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Abstract: An optimal Mars entry guidance scheme is presented in this paper using the
Model Predictive Static Programming (MPSP) technique accounting for the applicable state
and control constraints. The guidance scheme is designed to maximize the terminal parachute
deployment altitude while applying minimum control effort and satisfying hard constraints
on desired terminal conditions such as final velocity and downrange. The proposed guidance
computes the optimal bank angle profile to shape the trajectory of the spacecraft. Path
constraints on heat rate, dynamic pressure, aerodynamic load, and bounds on bank angle are
considered to guide the vehicle safely through the martian atmosphere. Moreover, in order to
generate practically realizable bank angle profiles, an additional constraint on the bank angle
rate is also applied. Next, using the MPSP technique, the nonlinear constrained optimal control
problem is converted into a static quadratic optimization problem with linear equality and
inequality constraints to solve it in a computationally efficient manner. The concept of flexible
final time MPSP is incorporated to update the final time in an optimal fashion. Numerical
simulations illustrate the ability of the proposed method to solve the guidance problem efficiently
while satisfying the path and terminal constraints within the desired accuracy.
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1. INTRODUCTION

Landing exploration-class vehicles safely on the surface of
Mars has always been an exciting yet challenging space ex-
ploration mission. Starting from Viking in the 1970s to the
more recent Perseverance Rover in 2021, so far, only nine
spacecraft have successfully landed on the surface of Mars.
More than two-thirds of the Mars landing exploration
missions ended in failure, which amply demonstrates the
mission’s difficulty (Li and Jiang (2014)). The execution
of the Entry, Descent, and Landing (EDL) sequence is
one of the most challenging problems for safely landing
spacecraft on the surface of Mars, and the entry phase of
this EDL sequence begins when the spacecraft first enters
the Martian atmosphere and ends with the parachute de-
ployment is a critical part of the mission. The MSL (Mars
Science laboratory) or Curiosity 2012 executed a guided
entry phase which significantly helped in reducing the
landing error ellipse down to 20 km, which was four times
less as compared to the previous missions (Steinfeldt et al.
(2010)). However, future Mars missions demand pinpoint
landing performance with sub-100-meters accuracy (Stein-
feldt et al. (2010)), which requires significant improvement
in the current Guidance, Navigation, and Control (GNC)
technologies to ensure success in such missions.

Guiding the vehicle safely through the Martian atmo-
sphere is a challenging task. The vehicle enters the Martian
atmosphere traveling at nearly 6 km/sec at approximately
125 km above the surface of Mars, and by just modulating
the bank angle of the spacecraft, it needs to slow down
to safe parachute deployment velocities while traversing

the required downrange and crossrange to reach the target
location. Moreover, peak heating and loading also occur
during this phase and must be maintained within their
respective bounds. Other than this, the objective of the
entry guidance is to maximize the parachute deployment
altitude to enable landing at higher elevation sites (Braun
and Manning (2006)). In order to fulfill these objectives,
the MSL 2012 adopted the Apollo guidance algorithm with
a few modifications (Mendeck and Craig McGrew (2014)),
which controlled the spacecraft based on the perturba-
tions experienced during the flight about a pre-designed
reference trajectory. However, the ability to compute the
reference trajectory in real-time onboard has evident ad-
vantages such as robustness against perturbations and
generation of safe trajectories in case of off-nominal con-
ditions.

Generating an efficient guidance trajectory that can satisfy
these objectives requires solving a constrained non-linear
optimal control problem. Numerical methods such as indi-
rect and direct methods have been proposed to solve such
optimal control problems. The indirect methods convert
the original OCP into a two-point boundary value problem
(TPBVP) using Pontryagin’s maximum principle (PMP),
and the resulting TPBVP can be solved using classical
numerical techniques such as transcription and shooting
methods. Even though the solution has high accuracy, the
resulting TPBVPs are sensitive to the initial guess. To get
past this difficulty, Jacob et al. (2014) used particle swarm
optimization to generate the initial values of the costate
variables, and Zheng et al. (2017) explored the simplicial
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final time MPSP is incorporated to update the final time in an optimal fashion. Numerical
simulations illustrate the ability of the proposed method to solve the guidance problem efficiently
while satisfying the path and terminal constraints within the desired accuracy.

Keywords: Mars entry guidance, Optimal entry guidance, Model Predictive Static
Programming, MPSP guidance

1. INTRODUCTION

Landing exploration-class vehicles safely on the surface of
Mars has always been an exciting yet challenging space ex-
ploration mission. Starting from Viking in the 1970s to the
more recent Perseverance Rover in 2021, so far, only nine
spacecraft have successfully landed on the surface of Mars.
More than two-thirds of the Mars landing exploration
missions ended in failure, which amply demonstrates the
mission’s difficulty (Li and Jiang (2014)). The execution
of the Entry, Descent, and Landing (EDL) sequence is
one of the most challenging problems for safely landing
spacecraft on the surface of Mars, and the entry phase of
this EDL sequence begins when the spacecraft first enters
the Martian atmosphere and ends with the parachute de-
ployment is a critical part of the mission. The MSL (Mars
Science laboratory) or Curiosity 2012 executed a guided
entry phase which significantly helped in reducing the
landing error ellipse down to 20 km, which was four times
less as compared to the previous missions (Steinfeldt et al.
(2010)). However, future Mars missions demand pinpoint
landing performance with sub-100-meters accuracy (Stein-
feldt et al. (2010)), which requires significant improvement
in the current Guidance, Navigation, and Control (GNC)
technologies to ensure success in such missions.

Guiding the vehicle safely through the Martian atmo-
sphere is a challenging task. The vehicle enters the Martian
atmosphere traveling at nearly 6 km/sec at approximately
125 km above the surface of Mars, and by just modulating
the bank angle of the spacecraft, it needs to slow down
to safe parachute deployment velocities while traversing

the required downrange and crossrange to reach the target
location. Moreover, peak heating and loading also occur
during this phase and must be maintained within their
respective bounds. Other than this, the objective of the
entry guidance is to maximize the parachute deployment
altitude to enable landing at higher elevation sites (Braun
and Manning (2006)). In order to fulfill these objectives,
the MSL 2012 adopted the Apollo guidance algorithm with
a few modifications (Mendeck and Craig McGrew (2014)),
which controlled the spacecraft based on the perturba-
tions experienced during the flight about a pre-designed
reference trajectory. However, the ability to compute the
reference trajectory in real-time onboard has evident ad-
vantages such as robustness against perturbations and
generation of safe trajectories in case of off-nominal con-
ditions.

Generating an efficient guidance trajectory that can satisfy
these objectives requires solving a constrained non-linear
optimal control problem. Numerical methods such as indi-
rect and direct methods have been proposed to solve such
optimal control problems. The indirect methods convert
the original OCP into a two-point boundary value problem
(TPBVP) using Pontryagin’s maximum principle (PMP),
and the resulting TPBVP can be solved using classical
numerical techniques such as transcription and shooting
methods. Even though the solution has high accuracy, the
resulting TPBVPs are sensitive to the initial guess. To get
past this difficulty, Jacob et al. (2014) used particle swarm
optimization to generate the initial values of the costate
variables, and Zheng et al. (2017) explored the simplicial
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homotopy method (SHM) to circumvent these issues with
the initial guess. However, indirect methods are computa-
tionally intensive and difficult to implement and therefore
are ill-suited for online applications. In comparison, di-
rect methods convert the OCP into a constrained static
optimization problem which can then be solved using var-
ious non-linear programming (NLP) techniques. To reduce
the effects of uncertainties on the resultant trajectory, Li
and Peng (2011) implemented desensitized optimal control
(DOC) to formulate the trajectory optimization problem
and solved using the direct collocation-based NLP method.
Similarly, Zhao and Li (2019) formulated the optimization
problem using the local collocation methods and a mesh
refinement technique to solve the resulting NLP efficiently.
However, in all these proposed methods, the time taken by
the algorithms to compute the optimal solution still lies
in the order of several seconds and thus requires further
development to bring the computational time down to
ensure real-time capability.

To overcome these limitations, the co-author of this pa-
per proposed a computationally efficient technique called
Model Predictive Static Programming (MPSP) in (Oza
and Padhi (2012)) to solve non-linear OCPs with terminal
constraints. Later, Mondal and Padhi (2020) extended the
MPSP technique to solve the path and control constrained
OCPs with minimum control effort as the performance
index. The core idea behind MPSP lies in deriving a
sensitivity relation between the states and the control
variables, using which the optimization problem can be
written in terms of control variables only, substantially
reducing the problem’s size. Moreover, these sensitivity
matrices can be computed recursively, further decreas-
ing the computational load. Tacking into account these
promising benefits, a Mars entry guidance scheme is de-
veloped in this paper using the philosophy of constrained
MPSP. A cost function maximizing the terminal altitude
while applying minimum control effort is selected. Path
constraints on heat rate, dynamic pressure, aerodynamic
load, and control constraints on bank angle are considered.
The final velocity and downrange also need to be satisfied
as terminal constraints. An additional constraint on bank
angle rate is also placed to generate less aggressive bank
angle profiles that can be tracked suitably. The necessary
algebra to include the terminal state-dependent term in
the cost function is derived, and by integrating the idea of
flexible final time MPSP (Maity et al. (2012)), the final
time is updated in an optimal fashion. The non-linear
constrained OCP is converted into an equivalent quadratic
optimization problem with linear equality and inequality
constraints using the MPSP technique and solved using
the interior-point method.

2. PROBLEM FORMULATION

2.1 State Dynamics

Both the bank angle and the angle of attack can be
controlled during the flight to guide the spacecraft safely
through the Martian atmosphere, but only the bank angle
modulation is generally opted to simplify the implemen-
tation of the guidance law (Li and Jiang (2014)), and
the angle of attack is kept at a trim (or constant) value
throughout the entry phase. In this formulation, only the

longitudinal dynamics of the spacecraft are considered us-
ing which the energy and downrange of the vehicle can be
managed. Since the longitudinal and lateral dynamics are
decoupled, cross-range could be controlled by performing
bank reversals whenever necessary to maintain the cross-
range error within the reversal deadbands (Mendeck and
Craig McGrew (2014)). The following equations denote the
longitudinal dynamics of the vehicle in the planetocentric
frame assuming a spherical non-rotating planet:



ḣ

V̇
γ̇
ẋ


 =




V sin γ

−D

m
− gM sin γ

V

rM + h
− gM

V


cos γ +

L

mV
u

V cos γ




(1)

where, x denotes the downrange travelled by the vehicle
and u = cosσ is the control input. h is the altitude above
the Martian surface, V is the velocity, γ is the flight path
angle, σ is the bank angle, rM is the radius of Mars,
gM = µ/(rM + h)

2
is the gravitational acceleration at

Mars, m specifies the weight of the spacecraft and the
aerodynamic lift L and Drag D forces are given by:

L =
1

2
ρV 2CLSref , D =

1

2
ρV 2CDSref (2)

where, CL and CD are the aerodynamic lift and drag
coefficients which are a function of angle of attack, Sref is

the reference surface area of the vehicle, ρ = ρ0e
−( h

hs
), ρ0

is the density at the surface of Mars, and hs is the height
scale density.

2.2 Objective function and Constraints:

The objective of mars exploration missions has always
been to land at scientifically interesting landmarks, but
almost half of the Martian surface, which lies on a higher
elevation, had been inaccessible to the missions before
the MSL (Mars Science Laboratory) in 2012 (Braun and
Manning (2006)). This was primarily attributed to the
difficulty in slowing down the vehicle to parachute deploy-
ment velocities at a higher altitude due to the relatively
thin Martian atmosphere as compared to the Earth (only
0.01 × ρearth).Therefore, the vehicle needs to slow down
to parachute deployment velocities while maximizing its
terminal deploy altitude to enable landing at higher ele-
vation sites. Path constraints on heat rate, dynamic pres-
sure, and aerodynamic acceleration must be maintained
within their maximum allowable limits Q̇MAX , qMAX , and
AMAX to guide the vehicle safely throughout the entry
phase. Finally, the terminal constraints on final velocity
and downrange required to be traveled need to be met at
the final time tf . An equivalent optimal control problem
fulfilling the objectives mentioned above can be written in
the following form:

min
u(t),tf

J = ς · (−h (tf )) + (1− ς) ·
tf

t0


uT (t)R (t)u (t)


dt

(3)

Subject to the following constraints:

kq

(
ρ

rn

)N

V M ≤ Q̇MAX ,
1

2
ρV 2 ≤ qMAX

√
L2 +D2

m
≤ AMAX , σMIN ≤ σ ≤ σMAX

V (tf ) = V ∗
f , x (tf ) = x∗

f

(4)

kq, rn, N,M are constants and V ∗
f , x∗

f denote the desired
terminal velocity and downrange. The second term in the
cost function expression (3) is introduced to achieve max-
imum terminal deploy altitude while applying minimum
control effort, and the variable ς can be used to set the
priority between the two cost components. Moreover, to
generate guidance demands that are suitable for tracking
σ̇ or the rate of change of bank angle is also constrained
within its allowable limits as below

σ̇MIN ≤ σ̇ ≤ σ̇MAX

σMIN

(√
1− u2

)
≤ −u̇ ≤ σMAX

(√
1− u2

) (5)

3. CONSTRAINED MPSP

The discrete time optimal control problem for the above
formulation can be expressed in a general form as below

min
[U,tf ]

i+1
J = G

(
Xi+1

N

)
+

1

2

N−1∑
k=1

(
U i+1
k

)T
Ri

k

(
U i+1
k

)

s.t. Xk+1 = F (Xk, Uk) , Y = hk (Xk) , Y
i+1
N = Y ∗

N

Zmink
≤ Z

(
Xi+1

k

)
≤ Zmaxk

, Umink
≤ U i+1

k ≤ Zmaxk

(6)

where, Xk ∈ ℜn, Uk ∈ ℜr, Yk ∈ ℜm denote the state,
control, and output at the kth grid point k = 1, 2, . . . , N .
The superscript i denotes the iteration number. The func-
tions F (·), Y (·) correspond to any general nonlinear state
dynamics and output equations, and G (·), Z (·) denote the
state-dependent terminal cost and state constraint func-
tions respectively. YN denotes the output at the final time
and Y ∗

N being the desired output. (·)maxk
, (·)mink

are upper
and lower bounds on state and control constraints at the
kth grid point. The constrained MPSP solution presented
here is an iterative algorithm, therefore requiring a guess
control history to start, since the control is updated in an
iterative manner the corresponding update in state and
output at a given grid point k between any two successive
iterations can be given by the following relation:

U i+1
k ≜ U i

k + dU i
k

Xi+1
k ≜ Xi

k + dXi
k

Y i+1
k ≜ Y i

k + dY i
k

(7)

Where i denotes the previous iteration, and dU i
k is the

control deviation at the kth grid point. U i+1
k , Xi+1

k , and

Y i+1
k denote the corresponding updated control, state and

output equations. It can be observed that the objective
function J and constraints in (6) are a function of the
updated control as well as the updated state. Using the
philosophy of MPSP, the state and output deviations
at a given grid point can be written in terms of the

control deviations, and this sensitivity relation between
the state and control can be used to re-write the problem
(6) as a function of updated control only. The objective
of constrained MPSP is to compute the desired control
deviations at the grid points k = 1, 2, . . . , N − 1, such
that the updated state Xi+1

k and updated control U i+1
k

minimizes the cost function J while adhering to the state
and control bounds and satisfying the terminal constraints.
First, the relation between the state error and control
deviation is derived, then using this relation the state
and output constraints, and cost function are modified
accordingly.

3.1 State error and sensitivity matrix computation

The state dynamics equation in (6) at iteration (i+1) can
be expanded using Taylor series expansion to obtain the
relation between the deviation in state and the deviation
in control as follows:

Xi+1
k = F

(
Xi+1

k−1, U
i+1
k−1

)

Xi+1
k = Xi

k +

[
∂F

∂X

]
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,Ui
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,Ui
k−1
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dXi
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[
∂F
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]

[X,U ]ik−1

dXi
k−1 +

[
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∂U
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[X,U ]ik−1

dU i
k−1

(8)

Deviation in the state at the grid k − 1 (dXi
k−1) can be

further expanded in term of dXi
k−2 and dU i

k−2, and dXi
k−2

can further be expanded in terms of dXi
k−3 and dU i

k−3 and

so on uptill dXi
1 i.e., deviation in state at the initial time

as below

dXi
k =
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Ak
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dXi
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1
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k−1 (9)
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. . .
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(10)

Since the initial condition is assumed to be known, there-
fore dXi

1 = 0

dXi
k =

k−1∑
j=1

[
Bk

j

]i
dU i

j (11)

where,
[
Bk

j

]i
matrix is called the sensitivity matrix of

the state at the kth time step due to the deviation in
control input at the jth time step. Equation (11) provides
the relation between the deviation in state at any given
time step due to the deviation in control inputs at all
the prior time steps. Moreover, the computation of the
sensitivity matrix can be significantly reduced, since it can
be computed recursively. An Interested reader can refer to
Maity et al. (2012) for further details on the recursion
formula.
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Subject to the following constraints:
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kq, rn, N,M are constants and V ∗
f , x∗

f denote the desired
terminal velocity and downrange. The second term in the
cost function expression (3) is introduced to achieve max-
imum terminal deploy altitude while applying minimum
control effort, and the variable ς can be used to set the
priority between the two cost components. Moreover, to
generate guidance demands that are suitable for tracking
σ̇ or the rate of change of bank angle is also constrained
within its allowable limits as below
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formulation can be expressed in a general form as below
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where, Xk ∈ ℜn, Uk ∈ ℜr, Yk ∈ ℜm denote the state,
control, and output at the kth grid point k = 1, 2, . . . , N .
The superscript i denotes the iteration number. The func-
tions F (·), Y (·) correspond to any general nonlinear state
dynamics and output equations, and G (·), Z (·) denote the
state-dependent terminal cost and state constraint func-
tions respectively. YN denotes the output at the final time
and Y ∗

N being the desired output. (·)maxk
, (·)mink

are upper
and lower bounds on state and control constraints at the
kth grid point. The constrained MPSP solution presented
here is an iterative algorithm, therefore requiring a guess
control history to start, since the control is updated in an
iterative manner the corresponding update in state and
output at a given grid point k between any two successive
iterations can be given by the following relation:
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Where i denotes the previous iteration, and dU i
k is the

control deviation at the kth grid point. U i+1
k , Xi+1

k , and
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k denote the corresponding updated control, state and

output equations. It can be observed that the objective
function J and constraints in (6) are a function of the
updated control as well as the updated state. Using the
philosophy of MPSP, the state and output deviations
at a given grid point can be written in terms of the

control deviations, and this sensitivity relation between
the state and control can be used to re-write the problem
(6) as a function of updated control only. The objective
of constrained MPSP is to compute the desired control
deviations at the grid points k = 1, 2, . . . , N − 1, such
that the updated state Xi+1

k and updated control U i+1
k

minimizes the cost function J while adhering to the state
and control bounds and satisfying the terminal constraints.
First, the relation between the state error and control
deviation is derived, then using this relation the state
and output constraints, and cost function are modified
accordingly.

3.1 State error and sensitivity matrix computation

The state dynamics equation in (6) at iteration (i+1) can
be expanded using Taylor series expansion to obtain the
relation between the deviation in state and the deviation
in control as follows:
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where,
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the state at the kth time step due to the deviation in
control input at the jth time step. Equation (11) provides
the relation between the deviation in state at any given
time step due to the deviation in control inputs at all
the prior time steps. Moreover, the computation of the
sensitivity matrix can be significantly reduced, since it can
be computed recursively. An Interested reader can refer to
Maity et al. (2012) for further details on the recursion
formula.
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3.2 Inequality and Equality constraints

Inequality constraints: The state constraint equation
is also a function of the updated state or Xi+1

k . Using
Taylor series expansion and the expression (11), the state
constraint function can also be simplified as follows:

Zmink
− Z

�
Xi

k


≤

k−1
j=1


P k
j

i
dU i

j ≤ Zmaxk
− Z

�
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k


(12)

where,

P k
j

i
≜


∂Z
∂X


Xi

k


Bk

j

i
, writing the above equation

for all nodes i.e., k = 1, 2, . . . , N in a compact form:
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where, Zupk
= Zmaxk

− Z
�
Xi

k


, and dU i =�

dU i
1

T
. . .

�
dU i

N−1

T T
. By invoking the relation U i+1

k

≜ U i
k + dU i

k in the equation (13), and combining both
the state and control constraints the following matrix
inequality can be obtained

WU i+1 ≤ V, W ≜

P i −P i I −I

T

V ≜

Zup − P iU i Zlow + P iU i Umax −Umin

T (14)

Terminal Equality Constraint with Flexible final time:
As the time t → tf we want the output at the final time

tf to approach its desired value i.e., Y i+1
N = Y ∗

N . Using the
relation in (7) as below

dY i
N = Y ∗

N − Y i
N = ∆Y ∗

N (15)

∆Y ∗
N can be computed based on the final output at

the previous iteration and the desired final output. The
expression of dY i

N can be computed by expanding the
output dynamics equation (6) using Taylor series and small
error approximation at the final grid point N , (Maity et al.
(2012))
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Ẋi
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where, the first term in the above expression (16) corre-
sponds to the error gathered in the final output due to
errors in the control input and the second term refers to the
error in the final output due to the sub-optimal selection of
the final time in the previous iteration. Ẋi

N = f (XN , UN )

and also, tf follows a similar update rule i.e., ti+1
f = tif +

dtif . Similar to equation (13), dY i
N can also be written in

compact form as below
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AeqU
i+1
time = Beq (19)

The above equation represents the equality constraint that
needs to be satisfied. Since there is no inequality constraint
on the final time tf , therefore, the equation (14) can be
modified to represent in terms of the new optimization
vector U i+1

time as below

AineqU
i+1
time ≤ Bineq (20)

where, Aineq and Bineq are similar to the matrices W and
V the only difference being the addition of the constraint
−∞ ≤ ti+1

f ≤ ∞, which implies that the final time
is unbounded, the detailed expressions are omitted for
brevity.

3.3 Cost Function

The updated final time ti+1
f can also be minimized along

with the previous objectives introduced in the cost func-
tion (6).
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The term J1 is dependent on the updated state and can
be written in terms of control update using the expression
(11), and J2, J3 can be re-written in a compact form as
below:
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Hence, the optimization problem can be written as

min
Ui+1

time

J =
1

2

�
U i+1
time

T
Ri

timeU
i+1
time + Ei

timeU
i+1
time (23)

Subject to

AeqU
i+1
time = Beq

AineqU
i+1
time ≤ Bineq

(24)
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Fig. 1. Solution to the path unconstrained Mars entry
guidance using MPSP.

The equations (23)-(24) form a quadratic optimization
problem with quadratic cost, linear equality and inequality
constraints. But since the matrix Ri

time can be selected
to be a positive semidefinite matrix resulting in a convex
quadratic optimization problem which can be solved using
efficient solving techniques such as the Interior-Point (IP)
method.

4. SIMULATION AND RESULTS

The simulations are performed for a MSL (2012) type
vehicle with Sref = 15.9m2, m = 2920kg, CL = 0.248,
CD = 1.45, rM = 3386km, µ = 4.284 × 1013 m3/s2,
hs = 9354m, ρ0 = 0.0158kg/m3, rn = 0.6m, N =
0.5, M = 3 and kq = 1.9 × 10−4kg0.5s0.15/m1.15. The
bounds on the heat rate, dynamic pressure, aerodynamic
acceleration, bank angle and bank angle rate were taken
to be Q̇MAX = 70W/cm2, qMAX = 10kPa, AMAX =
8ge, σMIN = 30◦, σMAX = 120◦, σ̇MIN = −3 deg/s
and σ̇MAX = 3 deg/sec. The initial conditions of the
spacecraft were h0 = 125km, V0 = 6km/s, γ = −11.5◦,
and x0 = 0km and the final desired velocity V ∗

f =

540m/s and downrange x∗
f = 935km. The above values

are taken with respect to Zhao and Li (2019). Moreover,
constrained MPSP is an iterative algorithm and requires
an initial guess of the control trajectory to begin with, a
constant control input of σ = 90◦ is passed as the initial
guess for the simulations. Based on this control guess the
state dynamics are propagated using the RK4 integration
method, which are then interpolated at discrete control
nodes to solve the optimization problem using the MPSP
algorithm. The discrete number of nodes selected for
the current simulation were N = 70. This process is
carried out every iteration till the algorithm converges to
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Fig. 2. Solution to the path and control constrained Mars
entry guidance using MPSP.

Table 1. Results: Constarined-MPSP
and MPSP

Method hf Vf xf tf Itera- Total
(km) (m/s) (m) (s) -tions Time(s)

Con.MPSP 11.16 539.4 934999 271.4 6 0.55

MPSP 12.64 539.8 934998 312.7 7 0.35

the desired terminal conditions within a given threshold,
while satisfying all the path constraints. For the current
formulation, the iterations were stopped when the error in
the terminal constraints |Vf−V ∗

f | < 2 m/s and |xf−x∗
f | <

5 m. All the simulations were performed on MATLAB
R2021a version, running on a Windows 10 desktop with
an Intel i5-2400S CPU @ 2.50GHz with 8 GB RAM.

To measure the effectiveness of the constrained - MPSP
algorithm, the flexible final time Mars entry guidance
(MEG) problem with terminal constraints is first solved
without considering the path constraints, with the entire
bank angle range, i.e., 0◦ ≤ σ ≤ 180◦ available to the
spacecraft. The corresponding results of the simulation are
given in Table 1 and Figure 1. The path unconstrained
MPSP is able to reach a maximum terminal altitude of
12.64 km with an error of 0.2 m/s and 2 m in the terminal
velocity and downrange, respectively, therefore, satisfying
the terminal constraints within the desired accuracy. The
converged final time was equal to 312 seconds, and the
algorithm took 7 iterations to converge with the total
computation time of only 0.35 seconds. However, while
achieving these objectives, one can observe from the figures
(1c)-(1f) that the path constraints are clearly violated.
The values of these control and path constraints, i.e.,
bank angle rate, heat rate, dynamic pressure, and aero-
dynamic load, reach a maximum value of −14.48 deg/sec,
75.87 W/cm2, 11.94 kPa, and 9.89ge respectively.
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Fig. 1. Solution to the path unconstrained Mars entry
guidance using MPSP.

The equations (23)-(24) form a quadratic optimization
problem with quadratic cost, linear equality and inequality
constraints. But since the matrix Ri

time can be selected
to be a positive semidefinite matrix resulting in a convex
quadratic optimization problem which can be solved using
efficient solving techniques such as the Interior-Point (IP)
method.

4. SIMULATION AND RESULTS

The simulations are performed for a MSL (2012) type
vehicle with Sref = 15.9m2, m = 2920kg, CL = 0.248,
CD = 1.45, rM = 3386km, µ = 4.284 × 1013 m3/s2,
hs = 9354m, ρ0 = 0.0158kg/m3, rn = 0.6m, N =
0.5, M = 3 and kq = 1.9 × 10−4kg0.5s0.15/m1.15. The
bounds on the heat rate, dynamic pressure, aerodynamic
acceleration, bank angle and bank angle rate were taken
to be Q̇MAX = 70W/cm2, qMAX = 10kPa, AMAX =
8ge, σMIN = 30◦, σMAX = 120◦, σ̇MIN = −3 deg/s
and σ̇MAX = 3 deg/sec. The initial conditions of the
spacecraft were h0 = 125km, V0 = 6km/s, γ = −11.5◦,
and x0 = 0km and the final desired velocity V ∗

f =

540m/s and downrange x∗
f = 935km. The above values

are taken with respect to Zhao and Li (2019). Moreover,
constrained MPSP is an iterative algorithm and requires
an initial guess of the control trajectory to begin with, a
constant control input of σ = 90◦ is passed as the initial
guess for the simulations. Based on this control guess the
state dynamics are propagated using the RK4 integration
method, which are then interpolated at discrete control
nodes to solve the optimization problem using the MPSP
algorithm. The discrete number of nodes selected for
the current simulation were N = 70. This process is
carried out every iteration till the algorithm converges to
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Fig. 2. Solution to the path and control constrained Mars
entry guidance using MPSP.

Table 1. Results: Constarined-MPSP
and MPSP

Method hf Vf xf tf Itera- Total
(km) (m/s) (m) (s) -tions Time(s)

Con.MPSP 11.16 539.4 934999 271.4 6 0.55

MPSP 12.64 539.8 934998 312.7 7 0.35

the desired terminal conditions within a given threshold,
while satisfying all the path constraints. For the current
formulation, the iterations were stopped when the error in
the terminal constraints |Vf−V ∗

f | < 2 m/s and |xf−x∗
f | <

5 m. All the simulations were performed on MATLAB
R2021a version, running on a Windows 10 desktop with
an Intel i5-2400S CPU @ 2.50GHz with 8 GB RAM.

To measure the effectiveness of the constrained - MPSP
algorithm, the flexible final time Mars entry guidance
(MEG) problem with terminal constraints is first solved
without considering the path constraints, with the entire
bank angle range, i.e., 0◦ ≤ σ ≤ 180◦ available to the
spacecraft. The corresponding results of the simulation are
given in Table 1 and Figure 1. The path unconstrained
MPSP is able to reach a maximum terminal altitude of
12.64 km with an error of 0.2 m/s and 2 m in the terminal
velocity and downrange, respectively, therefore, satisfying
the terminal constraints within the desired accuracy. The
converged final time was equal to 312 seconds, and the
algorithm took 7 iterations to converge with the total
computation time of only 0.35 seconds. However, while
achieving these objectives, one can observe from the figures
(1c)-(1f) that the path constraints are clearly violated.
The values of these control and path constraints, i.e.,
bank angle rate, heat rate, dynamic pressure, and aero-
dynamic load, reach a maximum value of −14.48 deg/sec,
75.87 W/cm2, 11.94 kPa, and 9.89ge respectively.
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The path-constrained problem is addressed next, and the
results are shown in Figure 2 and Table 1. Using the
proposed flexible final time constrained MPSP algorithm,
all the path constraints are satisfied while achieving the
terminal constraints. Figures (2d)-(2f) provide the com-
parison of the path constraints between the unconstrained
and constrained MPSP algorithm. As observed, all path
constraints remain within their respective bounds using
the constrained MPSP algorithm with the maximum value
of heat rate, dynamic pressure, and aerodynamic acceler-
ation being 69.8 W/cm2, 9.28 kPa, and 7.69 ge respec-
tively. To limit the control authority of the spacecraft, the
available bank angle range is reduced from σ ∈ [0, 180]

◦

to σ ∈ [30, 120]
◦
and the bank angle rate should also

not exceed ±3 deg/s, the optimal bank angle profile and
the corresponding bank angle rate satisfying these objec-
tives are shown in Figures (2b) and (2c). The bank angle
profile generated by the unconstrained case in Fig. 1b
demands a rapid transition between 100 to 150 seconds
from σ = 180◦ to σ = 0◦, resulting in a required bank angle
rate of around 15 deg/s (Fig. 1c), which may lie outside
the capability of a spacecraft. However, by introducing
a constraint on bank angle rate, such rapid transitions
could be avoided, as shown in Fig. (2b) and (2c). The path
and control constraints present throughout the trajectory
reduce the maximum terminal altitude from 12.64 km to
11.16 km. As it can be seen from Table 1, the terminal
constraints are satisfied within the desired threshold with
an error of 0.6 m/s and 1 m in the terminal velocity
and downrange. The converged final time was tf = 271.4
seconds which is substantially different from the converged
final time of the unconstrained problem. Starting from a
crude/non-optimal initial guess, the algorithm converges
to the optimal solution in just 6 iterations owing to the
fast convergence nature of the MPSP algorithm. The total
computation time is found to be only 0.55 seconds, indicat-
ing the capability of the algorithm to solve the constrained
MEG problem in real time. During closed form simulation,
the crude initial guess is only passed at the initial time, and
the computed optimal solution is used as the initial guess
for the successive time steps. The algorithm only required
2 iterations or 185 ms on an average in subsequent time
steps to converge to the optimal solution. Moreover, coding
with low-level programming languages and implementing
on dedicated processors can further reduce computational
time. With increasing onboard capabilities of space-grade
processors (Lovelly and George (2017)), the proposed guid-
ance strategy is a promising contender for a Mars entry
mission.

5. CONCLUSION

This paper presents an optimal guidance scheme for the
Mars atmospheric entry phase using the MPSP algorithm
accounting for applicable state and control constraints.
The constrained nonlinear optimal control problem is con-
verted into an equivalent quadratic optimization problem
with linear equality and inequality constraints and solved
using the interior point method. The necessary algebra
to account for additional terminal cost and flexibility in
the final time update is also derived. The computed opti-
mal bank angle profile is able to maintain all the path
and control constraints within their respective bounds
while satisfying the terminal constraints within the desired

accuracy and maximizing the terminal deploy altitude.
The additional constraint on the bank angle rate helped
generate bank angle profiles that can be tracked by the
spacecraft more favorably. Starting from a non-optimal
initial guess the algorithm only required six iterations to
converge to the optimal solution with a total computation
time of less than 600 ms, which is expected to reduce
further substantially once (a) it is coded in a low-level
language and (b) only a finite iterations are carried out
per time step. This clearly demonstrates that the proposed
flexible final time constrained MPSP can be used as an
effective guidance algorithm for a Mars entry mission.
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