and it is
important to adequately resolve the high-k modes and to conduct
convergence studies.
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