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Abstract 

As of August 2022, the COVID-19 pandemic has accounted for over six million deaths globally. The urban population has been 
severely affected by this viral pandemic and the ensuing lockdowns, resulting in increased poverty and inequality, slowed 
economic growth, and a general decline in quality of life. This paper proposes a framework to evaluate the effects of the 
pandemic by combining agent-based simulations—based on Susceptible-Infectious-Recovered (SIR) model—with a hybrid 
neural network. A baseline agent-based model (ABM) incorporating various epidemiological parameters of a viral pandemic was 
developed, followed by an additional functional layer that integrates factors like agent mobility restrictions and isolation. It is 
inferred from the results that low population densities of agents and high restrictions on agent mobility could inhibit the rapid 
spread of the pandemic. This framework also envisages a hybrid neural network that combines the layers of convolutional neural 
network (CNN) and long-short-term memory (LSTM) architecture for predicting the spatiotemporal probability of infection 
spread using real-world pandemic data for future pandemics. This framework could aid designers, regulators, urban planners, and 
policymakers develop resilient, healthy, and sustainable urban spaces in post-COVID smart cities.  
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1. Introduction 

Smart city generally refers to utilising information and communication technology (ICT) and allied infrastructure 
to sense and control the city processes and use the resources optimally in a city [1]. Sensing and control systems, 
smart buildings, and smart urban spaces are essential components of smart cities which have seen a surge in interest 
post-pandemic [2-4]. 
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The definition of a smart city can be viewed from four perspectives: a) technical infrastructure, focussing on 

connecting ICT, physical, business and social infrastructures of a city; b) domain application, involving various 
dimensions to assess smart cities like people, economy, governance, environment, mobility, and buildings; c) system 
integration, which considers a smart city as an organic integration of various city-systems; and d) data processing 
which involves the collection of live real-world data, and processing of data for insights generation and decision-
making [5]. The Covid-19 pandemic has affected the functioning and processes of smart cities. It has altered the 
priorities of smart cities by focusing more on smart medical services than on other activities like tourism or social 
gathering, and so on [6]. 

The World Health Organisation (WHO) classified the novel Coronavirus disease as a pandemic on 11th March 
2020. Individuals over 65 years of age and people with an underlying medical condition were at an increased risk of 
severe illness upon exposure [7]. The disease can spread from person to person through droplets generated from the 
nose or mouth of the infected person while coughing, sneezing, and speaking [8,9]. It can also spread by touching 
eyes, nose, or mouth after physical contact with any contaminated surface [10]. The COVID outbreak has led 
governments worldwide to impose stringent urban policy measures like nationwide lockdowns and permanent 
closure of institutions to control the spread of the pandemic. Such measures have had a significant adverse impact 
on both social life and the economies of the countries, as has the rise in new infections across many countries.  

In countries like Italy, the virus had spread from certain regions like Lombardy, which acted as the initial 
epicentre zones. Infected people with active social life contributed to the increasing cases of infections in the initial 
phase of the pandemic. Moreover, large public gatherings for religious purposes and the like led to a sharp increase 
in the infected cases in countries like India, the United States and others [11–13]. It is not only the existing culture 
or cultural habits of a country but also the planning and design of cities that influence how people behave and 
interact. For example, spaces like theatres, stadiums, malls, and parks are not merely recreational zones for people 
but act as vibrant socio-cultural spaces. Even the unbuilt spaces (like the spaces between built forms) and the 
interface of the built structures (like balconies or shop fronts) become potential spaces of human interaction daily. 

This paper introduces a framework for analysing the spread of a viral pandemic and assessing mobility-based 
interventions in a region. In the present study, Agent-based Modelling is used for simulating the virus transmission 
in an area. Multiple scenarios were analysed for the impact of mobility interventions on the spread of disease, and 
the infectivity rates were compared to the baseline simulations. The paper also describes the integration of ABM 
simulations and Hybrid Neural Networks to predict the infection progression in an urban space. There is also a 
discussion on how the major sub-systems are integrated into the framework. The remainder of the paper is organised 
as follows: Section 2 describes the works relevant to this study, followed by section 3, which details the 
methodology for developing the framework. Post this, sections 4 and 5 present the results and conclusions of the 
study.  

 
2.  Related works 

    Analytical models such as the SIR model proposed by Kermack and McKendrick [14] can be used to estimate the 
progression of the pandemic in a closed population. These models successfully predicted the outbreaks of previously 
recorded epidemics [15]. Based on the first-order differential equations, this model was modified multiple times to 
account for the complexities in the system, such as differences in demography, geography, and so on. In their work, 
one such application of analytical modelling was demonstrated by Singh et al.; an age-structured SIR model was 
used for estimating the progression of COVID-19 in India [16]. The analytical models characterise a population as a 
homogeneous unit, the differences in the populations can be accounted for by creating multiple population groups in 
the model. The model is then used to compute the results for each group, and all interactions are captured as group 
interactions. To capture the interactions between individuals at a much granular level, the agent-based modelling 
(ABM) approach is utilised. The epidemiological modelling using an ABM captures the system dynamics through 
defined rules that govern the agents in the simulated world [17]. These agents represent the human population that 
could be programmed to mimic the behaviour of interest. Hunter et al. have proposed a taxonomy of ABM 
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methodologies for modelling the disease progression in a population. ABMs can also be used to design better 
policies and mitigation strategies in a pandemic situation by simulating multiple scenarios through the model. For 
example, Dimka et al. and Kai et al. aimed to test the efficacy of non-pharmaceutical control measures on the 
progression of the pandemic through simulations [18,19]. Machine learning-based approaches like Convolutional 
Neural networks (CNN), Recurrent Neural Networks (RNN), and Multi-layer Perceptrons (MLP) are also employed 
in ascertaining the pandemic’s impact [20, 21]. Forecasting models based on the CNN-LSTM hybrid architectures 
are one such class of models that utilises the time-series data for predicting the course of the infection [22, 23].  

3. Methodology 

The proposed framework facilitates the analysis of the pandemic’s spread in a region and evaluates various 
policy measures to mitigate it. The framework’s development followed two steps; first, a representative (baseline) 
ABM was developed that simulates the phenomena of the spread of the virus. After simulating multiple scenarios by 
varying the model’s parameters, this baseline ABM was extended to accommodate the space subdivisions (i.e., an 
abstraction for mobility restrictions) with the agent interactions among these spaces. The simulation results were 
presented for the different scenarios, highlighting the impact of agent mobility and special subdivisions on the 
progression of the pandemic in the simulated space. Following the description of the overall framework, the 
integration of ABMs to hybrid neural networks (HNN) having CNN and LSTM layers is described for its 
applicability in a real-world scenario. This HNN needs to be tested with real-time data for future pandemics. 

3.1 Baseline ABM 

3.1.1 Overview 

An abstract ABM was created to simulate disease transmission in a virtual space, represented by a digital space 
spanning100 pixels in length and width. The Cartesian coordinate system, with its origin in the bottom-left corner of 
the space, is used to calculate the distances and directions of the agents. Every agent in the model is defined by the 
property variables that primarily contain information related to the infection and its location in space. These 
variables, along with their descriptions, are listed in table 1. 

          Table 1. Agent property variables 

Variable Name Value Range Description  

Who System generated number Unique identifier of an agent. 

Heading Integer b/w 0-360 The angle with respect to the horizontal in degrees is used for 
measuring an agent’s movement direction. 

Xcor Integer b/w 0-100 X coordinate of an agent in the space. 

Ycor Integer b/w 0-100 Y coordinate of an agent in the space. 

Infected Binary (True/ False) This state variable reports the infectivity of an agent. 

Infection_duration Positive Integer  A variable to measure the infectivity duration of an agent. 

Recovery_time Positive real number The fixed duration post which an agent is expected to recover 
from the infection. 

Recovered Binary (True/ False) State variable to indicate an agent’s recovery 

Region_id Integer Stores the colour value of the patch under an agent. 

In addition to the agent’s properties, some global variables are defined in the model that represents key 
parameters of an infectious disease. These variables could be adjusted to describe the dynamics of the spread of a 
viral infection. By altering these values at the beginning of the simulations, multiple scenarios could be simulated 
with the same model. Table2 describes these variables, along with their corresponding ranges and units. 
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            Table 2. Global variables in ABM 
Variable Name Value Range Description  

Population Integer between 100-1000  The number of agents in the space 

Initial_carrier Between 1-10% Percentage of infected agents at the beginning of the simulation. 

Infection_chance Between 0-99.99% Probability of infection upon coming in contact with an infected agent 

Recovery_chance Between 0-100% Probability of recovery after the recovery period. 

Avg_recovery_time Between 0.5-20 weeks Average time after which the agents may recover from the infection. 

3.1.2 Model Architecture  

The ABM is constructed in NetLogo (software for creating ABM) with five major functions. These procedures 
are ‘move’, ‘infect’, ‘recover’, ‘setup’ and ‘go’, which are described as follows:  

1. Setup: This procedure sets up the initial values of all the state variables of the agents—highlighted in table 1—
as well as the global variables, as shown in Table 2. 

2. Move: it instructs the agents to move forward one unit of the pixel on the simulation space per time step, 
followed by updating their ‘heading’, which refers to the direction of the agent’s movement at that instant. The 
heading is incremented by 10 degrees to the left or the right based on a condition that compares a random number 
generated at the instance to a fixed value. 

3. Infect: This procedure identifies non-infected agents in the neighbourhood of an infected agent and then infects 
them based on a condition that compares a randomly generated number against the variable ‘infection_chance’. 
Before changing the infected state of an agent, this function also checks for the previous infection of the agent. An 
agent is prone to infection if it is not infected previously and the variable ‘infected’ takes the value ‘true’ in case of a 
confirmed infection. 

4. Recover: After a fixed duration, an infected agent either recovers from the infection or is removed from the 
space, signifying the agent’s death. Agents are either recovered or removed from the space based on a condition that 
compares a random integer to the variable ‘recovery_chance’. Upon recovery, the agents attain immunity and could 
not get infected further (Values being ‘infected’= false and ‘recovered’ = true). 

5. Go: this procedure is called after the setup and executes iteratively until all agents in the space are recovered. 
In each iteration, this function calls other procedures, ‘move’, ‘infect’, ’recover’ and computes the percentage of the 
population getting infected over time. 

The model parameters were systematically changed in sequence to construct multiple situations for simulating 
the spread of the pandemic. Table 3 indicates the values for each variable. The combinations from these values 
produced 125 possible cases, which were run 100 times each.  

3.2 Integrating mobility restrictions in the model 

3.2.1 Overview 

In this variation of the baseline model, the simulation space is divided into a specific number of regions adjacent to 
each other based on the Voronoi principle. In this partitioning, regions are created about a specific point (or nucleus) 
to encompass any point in the space closer to its nucleus than any other nuclei. 

           Table 3. Variable values for simulation 
Variable Name Values  

Population (No. of agents) 100 300 500 700 900 

Initial_carrier (% of total 
agent population) 1 2 3 4 5 

Infection_chance (%) 10 25 40 75 90 
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Hence, a Voronoi region Sk related to a nucleus Nk is a set of possible points in X whose distance to Nk is lesser 
than their distance to any other nucleus Nj (where j ≠k). If d(x, N) represents the distance between points x and N, 
then the Voronoi region Sk can be described in equation (1): 
                                                   𝑆𝑆𝑘𝑘 = {𝑥𝑥 ∈ 𝑋𝑋 ∣ 𝑑𝑑(𝑥𝑥, 𝑁𝑁𝑘𝑘) ≤ 𝑑𝑑(𝑥𝑥, 𝑁𝑁𝑗𝑗) for all 𝑗𝑗 ≠ 𝑘𝑘}                                                    (1) 

Voronoi diagrams have been utilised in solving various spatial problems, especially in forestry, agriculture, 
geology, geography and so on [24]. Voronoi diagrams preserve features of real-world data like hierarchical relations 
and spatial structures, making them suitable for analysing urban areas which exhibit problems of natural and 
anthropogenic origins [24]. The total number of such regions in the model can be controlled from the interface. The 
interaction amongst the agents of different regions, which influences the infection spread, is programmed using the 
‘check_collison’ function. The model is simulated by varying the number of such regions across different 
populations to observe the effect of the increment in the Voronoi regions and the subsequent mobility restrictions of 
the agents on the spread of infection. 

3.2.2 Additional parameters and procedures 

In addition to the parameters in the baseline model (refer to tables 1 and 2), this model has two additional global 
variables, namely, ‘region_numbers’ and ‘mobility_restriction’. The former specifies the number of Voronoi regions 
that are created in the simulation space at the beginning of each run, and the latter provides the degree of the 
interaction of the agents at the region boundaries; it is programmed at four levels: ‘no restriction’, ‘low’, ‘medium’, 
and ‘high’. This model has two essential procedures, ‘setup-region’ and ‘check-collision’, in addition to those 
present in the baseline case, which are described as follows: 

a. Setup-region: this function generates Voronoi regions over the simulation space based on the total number of 
regions provided by the variable ‘region_numbers’. The nuclei for the regions are distributed normally on the space, 
with both parameters, i.e., mean and standard deviation, taken as 50 units. This was done to ensure adequate 
partitioning. The pixels enclosed in a Voronoi region are assigned a colour, which is then stored as an integer in the 
patch variable ‘region_id’. 

b. Check-collision: This function controls the interaction of an agent with other agents at the boundary of a 
region. The distance between agents is controlled by tracking the patch’s colour located at a certain (defined) 
distance ahead. This is done through the ‘mobility_restriction’ variable. Also, the agents stay within their assigned 
regions by constantly checking the patch colour ahead. 

The simulation of this model was performed for 320 combinations of the initial conditions (an instance is shown 
in fig 1), which were obtained by systematically varying the values of the variables mentioned above. For each set 
of values, the simulation was run 50 times totalling 16,000 runs. For this study, the variables ‘Infection_chance’ and 
‘Initial_carrier’ were fixed at 75% and 1%, respectively. Table 4 provides the complete details of these values. The 
results of these simulations are presented in section 4, along with the framework discussion. 

         Table 4. Variable values for simulation for the second model 

Variable Name Values  

Population (No. of agents) 100 300 500 700 900 

Region_Numbers 

1 2 3 4 5 

10 15  20 30  40 

50 75 100 150 250 

500 - - - - 

Mobility_restriction No-
restriction Low Medium High - 



2304 Sunny Prakash Prajapati  et al. / Procedia Computer Science 218 (2023) 2299–2308
6 Sunny Prajapati et al. / Procedia Computer Science 00 (2019) 000–000 

Fig. 1. Progression of the virus in the model having 20 sub-divisions with distinct colours. The images indicate the infection state at different time 
instants: a) at t =0, b) t =100, c)t =161. 

4. Results and Discussions 

4.1 Simulation Results 

    The simulation for each initial condition was run 100 times for the first model and 50 times for the second one. 
The visualisations of the mean value of all runs were plotted as a graph between the fraction of the population 
infected and the number of Voronoi regions. For the baseline model, it has been observed that with the increase in 
the infection chance (gradually from 10% to 90% in the simulations), the maximum value of the infected population 
fraction increases while saturating at the higher values of infection chance (i.e., at 75% and 90%). The initial 
infection percentage did not affect the maximum value of the infected population; however, the time to attain 
maxima is reduced. Additionally, the impact of agent movement in a region was compared by parameterising it 
through another variable called the mobility factor (MF). MF ranges from 0-1, corresponding to the degree of 
agent’s movement from minimal (single cell in the space) to maximum (greater than two cells). The data showed 
that the proportion of the infected population was higher with high agent mobility (fig. 2). 

In the refined model for all the cases of the agent population (100, 300, 500, 700, and 900), the maximum 
fraction of the infected population for a Voronoi partitioning decreased sharply with the increase in the number of 
the Voronoi regions. The only exception to this trend is observed when there is no movement restriction on the 
agents across the Voronoi cells. Additionally, the rate of decrease of the maximum value of the infected population 
varies with the degree of mobility restrictions, as revealed in fig 3. 

4.2 Real-world application  

    The simulation results of the later model—in which the simulation space is divided into different Voronoi 
regions—revealed an overall decline in the ‘percentage population infected at the peak of the pandemic outbreak’ 
with the increase in the number of the Voronoi regions for a specific agent population. Such observations could 
provide vital insights into the planning and design of pandemic–resilient urban spaces comprising residential, 
recreational, commercial, and institutional zones. For instance, the cellular Voronoi boundary, as illustrated in the 
simulation, could be regarded as analogous to the precincts of a residential community on an urban scale. These 
residential communities comprise many dwelling units or apartments situated in proximity forming a cluster. The 
agent movements in and around the Voronoi cell represent human movements within and around a residential 
cluster for socialisation, occupation, availing services, etc. In the event of a pandemic, the cells in the ABM could 
represent different zones in the city/area. The policies on the movement restrictions can then be evaluated (using 
ABM) for optimum results. 
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Fig. 2. Progression of the infection in the agent population over time. The vertical axis represents the fraction of the population from 0-1, and the 
horizontal axis represents the simulation time. 

Fig. 3. Variation of the maximum value of the infected population with respect to the number of Voronoi regions for various degrees of 
mobility restrictions for the agent populations of a)100, b)300, c) 500, d) 700, and e) 900, respectively. 
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4.3 Framework development  

    The data generated—locally and globally in the current or past pandemic scenarios—could be of great importance 
in formulating an effective policy for such situations. It can be used to train Machine Learning (ML) models like 
Regression or Neural Networks to access the current situation. Alternatively, an ML model could also be trained on 
the data generated by an agent-based model with all possible combinations of input parameters to predict the likely 
pandemic progression. As suggested in previous works, the ABM and ML can interface through the observations 
from the former being used as a training dataset for the latter, and also the results from the ML influencing the 
dynamics of the agents [20, 21].  

Fig. 4. The Proposed Framework 
 

The framework proposed in this study is summarised in figure 4, which uses pandemic data (both historical and 
current) along with ABM and Hybrid Neural Network (HNN) as tools to estimate the impact and evaluate policy 
interventions. Here, an ABM is created based on two data streams: a) urban data such as population, demographics, 
mobility networks, and so on; b) historic pandemic data that can be used as a starting point for determining the 
transmission dynamics, and other epidemiological parameters (R0 and likewise). This model will then simulate 
multiple likely scenarios based on which policies could be formulated and evaluated. The results obtained from the 
ABM simulations consist of the trend of the pandemic progression in a simulated urban space. This data describes 
the infectivity characteristics such as virus growth rate, time to peak, maximum infected population fraction, and so 
on. The output dataset for all simulated scenarios is spatiotemporal, i.e., it describes the progression of the infection 
for different spatial parameters in a region (i.e., the number of isolated regions, population mobility, and so on). 
In a real-world scenario, the ABM can be utilised to simulate the spread of the infection in a simulated space 
representing the area in focus (such as a city or a district). The dynamics for such a case would follow the 
algorithmic structure like the one presented in section 3, post which several likely scenarios could be simulated 
using the model. This time-series data can then be used to train a hybrid model that utilises the feature-rich data and 
its time-series characteristics. The CNN-LSTM hybrid model could be one such candidate, the CNN layer in this 
network would be used to process the data matrix, which would then be converted into a vector for the input to the 
LSTM layer. The LSTM layer is especially beneficial here as it facilitates the storage and transmission of 
information from the past; this combined with a fully connected layer having ReLU activation, would provide the 
required output, as shown in fig. 5.  
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5. Conclusion 

    This paper proposes a framework consisting of Agent-Based Modelling and a hybrid neural network for 
simulating the progression of a viral pandemic like COVID-19 in any given region. The ABM utilises the SIR 
model for simulating the spread of the infection. The baseline model was developed with several key parameters, 
which describe the epidemiological characteristics of the viral pandemic and the mobility of individuals in a region. 
The model also incorporates region segmentation and agent mobility restrictions using the concept of Voronoi 
partitions. Similar to Dimka et al. [18] and Kai et al. [19], this study utilises ABM to examine the dynamics of the 

Fig. 5 a) Integration of ABM simulations and Hybrid CNN-LSTM NN, b) Convolution and max pooling layers in CNN, c) LSTM layer schematic. 
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pandemic and the impact of non-pharmaceutical interventions on the spread of infection. The result from the 
proposed model concludes that the agent’s mobility in a closed population impacts the maximum number of infected 
individuals. Also, high mobility restrictions of agents coupled with multiple isolated regions could reduce the peak 
of the infected population in an urban area. This ABM framework integrated with HNN would eventually forecast 
the spatiotemporal probability of pandemic spread with the help of real-time data and geospatial location mapping. 
In the post-COVID era, this framework would further assist in developing pandemic-resilient urban spaces for 
smart, healthy, and sustainable cities by supporting the decision-making process of smart-city designers, urban 
planners, and policymakers.  
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