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t has recently been reported! that when one removes multiple

genomes within a named species or species defined at the 95%

genome-aggregate average nucleotide identity (ANI) level by
sampling one genome per species or only two genomes that
maximize the represented diversity within the species!, the ANI
discontinuity (or “ANI gap”) observed between species based on
all available genomes is lost. [Discontinuity or gap here refers to
the small number of genome pairs showing 85-95% ANI relative
to counts of pairs showing >95% and <85% ANI]. In other words,
the bimodal distribution of ANI values previously observed by
comparing the ~90,000 genomes available in the NCBI database?
disappears. These results also echo earlier findings by others
based on different genome datasets [e.g3,]. Murray and colleagues
have interpreted these results as evidence that a natural genetic
discontinuity (i.e., an ANI boundary) between species may not
exist, and the previously observed ANI boundary could simply be
the result of isolation biases that favor redundant (or closely
related) organisms. Note that there is no universally accepted
species concept for prokaryotes (i.e., what a species is) but there
are widely used standards on how to name species (i.e., a working
species definition)4. The ~10,000 species that have been described
to date and have sequenced representative genomes in the public
databases in order to be included in our analysis (out of a total
17,000 described species) are largely consistent (>95% of the
cases) with the application of the 95% ANI criterion, i.e., genomes
showing <95% ANI among themselves have been typically
assigned to different species?.

The ANI genetic boundary among microbial species is robust
First, while it is generally accepted that isolation is biased (e.g.,
favoring copiotrophic vs. oligotrophic or fastidious-to-grow
organisms), it is not clear why these biases would affect (or
skew) the collection of available public genomes in terms of their
ANI values, and would favor closely related genomes (showing
>95% ANI) vs. their moderately related close relatives (showing
85-95% ANI), which are -generally speaking- quite similar
organisms in terms of biochemistry and physiology. [For instance,

Escherichia coli and Salmonella enterica share about 82-83% ANI
and can both grow on the same lab media]. In order to quantify
the effects of such biases, if any, one needs to have unbiasedly
sampled the diversity that exists in nature and subsequently, assess
how well the isolate collection represents this diversity. To the best
of our knowledge, such a dataset is not currently available. Instead,
the analysis that Murray and colleagues performed in order to
prove that isolation biases exist, from a statistical point of view,
was to measure the amount of diversity (in terms of branch length
in the genome tree) that genomes of a named species represent.
They concluded that because 75% of the genomes, on average,
represent only about 5% of the intraspecies diversity for several
highly sampled species, this result reflects isolation bias. However,
a highly homogenous species, with a few more divergent members
and a clear ANI gap to its closest relative (distinct) species, would
be expected to show the exact same pattern, and it was not made
clear how an unbiased (by isolation) species would look like with
this respect. Even more relevant for the available genome dataset
used (NCBI’s RefSeq), a few divergent relatives that have been
misclassified (or misnamed) so they are included in the same
species with valid members of the species, or a few chimeric
(contaminated) genomes, would account for the results obtained
by Murray et all. Our unpublished evaluation as well as the results
shown in Fig. 3 in Murray et all. suggest that such misnamed and/
or chimeric genomes are frequent enough among the 90,000
genome set to account for the diversity results mentioned above
(see also below, for the specific case of E. coli as a representative
example, and next section for a more detailed rebuttal of this
specific point). In short, the random sampling performed by
Murray et al., does not prove (or disprove) that biased sampling is
responsible for the ANI gap observed. Further, and perhaps more
importantly, when one examines the patterns emerging from
metagenomic datasets, which is an isolation-free approach, a
similar ANI boundary is observed as argued below.

In particular, metagenomic studies of natural microbial popu-
lations have revealed that bacteria and archaea predominantly
form sequence-discrete populations with intrapopulation genomic
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Fig. 1 Example of a read recruitment plot. This figure showcases the result of processing a Blastn search of metagenomic short reads (each matching read
is represented by a dot in main panel 1) against a reference MAG sequence recovered from the same metagenome (x-axis). 1 Main panel representing the
reads recruited (mapped), placed by location (x-axis) and identity (y-axis) across the reference sequence. 2 Sequencing depth (or coverage) across the
reference, i.e.,, how many reads map at each base pair position, in logarithmic scale. Bars lower than the average represent regions with fewer mapped
reads, which denote gene content differences. 3 Identity histogram of mapped reads per unit of identity (light gray) and smoothed spline (black), in
logarithmic scale. 4 Sequencing depth histogram. Peaks based on the sequencing depth revealed in panel 2 are automatically identified as skewed normal
distributions (in red). The background of panels 1 and 3, and the line colors in panels 2 and 4, correspond to matches with identity above (dark blue) and
below (light blue) a user-defined cutoff. By default, the identity cutoff is set to 95%. Note the area of sequence discontinuity denoted by a decrease, by
more than one order of magnitude (x-axis, panel 3), in the number of reads mapping around 95% identity (red arrow) relative to reads mapping at >98%
identity. ANIr is estimated based on reads in the dark blue area only and represents the average nucleotide identity of reads to the reference sequence. The
MAG represents an uncultivated member of the Actinobacteria phylum that shows about 45% average amino acid (AAl) to llumatobacter coccineus, its
closest related named species with available genome representative(s). The metagenome was obtained from a planktonic sample from 1000 m in the Gulf

of Mexico.

sequence relatedness typically ranging from ~95 to ~100% ANI
depending on the population considered (e.g., younger popula-
tions since the last population diversity sweep event show lower
levels of intrapopulation diversity). In contrast, ANI values
between distinct populations are typically lower than 90%, and
genotypes of intermediate genetic relatedness, e.g., showing
85-95% ANI values, are infrequently encountered or coexist in the
same samples [Fig. 1 and reviewed in ref. °]. Such sequence-
discrete populations were recovered from many different habitats,
including marine, freshwater, soils, sediment, human gut, and
biofilms, and were typically persistent over time and space [e.g.,
refs. ©-10,] indicating that they are not ephemeral but long-lived
entities. The sequence-discrete populations typically harbor sub-
stantial intrapopulation gene content diversity as well (i.e., they are
rarely clonal), although it has been challenging to robustly assess
the extent of this gene diversity based on short read
metagenomes®®. Therefore, these populations appear to be “spe-
cies-like” and may constitute important units of microbial
communities’.

One way that the sequence-discrete populations have been
elucidated is with read-recruitment plots (e.g., Fig. 1). In these
plots, the reads of a metagenome (or a metatranscriptome) are
mapped against a reference genome sequence that is representa-
tive of the population (e.g., an isolate genome or a metagenome-
assembled genome, i.e., a MAG), and the mapping patterns reveal
the region of sequence-discontinuity (if the latter exists) as well as
the level of intrapopulation sequence and gene content
diversity®!1. Thus, read-recruitment plots provide a thorough and
quantitative view of the natural population in a sample and its
diversity, and “let the data tell” what the prevailing patterns are,
with no biases and/or subjective human interference. Specifically,
in the predominant case in which a sequence-discontinuity is

observed, reads representing the reference population map evenly
(or in an unbiased fashion) across the genome with identities
typically (but not necessarily always; see also below) higher than
95% nucleotide identity, whereas sequences representing co-
occurring but distinct populations (species) typically show
nucleotide identity <90%; reads in the 85-95% nucleotide identity
range are generally sparse (e.g., Fig. 1). Recently, our team has
advanced the read-recruitment plot tool to provide additional
information based on read mapping, such as what is the average
coverage of the genome by reads (a proxy for relative metagenome
abundance), whether or not co-occurring populations exist in the
dataset (sample), and what is their ANI to the reference genome or
population as shown in Fig. 1 and further documented in the
enveomics collection!2.

Murray and colleagues disregarded all these metagenomic
findings and tools by claiming that the genomes recovered from
metagenomic datasets by genome binning tools (e.g., MAGs) are
biased toward the abundant organisms, and low-abundance
genome variants are rarely represented among the recovered
genomes. This is partly truel3, but it fails to consider that
abundance is not ecologically neutral (e.g., organisms that show
substantially different abundances under the same conditions and
are copresent in the same sample are presumably ecologically
differentiated from one another) nor is it a technical artifact.
Consequently, the question surrounding the 95% ANI gap is not
about the nonexistence of intermediate relatives, but rather about
their relative rarity in nature. Moreover, this bias does not apply
to the individual metagenomic reads. The reads will randomly
sample both abundant and rare taxa, e.g., if genomes of inter-
mediate genetic relatedness to the reference genome were col-
lectively abundant, this would have been revealed by the read
recruitment plots (by high frequency of reads showing 85-95%
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nucleotide identity to the reference). However, in the great Murray and colleagues also cite two papers>!> led by one of us
majority of read recruitment plots performed by us or others (e.g., (Konstantinidis) that reported sequence-indiscrete populations
refs. 7>14.) using isolate genomes of abundant or rare taxa, MAGs, based on metagenomic datasets but did not recognize that these
or single-cell amplified genomes (SAGs) as reference genomes, examples were presented by the original studies as the exceptions
the genetic discontinuity (ie., lack of reads in the 85-95% that confirmed the rule rather than the prevailing pattern of
nucleotide identity range) was evident based on the mapping diversity and were attributable to specific (predictable) physico-
patterns of reads to these reference genomes. In other words, chemical processes that mix distinct populations from different
although reads representing organisms of intermediate identity =~ samples and/or habitats (e.g., seawater mixing; see below). Allow
were often (but not necessarily always) present in the metage- us to use one of these examples to further illustrate several key
nomic dataset, these reads were of much lower frequency than points, including the frequency of intermediate relatedness gen-
reads of high (>95%) or low (<85%) nucleotide identity to the otypes. Populations of deep-sea Group I Crenarchaea [recently
reference [note that intermediate identity reads/organisms are renamed Thaumarchaeotal®] are distinct between different
expected to be completely absent in cases where strong popula-  depths of the oceans (Fig. 2B). However, in cases of vertical water
tion diversity sweeps/extinctions such as the one represented in  mixing such as that observed during ocean upwelling, the
Fig. 2B, rightmost plot, have taken place]. Therefore, the picture populations get mixed, and thus indiscrete (continuous) “popu-
emerging from isolation-independent, metagenomic datasets is lations” may appear temporarily in samples from such mixed
strikingly similar with that based on isolates obtained by Jain and  waters. When waters get stratified, as they do in summer, the

colleagues. deep-sea populations are absent from surface waters and vice
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Fig. 2 Biogeography of sequence-discrete Thaumarchaeota Group | populations. A reference genome representing the thaumarchaeotal population at
4000-m depth in the Pacific Ocean was queried against the previously described metagenomes from six different depths of the Pacific Ocean?® and the
Gulf of Mexico (our unpublished data). A Range in nucleotide identities between the metagenomic read sequences and the genome, represented as letter-
value plots39, and their vertical line the median (x axis), plotted against the depth that the metagenomic sequences were recovered from (y axis). B Read
recruitment representation for selected comparisons performed [the uppermost box-plot in the panel A represents the distribution of sequence identity
values of the reads against the reference genome shown in the leftmost plot in the panel B. The plots in panel B are similar to the low, left panel of Fig. 1 but
the data points (representing mapped reads) have been binned into a positional, hexagonal heatmap for demonstration purposes. Note that
Thaumarchaeota are genetically distinct between different depths of the same water column (A) but genetically more similar across similar depths in
geographically distant locations (B), and that if representative genomes or whole-populations from all depths are compared, they will show a range of ANI
values between 89 and ~100% among themselves. Note also that the use of short Illumina reads tends to overestimate nucleotide identity (and thus ANIr
values) compared to longer Sanger reads or whole/partial genomes used in our previous publications, especially for moderately identical sequences (e.g.,
in the range of 80-95% nucleotide identity), mostly due to inability of current read mapping algorithms to align such short sequences. Further, the mapping
of metagenomic reads to the reference genome was performed with MegaBLAST, in contrast to Blastn in Fig. 1, and MegaBLAST is even less sensitive (but
much faster) in finding reads of intermediate identity (e.g., in the range of 70-90% nucleotide identity) compared to Blastn3!. Therefore, the ANIr values
shown are higher than our previous estimates for similar samples (or even Blastn-derived estimates based on the same metagenomic reads) due to this
technical limitation, but the diversity patterns across depths remain similar.
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versal”7-18, Thus, depth-stratified, sequence-discrete populations
appear to be the predominant pattern throughout the ocean’s
water column as well.

Furthermore, if one samples just one genome representative
from each thaumarchaeotal population (or distinct depth biome)
and does the ANI comparison among the resulting subsample of
genomes, which is analogous to the subsampling that Murray and
colleagues did on the isolate genomes to show the lack of the ANI
boundary, then a genetic continuum may be revealed [Fig. 2A
and in ref. 17]. However, this is obviously a biased sampling
because the local abundance information, which is linked to the
ecophysiology of the organisms, is not considered; e.g., in the
deep-sea samples, surface populations are rarely found and, if
they are ever found, they are temporarily associated with sinking
particles and/or water mixing events. It also follows that the deep
and surface populations should not be considered the same
species, even if they perform similar metabolic functions in terms
of energy generation, because under the same conditions (e.g.,
stratified/stable waters) only one of them dominates/thrives at its
preferred depth!”. That is, the populations are apparently not
interchangeable since under the same conditions, they do not
coexist but, instead, one has much lower abundance (just barely
surviving), if detected at all, than the other one. In summary,
genetically-related yet ecologically and genetically distinct popu-
lations (e.g., preference for different depths for marine Thau-
marchaeota), should not be considered the same species, a point
not considered by Murray and colleagues. Similar concepts and
patterns most likely apply to other taxa and habitats, such as to
E. coli and its closely-related environmental genomes/clades!?
cited by Murray and colleagues. These environmental E. coli-like
clades have never been found to be abundant in the gut (or feces)
of human or warm-blooded animals to the best of our knowledge
(a couple of the clades are thought to be abundant in birds),
contrasting with the typical E. coli commensal genomes, and are
genetically distinct (e.g., their ANI values to typical E. coli are
90-93% vs. >95% among typical E. coli genomes). Hence, these
clades are arguably ecologically and genetically differentiated
enough to represent different species than typical E. coli, albeit no
systematic effort to taxonomically describe them as novel (dis-
tinct) species has yet taken place. Lacking such taxonomic
description, Murray and colleagues considered these environ-
mental genomes to be members of the E. coli species. However,
even based on the commonly used genomic standards to define
(named) species (e.g., 95% ANI threshold?), without considering
ecological differentiation, each of the environmental clades would
represent a distinct species of the Escherichia genus. Notably,
including these environmental genomes as E. coli species would
account, at least partly, for the main finding of Murray et all., that
a few genomes of the species represent the great majority of the
intraspecies diversity (in terms of branch lengths; related to the
point above) and obviously, does not prove the existence of iso-
lation biases (but rather the effect of how organisms are named).

As is also obvious from the abovementioned examples, the
existence of intermediate relatedness/ANI genotypes was noted
earlier by Konstantinidis and colleagues in both the free-living
marine Thaumarchaeota® as well as other taxa, including sponge-
associated symbiotic organisms!® and the E. coli group!®. Murray
and colleagues basically confirmed these earlier observations
based on different genomic data. Indeed, these findings are also
probably consistent with what should have been expected for
prokaryotic genomes based on their (known) great genomic
adaptability (e.g., hyper-mutator phenotypes and high survival
rates based on low metabolic activity) and fluidity (e.g., extensive
horizontal gene transfer and gene loss), and their immense
sequence space. However, without the relative abundance
and ecological preference information, it is arbitrary to group

genomes into the same or different species* and thus, discuss the
existence (or not) of boundaries among species. When these
factors are considered together with genetic relatedness, microbial
species appear to predominantly exist and be genetically (and
presumably ecologically) distinct from each other”. To provide an
analogous example from higher eukaryotic organisms, consider
the hypothetical case that a researcher samples just one individual
human and one chimpanzee from the whole Earth and examines
their genome sequences (which is similar to what Murray and
colleagues did for several prokaryotic species such as the E. coli
and its closely-related environmental clades). Based on their high
genetic relatedness, one could (misleadingly) conclude that the
two organisms belong to the same species and show a range of
intraspecies ANI values between 100% (self-match) to ~98.5%
(the ANI between human and chimpanzee genomes). However,
with more sampling of individuals and assessment of their (dif-
ferent) ecophysiology, it would become clear that these indivi-
duals belong to two distinct species (Homo sapiens and Pan
troglodytes) by most metrics, including higher intra- vs. inter-
species ANI values (and intermediate genotypes are rarely found,
if ever).

It is also important to clarify one additional issue. Jain and
colleagues, and our previous papers [e.g., ref. 20,] cited by Murray
and colleagues, didn’t claim that the 95% ANI threshold is a hard
cut-off or that it is a “first principles” value. On the contrary, the
claim is that we observe this sequence boundary in nature, likely
as an emerging property of many eco-evolutionary forces at play,
and that this threshold may slightly differ for different taxa. This
is similar to how the 70% DNA-DNA hybridization standard,
which has guided many species-level taxonomic descriptions in
the last four decades, was proposed and should have been used*.
For instance, some populations affiliated with marine Pro-
chlorococcus  marinus (photosynthetic Cyanobacteria)®, “Ca.
Pelagibacter ubique” (SAR-11; oligotrophic Proteobacteria)?!,
and the Thaumarchaeota mentioned above [Fig. 2 and in ref. 17]
show large intrapopulation sequence diversity, probably due to
unique ecological niche(s) they have occupied for long evolu-
tionary times compared to other marine taxa (i.e., they lack direct
competition), and thus this threshold is around 90-92% ANI for
these populations. In contrast, several more recently emerged
pathogens like Bacillus anthracis?> show limited intrapopulation/
species diversity (ANI values >99%). Hence, the area of genetic
discontinuity may vary, depending on the taxa considered and
their unique ecophysiologic and evolutionary characteristics, and
95% ANI appears to be the genetic level that distinguishes most
natural discrete populations® and named species?, but not
necessarily all. For these reasons, taxon descriptions should not be
based on a single metric or threshold but the careful investigation
of ecological and functional data together with genetic relatedness
(e.g., ANI values).

In summary, with increasingly more genomic and metagenomic
data accumulating in the public databases at the time of this
writing, we will see in the near future if the recommended ANI
standard will have to be adjusted and in which direction. Murray
and colleagues did not disprove the existence of a genetic boundary
between species with their analysis; rather, their results simply
raised the possibility of alternative explanations. As it was argued
above, however, these explanations already exist in the literature
and hopefully, contributions such as the one by Murray and col-
leagues will stimulate further research on the topic in the future. In
our view, the important question to study in order to truly advance
the species concept and further corroborate the existence (or lack)
of genetic and/or ecological boundaries among species is how
the intermediate identity genotypes—when present—differentiate
functionally and ecologically from their close relatives. The relative
importance of genetic (e.g., recombination) and ecological factors
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(e.g., niche overlap and functional differentiation) in maintaining
(or not) sequence-discrete populations needs to be quantified as
well. To date, a few taxa have been studied in this respect, but the
picture is currently far from complete to allow for robust, uni-
versally applicable conclusions to emerge.

Rebuttal of minor points raised in the Murray et al

Matters Arising

Murray and colleagues, in backing up their argument about lack
of a genetic boundary, have not considered several key concepts
as noted below.

1. (from Murray et al!) “There is much evidence against the

existence of a universal genetic boundary for microbial
species. First, the molecular substitution rate is highly
variable across species.”
This is only superficially true, since the variation is large
only in response to specific molecular mechanisms (that are
not unlimited in number or effect), while fixation rates (not
substitutions) depend on effective population sizes and
other population-specific characteristics. Therefore, one
would expect some variation, but mostly tightly centered
around a mean and maybe with a large tail. Accordingly,
general metrics such as 16S rRNA gene phylogenetic
distance and ANI apply well across prokaryotes, and we
should expect to find universal properties such as a genetic
boundary.

2. (from Murray et al') “Secondly, selection and recombina-

tion are thought to be the main cohesive forces driving the
formation of genetic clusters. Although recombination rate
can be influenced by sequence similarity, there is no
correlation between the recombination rate and ANI in
bacteria (12)”.
That is almost exactly opposite to what the cited Bobay and
Ochman paper says. That paper discusses ANI only very
briefly, and uses a nonstandard definition of ANI, so it is not
directly applicable. However, the paper does say: “The most
divergent members in the biological species that we
recognized usually average no more than 5% difference in
the nucleotide sequences of their core genes; however, there
is a long tail to the distribution of DNA identity values”.
Since the “biological species that they recognized” are based
on recombination rates, this means that there is a
correlation and it actually tends to align with the 95%
ANI (5% divergence), although Bobay and Ochman also
recognize some extreme outliers (long tail). Moreover, Olm
and colleagues actually do test this directly against ANI, and
Murray and colleagues did not discuss those results in their
paper!0,

3. Murray and colleagues attributed the bimodal distribution
in ANI values observed by Jain and colleagues to the high
frequency of redundant genomes in the public databases.
While their definition of “redundant genome” was not
provided, it is important to note that most genomes (about
75% of the total) showing >95% ANI (same species
assignment) show <99% ANI with each other (e.g,
Fig. 3C in Jain et al2. 2018) and have substantial gene
content differences. Therefore, these genomes do not
represent the same strain or clone from a few pathogen
outbreaks but substantially divergent, distinct strains of the
same species [Note also that 1% difference in ANI
corresponds to a long evolutionary time since the last
common ancestor, e.g., >10,000 years for E. coli*3].
Presumably, most of these strains were obtained by different
labs, studies and/or samples, and thus represent reliable and
robust sampling of the intraspecies diversity.

4. Murray and colleagues suggested that the experiment that

Jain and colleagues performed in order to account for the
overrepresentation of a few species in the 90 K genome set,
i.e., subsample five genomes at random from all 750 species
that had five or more genomes available, cannot correct for
biased sampling if the original (complete) dataset is biased.
This experiment showed a similar bimodal distribution in
ANI in values among the sampled genomes (Supplementary
Fig. 10 in Jain et al2. 2018), albeit with a smaller right peak
(ANI values >95%), as expected due to the subsampling. It
can be argued that this subsampling performed by Jain and
colleagues is less biased than sampling only two, most
divergent genomes, from each species (or just one genome
per species) performed by Murray and colleagues for
assessing whether or not an ANI boundary exists (for other
research questions, the subsampling performed by Murray
and colleague could be appropriate). Finally, Jain et al2,
performed an additional relevant experiment that is also
important to mention. In particular, they removed the top-n
largest 95%-ANI clusters and monitored the effect on the
frequency of ANI values that made up the three key bins:
<83%, 83-95%, 295% (Suppl. Fig. 9). The result was that the
rightmost peak started decreasing in magnitude with more
clusters removed (as expected, and also as observed by
Murray and colleagues) but, importantly, the 83-95% region
did not change much and, in fact, decreased in magnitude
after about ten clusters were removed. If the boundary was
simply an artifact of the most highly sequenced species, the
fraction of pairs in the 83-95% region should monotonically
increase with cluster removal, which is the opposite of what
Jain and colleagues observed.

. Murray and colleagues offer Fig. 2 of their manuscript as

the visual demonstration that genome pairs of intermediate
ANI values (e.g., 85-95%) are often present within the most
studied named species. While this is admittedly true, as the
discussion above on intermediate identity genotypes based
on metagenomic datasets also suggests, Fig. 2 does show
that for most—if not all—of these species the genome pairs
with high ANI values (e.g., >95%) are comparatively much
more prevalent than the intermediate ANI pairs, which is
consistent with our previous study?. Further, for several
species shown such as members of the Streptococcus genus,
intermediate genotypes are completely absent. In addition,
there are apparently technical issues with this figure (e.g.,
misnamed/misclassified and chimeric genomes) since—as
an example—the E. coli row should have had many more
pairs to the right of the distribution (i.e., more red color in
the >95% ANI range) given that the available intermediate
“environmental” E. coli-like genomes are only a few (fewer
than a dozen or so) compared to the thousands of typical E.
coli genomes [unless, Salmonella spp. genomes were also
included in the E. coli data, which would not be consistent
with the legend of the figure since Salmonella spp. are
clearly distinct named species; further, inclusion of
Salmonella genomes would artificially flatten the datapoint
distribution].

. Finally, Murray and colleagues provided the diversity of

E. coli isolate genomes recovered by 16S rRNA gene
sequences relative to that of all E. coli 16S rRNA gene
sequences found in the GreenGenes database (Supplemen-
tary Fig. 2) as proof of biased representation of the total
natural diversity by genome sequences. However, the
sequenced genomes cannot capture the total diversity
because they represent a subset of the total available
isolates. More importantly, it is not clear if the additional
diversity is based on isolates (hence, no isolation bias) or
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environmental surveys; and, if the latter, many (most?) of
the available sequences are likely single-pass sequencing
reactions (not the resulting consensus of overlapping
sequences) that are prone to sequencing errors and artifacts.
In other words, Fig. S2 cannot be fully evaluated without an
assessment of sequencing errors in the GreenGenes
sequences, which are likely not rare, especially for environ-
mental sequences. It is also important to point out that E.
coli has seven rRNA operons, six of which are nearly
identical to each other (0-2 single nucleotide differences)
and one more divergent operon (~99% nucleotide identity
to the rest)?4. Such rRNA operon structure is known to be
challenging for PCR amplification and sequencing, often
producing chimeric or erroneous sequences, especially
during single pass sequencing reactions.

Methods

All Tllumina sequenced metagenomic datasets were processed with the same
pipeline to ensure consistent results. Raw reads from each dataset in fastq format
were processed using Trimmomatic version 0.392> with settings ILLUMINACLIP
AllAdapters-PE.fa:2:30:10:2:keepBothReads LEADING:3 TRAILING:3 MIN-
LEN:36 to remove sequencing adapters and low quality base calls. Fastq files were
converted to fasta format using the FastQ.toFastA.awk script from the enveomics
collection!2. Read mapping to reference genome sequences was performed using
Blast+ version 2.10.12° and either “blastn” or “megablast” for the “-task” flag and
additional settings “-evalue 0.01 -max_target_seqs 10 -perc_identity 70 -outfmt ‘6
qseqid sseqid pident length mismatch gapopen qstart gend sstart send evalue
bitscore glen slen’.” Tabular Blast results were filtered for a minimum read length
of 70 base pairs and an alignment length/read length greater than or equal to 0.9
using a custom Python script (https://github.com/rotheconrad/GoM). The
recruitment plot shown in Fig. 1 was generated using filtered tabular blast output
and the BlastTab.catsbj.pl and BlastTab.recplot2.R scripts from the enveomics
collection!? with additional labels added using Adobe Illustrator. The plots shown
in Fig. 2 were generated using data from column 3 (pident) from the filtered
tabular blast output and a custom Python script (https://github.com/rotheconrad/
GoM) and the Matplotlib version 3.3.227 and Seaborn version 0.11.028 packages.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The six Pacific Ocean metagenomes used in Fig. 2 are available in NCBI, under accession
numbers SRR5002329, SRR5002314, SRR5002320, SRR5788244, SRR5788420, and
SRR5788153. The Group I thaumarchaeotal genome sequence used in Fig. 2 is publicly
available as part of the Konstantinidis and DeLong, ISME J. 2008 article. This genome
sequence as well as the genome sequence used as reference in the read recruitment plot of
Fig. 1 and the Gulf of Mexico metagenomes used in Figs. 1 and 2 are also available
through http://enve-omics.ce.gatech.edu/data/gom_depth.

Code availability
The read recruitment plot presented in Fig. 1 was produced using the corresponding
scripts of the enveomics scripts collection!2.
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