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Abstract: Metastasis remains an unsolved clinical challenge. Two crucial features of metastasizing
cancer cells are (a) their ability to dynamically move along the epithelial–hybrid–mesenchymal
spectrum and (b) their tumor initiation potential or stemness. With increasing functional characteri-
zation of hybrid epithelial/mesenchymal (E/M) phenotypes along the spectrum, recent in vitro and
in vivo studies have suggested an increasing association of hybrid E/M phenotypes with stemness.
However, the mechanistic underpinnings enabling this association remain unclear. Here, we develop
a mechanism-based mathematical modeling framework that interrogates the emergent nonlinear
dynamics of the coupled network modules regulating E/M plasticity (miR-200/ZEB) and stemness
(LIN28/let-7). Simulating the dynamics of this coupled network across a large ensemble of parame-
ter sets, we observe that hybrid E/M phenotype(s) are more likely to acquire stemness relative to
“pure” epithelial or mesenchymal states. We also integrate multiple “phenotypic stability factors”
(PSFs) that have been shown to stabilize hybrid E/M phenotypes both in silico and in vitro—such as
OVOL1/2, GRHL2, and NRF2—with this network, and demonstrate that the enrichment of hybrid
E/M phenotype(s) with stemness is largely conserved in the presence of these PSFs. Thus, our results
offer mechanistic insights into recent experimental observations of hybrid E/M phenotype(s) that are
essential for tumor initiation and highlight how this feature is embedded in the underlying topology
of interconnected EMT (Epithelial-Mesenchymal Transition) and stemness networks.

Keywords: hybrid epithelial/mesenchymal; stemness; phenotypic plasticity; epithelial–mesenchymal
transition; phenotypic stability factors

1. Introduction

Metastasis is the deadliest process in cancer, and it is involved in over 90% of all
cancer-related deaths. It is a dynamic multi-stage cascade of events involving the initial
detachment of cells from the primary tumor mass, dissemination of cancer cells, their exit
(extravasation) at many distant organs, and finally, their ability to colonize distant organs
through tumor outgrowth [1]. It is a challenging process for cells with extremely high
attrition rates (>99%) such that most cells die in circulation or are unable to adapt to the
foreign biochemical and/or biophysical ecology of distant organs [2,3]. Thus, phenotypic
plasticity—the ability of disseminating cancer cells to adapt their phenotypes reversibly
in response to their dynamic microenvironments—has been regarded as a hallmark of
metastasis-initiating cells [4]. Phenotypic plasticity exists at multiple interconnected axes
(a) epithelial–mesenchymal plasticity (EMP), (b) metabolic plasticity, and (c) plasticity
between a cancer stem cell (CSC) and non-CSC state (i.e., stemness), among others [5].
Understanding such functional inter-dependencies from a dynamical systems level can lead
to deciphering the organizing principles of underlying regulatory network modules and,
eventually, therapeutic advances that can target cancer cell adaptability/plasticity [6,7].

Out of the various possible pairwise couplings among these different axes of plasticity,
the one between EMP and stemness has been investigated most thoroughly through
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in vitro, in vivo, and in silico approaches. Initial reports, which treated EMP as a binary
(all-or-none) process where cells switch between epithelial and mesenchymal phenotypes,
suggested that a “full” epithelial–mesenchymal transition (EMT) was associated with
increased stemness (tumor initiation potential) [8,9]. This view was challenged by later
studies demonstrating that a “full” EMT was dispensable for acquiring stemness, or also
perhaps an obstacle for the same [10,11]. A more nuanced recent view highlights that EMP
involves multiple stable hybrid E/M states in addition to “fully” E or “fully” M ones and
that these hybrid states may be maximally stem-like [12–17]. In squamous cell carcinoma
cells that were categorized into six phenotypes along the EMP spectrum, stemness was
shown to be acquired in earlier stages of EMP, and it did not increase as cells progressed
towards a “fully” mesenchymal phenotype. Intriguingly, the metastatic potential was
found to be the maximum for hybrid E/M states [16]. Furthermore, in breast cancer
cells, a transition from a hybrid E/M phenotype to a “fully” mesenchymal one, as driven
by constitutive ectopic expression of EMT-inducing transcription factor (EMT-TF) ZEB1,
led to the loss of tumorigenicity in vitro and in vivo [13]. Three-dimensional assays to
investigate collective cell invasion in breast cancer organoids showed that most leader
cells co-expressed epithelial, mesenchymal, and CSC markers [18], further strengthening
the association between hybrid E/M phenotype(s) and stemness. One possible reason for
the higher stemness of hybrid E/M cells may be their increased propensity to give rise
to epithelial and mesenchymal cells [19,20] in addition to self-renewal, the two critical
traits of stem cells in development and homeostasis. While this association of hybrid E/M
phenotype with enhanced stemness has been consistently reported across cancer types [21],
a mechanistic underpinning facilitating the association’s emergence remains unclear.

We have previously developed mechanism-based mathematical models that investi-
gate the coupled nonlinear dynamics of EMP and stemness modules—miR-200/ZEB and
LIN28/let-7, respectively. These models have predicted that while the most likely position-
ing of the “stemness window” is around the mid-point of the “EMP axis” (i.e., hybrid E/M
phenotypes) [15], the “window” is dynamic in nature and could move to either more
epithelial or more mesenchymal ends too [22,23]. A caveat of this analysis is that it was
performed on a few specific parameter sets; thus, its applicability to explain the diverse and
mounting experimental evidence across cancer types, as mentioned above, remains limited.

Here, we have simulated the coupled dynamics of miR-200/ZEB and LIN28/let-7
circuit over a wide range of biologically relevant parameter sets to interrogate whether
the association of a hybrid E/M phenotype with stemness is a trait embedded in the
topology of this coupling itself. Our results suggest that the overlap of hybrid E/M and
stemness features is an outcome of coupled network topology between the miR-200/ZEB
and LIN28/let-7 feedback loops. Moreover, upon extending the network to include various
phenotypic stability factors (PSFs), such as GRHL2, OVOL1/2, and NRF2, we notice that
this association is maintained. Thus, our results unravel the underlying design principles
of the EMP–stemness association and predict that this interconnection is likely to be seen
across multiple carcinomas.

2. Results
2.1. Gene Regulatory Network Underlying E/M Plasticity and Stemness Enables the Existence of
Four E/M Phenotypes

To unravel the mechanistic underpinnings of the association between stemness and
epithelial–mesenchymal plasticity (EMP), we considered the regulatory interactions among
key factors implicated in governing the E/M plasticity (ZEB/miR-200) and the stemness
characteristics (LIN28/let-7) (Figure 1A). E/M plasticity is at least in part controlled by
a mutually inhibitory feedback loop between the transcription factor family ZEB and
the microRNA family miR-200 [24,25]. Moreover, ZEB can self-activate through ESRP1
and/or CD44/HA signaling [26–28]. This network can give rise to three phenotypes:
epithelial (high miR-200, low ZEB), mesenchymal (low miR-200, high ZEB), and hybrid
E/M (medium miR-200, medium ZEB) [29]. This network can be influenced by other
EMT-TFs such as SNAIL which self-inhibits transcriptionally and activates the expression
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of ZEB, and suppresses the transcription of the microRNA miR-200 [29]. Similarly, the
“stemness” of a cell is primarily controlled by a mutually inhibitory feedback loop between
RNA-binding factor family LIN28 and microRNA family let-7 [30]. Both LIN28 and let-7
are known to self-activate through direct and/or indirect mechanisms [31–33], and the
transcription factor NF-kB activates the expression of both of them [15]. LIN28 regulates the
levels of OCT4 [34], whose intermediate levels are considered to be optimal for attaining
stemness [35–37]. Interestingly, these two modules—ZEB/miR-200 and LIN28/let-7—
can influence each other, such that let-7 can target ZEB translation [33], and microRNA
family miR-200 can inhibit LIN28 translation [38,39]. Put together, this integrated network
of EMP and stemness regulators can explain experimental observations on LIN28 driving
EMP [40] and ZEB/miR-200 influencing stemness [41].
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Figure 1. Four phenotypes enabled by the coupled Epithelial Mesenchymal Plasticity (EMP)–stemness circuit. (A) The 
core EMP–stemness circuit (base circuit). Arrows represent activating links and hammerheads represent inhibitory links. 
(B) Heatmap showing the steady-state expression of all solutions of a single replicate including the core EMP (ZEB, miR-
200) and stemness (LIN28, let-7) nodes. (C) Expression histograms (all solutions from a single Random Circuit Perturba-
tion (RACIPE) replicate. For n = 5, see Supplementary Table S2 in Section S2.1) showing ZEB levels in the four clusters—
epithelial (e), hybrid epithelial (he), hybrid mesenchymal (hm), and mesenchymal (m). The colors of the labels shown in 
the heatmap are for e, he, hm, and m clusters displayed here. (D) Expression levels of EMP and the stemness genes in 
the four clusters. In each node, the horizontal line represents the median value, the darkest region represents the middle 
30% (35th to 65th percentile) of the data, and the region next in lightness represents the next 40% (15th to 35th and 65th 
to 85th percentiles), while the lightest region represents the next 20% of the data (5th to 15th and 85th to 95th percentiles) 
(E) Principal Component Analysis (PCA) plot colored according to the K-means cluster assignment. (Principal Compo-
nent 1 (PC1) = 0.48 × miR200 − 0.54 × ZEB − 0.21 × SNAIL − 0.49 × LIN28 + 0.44 × let7 + 0.057 × NF-kB; Principal Compo-
nent 2 (PC2) = 0.27 × miR200 − 0.08 × ZEB − 0.66 × SNAIL + 0.14 × LIN28 − 0.49 × let7 − 0.47 × NF-kB). For (C,D): Signifi-
cance bars added to show statistically significant differences (Mann–Whitney U test). Legend for the p-values: *** p < 
0.0001; for effect sizes, refer to Table S7 in Supplementary Section S2.5. 
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observed that a subset of parameter sets can give rise to a combination of two or more 
steady states per parameter set (bistability: 37.3 ± 0.95%, tristability: 24.2 ± 0.09%, etc.), 
while the others converged to a single steady state for the given system of ordinary dif-
ferential equations (monostability: 29.6 ± 0.70%). A closer inspection of the monostable 
solutions revealed epithelial (e) and mesenchymal (m) states as the most predominant 
solutions (Figure 2A), indicating that epithelial and mesenchymal phenotypes are more 

Figure 1. Four phenotypes enabled by the coupled Epithelial Mesenchymal Plasticity (EMP)–stemness circuit. (A) The core
EMP–stemness circuit (base circuit). Arrows represent activating links and hammerheads represent inhibitory links.
(B) Heatmap showing the steady-state expression of all solutions of a single replicate including the core EMP (ZEB, miR-200)
and stemness (LIN28, let-7) nodes. (C) Expression histograms (all solutions from a single Random Circuit Perturbation
(RACIPE) replicate. For n = 5, see Supplementary Table S2 in Section S2.1) showing ZEB levels in the four clusters—epithelial
(e), hybrid epithelial (he), hybrid mesenchymal (hm), and mesenchymal (m). The colors of the labels shown in the heatmap
are for e, he, hm, and m clusters displayed here. (D) Expression levels of EMP and the stemness genes in the four clusters.
In each node, the horizontal line represents the median value, the darkest region represents the middle 30% (35th to 65th
percentile) of the data, and the region next in lightness represents the next 40% (15th to 35th and 65th to 85th percentiles),
while the lightest region represents the next 20% of the data (5th to 15th and 85th to 95th percentiles) (E) Principal Component
Analysis (PCA) plot colored according to the K-means cluster assignment. (Principal Component 1 (PC1) = 0.48 ×miR200 −
0.54 × ZEB − 0.21 × SNAIL − 0.49 × LIN28 + 0.44 × let7 + 0.057 × NF-kB; Principal Component 2 (PC2) = 0.27 × miR200
− 0.08 × ZEB − 0.66 × SNAIL + 0.14 × LIN28 − 0.49 × let7 − 0.47 × NF-kB). For (C,D): Significance bars added to show
statistically significant differences (Mann–Whitney U test). Legend for the p-values: *** p < 0.0001; for effect sizes, refer to
Table S7 in Supplementary Section S2.5.

All these regulatory links in the abovementioned network may be active, with dif-
ferent strengths in individual cells. Further, in cancer cells, the mutational background
can alter the stability and/or production rate of various species, for instance, mutant p53
gain of function, triggering ZEB1 [42]. Thus, a rigorous analysis of the emergent dynamics
of the coupled EMP–stemness network would require a framework that can decode the
features robust to parameter variation of a specific network topology. To achieve this goal,
we simulated the coupled EMP–stemness network through random circuit perturbation
RACIPE [43] (see Section 4). RACIPE takes network topology as its input, converts it into a



J. Clin. Med. 2021, 10, 60 4 of 19

set of coupled ordinary differential equations (ODEs) where the influence of each activation
or inhibition regulatory link is represented by a shifted Hill function. Parameters corre-
sponding to this set of equations are sampled randomly within a biologically relevant
range. Therefore, it generates an ensemble of ODE models, each with a different parameter
set, thus representing the intrinsic variability in kinetic parameter values in a given cell
population. The set of steady-state values obtained from this ensemble can be then used to
identify robust dynamical signatures emerging from this topology through appropriate
statistical analysis (see Section 4).

First, we plotted a heatmap of all the steady-state values obtained via RACIPE for
this coupled network and performed agglomerative hierarchical clustering (Figure 1B)
on it. We observed the possible existence of four major clusters, indicated in the den-
drogram plotted using Ward’s minimum variance criterion (see Section 4) (Figure S1A).
We next performed K-means clustering for varied values of K and observed a peak in
the average silhouette width at K = 4, endorsing the existence of four clusters in RACIPE
solutions (Figure S1B). This trend was supported by all other cluster quality metrics we
used (Figure S1C–E). We plotted histograms of ZEB levels for the four clusters identified
in the heatmap and assigned them phenotypic labels accordingly (Figure 1C,D). The clus-
ter with the minimum median ZEB levels is referred to as an epithelial (e) phenotype,
while the cluster with the maximum ZEB median levels is referred to as a mesenchymal (m)
phenotype. The other two clusters had intermediate ZEB levels, being categorized as E/M
hybrids, and are assigned the labels of hybrid epithelial (he) and hybrid mesenchymal
(hm). Furthermore, we performed principal component analysis (PCA) on all steady-state
solutions (Figure 1E; each color represents a distinct cluster identified by K-means). Princi-
pal component 1 and 2 explain 47% and 19% of the total variance, respectively, and show
roughly four clusters in the PCA plot where the two hybrid clusters (blue and pink) are
sandwiched between the epithelial (purple) and the mesenchymal (yellow) clusters (Fig-
ure 1E). PC1 can be thought of as an approximate EMT axis based on the coefficients for
miR-200 and ZEB. Interestingly, while miR-200 levels are very different between e and m
states, its levels are similar for e and he clusters, and for hm and m clusters (Figure S2A and
Figure 1D, Table S7), thus indicating that miR-200 may be a more coarse-grained readout
of the EMT state of a cell. Corroborative trends, i.e., the highest levels of let-7 and lowest
levels of LIN28 in the e cluster, and lowest levels of let-7 and highest levels of LIN28 in
the m cluster, were observed (Figure 1D and Figure S2B). The levels of NF-kB and SNAIL
levels were found to be almost similar across the clusters (Figure S2C,D), which is not
surprising because neither NF-kB nor SNAIL are influenced by any of the other four nodes
(miR-200, ZEB, let-7, LIN28) in the coupled EMP–stemness network.

2.2. Stemness Characteristics are Enriched for in the Hybrid E/M Phenotypes

The gene regulatory network involving the interplay between E/M plasticity and
stemness can give rise to different phenotypes (steady states). Next, we investigated
whether these states can co-exist for certain parameter sets, i.e., is the network capable
of exhibiting multistability? Out of the ensemble of parameter sets sampled by RACIPE,
we observed that a subset of parameter sets can give rise to a combination of two or
more steady states per parameter set (bistability: 37.3 ± 0.95%, tristability: 24.2 ± 0.09%,
etc.), while the others converged to a single steady state for the given system of ordinary
differential equations (monostability: 29.6 ± 0.70%). A closer inspection of the monostable
solutions revealed epithelial (e) and mesenchymal (m) states as the most predominant
solutions (Figure 2A), indicating that epithelial and mesenchymal phenotypes are more
likely to exist relative to the hybrid ones, thereby reminiscent of observations based on
the modeling of larger EMP regulatory networks too [44,45]. This trend is also observed
when considering all the solutions together irrespective of the number of states (Table S5).
Consistently, among all possible bistable solutions, the most predominant one is the phase
{e, m}, i.e., the co-existence of epithelial and mesenchymal states (Figure S3A). The least
frequent bistable phase is {he, hm}, i.e., the one with the co-existence of both hybrid
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phenotypes, while the frequency of bistable phases containing one hybrid phenotype
and one of the epithelial or mesenchymal ones—{e, hm}, {he, m}, {e, he}, {m, hm}—is
intermediate (Figure S3A). Similarly, among all possible tristable solutions, the phases
containing both epithelial and mesenchymal states—{e, he, m} and {e, hm, m}—were the
most predominant (Figure S3B). Put together, these results indicate that the coupled EMP–
stemness regulatory network is multistable and therefore allows for cells to switch among
the epithelial, mesenchymal, and the hybrid phenotypes due to stochastic perturbations.
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Figure 2. Hybrid E/M phenotypes are enriched for stemness. (A) Proportion of all monostable parameter sets belonging
to different phenotypes—e, he, hm, m. (B) Expression histogram for LIN28 (all solutions of a single RACIPE replicate)
for the four phenotypes with the stemness window (black vertical lines) as defined by the middle 30% of the “LIN28
biological range” (median ± one interquartile range averaged over n = 5 RACIPE replicates). Significance bars added to
show statistically significant differences (Mann–Whitney U test) (C) Value of p1—the probability of a solution lying in the
stemness window, conditional on the solution belonging to a particular phenotype for all the phenotypes (n = 5 RACIPE
replicates). (D) Same as (C) except for p2—the probability of a solution belonging to a particular phenotype conditional on
it lying in the stemness window. For (A,C,D): Mean values show average across five RACIPE replicates and the error bars
represent the across-replicate standard deviations. Two-tailed Student’s t-test with unequal variance (Welch’s t-test) was
performed. Legend for the p-values: + p > 0.01, * 0.01 > p > 0.001, ** 0.001 > p > 0.0001, *** p < 0.0001; for effect sizes, refer to
Table S7 in Supplementary Section S2.5.

Next, we investigated the stemness traits of different cell states along the E/M spec-
trum. Intermediate levels of OCT4 have been reported to confer maximal stemness to
the cells [35–37]. Given that OCT4 is a direct target of LIN28, we defined the “stemness
window” to be a region around median LIN28 expression levels in all steady-state solutions
combined and the median averaged over all the replicates of the coupled EMP–stemness
circuit. Specifically, we considered the median ± one interquartile range of the LIN28 dis-
tribution to be the “biological range” of LIN28, and the middle 30% of this range centered
around its median is considered to be the “stemness window”, which might allow for a
population enriched in the stem-like phenotype (Figure 2B). To test the robustness of this
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specifically chosen stemness window, we need a semi-objective heuristic for increasingly
wider “stemness windows” centered at the mid-point of the range chosen. When the size
of the “stemness window” is considered to be more than one-third of the range of LIN28
levels, we see a qualitative change in the distribution of phenotypes lying in this window.
This analysis underscores that hybrid E/M phenotypes are predominantly associated with
stemness unless the “stemness window” starts getting too large to be of a biologically
implausible size (Figure S3C).

Next, we quantified the probability that a particular solution lies within the “stemness
window” given that it belongs to a particular phenotype along the E–M spectrum (p1).
Interestingly, we found that hybrid (he and hm) phenotypes are more likely to be stem-like
than either extreme (e and m) E/M phenotypes (Figure 2C). Alternatively, we computed
the probability that a solution belongs to a particular phenotype along the E–M spectrum,
given that it already lies in the “stemness window” (p2). Congruently, we observed that
hybrid phenotypes (he and hm) are more enriched for in the stemness region than either
epithelial (e) or mesenchymal (m) solutions, although the contribution of e and m cell states
to “stemness window” cannot be ignored (Figure 2D). Put together, these observations
suggest that although the hybrid phenotypes he and hm are more likely to be associated
with a stem-like characteristic, stemness is not exclusive to them. Thus, a subset of “pure”
epithelial and/or mesenchymal cell states can also be potentially stem-like, depending on
parametric combinations. Similar trends are observed when analyzing the multistable
systems only as well (i.e., excluding all solutions obtained from monostable parameter
sets), endorsing the robustness in trends (Supplementary Section S4).

Having established a strong association between the hybrid E/M phenotypes and
stemness, we sought to understand the mechanistic underpinnings that can facilitate
this association. Through RACIPE, we simulated a hypothetical “uncoupled” circuit
where the inhibitory links from miR-200 to LIN28 and those from let-7 to ZEB are ab-
sent. The ensemble of solutions obtained for this uncoupled circuit also has four clusters
(see Supplementary Section S2.2). For the uncoupled circuits, when we plot the clusters in
a ZEB–LIN28 plane (indicative of an EMP–stemness plane with ZEB being a proxy for the
E/M axis and LIN28 as a proxy for stemness), we observed that the mid-points of these
four clusters were arranged in a square—the four vertices being [high ZEB, high LIN28],
[low ZEB, high LIN28], [high ZEB, low LIN28], and [low ZEB, low LIN28]—demonstrating
the independence of the ZEB and LIN28 levels (Figure S4A). The [high ZEB, high LIN28]
and [low ZEB, low LIN28] clusters correspond to m and e states, respectively, and the
location of the former on the two-dimensional plane for the coupled circuit overlapped
with that of the uncoupled circuit. However, in the case of the coupled circuit, the square
geometry is disturbed; instead, more of a rhombus-like shape emerged due to the shift of
the mid-points of the [low ZEB, high LIN28] and [high ZEB, low LIN28] clusters which
now tend to have intermediate values of both. This analysis suggests that coupling EMP
and stemness modules enables a higher likelihood of both hybrid (he, hm) clusters to be
more stem-like (Figure S4A). This observation can be mechanistically interpreted by under-
standing the relative “activity” of the two coupling links (miR-200 inhibiting LIN28 and
let-7 inhibiting ZEB). In the [high ZEB, high LIN28] state, the levels of let-7 and miR-200 are
relatively low, thus, the links are effectively “inactive”. In the case of [low ZEB, high LIN28]
and [high ZEB, low LIN28], one link is much more active than the other, hence we see
relocations mostly along one of the two axes of the LIN28–ZEB plane. For the [low LIN28,
low ZEB] state, both links are approximately equally “active”, and therefore the cluster
migrates along to even lower values of both LIN28 and ZEB.

To validate this hypothesis, we quantified the strength of coupling links—the net
effect was strongest for e (i.e., [low LIN28, low ZEB]) and weakest for m (i.e., [high ZEB,
high LIN28]) (Figure S4B). As a control case for the link strength metric, we quantified the
degree of asymmetry in the strength of the two links within EMP and stemness modules
individually (see Section 4). We observed that, as expected, the effective “suppression”
(the expression free topological asymmetry) of ZEB on miR-200 was the highest in the case
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of hm and m states relative to e and he states (Figure S4D). On the other hand, we observed
that the suppression of LIN28 on let-7 was higher in the case of he and m and lower in the
e and hm phenotypes (Figure S4C).

2.3. The Effect of Phenotypic Stability Factors (PSFs) on the Phenotypic Landscape of EMP

Previous work, including ours, has shown that various factors, such as GRHL2,
OVOL1/2, and NRF2, can stabilize the hybrid E/M phenotype of cells [46–49]. Their knock-
down in H1975—a stable hybrid E/M lung cancer in vitro model—pushed cells towards a
complete EMT, thus, they were classified as “phenotypic stability factors” (PSFs) for hybrid
E/M phenotypes. For a specific set of parameters, incorporating GRHL2 also promoted the
association between hybrid E/M states and stemness [46]. Thus, we investigated whether
the hybrid E/M–stemness interconnection was maintained for multiple PSFs across an
ensemble of parameter sets.

We simulated via RACIPE the coupled EMP–stemness networks after incorporating
these three PSFs, one at a time (Figure 3A). As compared to the circuit without these PSFs
(i.e., the “base” coupled EMP–stemness network shown in Figure 1A), the circuits including
PSFs had a higher frequency of parameter sets leading to tristability and quadrastability,
at the expense of a lower frequency of parameter sets primarily leading to monostability
and even bistability in the case of the GRHL2 circuit (Figure 3B). In general, all these circuits
showed a trend towards increasing multistability, with the strongest effect seen for the
GRHL2 circuit (Figure 3B). However, incorporating the PSFs altered neither the optimal
number of clusters as identified by average silhouette widths (Figure 3C) nor the position
of clusters on the ZEB–LIN28 plane that showed an almost complete overlap with those
seen for the “base” circuit (Figure 3D). Therefore, the introduction of the PSFs does not
seem to disrupt the core structure of the steady-state solutions, as obtained earlier.

In addition to being thought of as PSFs, GRHL2 and OVOL1/2 have been considered
as Mesenchymal-Epithelial Transition (MET)-inducing transcription factors (MET-TFs),
as their overexpression in carcinomas is capable of upregulating the expression levels of E-
cadherin and/or revert EMT [50–54] as well as other EMT-associated traits, such as anoikis
resistance, metabolic reprogramming [55], and immune evasion [56]. This observation
is consistent with their knockdown known to drive a “full” EMT in both cancer cell
lines and in developmental contexts [46,49]. Thus, with the goal to identify the effect of
overexpression and downregulation of these PSFs on relative proportions of the different
EMPs, we quantified the changes in the frequency of different monostable solutions—e, m,
he, and hm—upon a 10-fold over-expression (oe10) and a 10-fold down-expression (de10)
of these PSFs. Computationally, this provides a dynamically consistent way to characterize
the effect attributable to any node on the network dynamics and RACIPE implements
this perturbation by altering the rate of production of the specific node (see Section 4).
We observed that increasing the expression of any one of the three PSFs enriched the
epithelial (e) phenotype at the expense of the mesenchymal (m) phenotype. Similar,
albeit weaker, trends were seen for an enrichment of the he phenotype at the expense of
the hm phenotype (Figure 3E). This effect was more pronounced in the GRHL2 case in
comparison to either OVOL or NRF2 (Figure 3E). This trend is also present overall not
only for only monostable solutions, but also for all parameter sets considered together (see
Supplementary Section S2.4).
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(A) Different PSFs (GRHL2, OVOL2, NRF2) added to the base (control) EMP–stemness circuit. All new nodes are shown
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Moreover, a closer inspection of steady-state solutions from bistable parameter sets
showed a consistent trend across PSFs in the case of their overexpression: a most remarkable
decrease in the proportion of the {hm, m} phase with the most remarkable increase in the
proportion of the {he, e} phase (Figure S5A–C). Similarly, the tristable states also showed
an agreement with the trend of enriching “relatively epithelial” phases, with maximum
enrichment of the {e, he, m} phase and a maximum depletion of the {e, hm, m} phase upon
overexpression of the PSFs (Figure S5D–F), with unremarkable changes in the other phases
(see Supplementary Section S2.3 for details on the multistable distributions). Put together,
these results suggest that incorporating any of these PSFs (GRHL2, OVOL, NRF2) tends to
maintain the four clusters seen in the EMP–stemness coupled network earlier, and their
over-expression can serve as a way to at least inhibit the progression of a complete EMT.
Further analyses regarding the association of multistability and stemness can be obtained
in Supplementary Section S4.

2.4. Networks Incorporating Phenotype Stability Factors (PSFs) Preserve the Association of the
Hybrid E/M States with Stemness

Next, we evaluated how the association of EMP phenotypes with stemness is altered
upon including PSFs. As earlier, we explored two kinds of association of the hybrid E/M
phenotypes and a stem-like state: the probability of being a stem-like state given that a
solution belongs to a particular E/M phenotype (p1) and the probability of belonging to a
particular E/M phenotype given that the solution is a stem-like state (p2). On comparing
p1 and p2 for all circuits with the two hybrid clusters (he, hm) taken together and the
two non-hybrid clusters (e, m) taken together, we observe that the hybrids are much more
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likely to be stem-like (Figure 4A) as well as constitute a larger proportion of the stemness-
enriched pool of solutions (Figure 4B), across all cases of PSFs. This observation suggests
that the association of hybrid E/M phenotypes with stemness is a dynamical trait encoded
in the core network topology, and this feature is maintained upon including PSFs.
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Figure 4. PSF motifs maintain the association between hybrid E/M states and stemness. (A) Sum of p1 values for the two
hybrid (he, hm) and two non-hybrid (e,m) phenotypes, for different circuits including PSFs. (B) Same as (A) but for p2.
(C–E) p2 values for four phenotypes for cases of over-expression and downregulation of each of the PSFs individually:
NRF2 (C), GRHL2 (D), and OVOL (E). (F) Stacked expression histograms (colored in accordance with the phenotypes)
showing the change in the PSF node distribution in the GRHL2-KD circuit (GRHL2-KD) (left panel) vs. the OVOL circuit
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causing the only difference between the two presented circuits to be the nature of the self-link of the PSF node. All other
links remain the same. (de10: 10-fold down-expression, ref: Reference unperturbed circuit, oe10: 10-fold overexpression)
(A–E): The values are averaged across replicates and the error bars represent the across-replicate standard deviations; refer
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A closer look at the changes in p1 and p2 values upon over-expression or downreg-
ulation of PSFs revealed small variable minor changes for p1 (Figure S6A–C), but the p2
values for the hybrid epithelial (he) phenotype increased, whereas that of hybrid mesenchy-
mal (hm) state decreased with little change in those of e or m phenotypes (Figure 4C–E).
However, at all levels of PSF expression in all circuits (from 10-fold down-expression to a
10-fold over-expression), the hybrids together (he, hm) have a more considerable value of
p1 and p2 in comparison to the “fully” epithelial and mesenchymal states (e, m) (
mboxfigfig:jcm-1007161-f004C–E and Figure S6A–C), suggesting that hybrid E/M phe-
notypes are more likely to be stem-like than either extreme of the EMT axis. Further,
over-expression of PSFs may pull the composition of the solutions in the “stemness win-
dow” towards the epithelial end of the EMT axis.

We additionally looked at the distribution profile of the PSFs in all the clusters (Fig-
ure S7A–I) for all the circuits with down- and over-expression. Overall, the distribution
profiles are distinct for all the circuits, perhaps indicating the role of specific topologi-
cal features in dictating this distribution profile. GRHL2 remains appreciably bimodal
throughout the range of expression, and the e and he clusters occupy the higher end of
the GRHL2 histogram, while the m and hm clusters occupy the lower end (Figure S7A–C).
OVOL is bimodal at 10-fold down-expression, but the profile shifts towards unimodality
upon increasing expression, possibly due to its self-inhibition. Generally, a lower OVOL
level is associated with the m and hm clusters and vice versa (Figure S7D–F). On the
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contrary, the NRF2 distribution profile does not show any readily appreciable preference
for any of the clusters at any level of expression (Figure S7G–I).

The preference of GRHL2 and OVOL for the e and he clusters may be attributed to
the presence of a mutually inhibitory negative feedback loop with ZEB, which causes the
PSF (GRHL2, OVOL) levels to be relatively high when the ZEB levels are low (e and he)
and vice versa. The GRHL2 and OVOL coupling with the EMP circuit has two differences:
(a) GRHL2 activates miR-200 but OVOL does not, and (b) GRHL2 self-activates but OVOL
self-inhibits. To deconvolute the effect of these two differences, we investigated a circuit
where the activation link from GRHL2 to miR-200 is knocked down (GRHL2-KD). This cir-
cuit differs from the OVOL circuit only in terms of the nature of the self-regulation. We then
investigated this knockdown circuit with regard to all the investigations explored for each
of the other circuits above and compared them to the trends observed for the OVOL circuit.
Qualitatively, all the trends matched well, and the only remarkable difference was in the
cluster-wise distribution profile of the PSF at different levels of expression (Figure 4F and
Figure S8A–F), suggesting that the specific enrichments observed are primarily dictated by
the interacting links between the PSF node and the other nodes, while the PSF distribution
profile itself is strongly affected by the nature of the self-link.

3. Discussion

Metastasis has been indicated as a hallmark of cancer [57]. However, decades of
research have highlighted that hallmarks of metastasis are quite different from those of
primary tumor growth [58]. Given the ever-changing biochemical and biomechanical
environments for the cell in the metastatic cascade, it is not surprising that metastasis is
a highly inefficient process and that only a minuscule percentage of disseminated cells
that can pass through these bottlenecks by adapting to their dynamic environments can
eventually colonize distant organs and form macrometastases. Thus, the concept of Lamar-
ckian evolution seems to be more prevalent than that of Darwinian selection (of a subset of
genetic clones) in the context of metastasis. Consequently, environment-driven phenotypic
plasticity has been advocated as a hallmark of metastasis [58]. Recent observations in the
evolution of cancer therapy resistance endorse the role of Lamarckian induction in enabling
the dynamic adaptability of cancer cells [59–63].

Here, we elucidate the design principles of regulatory networks connecting two cru-
cial aspects of phenotypic plasticity during metastasis—epithelial–mesenchymal plasticity
(EMP) and stemness. Our results demonstrate that a higher likelihood of hybrid epithe-
lial/mesenchymal (E/M) phenotype(s) acquiring increased stemness is an outcome of the
network topology of a coupled EMP–stemness network. These findings offer a mechanistic
basis of various recent in vitro, in vivo, and clinical work suggesting an enhanced stemness
and/or aggressiveness trait of hybrid E/M phenotype(s), as reported across different carci-
nomas. A recent quantitative analysis of about a hundred urothelial carcinomas concluded
that “it is not the amount, but merely the presence of a minimum of tumor cells in hybrid
E/M states that contribute to disease aggressiveness” [64]. This clinical observation is
reminiscent of in vivo experiments showing that both “extremely epithelial” (generated via
CRISPR/Cas9 by eliminating Zeb1 expression) and “extremely mesenchymal” cells (gener-
ated by constitutive over-expression of Zeb1), either alone or in combination, had minimal
tumor initiation potential as compared to hybrid E/M cells. Put together, these results high-
light the importance of individual cells co-expressing epithelial and mesenchymal markers
(i.e., one or more hybrid E/M phenotype(s)) in enabling stemness. At least two factors can
underlie this enhanced stemness of hybrid E/M cells: (a) their ability to self-renew, as some
cells undergoing a full EMT can undergo cell cycle arrest [65,66], and (b) their ability to
give rise to heterogeneous subpopulations of epithelial and mesenchymal cells [19,20] that
can potentially cooperate in driving metastatic traits [67]. Thus, hybrid E/M cells can be
conceptually thought of as similar to adult stem cells in a tissue, a notion supported by a
hybrid E/M phenotype seen in a subset of mammary stem cells [68,69].
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It should be noted that we are proposing an enrichment of hybrid E/M phenotype(s)
in stem-like populations, but not an exclusive or exhaustive association between hybrid
E/M cells and stemness. Not every cell undergoing EMP, even a partial EMT, is ex-
pected to be stem-like; nor is every cancer stem cell (CSC) expected to manifest the hybrid
E/M phenotype(s). CSCs of varying EMP status have been seen in breast cancer [11],
prostate cancer [70], cervical cancer [71], and squamous cell carcinoma [72,73], with differ-
ent possible spatial localization within a tumor [74]. This possibility can be explained by
our model predictions demonstrating the presence of more epithelial or more mesenchymal
phenotypes within the dynamic “stemness window”, albeit at a relatively lower frequency
as compared to that of hybrid E/M phenotype(s). Increased stemness may lead to a higher
tumor-initiating potential.

Our results show that stemness as a function of EMP is not necessarily always mono-
tonically increasing. Instead, stemness is likely to first increase as cells begin to go through
EMT and then decrease as they cross the range of hybrid phenotype(s) to become “fully”
mesenchymal. Whether the terminal value of stemness is higher or lower than the initial
“fully” epithelial remains to be rigorously quantified. Similar observations have been
reported for tumor aggressiveness as a function of chromosomal instability (CIN) [75,76].
Such reports caution us against falling prey to tacit assumptions about monotonic relation-
ships between any two molecular factors and/or phenomena and reveal the fundamental
insights that can be gained by mechanistic modeling of nonlinear dynamics embedded in a
complex regulatory network.

To investigate the robustness of our results and quantify the influence of various PSFs
on the association between hybrid E/M phenotypes and stemness, we incorporated GRHL2,
OVOL2, and NRF2 in our coupled network. We observed that these PSFs maintained the
enrichment of hybrid E/M phenotypes in stem-like traits, endorsing the robustness of
this association. Consistently, many of these PSFs have been reported to play a functional
role in maintaining more epithelial phenotypes (e, he) as well as stemness in experiments
in cancer cell lines and in cellular reprogramming contexts involving the modulation of
EMP [53,77,78]. GRHL2 and OVOL2 have also been proposed as MET-inducing transcrip-
tion factors (MET-TFs), but our simulations suggest that their ability to induce a “complete”
MET need not be universal. This prediction is validated by recent experimental observa-
tions that the ability of GRHL2 to induce a MET depended on the epigenetic background of
cells [54,79]. Thus, our results propose that. similar to variations in the ability of EMT-TFs
to drive an EMT [80,81], MET-TFs may induce MET to varying degrees. Moreover, the epi-
genetic background of cells may alter the dynamics of EMT/MET and/or CSCs/non-CSCs
and the interconnection between these two axes.

The approach presented here can be expanded to answer a long-standing open ques-
tion in metastasis—how do cells coordinate various axes of their plasticity during the
metastatic cascade? Mechanism-based models of individual axes of plasticity are the
building blocks required to answer this question from a dynamical systems perspective.
There has been increasing interest in dynamical modeling of EMP [82–86]; similar efforts to
model related aspects of EMP, such as metabolic reprogramming [87], autophagy [88,89],
therapy resistance [90,91], and immune evasion [92], are being attempted too. Cou-
pling these modules to decode the interconnections among different axes of plasticity
can help unravel the survival strategies of metastasis-initiating cells and eventually con-
tribute to designing new clinical strategies. For instance, a recent prediction we made is
that breaking the positive feedback loops in a network can restrict plasticity and potentially
impact metastatic potential [6]. Indeed, proof-of-principle validation for this prediction
was seen when cancer cells with a compromised ZEB/miR-200 feedback loop showed
significant metastatic ability in vivo [93]. Future efforts are needed to dissect the functional
consequences of breaking feedback loops among different axes of plasticity (such as the
ones investigated here) in eventually delaying or preventing metastasis.
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4. Methods
4.1. Random Circuit Perturbation (RACIPE)

RACIPE [43] is a tool allowing a parameter-agnostic computational simulation of
regulatory networks based solely on the network topology. The network is composed
of nodes representing various gene products and directed links representing inhibitory
and activating links between them. For each node i with its expression level at a time t as
pi, with incoming links from a set {A} of nodes, we thus have the ordinary differential
equation for the dynamics of pi:

dpi
dt

= g ∏
j∈{A}

HS(pj, µji, λji, nji
)
− kpi (1)

where g is the basal production rate, k is the degradation rate, and HS is the shifted Hill
function with parameters n, µ, λ, p representing the effect of regulation by node j on i,
altering its production rate. λ > 1 represents an activating link and λ < 1 represents an
inhibitory link, with λ = 1 representing no regulation. p is the threshold parameter that
controls the level of p around which the non-linearity in HS is seen. n is the Hill coefficient
representing the “extent of non-linearity” in the function by modulating the steepness of
the response curve. See Supplementary Figure S9 for graphs of the shifted Hill function
for varied parameters and Supplementary Section S3 for the explicit form of all the model
equations. The final form of the shifted Hill function is given below.

HS(p, µ, λ, n) =
µn

µn + pn + λ
pn

µn + pn (2)

4.2. Parameter Sampling

Given a network topology, RACIPE generates an ensemble of random models, each with
a randomly sampled set of parameters for every link. The default range of random sam-
pling has been estimated from BioNumbers [94], and here we choose the default option
of uniform random sampling from the range. Instead of directly randomizing the basal
production rate parameter g, RACIPE randomizes the maximal production rate G, following

G = g ∏
j∈{Ap}

λj (3)

where {Ap} is the set of all incoming activating links (production rate when all activating
links are maximally active and all inhibitory links are inactive). For each parameter
set, RACIPE randomizes the initial values between the smallest possible steady state
(all activating regulations are inactive and all inhibitory regulations are maximally active)
and the largest possible state (the opposite of the previous configuration) in log scale.

RACIPE allows perturbing the circuit by changing the expression levels of different
nodes relative to the other unperturbed nodes. Over-expression and downregulation by x-
fold changes the sampling range for G by x times, hence, a 10-fold over-expression of a node
will sample the G of the node from a range 10 times the range of the unperturbed (normal)
node, while a 10-fold down-expression shrinks the range to 1/10th of its normal range.
Details of the default ranges and the ranges used in our simulation are in Supplementary
Section S1.1.2.

4.3. Simulation

We generate an ensemble of 10,000 models with each run (analogous to a biological
replicate, and referred to elsewhere as such), and repeat this for 5 replicates to get the
standard deviation for proportion (or frequency) calculations. RACIPE, for each of the
models, simulates the network starting from multiple random initial positions until the
network reaches a steady state, and prints as output the levels of each node at all identified
steady-state solutions. The details of the run parameters used are in Supplementary
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Sections S1.1.1 and S1.1.2. The output of RACIPE for levels of all nodes are in log2 scale,
and we perform a gene-wise normalization of the values before further analysis. For pi,
representing the actual steady-state levels of node i, the final values zi are obtained after
normalizing the log-scale node levels:

zi =
log2(pi)− log2

(
pre f

)
σ
(

log2

(
pre f

)) (4)

Here, x and σ(x) represent the mean value and the standard deviation of the respective
quantities. pre f is taken as the corresponding node in the circuit with no over-expressed
or down-expressed nodes (the “reference circuit”), allowing a uniform normalization for
circuits across perturbations (see Supplementary Section S1.2.3).

4.4. Link Strength Metrics

We define a link strength metric similar to the one used earlier [95] to quantify the
strength of each link independent of its activation at steady state. The link strength (lij) is
directly proportional to an activating λp or inversely proportional to an inhibitory λm and
it is inversely proportional to the threshold µ. To normalize the threshold, we choose the
normalization value G/k, the maximum possible node level at steady state.

lij =
Gi

λm
ij µijki

=
Giλ

p
ij

µijki
(5)

For any two links lij and lgh (usually a part of a mutually inhibitory feedback motif

between two nodes), the asymmetry is defined as log2

(
lij/lgh

)
, representing the overall

asymmetry in the effective strengths of the two links forming a mutually inhibitory feed-
back loop. When quantifying the coupling strength, the combined strength is defined as
log2

(
lij
)
+ log2

(
lgh

)
.

4.5. Calculation of p1 and p2 Values

For the calculation of the conditional probability of having a feature x conditional on
having a feature y, we take the proportion of all steady-state solutions having the feature y
that have the feature x too. We use two such conditional probabilities in our results. p1 is
the probability of lying in the stemness window conditional on the solution belonging
to a particular cluster, and is calculated as the proportion of all solutions of the specific
cluster lying in the stemness window. p2 is the probability of belonging to a particular
cluster conditional on the solution lying in the stemness window, and is calculated as the
proportion of all solutions in the stemness window belonging to a particular cluster.

4.6. Clustering

For clustering, a K-means algorithm was used on the appropriately normalized data
for only the four nodes (miR-200, ZEB, LIN28, and let7), with all solutions taken together
with the same weight, without distinguishing between solutions belonging to systems
with different numbers of stable states. K-means finds an optimal splitting of the data
into K clusters (where K is a hyperparameter that the algorithm takes as the input) by
iteratively minimizing inertia, or the total within-cluster sum of squares distance from
the cluster centers. K-means results have a stochastic component since they depend upon
the initialization of the cluster centers which are iteratively improved by the algorithm.
To offset this, at each run, we randomize the initialization multiple times and select the
best outcome in terms of minimized K-means inertia (see Supplementary Section S1.2.1 for
further details of the algorithm parameters). In order to select a cluster number, we run the
K-means algorithm with different values for K and at each value, compute multiple cluster
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quality metrics, all of which attempt to quantify the optimality of the clusters obtained
at each value for K, and we then plot these metrics across different values of K. A sharp
change in the slope as well as an overall higher value for the average silhouette widths
indicate an appropriate partitioning [96]. For our data, the peak and the sudden change
in slope [97] were almost unambiguously in the favor of K = 4 in all the metrics that we
used (average silhouette widths, Calinski–Harabasz index [98], Davies–Bouldin index [99],
K-means inertia) (see Supplementary Section S1.2.2 and Figure S2). Other relatively sub-
jective supportive evidence can be gained from the visual evaluation of the PCA plot and
observing the dendrogram computed using agglomerative hierarchical clustering using
Ward’s minimum variance criterion [100]. The clustering algorithms and the cluster quality
metrics were from scikit-learn version 0.32 (see Supplementary Section S1.1.3 for more
details on the software versions and the platform). Each replicate was separately clustered
and normalized (see Supplementary Section S1.2.3 for details on normalization).

This phenotype assignment strategy was maintained to be consistent all throughout
the study for all circuits and replicates—a separate run of the K-means algorithm was
performed for each replicate and the resultant clusters were assigned phenotypes based on
their median ZEB levels (also see Supplementary Section S2.1).

4.7. Significance Testing

To compute the statistical significance for all comparisons, we used two strategies.
For comparisons within the same RACIPE replicate (where n is large enough), we use the
two-sided non-parametric Mann–Whitney U test [101] (also known as the Wilcoxon rank-
sum test). For cross-replicate comparisons (i.e., proportions), we use Welch’s t-test [102],
allowing unequal variances though with the assumption of normality of the compared
groups. The Mann–Whitney U test is not suitable for small samples as it discards all
information about the size of the differences (and as a result, caps the highest significance
that can be achieved based on n) and also the assumption of normality of the proportions
across replicates is a relatively reasonable assumption since it is stochastic differences
which primarily cause the inter-replicate values to differ. Furthermore, we employ the
Holm–Bonferroni correction to adjust the p-values accounting for multiple comparisons
to control a family-wise error rate (FWER) in the overall rejection of the null hypotheses
(see Supplementary Section S2.5). Due to the large number of steady states per RACIPE
replicate, for some comparisons within the same replicate, very small differences of means
(or medians) give a statistically significant p-value but which is not necessarily biologically
relevant. Thus, to ascribe possible biological meaning to such comparisons, for cases of an
irrelevantly small “magnitude” of this difference (i.e., the effect size), we provide the ratio
of the means/medians and the absolute difference of these quantities.

Supplementary Materials: The following are available online at https://www.mdpi.com/2077-038
3/10/1/60/s1, Figure S1: Optimal cluster number by varied cluster quality, Figure S2: Four E/M
phenotypes enabled by the base circuit, Figure S3: Stemness window and the bistable/tristable phase
distributions of the coupled EMP–stemness circuit, Figure S4: Link strength analysis, Figure S5:
Distribution of bistable and tristable systems upon incorporating PSFs with the coupled EMP–
stemness circuit, Figure S6: Stemness probability (p1) changes with PSF expression, Figure S7:
PSF expression profiles at different expression levels, Figure S8: GRHL2-KD circuit results for
the investigated quantities, Figure S9: Shifted Hill function across different parameters, Table S1:
Parameters ranges and the simulation options, Table S2: Median (iqr) for ZEB and LIN28 in different
replicates of the base circuit rounded off to 3 significant figures, Table S3: Average Silhouette
widths for the Uncoupled E/M and Stemness circuits, Table S4: Proportion (averaged across all
replicates) of filtered x-stable parameter sets based on > 1 solutions of the set being assigned the
same phenotype (standard deviations in the parentheses), Table S5: Proportion (averaged across all
replicates) of all solutions irrespective of the number of stable states of the corresponding parameter
set belonging to different phenotypes (with standard deviations in parenthesis), Table S6: Statistical
Testing results for differences of various calculated proportions in the base circuit considering all
the replicates (i.e., the proportion calculated for the 5 replicates forms one comparison group),

https://www.mdpi.com/2077-0383/10/1/60/s1
https://www.mdpi.com/2077-0383/10/1/60/s1


J. Clin. Med. 2021, 10, 60 15 of 19

Table S7: Statistical Testing results for differences of the node distributions across the clusters for
a single replicate of the base circuit, Table S8: Statistical Testing results for the PSF circuits with
the proportions calculated for all the replicates of the de10 circuit forming one comparison group
while the proportions of all the replicates of the oe10 circuit forming the other comparison group,
Table S9: p1 and p2 for solutions of multi-stable systems (after removing monostable systems),
Table S10: Different configurations of the association of stemness with the different phenotypes in
bistable phases for base circuit, Table S11: Different configurations of the association of stemness
with the different phenotypes in tristable phases for base circuit, Table S12: Different configurations
of the association of stemness with the different phenotypes in bistable phases for GRHL2 circuit
(reference un-perturbed), Table S13: Different configurations of the association of stemness with
the different phenotypes in tristable phases for GRHL2 circuit(reference un-perturbed), Table S14:
Different configurations of the association of stemness with the different phenotypes in bistable phases
for OVOL circuit(reference un-perturbed), Table S15: Different configurations of the association of
stemness with the different phenotypes in tristable phases for OVOL circuit(reference un-perturbed),
Table S16: Different configurations of the association of stemness with the different phenotypes in
bistable phases for NRF2 circuit(reference un-perturbed), Table S17: Different configurations of the
association of stemness with the different phenotypes in tristable phases for NRF2 circuit(reference
un-perturbed).
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