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We consider a clean quantum system subject to strong periodic driving. The existence of a dominant
energy scale, hxD, can generate considerable structure in an effective description of a system that, in the
absence of the drive, is nonintegrable and interacting, and does not host localization. In particular, we
uncover points of freezing in the space of drive parameters (frequency and amplitude). At those points, the
dynamics is severely constrained due to the emergence of an almost exact, local conserved quantity, which
scars the entire Floquet spectrum by preventing the system from heating up ergodically, starting from any
generic state, even though it delocalizes over an appropriate subspace. At large drive frequencies, where a
naïve Magnus expansion would predict a vanishing effective (average) drive, we devise instead a strong-
drive Magnus expansion in a moving frame. There, the emergent conservation law is reflected in the
appearance of the “integrability” of an effective Hamiltonian. These results hold for a wide variety of
Hamiltonians, including the Ising model in a transverse field in any dimension and for any form of Ising
interaction. The phenomenon is also shown to be robust in the presence of two-body Heisenberg
interactions with any arbitrary choice of couplings. Furthermore, we construct a real-time perturbation
theory that captures resonance phenomena where the conservation breaks down, giving way to unbounded
heating. This approach opens a window on the low-frequency regime where the Magnus expansion fails.
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I. INTRODUCTION

For closed systems with time-independent Hamiltonians,
the notion of ergodicity has been formulated at the level
of eigenstates as the eigenstate thermalization hypothesis
(ETH) [1,2]. According to the ETH, the expectation value
of a local observable in a single energy eigenstate of a
complex (disorder-free) many-body quantum system is
equal to the thermal expectation value of the observable
at a temperature corresponding to the energy density of that
eigenstate. The implication of the ergodicity hypothesis in
the context of time-dependent (“driven”) closed quantum
systems is an open question of fundamental importance.
Relatively recent progress along this line has occurred

for systems subjected to a periodic drive (Floquet systems)
[3,4], which are perhaps conceptually closest to a static

system. These studies indicate that a quantum system
that satisfies the ETH, when subjected to a periodic drive,
approaches a state that locally looks like an entirely
featureless “infinite-temperature” state. This case is in
accordance with the ergodicity hypothesis—in systems
that satisfy the ETH (we call them generic), energy is
the only local conserved quantity, and any time dependence
breaks this conservation, allowing the system to explore the
entire Hilbert space.
The breakdown of the ETH in interacting systems due to

the presence of localized states—either due to disorder
(many-body localization) [5,6] or other mechanisms (like
many-body Wannier-Stark localization) [7–9]—is well
known within the equilibrium setup, and their persistence
under periodic perturbations has also been observed
[10–12]. Absolute stability bestowed upon such Floquet
systems by disorder even allows for interesting spatiotem-
poral phases and long-range order in those systems [13,14].
But the common intuition is that a translationally invariant,
interacting, nonintegrable, many-body system will be
ergodic. However, this intuition has encountered a number
of remarkable counterexamples recently within the static
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setting. It has been shown that in such systems, there can be
highly excited energy eigenstates, dubbed scars, which do
not satisfy the ETH [15–24]. Most of these examples (see,
however, Ref. [25]) indicate the nontrivial (weak) breaking
of ergodicity by certain eigenstates.
On the nonequilibrium side, stable Floquet states are

seen in finite-size, closed, interacting Floquet systems,
which are not localized in the absence of a drive [26–37]. In
particular, it has recently been shown that ergodicity is
broken in disorder-free generic systems under a periodic
drive if the drive strength is greater than a threshold value
(compared with the interaction strength)—a KAM-like
scenario [38].
The emergence of constraints on dynamics and approx-

imately (stroboscopically) conserved quantities under
strong periodic driving is known for noninteracting sys-
tems: For strongly driven spin chains that can be mapped to
free fermions, there exist special points in the space of the
drive parameters, where any arbitrary initial state, for any
(including infinite) system size, is frozen [39–43]. This
situation is surprising since the appropriate description for
such a system is a periodic generalized Gibbs’ ensemble
(PGE) [44]. Such an ensemble, though much less ergodic
than a thermal one due to the presence of an extensive
number of (periodically) conserved quantities, still leaves
ample space for substantial dynamics. In particular, the
emergent (approximate) conserved quantity is not one of
the exact stroboscopically conserved quantities that char-
acterizes the PGE, and hence, integrability does not
necessarily assure its approximate conservation in any
trivial way. Hence, in addition to the integrability, other
constraints emerge at those special freezing points.
Here, we extend the reach of this phenomenology to

generic interacting Floquet systems, far from integrability.
Crucially, we also provide a physical mechanism and an
analytical understanding of the resulting nonergodicity.
Concretely, we demonstrate that generic, interacting, trans-
lationally invariant Ising systems as well as Heisenberg
systems can exhibit nonergodic behavior under a strong
periodic drive, and the nonergodicity is due to the emer-
gence of a new approximate (stroboscopic) conservation
law that is not present in the undriven quantum chaotic
system. For certain isolated sets of values of the drive
parameters—the scar or freezing points in the drive
parameter space—the conservation is most accurate, lead-
ing to almost perfect freezing of the conserved quantity for
any generic initial state.
The Floquet Hamiltonian is then no longer ergodic; i.e.,

its eigenstates (Floquet states) do not look like the other-
wise expected infinite temperature states [3,4] but instead
are characterized by eigenvalues of the emergent conserved
quantity because the dynamics does not mix different
eigenstates with different eigenvalues of the emergent
conserved quantity. However, this does not mean that there
is no dynamics. Indeed, even at the scar points, we see

pronounced dynamics evidenced by substantial growth in
subsystem entanglement entropy as delocalization takes
place within each eigenvalue sector. A finite-size analysis
of the numerical results indicates the stability of the scars
under an increase in the system size. This is quite distinct
from emergence of nonthermal Floquet states only at finite
sizes, where the trend towards thermalization is clearly
visible with increasing system size [45].
We emphasize that—unlike the conventional scars,

which are manifested as a few (measure zero) exceptional
eigenstates—here, near the scar point, the Hilbert space is
fractured into dynamically disjoint sectors, and hence the
dynamics of any initial state is constrained.
At high driving frequencies, the conventional Magnus

expansion—controlled by the driving frequency as the
largest energy scale—fails, as the average Hamiltonian
generally does not exhibit the conservation law in question.
To remedy this, we present a strong-drive Magnus expan-
sion, constructed in a “moving” frame incorporating the
strong driving term. Here, the conservation law is manifest
at low order in the expansion. For a general class of
Hamiltonians, including the Ising model in a transverse
field in any dimension and any form of the Ising inter-
actions, we find that the effective Hamiltonian satisfies the
conservation law up to the two leading orders for our
example, capturing the freezing (observed from exact
numerics) to a good approximation away from the reso-
nances. The concordance of these results with exact
numerics for finite size-systems suggest that the expansion
is either convergent or asymptotic.
For lower drive frequencies, controlled approximation

schemes for Floquet systems are sparse (see, however,
Refs. [46–48]). Here, we formulate a novel perturbation
theory, called Floquet-Dyson perturbation theory (FDPT),
which again uses the fact that the drive amplitude is large.
We find that this theory works best in the low-frequency
regime, where we benchmark it for simple systems against
an exact solution and against exact numerics. The advan-
tage of our FDPT is that it enables us to account for isolated
first-order resonances, which are of particular interest as
their sparseness implies stable, nonthermal states at this
order. The stability is maintained in the thermodynamic
limit if our perturbation expansion is an asymptotic one,
which is indicated by the finite-size analysis of our
numerical results—the freezing is insensitive to an increase
in the system size (see the finite-size results in Sec. VI C).
In particular, the FDPT is remarkably accurate in predicting
the resonances (obtained from exact numerics) close to
integrability and hence at the scars. This provides a way to
construct a stable Floquet state with the desired properties
by choosing suitable drive terms.
We organize this paper as follows. After briefly intro-

ducing Floquet physics and our notations, we next present
the phenomenology of scarring. We then develop the high-
field Magnus expansion and the FDPT. Our presentation
focuses on one particular quantum chaotic many-body
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model; we then demonstrate the key feature, namely, the
emergence of the local conservation law and resulting
absence of thermalization in other diverse models, that is,
ones with three-spin interactions, long-range (power-law)
interactions, and general Heisenberg interactions, establish-
ing the generality of the nonergodic behavior that we have
uncovered. We conclude with a summary and an outlook.

II. FLOQUET IN A NUTSHELL

The Floquet states jμni are elements of a complete
orthonormal set of eigenstates of the time-evolution oper-
ator UðT; 0Þ for time evolution from t ¼ 0 to t ¼ T, for a
system governed by a time-periodic Hamiltonian with a
period T ¼ 2π=ω. The Floquet formalism is particularly
useful for following the dynamics stroboscopically at
discrete time instants t ¼ nT. From the above definition,
it follows that

UðT; 0Þjμni ¼ e−iμn jμni; ð1Þ

where the μn’s are real. It is customary to define an effective
Floquet Hamiltonian Heff as

UðT; 0Þ ¼ e−iHeffT: ð2Þ

(We set ℏ ¼ 1 in this paper.) When observed stroboscopi-
cally at times t ¼ nT, the dynamics can be thought of as
being governed by the time-independent Hamiltonian Heff ,
which has eigenvalues μn=T (modulo integer multiples of
2π=T) and eigenvectors jμni. In the infinite-time limit, the
expectation values of a local operator O can be written in
terms of the expectation values in the Floquet eigenstates as

lim
N→∞

hψðNTÞjOjψðNTÞi ¼
X
n

jcnj2hμnjOjμni ¼ ODE;

ð3Þ

where jψð0Þi ¼ P
n cnjμni, and the subscript “DE”

denotes the diagonal ensemble average [2,49–51] as
defined above. The DE description is shown to be a very
accurate description for generic interacting systems after a
quench at long times [52]. A Floquet system under
stroboscopic observation is equivalent to a quench with
Heff in conjugation with stroboscopic observations. We
mainly focus on the longitudinal magnetization (polariza-
tion in the x direction), given by

mx ¼ 1

L

XL
i

σxi : ð4Þ

The diagonal ensemble average is equivalent to a
“classical” average over the properties of the Floquet
eigenstates fjμnig. The diagonal ensemble average of mx

is given by

mx
DE ¼

X
n

jcnj2hμnjmxjμni: ð5Þ

The absence of interference between the Floquet states in a
DE average ensures that it is sufficient to study the
properties of individual Floquet states (and their spectrum
average) in order to characterize the gross behavior of the
driven system in the infinite-time limit. In the following,
we therefore mostly concentrate on DE averages and the
properties of the Floquet states.

III. SCAR PHENOMENOLOGY

A. Freezing and emergent conservation

In this section, we discuss the scar phenomenology for a
periodically driven, interacting, nonintegrable Ising chain
described by

HðtÞ ¼ H0ðtÞ þ V; where

H0ðtÞ ¼ Hx
0 þ Sgn( sinðωtÞ)HD; with

Hx
0 ¼ −

XL
n¼1

Jσxnσxnþ1 þ
XL
n¼1

κσxnσ
x
nþ2 − hx0

XL
n¼1

σxn;

HD ¼ −hxD
XL
n¼1

σxn; and

V ¼ −hz
XL
n¼1

σzn; ð6Þ

where σx=y=zn are the Pauli matrices. Note that Hx
0 is, by

definition, the sum of all the terms that commute with
HDðtÞ, and V is the sum of all the remaining terms in the
time-independent part of the Hamiltonian (while V is called
“perturbation” later, there is no implied distinction between
the relative strengths of Hx

0 and V). This partition of the
static part into Hx

0 and V is for computational bookkeeping
convenience for our analytical derivations.
The main result is that at large drive amplitude hxD,

the longitudinal magnetization mx emerges as a emergent
conserved quantity under the drive condition (“scar points”
in the drive parameter space) given by

hxD ¼ kω; ð7Þ

where k are integers. Figure 1(a) shows that at the scar
points (marked with arrows), the diagonal ensemble aver-
age mx

DE [Eq. (3)] for mx is equal to the initial value mxð0Þ,
to very high accuracy, indicating that mx remains frozen at
its initial value for arbitrarily long times. As seen from the
figure, this happens for a very broad range of ω.
However, as hxD is reduced, the stable frozen regime

eventually gives way to a Floquet thermalized regime.
Below a clear freezing cutoff (around hDx ≈ 18), mx

DE
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exhibits strong fluctuations as a function of hxD (short
frozen stretches punctuated by higher-order resonance;
see Sec. V B 1), followed by a subsequent sharp decline
to almost zero below a thermalization threshold (around
hxD ≈ 5). A locally infinite-temperature-like Floquet ther-
malized regime is observed below this threshold, as shown
in Fig. 1(b). This threshold does not exhibit any perceptible
shift with system size [38]. The inset of Fig. 1(b) shows that
there is no perceptible L dependence in the freezing ofmx

DE
as long as hxD is above the freezing cutoff. The phenomenon
is reminiscent of the nonmonotonic peak-valley structure of
freezing observed in integrable Floquet systems in the
thermodynamic limit [39,40].
The figure shows that freezing happens for two very

different kinds of initial states, namely, the highly polarized
initial ground state of Hð0Þ as well as a high-temperature
thermal state. The initial thermal density matrix is of the
form

ρThðt ¼ 0Þ ¼
X2L
j¼1

e−βεj

Z
jεjihεjj; ð8Þ

where jεji is the jth eigenstate of an initial Hamiltonian
HI , with eigenvalue εj. We have chosen HI ¼ Hðt ¼ 0;
hxD ¼ 5.0; hx0 ¼ 0.1; J ¼ 1; κ ¼ 0.7Þ, with HðtÞ from
Eq. (6), and Z ¼ P

j e
−βεj is the partition function.

Equation (8) represents a mixture of eigenstates jεji.
Hence, we obtain the final diagonal ensemble density
matrix by summing the diagonal ensemble density matrix

for each jεji, weighted by its Boltzmann weight in ρThð0Þ,
i.e.,

ρDEðt → ∞Þ ¼
X
j

e−βεj

Z

�X
k

jhεjjμkij2jμkihμkj
�

¼
X
k

�X
j

e−βεj

Z
jhεjjμkij2

�
jμkihμkj: ð9Þ

The emergent conservation of mx for a generic thermal
state suggests that all the Floquet states must be organized
according to the conservation law. This case is shown to
be true in Fig. 1(c), which displays the expectation value
hmxi in the Floquet eigenstates [corresponding to the
drive in Fig. 1(c)], plotted against their serial number
(normalized by the dimension DH of the Hilbert space),
arranged in decreasing order of their hmxi values. For the
scar points, for hxD ¼ 40 at ω ¼ 10, 20, 40, the values of
hmxi of the Floquet states coincide with the eigenvalues
of mx, indicating that all the eigenstates of mx that
participate in a given Floquet state have the same mx

eigenvalues. This result explains the conservation or
freezing of mx for dynamics starting with any generic
initial state. As we will see later, the condition for
encountering such a scar point [Eq. (7)] can be deduced
from both the FDPT and a Magnus expansion in a time-
dependent frame, and the latter confirms the effect over
the entire spectrum and explains the steps in hmxi to the
leading orders.

(a) (b) (c)

FIG. 1. Scars, resonances, and emergent conservation law. (a) mx
DE=m

x
0, the ratio of magnetizations after infinite (diagonal ensemble

average) and 0 (initial state) cycles versus drive frequency ω. Freezing, reflected in a large value of this ratio, occurs over a broad
range of ω and is strongest at particular “scar” points (marked with arrows) hxD ¼ kω, where k is an integer (for hxD ¼ −40 here, the ten
arrows mark ω ¼ 40=k; k ¼ 1; 2;…; 10). Results are shown for zero and high-temperature initial states: the former being the
ground state ofHð0Þ [which gives an initial magnetizationmxð0Þ≲ 1], and the latter being the Gibbs state with β ¼ 10−2 [mxð0Þ ≈ 0.05]
for HI of the form Hð0Þ but with hxD ¼ 5; all other parameters are the same as the driven Hamiltonian, namely, J ¼ 1;
κ ¼ 0.7π=3; hx0 ¼ e=10; hxD ¼ 40; hz ¼ 1.2; L ¼ 14. The sharp dips in the green lines represent resonances, discussed in detail in
the main text on Floquet-Dyson perturbation theory. Parameters are chosen to avoid these resonances. (b) mx as a function of hxD for a
fixed ratio jhxD=ωj ¼ 4, showing the freezing cutoff ðhxD ≈ 18Þ above which a stable regime of freezing sets in. Inset: finite-size behavior
of the freezing. For intermediate strengths of the driving field, higher-order resonances lead to nonmonotonic behavior of mx

DE on L,
which is then sensitively dependent on small variations of hxD. (c) hmxi of the Floquet states plotted against the serial number
(normalized by the Hilbert space dimension DH) of the Floquet states, arranged in decreasing order of hmxi. At the scar points (ω ¼ 10,
20, and 40), the hmxi values form steps coinciding with the eigenvalues of mx arranged and plotted in the same order: mx emerges as a
emergent conserved quantity, hence the freezing of mx for any generic initial state.
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B. Dynamics of the unentangled eigenstates of mx:
Growth of entanglement entropy

We define an unentangled, complete, orthonormal set of
eigenstates of mx, which we call the x basis. Each element
of the x basis is a simultaneous eigenstate of all the σxi
operators. The nontriviality of the dynamics at the scar
points and the consequence of the emergent conservation
are manifested in the growth of the half-chain entanglement
entropy E1

2
at the scar points, especially with different x-

basis eigenstates of mx as initial states. We study the half-
chain entanglement entropy

E1
2
¼ −Tr½ρ1

2
log2ρ1

2
�; ð10Þ

where ρ1
2
is the density matrix of one half of the chain,

obtained by tracing out the other half.
The results are shown in Fig. 2. These results highlight

that, even though mx is conserved for large enough hxD at
the scar points, there is substantial dynamics even at those
points. For large enough hxD, Figs. 2(d)–2(i), we see that
different eigenstates of mx evolve quite differently even at
the scar points, at which mx is conserved to a very good
approximation for all initial states. For example, for the
fully polarized initial state, entanglement does not grow
even after 1010 drive cycles, but for the Néel and the L=2-
domain-pair initial states, it does. This reflects the respec-
tive sizes of the mx subspaces with maximal and zero
magnetization.

(a)

(d)

(g) (h) (i)

(e) (f)

(b) (c)

FIG. 2. (De)localization of the wave function over the x basis (simultaneous eigenstates of all of the σxi ’s) as evidenced by the half-
chain entanglement entropy (E1

2
) versus system size L, for different driving strengths hxD (rows) and initial states (left column: maximally

mx polarized; middle: L=2-domain-pair state with vanishing total mx; right: Néel state). Top row (small hxD ¼ 5): E1
2
entropy grows

linearly with system size for all initial states, signaling ergodicity. For stronger drives (hxD ¼ 20 and 40 in the middle and bottom rows,
respectively), scars appear, and E1

2
depends strongly on the initial states, reflecting the size of the emergent magnetization sectors: For the

fully polarized initial states (left column), E1
2
does not grow at all for the freezing or scar points [marked as (F) in the figure legends

and represented by almost indistinguishably coincidental black and violet triangles], while for the Néel and the L=2-domain-pair initial
states, there is considerable growth in E1

2
even at the scar points, reflecting (at least partial) delocalization over the large concomitant

magnetization sectors. The results are for J ¼ 1; κ ¼ 0.7; hx0 ¼ e=10; hz ¼ 1.2; L ¼ 14, averaged over 104 cycles after driving for 1010

cycles.
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The growth of E1
2
also reflects the role of interactions in

the dynamics even at the scar points, without which we
would not see such a substantial growth of entanglement.
In the Appendix C, we show that the suppression of

entanglement growth is robust in that it is observed for
other patterns of the drive field, as long as the concomitant
emergent conservation law gives rise to well-defined
sectors that contain only a small number of states.

IV. STRONG-DRIVE MAGNUS EXPANSION

We next provide a modified Magnus expansion that
incorporates the large size of the drive from the start, using
the inverse of the driving field as a small parameter. This
approach makes the emergence of a conserved quantity
manifest, for a wide range of Hamiltonians—the terms in
the time-independent part of the Hamiltonian that commute
with the time-dependent part of the Hamiltonian (Hx

0 here)
can have any form because the factor premultiplying the
terms involving Hx

0 vanishes to second order regardless of
the form of Hx

0. For example, it applies to transverse-field
Ising models in any dimension, with any Ising interaction.
Using this approach, one can immediately read off the scars
found above.
The conventional Magnus expansion uses the inverse

of a large frequency as a small parameter (see, e.g.,
Refs. [28,53]) for obtaining the Floquet Hamiltonian
Heff [Eq. (2)] as given below.

Heff ¼
X∞
n¼0

HðnÞ
F ; where

Hð0Þ
F ¼ 1

T

Z
T

0

dtHðtÞ;

Hð1Þ
F ¼ 1

2!ðiÞT
Z

T

0

dt1

Z
t1

0

dt2½Hðt1Þ; Hðt2Þ�; ð11Þ

and so on. In our case, we have hxD > ω, making the
series nonconvergent even when ω is greater than all
other couplings in the Hamiltonian, so the naïve Magnus
expansion is qualitatively wrong even at leading order: The
first-order term Hð0Þ is the time average over one period of
HðtÞ [Eq. (6)], an interacting, generic Hamiltonian that
does not conservemx. Hence, we would have no hint of the
scars even from the first-order term.
This problem can be remedied when the strong drive

modulates the strength of a fixed field or potential (this is a
very natural way of applying a periodic drive). The largest
coupling (hxD here) can be eliminated from the Hamiltonian
by switching to a time-dependent frame as follows [28]. We
introduce a unitary transformation

jψmovðtÞi ¼ WðtÞ†jψðtÞi;
Ômov ¼ WðtÞ†ÔWðtÞ; ð12Þ

where jψðtÞi is the wave function and Ô is any predefined
operator (the subscript “mov” marks the quantities in the
moving frame).
The crux of the expansion is then apparent for a WðtÞ of

the following form,

WðtÞ ¼ exp

�
−i

Z
t

0

dt0rðt0ÞHD

�
; ð13Þ

where rðtÞ is a T-periodic parameter. If the total
Hamiltonian were constant up to the time-dependent
prefactor rðtÞ, i.e., HðtÞ ¼ rðtÞHð0Þ, the above would
just give the solution of the static Schrödinger equation,
but with a rate of phase accumulation for each (time-
independent) eigenstate given by the integrand of the
variable prefactor. In particular, any conservation law of
Hð0Þ would be bequeathed to the time-dependent problem.
Now, if the drive is not the only, but still the dominant
part of the Hamiltonian, there will be corrections to this
picture; however, this suggests the eigenbasis of the drive
and its conservation law(s) should remain perturbatively
useful starting points.
Given the form of HDðtÞ in Eq. (6), the transformed

Hamiltonian reads

Hmov ¼ WðtÞ†HðtÞWðtÞ − iWðtÞ†∂tW; ð14Þ

where the second term exactly cancels the part from the
first term that has hxD as its coupling; hence, Hmov is free
from any coupling of order hxD (see Appendix A 3 for
details).

A. Scars in the driven interacting Ising chain

In the case of Eq. (6), we have

HðtÞ ¼ Hx
0 þ V − Sgn(sin ðωtÞ)hxD

X
i

σxi : ð15Þ

Switching to the moving frame by using the transformation
in Eq. (13) gives

Hmov ¼ Hx
0 − hz

X
i

½cos ð2θÞσzi þ sin ð2θÞσyi �; where

θðtÞ ¼ −hxD

Z
t

0

dt0Sgnðsinωt0Þ: ð16Þ

After some algebra, we find the Magnus expansion ofHmov
to have the following leading terms:

Hð0Þ
F ¼ Hx

0 −
hz

hxDT

�
sin ðhxDTÞ

X
i

σzi

− (1 − cos ðhxDTÞ)
X
i

σyi

�
: ð17Þ
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Note that this is useful for hxD ≫ 1=T, the regime we are
interested in. The next-order term is given by

Hð1Þ
F ¼ 1

2!Ti

Z
T

0

dt1

Z
t1

0

dt2½Hmovðt1Þ; Hmovðt2Þ�: ð18Þ

Denoting θðt1Þ ¼ θ1, θðt2Þ ¼ θ2,
P

i σ
z=y
i ¼ Sz=y, and the

form of Hmov from Eq. (16), we get

Hð1Þ
F ¼ ½Sz;Hx

0�hzðcos 2θ2 − cos 2θ1Þ
þ ½Sy;Hx

0�hzðsin 2θ2 − sin 2θ1Þ
þ ½Sy; Sz�ðhzÞ2 sinð2θ1 − 2θ2Þ: ð19Þ

Upon integration (see Appendix A 1 and A 3 for details),
this identically gives

Hð1Þ
F ¼ 0: ð20Þ

The end result—a homogeneous expansion in the small
parameters 1=hxD and 1=T from the two initial orders—
given in Eq. (17), is quite remarkable. First, for hxDT ¼ 2πk

(where k can be any integer), Hð0Þ
F ¼ Hx

0; this is precisely
the condition for scars observed numerically [Eq. (7)]
and also from the FDPT [see Eq. (44)]. Clearly, to this
approximation, Heff not only has a conservation law but is
also integrable; indeed, it is classical, with all terms
commuting. Numerical results suggest that the above
expansion (unlike the Magnus expansion in the static
frame) is an asymptotic one, at least in the neighborhood
of the scar points, since the leading-order terms represent
the exact numerical results accurately.

Second, it is clear from the forms of Hð0Þ
F and Hð1Þ

F that
the results hold independently of the form of Hx

0; this
could be in any spatial dimension and can incorporate any
form of Ising interactions. This wide generality implies
that stable emergent conservation laws and constraints (in
keeping with the possible asymptotic nature of the
expansion) may emerge in generic interacting Floquet
systems in the thermodynamic limit. Since H0

x is, by
definition, the portion of the static part of the Hamiltonian
that commutes with HD, the statement of generality
obtained from the above analysis stands as follows:
While the nature of the whole static part can be tuned
over a wide variety of many-body Hamiltonians depend-
ing on the form of Hx

0 (ranging from noninteracting to
interacting, integrable to nonintegrable, low to high
dimensional), the emergence of the conservation law
and the resultant scarring do not depend on the form of
Hx

0. In Sec. VI, we support this statement by considering
various kinds of Ising interactions, and going beyond, we
demonstrate the freezing in the presence of anisotropic
Heisenberg interactions.

V. FLOQUET-DYSON PERTURBATION THEORY

In this section, we develop a theory that opens a
window on the otherwise difficult-to-access [46–48] low-
frequency regime. We first test it for an exactly soluble
problem and then apply it to the Ising chain studied in the
previous section.
We find that the theory provides valuable insights for

both systems. In particular, it identifies a resonance con-
dition corresponding to the dips, as well as a freezing
condition corresponding to the maxima in the response
plotted in Figs. 4 and 1, respectively. A concurrence of the
two accounts for the varying dip depths in that figure.
While a comprehensive treatment of the general many-
body problem is not yet possible, we believe that these
items capture ingredients central for its understanding.
We first present the general formulation of the FDPT.

The goal is to construct the Floquet states jμni. We resort
to a setting where the unperturbed Hamiltonian is time
dependent and the perturbation is static [54]. The central
idea is to construct the Floquet states in the presence of the
small static perturbation from the known unperturbed
Floquet states by applying time-dependent perturbation
theory (a Dyson-like series for the wave function). For this
process, one needs to know the unperturbed Floquet states,
which come from the solution of the time-dependent
Schrödinger equation with only the time-dependent part
in the Hamiltonian (including the static parts that commute
with it at all times). In our case, this is naturally achieved
as follows. The central ingredient is that the driven
Hamiltonian

HðtÞ ¼ H0ðtÞ þ V ð21Þ

contains a large time-dependent term H0ðtÞ, which has a
time-independent set of eigenstates and a perturbation V
that is time independent. Those states then serve as the
unperturbed Floquet states, and V can then be treated as a
small (compared to the drive amplitude) perturbation.
We work in the basis of eigenstates of H0ðtÞ (these are

the unperturbed Floquet states), denoted as jni, so that

H0ðtÞjni ¼ EnðtÞjni; ð22Þ

and hmjni ¼ δmn.
Next, we assume, without loss of generality, that V is

completely off-diagonal in this basis, namely,

hnjVjni ¼ 0 ð23Þ

for all n. We now find solutions of the time-dependent
Schrödinger equation

i
∂jψni
∂t ¼ HðtÞjψnðtÞi; ð24Þ
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which satisfy

jψnðTÞi ¼ e−iμn jψnð0Þi: ð25Þ

For V ¼ 0, each eigenstate jni of H0ðtÞ is a Floquet

state, with Floquet quasienergy μð0Þn ¼ R
T
0 dtEnðtÞ (defined

modulo 2π).
For V nonzero but small, we develop a Dyson-like series

for the wave function to first order in V. Clearly, V is a
small perturbation as long as jV=hxDj ≪ 1, though it can
otherwise be comparable to or larger than the other
couplings of the undriven Hamiltonian. In our ansatz,
the nth eigenstate is written as

jψnðtÞi ¼
X
m

cmðtÞe−i
R

t

0
dt0Emðt0Þjmi; ð26Þ

where cnðtÞ ≃ 1 for all t while cmðtÞ is of order V (and
therefore small) for all m ≠ n and all t.
We then substitute the form for the wave function in

Eq. (26) in the time-dependent Schrödinger equation and
then apply the key condition of the method; namely, we
demand jψnð0Þi ¼ jμni, i.e.,

jψnðTÞi ¼ eiμn jψnð0Þi: ð27Þ

Then, taking the overlaps with the basis states jmi, we find
(for details of the algebra, see Appendix B)

cmð0Þ ¼ −ihmjVjni
R
T
0 dtei

R
t

0
dt0½Emðt0Þ−Enðt0Þ�

ei
R

T

0
dt½EmðtÞ−EnðtÞ� − 1

: ð28Þ

We see that cmðtÞ is indeed of order V provided that the
denominator on the right-hand side of Eq. (28) does not
vanish; we call this case nondegenerate. If

ei
R

T

0
dt½EmðtÞ−EnðtÞ� ¼ 1; ð29Þ

we have a resonance between states jmi and jni, and the
above analysis breaks down. Now, if there are several states
that are connected to jni by the perturbation V, Eq. (28)
describes the amplitude to go to each of them from jni. Up
to order V2, the total probability of excitation away from jni
is given by

P
m≠n jcmð0Þj2 at time t ¼ 0.

A. Single large spin: An exactly soluble test bed

As a simple illustration of the FDPT, we discuss a
system with a single spin governed by a time-dependent
Hamiltonian. We briefly discuss some results obtained
from the FDPT (which give the conditions for perfect
freezing and resonances), numerical results, and exact
results for the Floquet operator. The details are presented
in Appendix B.

1. Model

We consider a single spin S⃗, with S⃗2 ¼ SðSþ 1Þ, which
is governed by a Hamiltonian of the form

HðtÞ ¼ −hxSx − hzSz − hxDSgn(sinðωtÞ)Sx: ð30Þ

The time period is T ¼ 2π=ω. Since sinðωtÞ is positive for
0 < t < T=2 and negative for T=2 < t < T, the Floquet
operator is given by

U ¼ eðiT=2Þ½ðhx−hxDÞSxþhzSz� × eðiT=2Þ½ðhxþhxDÞSxþhzSz�: ð31Þ

It is clear from the group properties of matrices of the form

eia⃗·S⃗ thatU in Eq. (31) must be of the same form and can be
written as

U ¼ eiγk̂·S⃗;

where k̂ ¼ ðcos θ; sin θ cosϕ; sin θ sinϕÞ: ð32Þ

We work in the basis in which Sx is diagonal. Since the
eigenstates of U in Eq. (32) are the same as the eigenstates
of the matrix M ¼ k̂ · S⃗, the expectation values of Sx in
the different eigenstates take the values cos θ times
S; S − 1;…;−S. The maximum expectation value is given
by mx

max ¼ S cos θ.

2. Analytical results from FDPT

We can use the FDPT to derive the correction to mx
max to

first order in the small parameter hz=hxD. Namely, we find
how the state given by j0i≡ jSx ¼ Si mixes with the state
j1i≡ jSx ¼ S − 1i. We discover that

c1ð0Þ ¼
ffiffiffiffiffiffi
2S

p
hz

hxD

eih
xT=2½eihxDT=2 − cosðhxT=2Þ�

eih
xT − 1

: ð33Þ

Three possibilities arise at this stage.
(i) The denominator of Eq. (33) is not zero. Then,

the expectation value of Sx in this state will be close
to S since hz=hxD is small. In addition, if the
numerator of Eq. (33) vanishes, we get perfect
freezing, namely, hSxi ¼ S.

(ii) The denominator of Eq. (33) vanishes; i.e., hx is an
integer multiple of 2π=T, but the numerator does
not vanish. This is called the resonance condition.
Clearly, the perturbative result for c1ð0Þ breaks
down in this case, and we have to either develop
a degenerate perturbation theory or do an exact
calculation.

(iii) Both the numerator and the denominator of Eq. (33)
vanish. Once again, the perturbative result breaks
down, and we have to do a more careful calculation.

Here, we comment on the dependence of the result in
Eq. (33) on the value of S. At t ¼ 0, the probability of state
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j1i is jc1ð0Þj2, and the probability of state j0i is
1 − jc1ð0Þj2. Hence, the expectation value of Sx=S is
given by

mx
max

S
¼ 1

S
½Sð1 − jc1ð0Þj2Þ þ ðS − 1Þjc1ð0Þj2�

¼ 1 − 2

�
hz

hxD

�
2

×
1þ cos2ðhxT=2Þ − 2 cos ðhxT=2Þ cos ðhxDT=2Þ

4 sin2ðhxT=2Þ :

ð34Þ

We expect Eq. (33) to break down at a sufficiently large
value of S since it was derived using first-order perturbation
theory, which is accurate only if jc1ð0Þj ≪ 1. However, we
observe that the value of mx

max=S in Eq. (34) is independent
of S. Therefore, in this model, we have the striking result
that we can use first-order perturbation theory for values of
S that are not large to derive an expression like Eq. (34),
which is then found to hold for arbitrarily large values of S.

3. Numerical results

Given the values of the parameters S; T; hx; hz, and hxD,
we can numerically compute U and its eigenstates. From
the eigenstates, we can calculate mx

max, which is the
maximum value of the expectation value of hSxi.
In Fig. 3, we plot mx

max versus hx, for S ¼ 20; T ¼ 10;
hz ¼ 1, and (a) hxD ¼ 40 and (b) hxD ¼ 12.8π ≃ 40.212. In
Fig. 3(a), we see large dips for hx equal to all integer
multiples of 2π=T. In Fig. 3(b), we see large dips for hx

equal to odd integer multiples of 2π=T, but the dips
are much smaller for hx equal to even integer multiples
of 2π=T.
We can understand these results using the FDPT. In

Fig. 3(a), we have hxD ¼ 40; hence, cosðhxDT=2Þ ≠ �1, and
the numerator of Eq. (33) can never vanish. We therefore
obtain large dips for hx equal to all integer multiples
of 2π=T, where the denominator of Eq. (33) vanishes

[case (ii)]. However, in Fig. 3(b), hxD¼12.8π, so
cosðhxDT=2Þ¼1. Hence, both the numerator and the
denominator of Eq. (33) vanish when hx is equal to even
integer multiples of 2π=T [case (iii)]. This explains why the
dips in mx

max are much smaller for hx equal to even integer
multiples of 2π=T, but they continue to be large for hx

equal to odd integer multiples of 2π=T.

4. Form of the Floquet operator in different cases

We now present expressions for the Floquet operator U
in Eq. (32) based on the exact results derived in
Appendix B 1 a. The purpose of this exercise is to show
that the form of U is quite different in cases (i)–(iii).
Assuming that hxD is positive and much larger than jhxj

and jhzj, we find, to zeroth order in hz=hxD, that

cos

�
γ

2

�
¼ cos

�
hxT
2

�
and k̂ ¼ x̂; ð35Þ

provided that eih
xT ≠ 1 [case (i)]. Equation (35) implies that

the Floquet operator corresponds to a rotation about the x̂
axis by an angle γ.
If eih

xT ¼ 1, i.e., cosðhxT=2Þ ¼ �1, but cosðhxT=2Þ ≠
eih

x
DT=2, the denominator of Eq. (33) vanishes but the

numerator does not [case (ii), called the resonance con-
dition]. It turns out that we then have to expand up to
second order in hz=hxD, which gives

k̂ ¼ cos

�
hxDT
4

�
ẑ − sin

�
hxDT
4

�
ŷ

if cos

�
hxT
2

�
¼ 1;

¼ sin

�
hxDT
4

�
ẑþ cos

�
hxDT
4

�
ŷ

if cos

�
hxT
2

�
¼ −1: ð36Þ

This implies that the Floquet operator corresponds to a
rotation about an axis lying in the y-z plane. Thus, the
expectation value of Sx will be zero in all the eigenstates of
the Floquet operator.
Finally, if eih

xT ¼ 1 and cosðhxT=2Þ ¼ eih
x
DT=2, both the

numerator and the denominator of Eq. (33) vanish [case
(iii)]. We then discover that

k̂ ¼ hxx̂ − hzẑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhzÞ2 þ ðhxÞ2

p : ð37Þ

Hence, the Floquet operator corresponds to a rotation about
an axis lying in the x-z plane.
To summarize, assuming that hz=hxD is small, we obtain

quite different results depending on which of the three
cases (i)–(iii) arise. We see these differences both in the
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FIG. 3. Plots of the maximum expectation value of Sx versus
hx, for S ¼ 20; T ¼ 10; hz ¼ 1, and (a) hxD ¼ 40 and (b) hxD ¼
12.8π ≃ 40.212. In panel (a), we see pronounced dips for hx equal
to all integer multiples of 2π=T, while in panel (b) we see
pronounced dips only when hx is equal to odd integer multiples of
2π=T, as predicted by the FDPT result, Eq. (33).
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numerical results for mx
max shown in Fig. 3 and in the forms

of the Floquet operator in Eqs. (35)–(37), which are
obtained by an exact calculation.

B. FDPT for the interacting Ising chain

Now, we apply FDPT to our interacting Ising chain
[Eq. (6)], studied numerically above. We set hz ≪ hxD, and
treat V as the perturbation. We use periodic boundary
conditions.
The eigenstates jni of H0ðtÞ are diagonal in the basis of

the operators σxn. In particular, the state in which all spins
σxn ¼ þ1 will be denoted as j0i, and we start by calculating
the Floquet state jmx

maxi (maximally polarized Floquet
state) obtained by perturbing this state to first order in
hz=hxD. While calculating mx from perturbation theory, we
use this Floquet state.
The rationale for this is as follows. First, if we start with a

fully polarized state in the þx direction (as is done, for
example, in the experiments by Monroe [55]) or with the
ground state of Hð0Þ, with hxD ≫ hz; κ, then the initial state
is expected to have a strong overlap with this particular
Floquet state. Hence, at very long times, the expectation
values of the observables in the wave function will be well
approximated by the expectation value in this Floquet state.
Second, in this setting, the insights from the single-spin

problem studied above are most directly transferable; in
particular, we again encounter the ideas of resonances and
scars. With these in hand, we can then identify a number of
features present in the data more generally, in particular, for
high-temperature states (which are of interest in the context
of the NMR experiments by Rovny [56]). We find that
perturbation theory works best in the vicinity of the scars
with their emergent integrability (see below), and we
present a limited exploration of the performance of
FDPT away from these in Appendix B.
For the expansion of the Floquet state to leading order,

the computation proceeds entirely along the lines of that
presented for the single-spin model. We denote the state in
which all spins σxn ¼ þ1, except for the site m where
σxm ¼ −1, as jmi. In the limit in which hxD is much larger
than J, κ, and hx0, we find that, to leading order in hz=hxD,
Eq. (B24) takes the form

cmð0Þ ≃
hz

hxD

eiAT=2½eihxDT − cosðAT=2Þ�
eiAT − 1

;

A ¼ 4ðJ − κÞ þ 2hx0: ð38Þ
The magnetization of this maximally polarized Floquet

state is given as follows. The expectation value of
P

L
n¼1 σ

x
n

in each of the m states is L − 2, and in the state j0i, it is L.
This gives

mx ¼ 1 −
2

L

XL
m¼1

jcmð0Þj2: ð39Þ

1. Resonances and stability of the scar

The resonance condition [Eqs. (29) and (38)],

eiAT ¼ 1 where A ¼ 4ðJ − κÞ þ 2hx0; ð40Þ

signals the singularities of our expansion, where cmð0Þ
diverges. For our Hamiltonian, this occurs for

hx0 ¼ −2J þ 2κ þ pω
2

: ð41Þ

Here, p is an integer that corresponds to the number of
photons absorbed or emitted in this transition. Thus, our
first-order theory does not preclude multiphoton transitions.
This suggests considering all possible first-order reso-

nances based on Eq. (29), by considering the resonance
condition more generally: Evaluating the change Em − En
due to the flip of only a single spin, σ0, with nth nearest-
neighbor spins on the right or left denoted by σ�n, yields the
first-order resonance condition

hx0σ0 þ Jσ0ðσ−1 þ σ1Þ − κσ0ðσ−2 þ σ2Þ ¼
pω
2

: ð42Þ

Of course, individual resonances may be absent if there are
no matrix elements between the states in question.
This approach can be rather successful at identifying the

locations of the numerically observed isolated resonances,
as displayed in Fig. 4. There, the strength of the freezing is
displayed as a function of driving strength, for both slow
and very slow drives, ω ¼ 0.4 and 0.04, respectively.
The right panel of Fig. 4 emphasizes the generality

of this result: The considerations of the first-order reso-
nances obtained above yield the response even for the
initially weakly polarized (mx ¼ 0.05), high-temperature
initial state.
For a many-body Floquet system, a proliferation of

Floquet resonances may lead to unbounded heating. Hence,
a stable nonthermal state (e.g., a scar) a priori requires the
absence of resonances. Equation (42) shows that this is
straightforwardly possible to first order since the resonan-
ces are isolated and can be well separated in parameter
space. This stems from the fact that the gap Em − En
between two distinct (possibly degenerate) levels of Hx

0

[Eq. (6)] does not necessarily vanish even in the thermo-
dynamic limit (for example, if we take all the couplings in
Hx

0 to be rational numbers). The absence of any signature of
the higher-order resonances in the exact numerical result at
very low frequencies (ω ¼ 0.04) and large hxD ¼ 40 in the
neighborhoods of the scar points indicates that the first-
order theory is sufficient there, and the FDPT series is at
least asymptotic in nature.
Higher-order resonances start gaining importance as hxD

is reduced below a freezing cutoff (hxD ≈ 18), as shown in
Fig. 1(b). The choice of parameters rules out first-order
resonances in this case. The results are consistent with this
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when the drive amplitude is above the cutof—we see no
resonant dip in mx

DE. But as h
x
D is tuned below the cutoff,

rapid irregular fluctuations appear due to sharp resonant
dips in mx

DE. With the first-order resonances being ruled
out, these dips are due to higher-order resonances, which
implies that first-order perturbation theory is insufficient
below the cutoff. With further lowering of hDx , a sharp drop
to the Floquet thermalized regime mx

DE ∼ 0 eventually
appears below a threshold (hxD ≈ 5).

Scar from FDPT.—Considering the expression for the
magnetization, obtained by substituting the expression
for cmð0Þ [Eq. (38)] into the expression of mx [Eq. (39)],

1 −mx ¼ 2

�
hz

hxD

�
2

×
1þ cos2ðAT=2Þ − 2 cosðAT=2Þ cosðhxDTÞ

4 sin2ðAT=2Þ ;

ð43Þ

we make the following observations.
First, Eq. (43) indicates that mx should keep oscillating

with hxD with a periodω [except when cosðAT=2Þ is close to

zero], as is indeed observed in Fig. 5. Notice, therefore, that
the “high-field limit” is not entirely simple but is still
endowed with a fine-structured periodicity.
Second, when ω ¼ 2π=T is large, we can approximate

cosðAT=2Þ ≃ 1 − ðATÞ2=8 and sinðAT=2Þ ≃ AT=2 in
Eq. (43):

1 −mx ¼ 2

�
hz

hxD

�
2 4ð1 − A2T2=8Þ sin2ðhxDT=2Þ

A2T2
: ð44Þ

This expression shows that freezing becomes weaker with
increasing ω. An exception to this occurs when the
numerator in Eq. (44) vanishes, namely, when
ω ¼ hxD=k, where k is an integer. At these points, we have
mx=mxð0Þ ¼ 1, i.e., perfect freezing. These points are
precisely the “scar” points given by Eq. (7), where the
peaks of freezing are obtained numerically (Fig. 1).
As encountered in the single-spin model, there is an

interesting interplay between the scars, where mx is frozen,
and the resonances, where heating is hugely amplified.
When the two coincide, this can destroy the inertness of the
scar point, which is manifested as sharp dips in mx

DE in the
numerical results discussed above, and for intermediate
values of hxD in the inset of Fig. 1(a). The FDPT predicts
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FIG. 5. Periodicity in drive strength, hxD, of the magnetization response [diagonal ensemble averagemx
DE, Eq. (3)]. The top row shows

periodicity for both off-resonance (left, hx0 ¼ −0.2) and on-resonance (right, hx0 ¼ −0.21) drives. Other parameters and the initial low-
temperature state, as in Fig. 2(b). In both cases, the leading frequency of oscillations is Ω ≈ 157.08 ≈ 2π=ω, visible in the bottom panel,
as predicted by Eq. (43). The other parameters are the same as in Fig. 1(a).

(a) (b) (c)

FIG. 4. Interacting case: Freezing and resonances in the magnetization ratio mx
DE=m

x
0 versus h

x
0. The observable, initial states at zero

[panels (a,b)] and high temperature (inverse temperature β ¼ 10−2) [panel (c)], and other parameters are as described in Fig. 1(a).
Results shown for slow [(a) ω ¼ 0.4] and very slow [(b,c) ω ¼ 0.04] drives (points on the green lines). The resonances obtained from
first-order FDPT, Eq. (42) (purple vertical lines), show a remarkable match with the numerical values of dips in mx. [Some higher-order
resonances are also visible at ω ¼ 0.4 in panel (a)]. The other parameters are the same as in Fig. 1.
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isolated resonances in parameter space and provides a
guide for choosing the Hamiltonian parameters to avoid
resonances and observe stable scars. Our choice of param-
eters for Fig. 1 is guided by the theory [Eq. (42)], and we
indeed observe resonance-free strong freezing at the scar
points.
It would clearly be desirable to embark on a more

detailed study, both with respect to the role of higher-order
resonances (visible in the left panel of Fig. 4) and with
regard to the statistics of the resonances as the system size
increases.

VI. ROBUSTNESS AND GENERALITY OF THE
SCARRING AND EMERGENT CONSERVATION

In this section, we demonstrate the robustness and
generality of the phenomenon of emergent conservation
and the consequent absence of thermalization, by compar-
ing the diagonal ensemble average mx

DE with the driving
frequency ω for a range of qualitatively distinct models. We
also demonstrate the stability of the conservation law at the
scar or freezing points upon increasing the system size. In
all cases, the drive strength is set to be hxD ¼ 40, and the
freezing peaks or scar points are thus expected to occur for
ω ¼ 40=k, where k is an integer. This condition was
derived for all Ising interactions in Sec. IV and will be
derived for general two-body Heisenberg interactions in
Sec. VI B.

A. Additional forms of Ising interactions

First, we confirm, as predicted by the moving-frame
Magnus expansion in Sec. IV, the robustness of the
phenomenon under diverse variations of the form of Hx

0

in the total Hamiltonian partitioned in the form of Eq. (6).
We recall that Hx

0 is the portion of the static part of the
Hamiltonian that commutes with HD, and the nature of
the whole static part can be tuned over a wide variety of
many-body Hamiltonians depending on the form of Hx

0,
ranging from noninteracting to interacting, integrable to
nonintegrable, and low to high dimensional. We consider
two forms for Hx

0. First, we add a three-body interaction, of
strength Jxxx,

Hxð3SpinÞ
0 ¼ −J

X
i

σxi σ
x
iþ1 þ κ

X
i

σxi σ
x
iþ2

þ Jxxx
X
i

σxi σ
x
iþ1σ

x
iþ2 − hx0

XL
i

σxi : ð45Þ

Second, we consider long-range interactions as follows.
Spins are placed equidistantly on a circle, and the distance
rij between the ith and the jth spin is measured along the
chord connecting them, such that

HxðLRÞ
0 ¼ −J

X
ij

σxi σ
x
j

rij
− hx0

XL
i

σxi : ð46Þ

The increased effective coordination number is intended to
mimic the phenomenology of higher-dimensional models.
The results are given in Fig. 6.

B. General Heisenberg interactions

We consider the case where the static part of the
Hamiltonian HðtÞ [Eq. (6)] not only consists of a simple
transverse field but also includes a general Heisenberg

(a) (b)

FIG. 6. Infinite-time limit of the magnetization, mx
DE, versus driving frequency ω for Hamiltonians of the form in Eq. (6) but with

different types of Hx
0, namely, three-spin interactions [(a) Hx

0 ¼ Hxð3 SpinÞ
0 , Eq. (45)] and long-range interactions [(b) Hx

0 ¼ HxðLRÞ
0 ,

Eq. (46)]. The strong freezing of mx
DE near the freezing points (ω ¼ hxD=k) is observed in agreement with the prediction of the

Magnus expansion up to the two leading orders in both cases. Interestingly, small corrections due to the higher-order terms are also
observed, namely, small deviations of the peak heights from unity for the three-spin case, and tiny shifts of the peak from the
freezing condition for the long-range case. Apart from these corrections, the higher-order terms do not appear to change any of the
key aspects of the phenomenon (strong emergent conservation of mx at all times and consequent lack of unbounded heating). Here,
the parameters are Jxxx ¼ 0.5; J ¼ 1; κ ¼ 0.7 π=3; hx0 ¼ e=10; hz ¼ 1.2; hxD ¼ 40; L ¼ 20.
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interaction with arbitrary position dependence. The
Heisenberg terms involving σy;zi are included in the V
term, and those involving σxi are included in the H

0
x term as

follows. The total HamiltonianHðtÞ ¼ HHBðtÞ, in this case,
has the same form in Eq. (6) but with V replaced by

VHB ¼ −
X
i;j

Jyijσ
y
i σ

y
j −

X
i;j

Jzijσ
z
iσ

z
j − hz

X
i

σz ð47Þ

and Hx
0 replaced by

HxðHBÞ
0 ¼ −

X
i;j

Jxijσ
x
i σ

x
j þ κ

X
σxi σ

x
iþ2 − hx0

X
σxi : ð48Þ

The total static Hamiltonian V þHx
0 can thus have a

general Heisenberg term with an arbitrary interaction graph
(coordination number, spatial dimensionality, and position
dependence).

For the changed form of V, the moving frame Magnus
expansion requires some additional lengthy steps (see
Appendix A 2) but eventually leads to the same conclusion
as derived in Sec. IV; namely, mx is exactly conserved in
the first two orders of the expansion.
Interestingly, the first term (zeroth order in 1=ω) exhibits

an attractive route to the emergent conserved quantity: All
the terms, in addition to Hx

0, do not in fact vanish, but
their sum explicitly exhibits a U(1) symmetry present
neither in HðtÞ nor in HmovðtÞ. This assures conservation
ofmx in the first order. In the next order (first order in 1=ω),
all the terms except Hx

0 vanish. In the following, we
summarize the results, relegating the detailed calculation
to Appendix A 1.
For the total Hamiltonian HHBðtÞ, employing the unitary

transformation induced byWðtÞ [Eq. (13)], we switch to the
moving frame, in which our total Hamiltonian reads

Hmov
HB ðtÞ ¼ Hx

0 −
X
i;j

Jyijσ
y
i σ

y
j

�
I cos2ð2θÞ − σxi σ

x
jsin

2ð2θÞ þ i
2
sinð4θÞðσxi þ σxjÞ

�

−
X
i;j

Jzijσ
z
iσ

z
j

�
I cos2ð2θÞ − σxi σ

x
jsin

2ð2θÞ þ i
2
sinð4θÞðσxi þ σxjÞ

�

− hz cosð2θÞ
X
i

σzi þ hz sinð2θÞ
X
i

σyi : ð49Þ

In the following, we state the results of the Magnus
expansion of Hmov

HB ðtÞ.
The first term (zeroth order in 1=ω) is the average

Hamiltonian, given by

Hð0Þ
eff ¼

1

T

Z
T

0

dtHmov
HB ðtÞ

¼ HxðHBÞ
0 −

1

2

X
i;j

ðJyij þ JzijÞ½σyi σyj þ σziσ
z
j�; ð50Þ

under the freezing condition hxDT ¼ 2πk (or hxD ¼ kω).
This term, though nontrivial and nonzero, is visibly U(1)
symmetric and commutes with mx.
The second term (first order in 1=ω) reads

Hð1Þ
eff ¼

1

2!ðiÞT
Z

T

0

dt1

Z
t1

0

dt2½Hmov
HB ðt1Þ; Hmov

HB ðt2Þ�: ð51Þ

Using Eq. (49), calculating all the commutators, and
performing the integrals (see Appendix A 2), we finally
get, under the freezing condition hxDT ¼ 2πk,

Hð1Þ
eff ¼ 0; ð52Þ

which finally yields

Heff ¼ HxðHBÞ
0 −

1

2

X
i;j

ðJyij þ JzijÞ½σyi σyj þ σziσ
z
j�; ð53Þ

up to Oð1=ω2Þ. This result implies strong conservation
of mx for large hxD at the freezing points. We numerically
check two well-known special cases, namely, the transla-
tionally invariant, isotropic and anisotropic Heisenberg
chains (in the presence of all the other interactions
considered earlier). The clean, translationally invariant,
nonintegrable chains with short-range interactions, as
employed here for the demonstration, are probably the
easiest to heat up (hence hardest to freeze), enjoying no
protection from localization of any sort or additional
stability that could occur due to a high coordination
number. The results are summarized in Figs. 7(a) and 7(b).

C. L dependence of the freezing

The L dependence of mx
DE at the scar points throws light

on the stability of the emergent conservation with increas-
ing system size. The conservation shows no perceptible
degradation with increasing L, in agreement with the above
analytical result for ω ¼ 10. For ω ¼ 1, there is a non-
monotonic behavior but no systematic decline. These kinds
of irregularities [see, e.g., Figs. 8(c) and 8(d)] often occur as
“pathological” finite-size effects close to integrability [57].
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With present-day numerical methods unable to access
significantly larger system sizes, our data cannot, of
course, rule out thermalization appearing beyond an as-
yet-unknown, much larger “prethermal length scale.”
However, we emphasize that the results in Fig. 8 do not
even exhibit a discernible systematic tendency towards
unfreezing as a precursor to thermalization as the system
size is increased.

1. Resonances

Finally, we note that our treatment of the resonances
discussed in Sec. V B 1 will essentially carry over to the
expanded settings discussed in this section. In particular,
the isolated nature of first-order resonances discussed there,
which underpins the stability of the conservation law,
remains intact, as follows. For the various forms of Hx

0,
Eq. (42) still equates to a finite change in the eigenvalue of
Hx

0 due to a single spin flip with an integer multiple of ω=2.
Since the single spin-flip energies remain finite as L → ∞,
the resonances are isolated. For the case of Heisenberg
interactions, in our formalism, the Heisenberg terms will be
absorbed into the perturbation and not otherwise affect the
resonance condition.
These numerical and analytical observations all point

towards the emergence of a stable conservation law—not
present in the undriven case—and the absence of ergodic
heating starting from any generic initial state across a
wide range of quantum chaotic systems under a strong
periodic drive.

VII. CONCLUSIONS AND OUTLOOK

In conclusion, we have demonstrated that generic,
interacting, Floquet systems subjected to a strong periodic
drive can exhibit scar points, i.e., points in the drive
parameter space at which the system becomes nonergodic
due to the emergence of constraints in the form of a
emergent conservation law not present in the undriven
system. This manifests itself in the absence of ergodicity
and unbounded heating starting from an arbitrary initial
state at and around these points, which is captured by our
strong-field Magnus expansion in a time-dependent frame.
For low drive frequencies, we formulate a novel perturba-
tion theory (Floquet-Dyson perturbation theory) that

(a)

(b)

(c)

(d)

(e)

FIG. 8. L dependence of mx
DE at the freezing peaks correspond-

ing to hxD ¼ 40 and for ω ¼ 1.0 and 10.0, plotted against the
system size L for different variants of the drive Hamiltonian HðtÞ
[Eq. (6)]. Panels (a)–(c) show different variants of Ising inter-
actions: (a) Hx

0 contains the nearest- and next-nearest-neighbor

interactions and on-site fields [Figs. 1(a)]. (b) Hx
0 ¼ Hxð3SpinÞ

0

[three-spin interactions; Fig. 6(a)]. (c) Hx
0 ¼ HxðLRÞ

0 [additional
long-range interactions; Fig. 6(b)]. Panels (d) and (e) show
Heisenberg interactions: HðtÞ ¼ HHBðtÞ. Results are shown for
(d) translationally invariant clean chains and for the isotropic case
[Fig. 7(a)] and (e) for the anisotropic case [Fig. 7(b)].

(a) (b)

FIG. 7. Infinite-time limit of the magnetization, mx
DE, versus driving frequency ω for Heisenberg interactions. (a) For the

Hamiltonian in [Eq. (6)], with V replaced by VHB [Eq. (47)] and Hx
0 by HxðHBÞ

0 [Eq. (48)], with translationally invariant isotropic
interaction strengths (Jxi ¼ Jyi ¼ Jzi ¼ 1.0). (b) Same model as in the left panel, but with anisotropic interaction strengths
Jxi ¼ 1.0; Jyi ¼ 0.5; Jzi ¼ 0.6. In both cases, the emergence conservation of mx and the concomitant absence of thermalization are
clearly visible. Slight shifts of the peaks from the predicted values are observed as in Fig. 6. Data are shown for
J ¼ 1; κ ¼ 0.7 π=3; hx0 ¼ e=10; hz ¼ 1.2; hxD ¼ 40; L ¼ 20.
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works, even at first order, very accurately at or near
integrability of the scar points. In particular, the resonances
predicted by the theory accurately coincide with the sharp
dips in the emergent conserved quantity. At the resonances,
the system absorbs energy without bound from the drive,
and hence the scars “compete” with the resonances. The
resonances predicted by the theory appear to be isolated in
parameter space, and thus, the theory provides a guideline
for choosing parameters for observing resonance-free
stable scars, as we demonstrate here. These results hold,
in particular, for Ising systems in any dimension and with
any form of the Ising interactions, as well as in the presence
of additional pairwise Heisenberg interactions forming an
arbitrary interaction graph. We also demonstrate the robust-
ness of the phenomenon in the presence of anisotropic
Heisenberg (XYZ) interactions.
The exact mechanism of this many-body phenomenon

is actually still unknown, and the intuitions we have
gathered are based on renormalization of the couplings,
which are most effectively revealed under the nonpertur-
bative, time-dependent frame transformation. For certain
values of parameters, these renormalization factors vanish
owing to destructive many-body quantum interference.
These features are not captured by ordinary (lab-frame)
Magnus expansion because it misses the effective resum-
mation necessary for these factors to manifest, as per-
formed by the frame transformation.
The emergence and stability of a conservation law in an

interacting, quantum, chaotic many-body system due to
strong periodic drive is an unexpected and intriguing
phenomenon, which warrants extensive investigations. One
important direction is to study the nature of the state through
continuous (nonstroboscopic) time—the so-called micromo-
tions. A powerful technique to study this is the so-called van
Vleck expansion (also known as the “high-frequency expan-
sion” see, e.g., Refs. [28,53,58] and references therein) of the
Floquet Hamiltonian. This method is also a potential alter-
native to our approach to study the stroboscopic problem.
Our work also touches on various Floquet experiments.

In the original experimental work on Floquet many-body
localization [31], the interest in a large drive was already
noted. In the context of the studies of Floquet time crystals,
the two kinds of states studied above have also played a
central role: The trapped ion experiment [55] used a fully
polarized starting state, while the NMR experiment [56]
employed a high-temperature state.
Our work points towards the important role in non-

equilibrium settings played by the generation of emergent
conservation laws and constraints, in contrast to only
focusing on those existing in the static (undriven) system,
and their demise under an external drive. Our work also
opens a door for stable Floquet engineering in interacting
systems and indicates a recipe for tailoring interesting states
and structured Hilbert spaces by choosing suitable drive
Hamiltonians.
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APPENDIX A: STRONG-FIELD FLOQUET
EXPANSION

1. Ising case

Here, we provide the details of the derivation of the
effective Hamiltonian in Eqs. (17)–(20). Carrying out the
Pauli algebra gives

Hmov ¼ Hx
0 − hz

X
i

½cos ð2θÞσzi þ sin ð2θÞσyi �; where

θðtÞ ¼ −hxD

Z
t

0

dt0Sgnðsinωt0Þ: ðA1Þ

We note that the frame change does not affect mx since it
commutes with WðtÞ.
Next, we perform the Magnus expansion of Hmov. The

initial orders are given by

Heff ¼
X∞
n¼0

H0
F; where

Hð0Þ
F ¼ 1

T

Z
T

0

HmovðtÞdt;

Hð1Þ
F ¼ 1

2!iT

Z
T

0

dt1

Z
t1

0

dt2½Hmovðt1Þ; Hmovðt2Þ�; ðA2Þ
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etc. We first consider the term Hð0Þ
F . It is easy to check that

Hx
0 remains unaffected by the rotation, and the integrals in

the first term vanish, giving

Hð0Þ
F ¼ Hx

0: ðA3Þ

Next, we consider the second-order term

Hð1Þ
F ¼ 1

2!ðiÞT
Z

T

0

dt1

Z
t1

0

dt2½Hðt1Þ; Hðt2Þ�: ðA4Þ

Arranging the terms in the commutator, we get

½Hðt1Þ; Hðt2Þ� ¼ K1 þ K2 þ K3; where

K1 ¼ −hzfcos (θðt2Þ) − cos (θðt1Þ)g½Hx
0;Sz�;

K2 ¼ −hzfsin (θðt2Þ) − sin (θðt1Þ)g½Hx
0;Sy�;

K3 ¼ ðhzÞ2 sin ½θðt2Þ − θðt1Þ�½Sz;Sy�; ðA5Þ

where Sx=y=z ¼
P

L
i σ

x=y=z
i .

Next, we note that the integral in Eq. (A4) can be broken
up in the following way,

I½f(θðt1Þ;θðt2Þ)�¼
Z

T

0

dt1

Z
t1

0

dt2½f(θðt1Þ;θðt2Þ)�

¼ I1½f(θðt1Þ;θðt2Þ)�þI2½f(θðt1Þ;θðt2Þ)�;
þI3½f(θðt1Þ;θðt2Þ)�; where

I1½f(θðt1Þ;θðt2Þ)�¼
Z

T=2

0

dt1

Z
t1

0

dt2½f(θðt1Þ;θðt2Þ)�;

I2½f(θðt1Þ;θðt2Þ)�¼
Z

T

T=2
dt1

Z
T=2

0

dt2½f(θðt1Þ;θðt2Þ)�;

I3½f(θðt1Þ;θðt2Þ)�¼
Z

T

T=2
dt1

Z
t1

T=2
dt2½f(θðt1Þ;θðt2Þ)�:

ðA6Þ

Finally, we note that

For I1; θðt1Þ ¼ −hxDt1; θðt2Þ ¼ −hxDt2;

For I2; θðt1Þ ¼ −hxDðT − t1Þ; θðt2Þ ¼ −hxDt2;

For I3; θðt1Þ ¼ −hxDðT − t1Þ; θðt2Þ ¼ −hxDðT − t2Þ:
ðA7Þ

Using Eqs. (A4)–(A7) and evaluating the integrals,
we obtain Eqs. (17)–(20) (see Appendix A 3 for further
details).

2. Heisenberg case

In the Heisenberg case, the total Hamiltonian HðtÞ ¼
HHBðtÞ has the same form as that in Eq. (6), except with V
replaced by

VHB ¼ −
X
i;j

Jyijσ
y
i σ

y
j −

X
i;j

Jzijσ
z
iσ

z
j − hz

X
i

σz ðA8Þ

and Hx
0 replaced by

HxðHBÞ
0 ¼ −Jxij

X
σxi σ

x
j þ κ

X
σxi σ

x
iþ2 − hx0

X
σxi : ðA9Þ

Now, following Sec. IV, we switch to the moving frame
by acting on the total HamiltonianHHBðtÞ, with the unitary
transformation given by

VðtÞ ¼ exp

�
ihxD

X
j

σxj

Z
t

t0

Sgn(sinðωt0Þ)dt0
�

¼
Y
j

exp

�
ihxDσ

x
j

Z
t

t0

Sgn(sinðωt0Þ)dt0
�
; ðA10Þ

where

θðtÞ ¼ hxD

Z
t

t0

Sgn(sinðωt0Þ)dt0: ðA11Þ

This transformation gives our moving-frame Hamiltonian

Hmov
HB ðtÞ ¼

Y
i

exp½−iσxi θðtÞ�H0 exp½iσxi θðtÞ�

¼ HxðHBÞ
0 −

Y
i

exp ½−iσxi θðtÞ�
�X

k;l

Jyk;lσ
y
kσ

y
l

�Y
j

exp ½iσxjθðtÞ� −
Y
i

exp ½−iσxi θðtÞ�
�X

k;l

Jzk;lσ
z
kσ

z
l

�Y
j

exp ½iσxjθðtÞ�

− hz
Y
i

exp ½−iσxi θðtÞ�
�X

k;l

σzk

�Y
j

exp ½iσxjθðtÞ�; ðA12Þ

where

HxðHBÞ
0 ¼ −Jxij

X
σxi σ

x
j þ κ

X
σxi σ

x
iþ2 − hx0

X
σxi ; ðA13Þ

which gives
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Hmov
HB ðtÞ ¼ HxðHBÞ

0 −
X
k;l

Jyk;le
−iσxkθðtÞe−iσ

x
l θðtÞðσykσyl Þeiσ

x
kθðtÞeiσ

x
l θðtÞ

−
X
k;l

Jzk;le
−iσxkθðtÞe−iσ

x
l θðtÞðσzkσzl Þeiσ

x
kθðtÞeiσ

x
l θðtÞ − hz

X
k;l

e−iσ
x
kθðtÞσzke

iσxkθðtÞ: ðA14Þ

The Jyij term can be simplified to

¼ −
X
i;j

Jyijσ
y
i σ

y
je

2iσxi θðtÞe2iσ
x
jθðtÞ

¼ −
X
i;j

Jyijσ
y
i σ

y
j ½I cos2ð2θÞ − σxi σ

x
j sin

2ð2θÞ þ i sinð2θÞ cosð2θÞðσxi þ σxjÞ�: ðA15Þ

Similarly, the Jzij term becomes

¼ −
X
i;j

Jzijσ
z
iσ

z
j½I cos2ð2θÞ − σxi σ

x
j sin

2ð2θÞ þ i sinð2θÞ cosð2θÞðσxi þ σxjÞ�: ðA16Þ

The hz term is similar to our previous case, namely,

¼ −hz cosð2θÞ
X
i

σzi þ hz sinð2θÞ
X
i

σyi : ðA17Þ

Hence,

Hmov
HB ðtÞ ¼ HxðHBÞ

0 −
X
i;j

Jyijσ
y
i σ

y
j

�
I cos2ð2θÞ − σxi σ

x
jsin

2ð2θÞ þ i
2
sinð4θÞðσxi þ σxjÞ

�

−
X
i;j

Jzijσ
z
iσ

z
j

�
I cos2ð2θÞ − σxi σ

x
jsin

2ð2θÞ þ i
2
sinð4θÞðσxi þ σxjÞ

�

− hz cosð2θÞ
X
i

σzi þ hz sinð2θÞ
X
i

σyi : ðA18Þ

Next, we perform the Magnus expansion on Eq. (A18).
The zeroth-order term is

Hð0Þ
eff ¼

1

T

Z
T

0

dtHmov
HB ðtÞ: ðA19Þ

Now, with the definition of θðtÞ given in Eq. (A11), we get
Z

T

0

cos2ð2θÞdt ¼ T
2
þ sin 2hxDT

4hDx
; ðA20aÞ

Z
T

0

sin2ð2θÞdt ¼ T
2
−
sin 2hxDT
4hDx

; ðA20bÞ
Z

T

0

sinð4θÞdt ¼ 1

4hDx
ð1 − cos 2hxDTÞ; ðA20cÞ

Z
T

0

sinð2θÞdt ¼ 1

hDx
ð1 − cos hxDTÞ; ðA20dÞ

Z
T

0

cosð2θÞdt ¼ 1

hxD
sinðhxDTÞ: ðA20eÞ

Applying the freezing condition,

hxDT ¼ 2πn; ðA21Þ

we get

Z
T

0

cos2ð2θÞdt ¼ T
2
; ðA22aÞ

Z
T

0

sin2ð2θÞdt ¼ T
2
; ðA22bÞ

Z
T

0

sinð4θÞdt ¼ 0; ðA22cÞ
Z

T

0

sinð2θÞdt ¼ 0; ðA22dÞ
Z

T

0

cosð2θÞdt ¼ 0: ðA22eÞ

Putting everything in Eq. (A19), we obtain
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Hð0Þ
eff ¼ HxðHBÞ

0 −
X
i;j

Jyijσ
y
i σ

y
j
1

T

�
T
2
− σxi σ

x
j
T
2

�

−
X
i;j

Jzijσ
z
iσ

z
j
1

T

�
T
2
− σxi σ

x
j
T
2

�
ðA23Þ

¼ HxðHBÞ
0 −

1

2

X
i;j

½σyi σyj þ σziσ
z
j�ðJyij þ JzijÞ: ðA24Þ

We already have

½HxðHBÞ
0 ; mx� ¼ 0;

and one can easily show that

�X
i;j

ðσyi σyj þ σziσ
z
jÞ; mx

�
¼ 0: ðA25Þ

The first-order term of the Magnus expansion is

Hð1Þ
eff ¼

1

2!Ti

Z
T

0

dt1

Z
t1

0

dt2½Hmov
HB ðt1Þ; Hmov

HB ðt2Þ�: ðA26Þ

Rearranging all the terms in Eq. (A18), we can write

Hmov
HB ðtÞ ¼ HxðHBÞ

0 þ A cos2ð2θÞ þ B sin2ð2θÞ
þ C sinð4θÞ þD cosð2θÞ þ E sinð2θÞ: ðA27Þ

Hence,

½Hmov
HB ðt1Þ;Hmov

HB ðt2Þ� ¼ ½HxðHBÞ
0 ;A�I1 þ ½HxðHBÞ

0 ;B�I2 þ ½HxðHBÞ
0 ;C�I3 þ ½HxðHBÞ

0 ;D�I4 þ ½HxðHBÞ
0 ;E�I5 þ ½A;B�I6 þ ½A;C�I7

þ ½A;D�I8 þ ½A;E�I9 þ ½B;C�I10 þ ½B;D�I11 þ ½B;E�I12 þ ½C;D�I13 þ ½C;E�I14 þ ½D;E�I15;
ðA28Þ

where

A ¼ −
X
i;j

½Jyijσyi σyj þ Jzijσ
z
iσ

z
j�; B ¼

X
i;j

½ðJyijσyi σyj þ Jzijσ
z
iσ

z
jÞσxi σxj �; C ¼ −

X
i;j

i
2
½ðJyijσyi σyj þ Jzijσ

z
iσ

z
jÞðσxi þ σxjÞ�;

D ¼ −hz
X
i

σzi ; and E ¼ hz
X
i

σyi ; ðA29Þ

and

I1 ¼ cos2(2θðt2Þ)− cos2(2θðt1Þ);
I2 ¼ sin2(2θðt2Þ)− sin2(2θðt1Þ);
I3 ¼ sin(4θðt2Þ)− sin(4θðt1Þ);
I4 ¼ cos(2θðt2Þ)− cos(2θðt1Þ);
I5 ¼ sin(2θðt2Þ)− sin(2θðt1Þ);
I6 ¼ cos2(2θðt1Þ)sin2(2θðt2Þ)− sin2(2θðt1Þ)cos2(2θðt2Þ);
I7 ¼ cos2(2θðt1Þ)sin(4θðt2Þ)− sin(4θðt1Þ)cos2ð2θðt2Þ);
I8 ¼ cos2(2θðt1Þ)cos(2θðt2Þ)− cos(2θðt1Þ)cos2ð2θðt2Þ);
I9 ¼ cos2(2θðt1Þ)sin(2θðt2Þ)− sin(2θðt1Þ)cos2ð2θðt2Þ);
I10¼ sin2(2θðt1Þ)sin(4θðt2Þ)− sin(4θðt1Þ)sin2ð2θðt2Þ);
I11¼ sin2(2θðt1Þ)cos(2θðt2Þ)− cos(2θðt1Þ)sin2ð2θðt2Þ);
I12¼ sin2(2θðt1Þ)sin(2θðt2Þ)− sin(2θðt1Þ)sin2ð2θðt2Þ);
I13¼ sin(4θðt1Þ)cos(2θðt2Þ)− cos(2θðt1Þ)sin4θðt2Þ;
I14¼ sin(4θðt1Þ)sin(2θðt2Þ)− sin(2θðt1Þ)sin(4θðt2Þ);
I15¼ sin½2(θðt1Þ−θðt2Þ)�: ðA30Þ

Now, one can show that all 15 integrals of In in Eq. (A30)
vanish for the freezing condition. Hence,

Heff ¼ HxðHBÞ
0 −

1

2

X
i;j

½σyi σyj þ σziσ
z
j�ðJyij þ JzijÞ

up to the first two orders.

3. Explicit calculation of the integrals in the moving
frame Magnus expansion: Ising case (self-contained)

The Hamiltonian can be written as

HðtÞ ¼ H0 þ rðtÞHD: ðA31Þ

We move to the rotating frame using the transformation

HmovðtÞ ¼ W†ðtÞH0WðtÞ; ðA32Þ

where the rotation operator is

WðtÞ ¼ exp

�
−i

Z
t

t0

rðt0Þdt0HD

�
: ðA33Þ
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The first case is an Ising model with next-nearest-neighbor
terms:

H0 ¼ −
X
i

Jσxi σ
x
iþ1 þ κ

X
σxi σ

x
iþ2 − hx0

X
σxi − hz

X
σzi ;

ðA34Þ

¼ Hx
0 þ V ðA35Þ

HD ¼ −hxD
X

σxi ; ðA36Þ

and

rðtÞ ¼ Sgn(sinðωtÞ): ðA37Þ

From Eqs. (A33), (A36), and (A37), we get

WðtÞ ¼ exp

�
ihxD

X
j

σxj

Z
t

t0

Sgn(sinðωt0Þ)dt0
�

¼
Y
j

exp

�
ihxDσ

x
j

Z
t

t0

Sgn(sinðωt0Þ)dt0
�
: ðA38Þ

Defining

θðtÞ ¼ −hxD

Z
t

t0

Sgn(sinðωt0Þ)dt0; ðA39Þ

and putting all of these together, we get

HmovðtÞ ¼
Y
i

exp½−iσxi θðtÞ�H0 exp½iσxi θðtÞ�

¼ Hx
0 − hz

Y
i

exp ½−iσxi θðtÞ�
�X

k

σzk

�

×
Y
j

exp ½iσxjθðtÞ� ðA40Þ

¼ Hx
0 − hz

X
k

e−iσ
x
kθðtÞσzke

iσxkθðtÞ ðA41Þ

∴ HmovðtÞ ¼ Hx
0 − hz cos 2θ

X
i

σzi − hz sin 2θ
X
i

σyi :

ðA42Þ

Now, we can perform Magnus expansion on Eq. (A42).
The zeroth-order term is

Hð0Þ
eff ¼

1

T

Z
T

0

HmovðtÞdt

¼ 1

T

Z
T

0

Hx
0dt −

hz

T

X
i

σzi

Z
T

0

cos 2θdt

−
hz

T

X
i

σyi

Z
T

0

sin 2θdt: ðA43Þ

Then, with the definition of θðtÞ as given in Eq. (A39)
[note: θðtÞ ¼ −hxDt for 0 < t ≤ ðT=2Þ, and θðtÞ ¼
−ðhxDT − hxDtÞ for ðT=2Þ ≤ t ≤ T], the integral
simplifies to

Z
T

0

cos2θdt¼
Z T

2

0

cos2θdtþ
Z

T

T
2

cos2θdt

¼
Z T

2

0

cos ð2hxDtÞdtþ
Z

T

T
2

cos2ðhxDT − hxDtÞdt

¼ 1

hxD
sin ðhxDTÞ: ðA44Þ

Similarly,

Z
T

0

sin 2θdt ¼ 1

hxD
(cos ðhxDTÞ − 1): ðA45Þ

Putting Eqs. (A44) and (A45) into Eq. (A43), we get

Hð0Þ
eff ¼ Hx

0 −
hz

hxDT

X
i

σzi sin ðhxDTÞ

þ hz

hxDT

X
i

σyi (1 − cos ðhxDTÞ): ðA46Þ

Now, putting the freezing condition hxDT ¼ 2nπ in
Eq. (A46), i.e., sin hxDT ¼ 0 and cos hxDT ¼ 1, one gets

Hð0Þ
eff jfreezing ¼ Hx

0: ðA47Þ

Next, we evaluate the first-order term,

Hð1Þ
eff ¼

1

2!Ti

Z
T

0

dt1

Z
t1

0

dt2½Hmovðt1Þ; Hmovðt2Þ�: ðA48Þ

Calling θðt1Þ ¼ θ1; θðt2Þ ¼ θ2 and
P

i σ
z
i ¼ Sz;P

i σ
y
i ¼ Sy and using the form of Hmov from Eq. (A42),

the commutator in Eq. (A48) simplifies to

½Hmovðt1Þ; Hmovðt2Þ� ¼ ½Sz;Hx
0�hzðcos 2θ2 − cos 2θ1Þ

þ ½Sy;Hx
0�hzðsin 2θ2 − sin 2θ1Þ

þ ½Sy; Sz�ðhzÞ2 sinð2θ1 − 2θ2Þ:
ðA49Þ
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Now, for example, the integral corresponding to the first term is

I1 ¼
Z

T

0

Z
t1

0

dt1dt2ðcos 2θ2 − cos 2θ1Þ ðA50Þ

¼
Z T

2

0

dt1

Z
t1

0

dt2 cos 2θðt2Þ þ
Z

T

T
2

dt1

Z T
2

0

dt2 cos 2θðt2Þ þ
Z

T

T
2

dt1

Z
t1

T
2

dt2 cos 2θðt2Þ −
Z

T

0

dt1 cos 2θðt1Þt1

¼
Z T

2

0

dt1

Z
t1

0

dt2 cosð2hxDt2Þ þ
Z

T

T
2

dt1

Z T
2

0

dt2 cosð2hxDt2Þ þ
Z

T

T
2

dt1

Z
t1

T
2

dt2 cosð2hxDT − 2hxDt2Þ

−
Z T

2

0

dt1t1 cosð2hxDt1Þ −
Z

T

T
2

dt1t1 cosð2hxDT − 2hxDt1Þ; ðA51Þ

I1 ¼ IA1 þ IB1 þ IC1 − ID1 − IE1 : ðA52Þ

Then,

IA1 ¼
Z T

2

0

dt1

Z
t1

0

dt2 cosð2hxDt2Þ ¼
1

2hxD

Z T
2

0

dt1 sin 2hxDt1 ¼
1

ð2hxDÞ2
½1 − cos hxDT�; ðA53Þ

IB1 ¼
Z

T

T
2

dt1

Z T
2

0

dt2 cosð2hxDt2Þ ¼
1

2hxD

Z
T

T
2

dt1 sin hxDT ¼ T
4hxD

sin hxDT; ðA54Þ

IC1 ¼
Z

T

T
2

dt1

Z
t1

T
2

dt2 cosð2hxDT − 2hxDt2Þ ¼
1

2hxD

Z
T

T
2

dt1½sin hxDT − sinð2hxDT − 2hxDt1Þ�

¼ T
4hxD

sin hxDT −
1

ð2hxDÞ2
þ 1

ð2hxDÞ2
cos hxDT; ðA55Þ

ID1 ¼
Z T

2

0

dt1t1 cosð2hxDt1Þ ¼
1

2hxD

�
T
2
sin hxDT −

Z T
2

0

dt1 sin 2hxDt1

�

¼ T
4hxD

sin hxDT þ 1

ð2hxDÞ2
cos hxDT −

1

ð2hxDÞ2
; ðA56Þ

IE1 ¼
Z

T

T
2

dt1t1 cosð2hxDT − 2hxDt1Þ ¼
T
4hxD

sin hxDT þ 1

2hxD

Z
T

T
2

dt1 sinð2hxDT − 2hxDt1Þ

¼ T
4hxD

sin hxDT þ 1

ð2hxDÞ2
ð1 − cos hxDTÞ: ðA57Þ

Now, putting Eqs. (A53)–(A57) into Eq. (A52) yields

I1 ¼ 0: ðA58Þ

Carrying out the integrals corresponding to the other two
commutators in Eq. (A49), one can similarly get

I2 ¼
Z

T

0

Z
t1

0

dt1dt2ðsin 2θ1 − sin 2θ2Þ ¼ 0; ðA59Þ

I3 ¼
Z

T

0

Z
t1

0

dt1dt2 sinð2θ1 − 2θ2Þ ¼ 0: ðA60Þ

APPENDIX B: FLOQUET-DYSON
PERTURBATION THEORY

We start from Eq. (24), which implies that

i
X
m

_cmðtÞe−i
R

t

0
dt0Emðt0Þjmi

¼ V
X
m

cmðtÞe−i
R

t

0
dt0Emðt0Þjmi; ðB1Þ

where the dot over cm denotes d=dt. Taking the inner
product of Eq. (B1) with hnj and using Eq. (23), we find, to
first order in V, that
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_cn ¼ 0: ðB2Þ

We can therefore choose

cnðtÞ ¼ 1 ðB3Þ
for all t. We thus have

jψnðtÞi ¼ e−i
R

t

0
dt0Enðt0Þjni þ

X
m≠n

cmðtÞe−i
R

t

0
dt0Emðt0Þjmi:

ðB4Þ
Hence, Eq. (25) implies that the Floquet eigenvalue is still

given by μð0Þn ¼ R
T
0 dtEnðtÞ up to first order in V.

Next, taking the inner product of Eq. (B1) with hmj,
where m ≠ n, we find, to first order in V, that

_cm ¼ −ihmjVjniei
R

t

0
dt0½Emðt0Þ−Enðt0Þ�; ðB5Þ

so

cmðTÞ ¼ cmð0Þ − ihmjVjni ×
Z

T

0

dtei
R

t

0
dt0½Emðt0Þ−Enðt0Þ�:

ðB6Þ
We now impose the condition on jψnðTÞi of Eq. (26)

such that jψnð0Þi turns out to be a Floquet state; i.e., from
Eq. (B4), we must have

ψnðTÞ ¼ e−i
R

T

0
dtEnðtÞψnð0Þ; ðB7Þ

namely, we must have

cmðTÞ ¼ ei
R

T

0
dt½EmðtÞ−EnðtÞ�cmð0Þ ðB8Þ

for all m ≠ n. Clearly, jψnð0Þi satisfying this condition can
be identified as the Floquet state jμni.

1. Single-spin model

a. Model

We consider a single spin-S object, which evolves
according to the time-dependent Hamiltonian

HðtÞ ¼ −hxSx − hzSz − hxD SgnðsinðωtÞÞSx: ðB9Þ

Since sinðωtÞ is positive for 0 < t < T=2 and negative for
T=2 < t < T, where T ¼ 2π=ω, the Floquet operator is
given by

U ¼ eðiT=2Þ½ðhx−hxDÞSxþhzSz� × eðiT=2Þ½ðhxþhxDÞSxþhzSz�: ðB10Þ

The group properties of matrices of the form eia⃗·S⃗ imply
that U in Eq. (B10) must be of the same form and can
therefore be written as

U ¼ eiγk̂·S⃗;

where k̂ ¼ ðcos θ; sin θ cosϕ; sin θ sinϕÞ ðB11Þ
is a unit vector. We work in the basis in which Sx is
diagonal; hence, we choose the polar angles in such a way
that the x component of k̂ is equal to cos θ. The eigenstates
of U in Eq. (B11) are the same as the eigenstates of the
matrixM ¼ k̂ · S⃗. It is then clear that the expectation values
of Sx in the different eigenstates take the values cos θ times
S; S − 1;…;−S. The maximum expectation value is given
by smax ¼ S cos θ.
An important point to note is that if the parameters

hx; hz; hxD, and T are fixed and only the spin S is varied, the
values of γ and k̂ in Eq. (B11) do not change. Thus, if we
can calculate these quantities for one particular value
of S, the results will hold for all S. In particular, mx

max ≡
smax=S ¼ cos θ will not depend on S. We have confirmed
this numerically for a variety of parameter values.

b. Results from FDPT

Next, we apply the perturbation theory developed in
Sec. V. Writing the Hamiltonian as H ¼ H0ðtÞ þ V, where

H0ðtÞ ¼ −hxSx − hxD Sgn(sinðωtÞ)Sx;
V ¼ −hzSz; ðB12Þ

we can use perturbation theory to study how the state given
by j0i≡ jSx ¼ Si mixes with the state j1i≡ jSx ¼ S − 1i.
Following the steps leading up to Eq. (28), and using the
fact that h0jSzj1i ¼ ffiffiffiffiffiffiffiffi

S=2
p

, we find that

c1ð0Þ ¼
ffiffiffiffiffiffi
2S

p
hz

hxD

eih
xT=2½eihxDT=2 − cosðhxT=2Þ�

eih
xT − 1

: ðB13Þ

c. Exact results

It is instructive to look at the form of the Floquet operator
U in different cases. We first derive an exact expression for
U using the identity that if

eiαm̂·S⃗eiχn̂·S⃗ ¼ eiγk̂·S⃗; ðB14Þ
then

cos

�
γ

2

�
¼ cos

�
α

2

�
cos

�
χ

2

�
− m̂ · n̂ sin

�
α

2

�
sin

�
χ

2

�
;

k̂ ¼ 1

sin ðγ=2Þ
�
m̂ sin

�
α

2

�
cos

�
χ

2

�

þ n̂ sin

�
χ

2

�
cos

�
α

2

�

− m̂ × n̂ sin

�
α

2

�
sin

�
χ

2

��
: ðB15Þ
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We can derive Eq. (B15) from Eq. (B14) for the case S ¼
1=2 when S⃗ ¼ σ⃗=2. Equation (B15) then follows for any
value of S due to the group properties of the matrices given
in Eq. (B14).
We now use Eqs. (B14) and (B15) along with Eq. (B11),

which can be written in the form

α ¼ T
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhxD − hxÞ2 þ ðhzÞ2

q
;

m̂ ¼ −
ðhxD − hxÞx̂ − hzẑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhxD − hxÞ2 þ ðhzÞ2

p ;

χ ¼ T
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhxD þ hxÞ2 þ ðhzÞ2

q
;

n̂ ¼ ðhxD þ hxÞx̂þ hzẑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhxD − hxÞ2 þ ðhzÞ2

p ; ðB16Þ

where we have assumed that hxD is positive and much larger
than jhxj and jhzj.
If eih

xT ≠ 1, we can write the expressions in Eqs. (B16)
to zeroth order in the small parameter hz=hxD to obtain

α ¼ T
2
ðhxD − hxÞ; m̂ ¼ −x̂;

χ ¼ T
2
ðhxD þ hxÞ; n̂ ¼ x̂: ðB17Þ

Equations (B14) and (B15) then imply that

cos

�
γ

2

�
¼ cos

�
hxT
2

�
; and k̂ ¼ x̂: ðB18Þ

We thus find that the Floquet operator for the time period T
corresponds to a rotation about the x̂ axis.
If eih

xT ¼ 1, i.e., cosðhxT=2Þ ¼ �1, the denominator of
Eq. (B13) vanishes. If eih

x
DT=2 ≠ cosðhxT=2Þ, we have to

expand the expressions in Eqs. (B16) up to second order in
hz=hxD to find

k̂ ¼ cos

�
hxDT
4

�
ẑ − sin

�
hxDT
4

�
ŷ

if cos

�
hxT
2

�
¼ 1;

¼ sin

�
hxDT
4

�
ẑþ cos

�
hxDT
4

�
ŷ

if cos

�
hxT
2

�
¼ −1: ðB19Þ

Hence, the Floquet operator corresponds to a rotation about
an axis lying in the y-z plane, which implies that the
expectation value of Sx will be zero in all the eigenstates of
the Floquet operator.
If eih

xT ¼ 1 and eih
x
DT=2 ¼ cosðhxT=2Þ ¼ �1, both the

numerator and denominator of Eq. (B13) vanish. We then
discover that

k̂ ¼ hxx̂ − hzẑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhzÞ2 þ ðhxÞ2

p : ðB20Þ

In this case, the Floquet operator corresponds to a rotation
about an axis lying in the x-z plane.

2. FDPT for the Ising chain

The unperturbed energy difference for the Hamiltonian
in Eq. (6) is given by

EmðtÞ − E0ðtÞ ¼ 4ðJ − κÞ þ 2hx0 þ 2hxD SgnðsinðωtÞÞ:
ðB21Þ

We now use the notations and results from Sec. V to
construct the Floquet state jψð0Þi obtained by perturbing
the unperturbed (Floquet) eigenstate j0i to first order in V
given by

ψð0Þ ¼ c0j0i þ
XL
m≠0

cmð0Þjmi

¼ c0j0i þ
ffiffiffiffi
L

p
cmð0ÞjL − 2i; ðB22Þ

where

jL − 2i≡ 1ffiffiffiffi
L

p
XL
m¼1

jmi ðB23Þ

is a translation invariant and normalized state in whichP
m σxm ¼ L − 2. Taking c0ðtÞ ¼ 1 for all t and using

hmjVj0i ¼ −hz in Eq. (28), we get

cmð0Þ ¼ ihz
R
T
0 dtei

R
t

0
dt0½Emðt0Þ−E0ðt0Þ�

ei
R

T

0
dt½EmðtÞ−E0ðtÞ� − 1

; ðB24Þ

where EmðtÞ − E0ðtÞ is given in Eq. (B21).

3. Failure of FDPT and emergent integrability
at the scars

The FDPTalways works well in integrable systems (e.g.,
the single large-spin case discussed here, and also other
examples studied but not shown here). However, FDPT
seems to lose accuracy away from integrability and, hence,
from the scar points. This is an interesting, indirect
indication of the fact that integrability emerges at the scar
points. In contrast to the very accurate prediction of
resonances in Fig. 4 (main text), Fig. 9 shows a substantial
mismatch between the FDPT predictions and the true
numerical resonances (dips) away from the scars.
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APPENDIX C: FREEZE AN ARBITRARY BIT
STRING BY TAILORING THE EMERGENT

CONSERVATION LAW

From Fig. 2, we note that the fully polarized state is quite
special—at the scar points, its magnetization remains
strongly frozen close to unity, and its entanglement entropy
does not grow. This is in stark contrast with other
x-basis states for which, though mx remains conserved,
the entanglement entropy experiences substantial growth,
which can be understood from the steplike structure (Fig. 1)
appearing at the scar points. We expect this phenomenol-
ogy to be present for other strong drives that divide the
Hilbert space into sectors that are, at most, weakly mixed as
long as these sectors are separated by finite gaps.
We illustrate this case by arresting the entanglement

dynamics of the L=2-domain-pair state, which sees sub-
stantial growth of E1

2
under the drive with a uniform

longitudinal field (Fig. 2, middle column). Instead of a
uniform field, we choose the following drive Hamiltonian:

HD ¼ −hxD
XL=2
i¼1

σxi þ hxD
XL

i¼L=2þ1

σxi ; ðC1Þ

keeping the rest of the setup the same as given by Eq. (6).
For HD of the above form, the L=2-domain-pair state is in
an eigensector of its own. As expected, the entanglement
growth is strongly suppressed for the L=2-domain-pair
state—especially at ω ¼ 8, 10, and 13.33, which are the
scar points corresponding to the applied drive amplitude
hxD ¼ 40—while a substantial growth of entanglement is
observed for the fully polarized initial state (see Fig. 10).
This is in stark contrast to the results for the uniform drive
(left and middle columns of Fig. 2).
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