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Abstract
Recent studies have demonstrated the effectiveness of using hand-drawn sketches of objects
as queries for one-shot object localization. However, hand-drawn crude sketches alone can
be ambiguous for object localization, which could result in misidentification, e.g., a sketch
of a laptop could be confused for a sofa. To overcome this, we propose a novel multimodal
approach to object localization that combines sketch queries with linguistic category defini-
tions, allowing for a better representation of visual and semantic cues. Our approach employs
a cross-modal attention scheme that guides the region proposal network to obtain relevant
proposals. Further, we propose an orthogonal projection-based proposal scoring technique
that effectively ranks proposals with respect to the query. We evaluated our method using
hand-drawn sketches from the ‘Quick, Draw!’ dataset and glosses from ‘WordNet’ as queries
on thewidely-usedMS-COCOdataset, and achieve superior performance compared to related
baselines in both open- and closed-set settings.

Keywords Sketch · Open-set object localization · Gloss · Cross-modal localization ·
Cross-modal attention

1 Introduction

We have seen breakthroughs in object detection literature in the last decade, and it is partly
due to the advancements in deep learning [36, 40, 59, 60]. However, most of these successful
models are still limited to ‘closed-world’ settings, where the object localization and classi-
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fication tasks are limited to a predefined set of categories whose examples are used during
the training phase. In this work, we study a more challenging task of open-set query-guided
object localization with the following goal – given an image of a natural scene and an object
query, localize all the instances of the queried object in the image, even if no sample for this
queried object is assumed available during the training phase. In the literature, query-guided
object localization has been attempted using either object category name [79] or an image of
the object as a query [25, 67]. However, it is possible to encounter scenarios where neither
an image of the object nor the class label is available as a query. Such a scenario can arise (i)
due to privacy reasons or (ii) when the object of interest is uncommon (not a natural object,
e.g., parts of a machine). However, even in such a scenario, it is often easy to find a crude
drawing or natural language description of the query object. We, therefore, want to explore
the following task-Can a hand-drawn sketch or natural language description of any object
be used for localizing all the instances of the corresponding object in a natural scene? We
investigate the answer to this research question in this work.

In our earlier work [71], we introduced the novel idea of using hand-drawn sketches of
objects as queries towards localizing objects in a natural scene. Sketches provide an abstract
visual representation of the objects. Most free-hand sketches (e.g., sketches in Quick Draw)
lack serious visual content, such as the appearance, color, and texture of the drawn objects.
Often, these sketches only provide noisy outlines depicting the global shapes of an object and
lack any finer structural details. For example, consider Fig. 1, where a hand-drawn sketch of
a laptop might be ambiguous for object localization as it could be confused for a sofa. These,
understandably, lead to very limited success in the sketch-guided object localization task. On
the contrary, by combining different modalities, such as visual (in the form of a hand-drawn
sketch of the query object) and text (in the form of a natural language description of the
query object), it is possible to leverage complementary and intricate details on an object’s
shape, appearance or texture and sometimes even the semantic relationship of the query with
other objects in the scene. Judiciously combining these modalities may yield a much richer
representation of the query with less ambiguity and potentially lead to a better open-set
localization performance. In this work, in addition to a sketch query, we use a linguistic

Fig. 1 Given an image and a query, our aim is to localize the object in the image (a laptop in this example).
A hand-drawn sketch of a laptop alone, when used as a query, might be ambiguous for object localization as
it could be confused for a sofa. On the other hand, descriptions obtained from different modalities such as a
category label, e.g. “laptop" or a linguistic definition of the category, e.g., “a small portable computer small
enough to use in your lap" along with the sketch query, give better visual and semantic cues for the object
localization
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definition of the category also known as gloss, e.g. “a small portable computer small enough
to use in your lap" as multimodal queries for the object localization task.

There are several technical challenges associated with multimodal query-guided object
localization, such as (i) a large domain gap between the query modalities (e.g., text, sketches,
etc.) and the target natural images, and (ii) diverse andminimal information present in queries.
For example, a sketch query captures abstract shape information of an object, whereas a text
queryoften captures partial semantic information about the object category. In order to address
these challenges, one plausible solution is to use the standard region proposal network (RPN)
and score the generated proposals against the query. However, the standard RPN does not
utilize query information to generate region proposals; therefore, the relevant region proposals
may not even be generated, especially for the open set case.On the contrary, in our framework,
we propose a cross-modal attention scheme towards generating object proposals relevant to
the input queries. A preliminary version of the same was proposed in our earlier conference
paper [71]. The novel extended version of the cross-modal attention strategy is designed to
generate a spatial compatibility matrix by comparing the combined query, i.e., concatenated
sketch and text representation, with the local image representations obtained from each image
feature map location, thereby incorporating query information during proposal generation.
In other words, our proposal generation step is query-aware. A unique advantage of this
strategy is that it enables the generation of proposals, even for those object categories that
are unseen during training. Further, we propose a novel multimodal proposal scoring scheme
to score object proposals with features from multiple modalities. The proposed scheme first
defines a subspace constructed using queries as the basis vectors, then the feature vector of
each proposal is projected onto this subspace. Finally, the projected vector is utilized to score
each of the proposals. By being an orthogonal projection, the proposed scheme generates
a vector in the subspace of the queries which is closest to the object proposal vector, and
hence it leads to better scoring between the queries and proposals. Moreover, the proposed
scoring scheme is able to capture complementary information present in multiple modalities
that enables it to achieve superior performance for open-set object localization.

Wehave performed extensive experiments onmultimodal query-guided object localization
onpublic benchmarks.We showresults for both the open-set, i.e., disjoint train-test categories,
and the closed-set, i.e., common train-test categories settings, and perform extensive ablation
studies. Our method with sketch and gloss as composed queries achieves 33% and 10%mAP
for closed-set and open-set object localization, respectively, and significantly outperforms
all related baselines.

Contributions of this paper are listed as follows:

1. We present an object proposal generation module that is guided by multimodal queries.
It proposes a novel extension of our cross-modal attention scheme to generate a spa-
tial compatibility matrix between the different query feature vectors and image features.
Being query-aware, this module is capable of generating proposals even for those object
categories that are unseen during training.

2. We propose a novel orthogonal-projection based proposal scoring scheme that can effi-
ciently score queries from multiple modalities with the object proposals in a better way.

3. We demonstrate query-guided proposal generation and, finally, instance-level object local-
ization on natural images using the query representation across modalities. Despite the
large domain gap between the query (text and sketch) and the target (natural image) data
points, we achieve impressive localization performance on challenging public bench-
marks. Our method shows impressive performance gain (≈ 4.7%) on open-set object
localization.
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The rest of the paper is organized as follows. Section 2 discusses the existing work from
the computer vision literature that is related to this proposed research. Section 3 presents
our proposed cross-modal object localization framework, including a detailed analysis of the
novel orthogonal projection-based proposal scoring and the cross-modal attention scheme
involvingmultiple querymodalities. Section 4 demonstrates the effectiveness of our approach
via performing extensive experiments using several publicly available datasets for various
modalities, followed by a conclusion in Section 5.

2 Related work

2.1 Sketch for vision tasks

A better understanding of hand-drawn sketches and their utility to computer vision and
cognitive science at large has been an active area of research. In order to achieve this goal,
developing techniques for a robust representation of sketches has gained huge attention over
the last decade. In addition to convolutional neural networks [85], which are traditionally
used, there have been some works that utilize RNN [21] and transformers [81] for learning
sketch encoders.

The area that has significantly benefited from sketch representation techniques is sketch-
based image retrieval or SBIR. The goal of SBIR is to retrieve natural images using sketches
as queries. Traditional SBIR methods utilize a separate feature computation step that uses
manually-tuned features, such as SIFT or histogram of gradients, followed by a bag-of-words
encoding as sketch representation [14, 26] and sometimes image edges or contours are also
extracted for building image features [76, 90]. On the other hand, modern methods leverage
deep networks for learning a joint embedding space where sketches and natural images
are projected. In these works, often ranking loss such as the contrastive [64] or the triplet
loss [86] is used to learn a ranking function between the sketch queries and the candidate
images. In [70], researchers have leveraged an attention model to solve fine-grained SBIR
and have also introduced higher-order learnable energy function-based loss to alleviate the
domain gap between the images and the sketches. In [4, 10], researchers have tackled the task
of noise-tolerant image retrieval. To improve the efficiency for large-scale image retrieval,
hashing models have been explored [41, 66, 80, 91].

Sketches have also been used to study the perceptual grouping ability of machines [39,
54] and sketch synthesis [17, 21, 69]. In our earlier work [71], we have shown the utility
of hand-drawn sketches for object localization in natural images. Although sketches provide
critical visual cues, they often lack semantics. To fill this gap, in this work, we propose a
method to leverage semantics (using object category name or gloss) along with sketches for
object localization.

2.2 Visual grounding

Visual grounding [34, 42, 52, 77] is a task that has some similarities with the task presented
in this paper. However, there are two key differences: (i) visual grounding often restricts itself
to natural language query alone, whereas our model supports sketch, object category, and
gloss as queries. (ii) The natural language query in visual grounding describes the object,
its attributes, and its relationships with other objects in the image, and it is not an object
definition (or gloss) like ours. Further, unlike visual grounding, which leverages large-scale
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image-caption pairs during training, we only have very few unique definitions (or gloss) for
every object and a large number of hand-drawn sketches for training our object localization
framework.

2.3 Object detection

Object detection is a core computer vision task. Modern object detection methods can be
grouped into the following two categories: (i) proposal-free methods [31, 37, 40, 58, 59, 65,
84] and (ii) proposal-based methods [5, 18, 19, 22, 23, 61, 92]. Proposal-free methods are
single-stage detectors, and therefore, they are faster during inference. However, they often
fall short of performance as compared to proposal-based approaches.

Under proposal-based approaches, Girshick et al. [19] have proposed a two-stage object
detection method. In their first stage, they leverage selective search [72] to generate object
proposals. In the second stage, these generated proposals were classified as one of the object
categories using an independently-trained classifier. Ren et al. [61] proposed an end-to-
end trainable object detector popularly known as Faster R-CNN. These object detectors are
reasonably successful in the closed-set setting. However, they do not generalize well in an
open set setting where an object category may or may not be seen during the training phase.
Recently, Hsieh et al. [25] have proposed one-shot object detection. In their work, an object
image is used as a query, and all the instances of the query object in the target image are
detected. However, unlike their work, where query and target images are from the same
distribution, i.e., natural images, our queries, i.e., gloss or hand-drawn sketches, are from a
significantly different domain than those of the target images.

Object detection in the zero-shot setting has also been studied in the literature [3, 55,
56]. Typically by alleviating the confusion between the “background” and unseen class,
these methods improve object proposal generation for unseen object categories [3]. Recently,
there has been extensive research in context-aware zero-shot detection [8, 27, 43, 83] which
incorporates joint detection of multiple objects [8, 27] or a background scene graph as a
knowledge source [43]. These works are similar in spirit to the proposed work, but the
proposedwork is query-guided and utilizes amultimodal query to performobject localization.

2.4 Attention schemes in deep learning literature

The use of attention models is prevalent in deep learning literature. They allow the relevant
features to become more crucial. Here, we briefly review the utilization of attention in object
localization literature. Choe et al. [9] presented an attention network to score object proposals
and showed its utility in object localization. Li et al. [35] proposed Attention to context Con-
volutionNeural Networks (AC-CNN) in object detection to integrate local and global context.
Leveraging the self-attention mechanism [78], Heish et al. [25] presented Co-attention and
co-excitation network (CoAtEx) for one-shot object localization. In their work, the response
at each feature map location of an image is computed as a weighted combination of the fea-
ture vectors at each feature map location of the query. Here weights depend on the similarity
between target and query image pixel pairs. It should be noted that both query and target
images are from the same modality in CoAtEx. In comparison, proposed cross-modal atten-
tion determines the spatial compatibility between global query representation and localized
image region representations, thereby mitigating the domain misalignment. In more recent
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work, authors [82] used class-specific attentive vectors inferred from images of objects in a
meta-set to apply channel-wise soft attention to proposals’ feature maps. The channel-wise
soft attentionmay not be trivially utilized in our problem setup due to the domain gap between
the target and the query.

2.5 Multimodal learning for vision

Thenatural environment of anyvisual task containsmultiplemodalities. Leveragingdata from
multiplemodalities has been an expanding area of research in the vision literature.Multimodal
learning has a very broad range of applications in computer vision, including but not lim-
ited to medical image analysis [29], audio-visual speech recognition [53], multimedia event
detection [33], multimodal emotion recognition [68] and visual question answering [49]. A
key challenge in this area is to summarize information frommultiple modalities in a way that
is lossless and exploits their complementary or supplementary nature. In [6, 20], the authors
study the problem of emotion recognition by utilizing facial expressions, head gestures, and
other visual cues. Researchers in [57, 62, 74, 88] utilize multi-view LSTM to model cross-
view interactions over time or structured data. In the area of image retrieval, composing
multimodal queries has gained interest in the last few years [75]. In [11], researchers incor-
porate semantic and geographical information to improve image retrieval, while researchers
in [7] utilize both textual and visual features for improved image retrieval performance in the
medical domain. To fuse multimodal input in information retrieval, concatenation [47, 50,
51] of features and multi-layer probabilistic latent semantic analysis (PLSA) [24] models [7]
have been proposed. Attribute as operator [45], and parameter hashing [48] methods create
a transformation matrix from text and use it to transform the image features. Researchers
in [44, 63, 89] utilized visual cues for sentiment analysis in product andmovie reviews, which
conventionally used only text. They directly concatenated visual and textual representations
in order to obtain a joint representation. Tensor fusion network [87] was proposed to fuse up
to three different modalities for a multimodal sentiment analysis task. More recently, authors
in [46] proposed attention bottlenecks in transformers to effectively fuse features from videos
and audio, and in [1] three separate transformer models were trained using self-supervised
learning with multi-modal contrastive losses to extract effective multi-modal representation
from raw inputs of video, audio, and text. The reader is encouraged to read elaborate surveys
[2, 73] on multimodal learning to know more about this area. Our work is closely related
to this line of study, where we use cues from a natural image, a sketch, and text to perform
object localization.

3 Our approach

In this section, we first provide a formal introduction to the multimodal query-guided object
localization problem. Then, we present our solution by first describing the cross-modal atten-
tion scheme for either of the query modalities. We consider the specific examples of text and
hand-drawn sketches as the query modalities in this paper and show how our cross-modal
attention can be leveraged for each modality to generate proposals relevant to the query
objects. We then introduce our novel orthogonal projection-based proposal scoring scheme
to better score object proposals with respect to queries of multiple modalities.
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3.1 Problem formulation

Let I = Itrain
⋃

Itest be a set of all-natural scene images in a dataset D I , each containing a
variable number of object instances and categories. Here Itrain and Itest are sets of train and
test images, respectively. Like any other machine learning task, these two sets are mutually
exclusive, and only Itrain is available during training. Further, let S = Strain

⋃
Stest be a

set of all sketches, each containing one object, T = Ttrain
⋃

Ttest be the set of a textual
description of an object (either object category name or gloss of the object category), and
C = Ctrain

⋃
Ctest be a set of all object categories. During training, each training sample

contains an image i ∈ Itrain , a sketch query sc ∈ Strain , a text query tc ∈ Ttrain where
c ∈ Ctrain , and all the bounding boxes corresponding to object category c in the image i . At
test time, given an image i

′ ∈ Itest and a sketch query sc′ ∈ Stest , a text query tc′ ∈ Ttest ,
where c

′ ∈ Ctest , the problem is to localize all the instances of the object category c
′
in

the image i
′
. Note that we show experimental results in cases where Ctrain = Ctest , i.e.,

categories in Ctest are seen during training time (closed-set object localization), as well as
Ctrain

⋂
Ctest = φ, i.e., categories in Ctest are not seen during training (open-set object

localization).
The proposed multimodal query-guided object localization is end-to-end trainable, and

it works in the following two stages: (i) query-guided object proposal generation (Sec-
tion 3.2), and (ii) orthogonal-projection based proposal scoring (Section 3.3). Figure 2 shows
a schematic diagram of the proposed framework.

Fig. 2 Given an image and queries of different modalities, our object localization framework works in the
following two stages: (i) query-guided proposal generation: in this step, the global fused feature vector of
different queries that are shown using blue color is scored with the image feature vectors that corresponds to
each location on the image feature map that is shown using pink color to generate the spatial compatibility
also called the attention scores. (Block 1). Next, these attention scores, which are shown using violet color,
are multiplied with the image feature maps, which are shown using pink color to get the attention features
(Block 2). Before passing it through the region proposal network (RPN), it is first concatenated with the
original feature maps and projected to the original dimension. The RPN is able to generate relevant object
proposals because of the spatial compatibility, that is integrated into the image feature maps, between global
fused queries representation and regional image representation (Block-3), (ii) orthogonal-projection based
proposal scoring: the representation for each of the pooled object proposals that are shown using indigo is
scored with query feature vectors from multiple modalities to generate localization for the object of interest
(Block-5). The proposal vector is projected onto the subspace spanned by the queries, and the projection vector
is utilized to query against the proposal vector. [Best viewed in color].
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3.2 Cross-modal attention for query-guided object proposal generation

Faster R-CNN [61] is a popular framework for two-stage object detection, and in the first
stage, it uses a region proposal network (RPN) to generate object proposals. A vanilla region
proposal network could be used to generate object proposals in our task.However, a traditional
RPN is not built to take advantage of any query-level information on object appearance or
semantics. As a result, the object proposals that are relevant to the sketch or textual queries
may not even be generated, particularly when the object of interest is of low resolution,
occluded, hidden among other objects that are better represented in the input images, or most
importantly, is one of the categories which is unseen during training. Therefore, using anRPN
in its vanilla formmay not suffice in our pipeline. To address the aforementioned problem, we
proposed cross-modal attention to incorporate the sketch query information in the RPN in our
earlier work [71]. In this work, we adapt the cross-modal attention to incorporate multimodal
queries in the RPN and thereby guide the proposal generation. Regions of interest (ROIs) are
pooled from region proposals generated using RPN utilizing a strategy similar to the Faster
R-CNN, and a scoring function � is learned between these ROIs and joint representations
of sketch and text queries.

We now describe our cross-modal attention framework to generate object proposals rel-
evant to the queries of different modalities. A preliminary version of this, specific to sketch
queries only, was presented in our earlier work. In this work, we extend the framework to
include additional modalities, such as text queries. We feed a joint representation of sketch
and text modalities to the proposal generation module, which is trained to produce a spatial
weight map that provides high scores to the areas on the target image which are visually or
semantically similar to the object corresponding to the given query(ies).

As mentioned earlier in this paper, we consider the examples of two query modalities,
i.e., sketch and text. Suppose a sketch sc ∈ S and a text tc ∈ T (either category name or
gloss) of an object category c ∈ C is used to query an image i ∈ I . To generate the feature
representation of images and sketches, we use ResNet-50models pretrained on Imagenet [12]
and Quick Draw [30] datasets, respectively, as backbones. We use either of the two types
of text queries: object category name and generic object description (aka gloss). Feature
representations for these are obtained using a language encoding scheme followed by a
trainable multi-layer neural network. The de facto choice for language encoding now is fine-
tuned BERT [13] model. We used them to represent the object category name and its gloss,
respectively. Suppose φI , φT , and φS represent these backbone feature encoders, then image,
text, and sketch feature maps are computed as:

iφI = φI (i) , sφS
c = φS(sc) and tφT

c = φT (tc), (1)

where, iφI ∈ R
w×h×d , tφT

c ∈ R
d , and sφS

c ∈ R
w′×h′×d are the extracted image, text, and

sketch feature representations respectively. From these feature maps, the compatibility score
is learned between the sketch and the text queries, and the image featuremaps byfirst applying
non-linear transformations as below:

iψI = ψI (i
φI ) , sψS

c = ψS(s
φS
c ) and tψT

c = ψT (tφT
c ). (2)

A set of local feature vectors is formed by obtaining one vector at each location (m, n)

in the image feature map iψI , where m ∈ {1, 2, . . . , w} and n ∈ {1, 2, . . . , h}. Each vector
represents a spatial region on the target image, and the set gives us the spatial distribution of
the features. Subsequently, this is compared against a fusion of global representation of the
sketch features and textual features. For image feature map i.e. iψI ∈ R

w×h×d , the extracted
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set of feature vectors is represented as Li = {Li
1,L

i
2, ...,L

i
w×h} where Li

j ∈ R
1×1×d ∀

j ∈ {1, 2, . . . , w × h}.
In the case of sketches, a global representation of sketch feature maps is obtained via

the global max pool (GMP) operation, i.e., Lsc
g = GMP(sψS

c ), where, Lsc
g ∈ R

1×1×d .
The sketch and text representations are first passed through a linear layer, concatenated, and
projected to obtain the final query representation.

Lqc
g = W [Ws(Lsc

g )T ;Wt t
ψT
c ], (3)

where, W ∈ R
d×2d , is a projection matrix that maps the concatenated global sketch repre-

sentation and text representation from a 2d-dimensional space to a d-dimensional space. The
end-to-end training process then results in a high-quality fused representation that captures
information from both modalities. A spatial compatibility score between Li

j ∈ Li and Lqc
g ,

is computed as follows:

λ
(
Li

j ,L
qc
g

)
= Li

j · Lqc
g

K , (4)

where K is a constant. For simplicity of notation, we will refer to the left-hand side of (4) as
λ jg from here onwards.

It should be noted that these compatibility scores are generated as a spatial map, which
can be understood as a 2D-map representing attention weights. Therefore, in order to obtain
attended feature maps, we perform element-wise multiplication of these compatibility scores
and the original image feature map at each spatial location, i.e.,

iaIj = iφI
j � λ jg,∀ j ∈ {1, 2, · · · , w × h}. (5)

This attention feature map aims to capture information about the location of objects in an
image that shares high compatibility score with both the sketch query and the text query.
Therefore, to incorporate this information, attention feature maps are concatenated along the
depth with the original feature maps, i.e., iφI

f = [(iaI )T ; (iφI )T ]T , where iφI
f ∈ R

w×h×2d .
These concatenated featuremaps are projected to a lower-dimensional space to obtain thefinal
feature maps, which are subsequently passed through the RPN to generate object proposals
relevant to the sketch query.

3.3 Orthogonal-projection based proposal scoring

Once a small set of proposals represented as Ri for i ∈ I are pooled from all query-guided
region proposals generated by the RPN, feature vectors for these proposals are computed
along with the final feature vectors for sketch and text query, respectively, as follows.

r
φ′
I

k = φ′
I (r

φI
k ) , s

φ′
S

c = φ′
S(s

φS
c ) and t

φ′
T

c = φ′
T (tφT

c ), (6)

where r
φ′
I

k ∈ R
d is generated using standard Faster R-CNN protocols, s

φ′
S

c ∈ R
d , t

φ′
T

c ∈ R
d ,

rk ∈ Ri . The φ′
I and φ′

S are two separate multi-layer CNN followed by mean pool, and φ′
T

is the multi-layer feed-forward neural network. In order to rank these object proposals with
respect to the multimodal query representation, a scoring function� is learned. During train-
ing, the region proposals are labeled as foreground (or 1) when they have ≥ 0.5 intersection
over union (IoU) with the ground truth bounding boxes and the objects in the bounding boxes
belong to the same class as the query, or else they are labeled as background (or 0). Then, we
minimize a margin rank loss between the representations of the generated object proposals
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and the queries such that object proposals that contain the object of the same class as the
queries are ranked higher.

Object proposals belong to a domain different from the queries, which themselves are from
entirely different domains. Further, queries from different domains may capture different
kinds of information, e.g., the sketch of an object captures the shape information, while on
the other hand, text captures the semantics of the object. Therefore, we need to compare the
object proposals against both these kinds of information to obtain a better score. In order to
ensure better scoring, we propose orthogonal-projection-based proposal scoring. We begin
by finding the proposal feature vector’s projection in the subspace defined by the queries.
We then use that projection to compute a score with the representation of the proposal. By
being an orthogonal projection, we use the closest vector containing the complementary
information present in the sketch and the text, in the query space, to the representation of the
proposal for proposal scoring. We now describe our proposed orthogonal projection scheme
in detail.

3.4 Orthogonal projection

We construct a vector subspaceM by considering the queries s
φ′
S

c and t
φ′
T

c as the basis vectors.
Then, we perform an orthogonal projection of the object proposal vectors into this subspace.

This projection yields a vector that contains the complementary information present in s
φ′
S

c

and t
φ′
T

c and is closest to the proposal vector. To obtain the orthogonal projection, we first

define a matrix Bc = [sφ′
S

c , t
φ′
T

c ] ∈ R
d×2, and the projection matrix is defined in terms of Bc

as follows:
PR(M) = Bc(B

T
c Bc)

−1BT
c , (7)

where PR(M) is the projection matrix on the range space ofM i.e. R(M). In order to obtain
the fusion, we project rk onto the R(M), i.e.

qck = PR(M)r
φ′
I

k , (8)

where qck ∈ R
d is the fused sketch and text feature vector corresponding to the object proposal

rk .
In order to learn the scoring function �, the object proposal feature vectors are con-

catenated with the feature vector obtained before. These concatenated feature vectors are
passed through the scoring function (a one-layer neural network in our framework), and
it predicts the foreground probabilities of the proposals with respect to the fused query.
Let ak be the predicted foreground probability for proposal rk ∈ Ri , and it is given by

ak = �([(rφ′
I

k )T ; (qck )
T ]T ),where, both r

φ′
I

k and qck are defined in Section 3.3. Now, towards
training the scoring function �, a label yk = 1 or 0 is assigned to rk depending on its overlap
with a ground truth object bounding box, as defined in the previous paragraph. Instead of
using a neural network, cosine similarity can also be used to compute the score. Motivated
from [25], the loss function used in training is defined as:

L(Ri , sc) =
∑

k

{
yk max(m+ − ak, 0) + (1 − yk)max(ak − m−, 0) + Lk

MR

}
(9)

Lk
MR =

∑

l=k+1

{
1[yl=yk ] max(a_k−a_l−m−, 0)+1[yl �=yk ] max(m+ −a_k−a_l, 0)

}
, (10)
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wherem+ andm− are positive and negativemargins, respectively. The above loss function
consists of two parts: (i) In (9), the first part of the loss function assures that the object pro-
posals that are overlapping with the ground truth object locations are predicted as foreground
with high probability. (ii) The second part of the loss function, i.e., (10), is a margin-ranking
loss that takes pairs of the proposals as input. It aids in reinforcing a greater division between
prediction probabilities of foreground and background object proposals, and therefore, it
improves the ranking of all the foreground proposals overlapping with the true location(s)
of the object of interest. Both parts of this loss function in (9) are equally weighted during
training. Additionally, a cross-entropy loss on the labeled (background or foreground) feature
vectors of the region proposals and a regression loss on the predicted bounding box location
deltas (same regression loss as in Faster-RCNN) with respect to the ground truth bounding
box are used for training.

Moreover, using the orthogonal projection scheme described before can also be viewed
as a fusion technique that can fuse a number of queries of multiple modalities without
requiring any additional parameters. An important objective of a fusion technique is that the
resultant fused representation has better utility than the individual queries. This property can
be meaningfully encoded as the following equations:

d(r
φ′
I

k , f (s
φ′
S

c , t
φ′
T

c )) ≤ d(r
φ′
I

k , s
φ′
S

c ) (11)

d(r
φ′
I

k , f (s
φ′
S

c , t
φ′
T

c )) ≤ d(r
φ′
I

k , t
φ′
T

c ), (12)

where d(·, ·) is a suitable distance function and f (·, ·) is a function that fuses s
φ′
S

c and t
φ′
T

c .
The objective of enforcing this constraint is that by design, the representations of the query
modalities must improve in utility on fusion, i.e., the fused representation should be closer to
the feature obtained from an object proposal than any individual query features as measured
by a suitable distance function. Utilizing theOrthogonal Projection Scoring (OPS) for scoring
inherently enforces these constraints. The OPS scheme involves determining the orthogonal
projection of the region proposal vector onto the subspace defined by the query vectors. Since
the orthogonal projection of a vector on a subspace leads to the closest vector in that subspace,
the proposed sceheme gives a vector that is closer or exhibit a smaller distance to the region
proposal vector than either of the query vectors defining that subspace. This property of the
orthogonal projections is also mathematically specified by (11) and (12). Therefore, it could
be viewed as a fusion technique that utilizes the proposal representation for better scoring
without requiring additional parameters.

4 Experiments and results

4.1 Datasets

We evaluate the performance of the proposed framework using the following datasets Fig. 3:

4.1.1 QuickDraw [30]

It is a large-scale hand-drawn sketch dataset. It contains 50 million hand-drawn sketches
of 345 object categories in all. In our experiments, we selected those sketch categories
that overlap with MS-COCO or PASCAL-VOC, as described in the subsequent paragraphs.

123



Multimedia Tools and Applications

QuickDraw sketches are stored as vector graphics, and we rasterized the sketches before
feeding them into the ResNet.

4.1.2 MS-COCO [38]

It is a de facto natural scene dataset for studying object detection. It contains object bounding
box annotations for 80 object categories. Between MS-COCO and QuickDraw datasets, 56
object categories are common. Therefore, we randomly selected a total of 800K sketches
across these common classes for our experiments. The model is trained on the COCO-Train-
2017 and evaluated on the MS-COCO-Val-2017 dataset.

4.1.3 PASCAL VOC [15]

It is another common object detection dataset. It contains a total of 20 object classes. We
choose images of nine object categories that are common to the QuickDraw dataset for
our experiments. We trained our model on the union of VOC2007 train-val and VOC2012
train-val sets and evaluated on the VOC-test-2007 set.

4.1.4 Gloss dataset

Semantic information about the object is introduced to our localization framework by utilizing
an embedding of a brief sentence describing an object category, also known as gloss. We
collected a gloss of object categories selected from the Visual Genome [32] and MS-COCO
datasets from WordNet [16]. We refer to this collection as the Gloss dataset. This dataset
contains gloss for 1615 object categories in all. Some examples of this dataset include gloss
for sofa is an upholstered seat for more than one person, gloss for carrot is deep orange
edible root of the cultivated carrot plant.

4.2 Baselines and our variants

In order to demonstrate the superior performance of our approach, we adapt and compare it
with the following popular approaches from the object detection and image-guided localiza-
tion literature:

4.2.1 Sketch-only baselines

In this section, we describe the baselines to evaluate the sketch-only object localization.
ModifiedFasterR-CNN [61]: For query-guided object localization taskswith a sketch query,
we adapt Faster RCNN. Towards this end, during training, if an object instance in an image
belongs to the same class as the sketch query, we assign class label 1 to it and 0 otherwise.
We then generate object proposals using the vanilla region proposal network (RPN). Each
region proposal is then identified as background or foreground using a binary classifier. To
this end, the region of interest features for each region proposal is first concatenated with the
query features and then passed through the binary classifier. We also used a triplet loss to
rank the object region proposals concerning the sketch query. This baseline is referred to as
modified Faster R-CNN in this paper.
Co-attention and co-excitation network (CoATex) [25]: It is a recent one-shot object local-
izationmethodusing imagequeries. Thequery information is integrated into the image feature
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maps by utilizing non-local neural networks [78] and channel co-excitation [28]. Thismethod
is adapted to work with the sketch query directly, and it is used as a second baseline in our
experiments.

The feature extractors for images and sketches are ResNet-50 models pre-trained on
Imagenet and QuickDraw, respectively, for both these baseline methods.

4.2.2 Our variants

In order to perform a comparative study with the above-mentioned baseline approaches, we
present the following variants of our approach:
Sketch only [71]: In this variant of our approach, we only use sketch queries to localize
objects in our framework.
Gloss only: In this variant of our approach, we only use natural language description (aka
gloss) of object categories to localize them in a natural scene. This variant is useful to
demonstrate the effectiveness of our approach in cases there is no visual query available.
Sketch+Gloss: This is our full model. In this, we fuse twomodalities, namely visual (sketch)
and textual (gloss), using the following different fusion strategies. (i) Late fusion: Let the
sets Rs and Rt be the set of proposals obtained after comparing with sc and tc respectively at
the test time, where sc and tc are sketches and text queries of class c ∈ C respectively. In late
fusion, we take the union of these sets of proposals and choose the Top-N proposals as the
final set. (ii)Concatenation fusion: Let sc and tc be the sketch and text queries, respectively.
In this fusion strategy, these queries are concatenated and projected to obtain the fused query.
(iii) Proposed OPS as fusion: Finally, we use the proposed orthogonal projection scoring
(OPS) presented in Section 3.3 to fuse sketch and gloss embeddings.

4.3 Evaluationmetric

Given the similarities between query-guided object localization and object detection tasks,we
have utilized the mean Average Precision (mAP) and Average Precision at an IoU threshold
of 0.5 (AP@50) to evaluate the efficacy of the localization methods. Initially, the Intersec-
tion over Union (IoU) is used to determine the degree of overlap between the ground truth
bounding box and the generated bounding box. If the IoU is above a certain threshold, the
generated bounding box is considered a true positive detection. The mAP is then computed
as the average of the AP scores at different IoU thresholds, where AP is the precision value
averaged over all the recall values. When calculating the mAP, the IoU threshold typically
ranges from 0.5 to 0.95, while AP@50 is calculated at a fixed IoU threshold of 0.5. AP@50
evaluates the models’ performance at a specific IoU threshold of 0.5, which is widely adopted
in the field of object detection. In contrast, mAP provides a comprehensive evaluation of the
model’s performance across a range of IoU thresholds.

4.4 Experimental setup

In order to get the feature representation for the images and the sketches, we used two
ResNet-50 models pre-trained on Imagenet [12] and a subset of 5 million images from
QuickDraw [30], respectively. We use hand-drawn sketches from the common classes of
QuickDraw to localize objects in images fromMS-COCO and PASCAL-VOC datasets. Once
the gloss dataset is created, we useWordNet synset matching to retrieve a set of similar object
categories for each class. This set of similar categories is utilized to fine-tune a pretrained
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BERTmodel [13] under the objective that similar classes’ representation is close to each other
than the non-similar classes. We evaluate the performance of our model under closed-set and
open-set settings.

4.4.1 Open-set experimental setting

In the open-set experimental setting, out of the 56 common classes across COCO and Quick-
Draw, we choose 42 and 14 classes as ‘seen’ and ‘unseen’ categories, respectively. The ‘seen’
and ‘unseen’ splits are mutually exclusive in terms of object categories and labeled bounding
boxes present to ensure the one-shot open-set experimental setting. Our model is trained
exclusively on the dataset from the ‘seen’ classes, and only the ‘unseen’ classes are used for
open-set evaluation. Similarly, for the PASCAL-VOC, out of the nine classes common to
QuickDraw, three and six are chosen arbitrarily as ‘unseen’ and ‘seen’ categories, respec-
tively. The image encoder is pretrained on the Imagenet dataset, except for 14 ‘unseen’
classes and all associated classes obtained by matching their WordNet synsets. Similarly,
except for the 14 categories in the ‘unseen’ set, the sketch encoder is pretrained using all of
the QuickDraw categories.

4.4.2 Closed-set experimental setting

In this experimental setting, all the 56 common classes inMS-COCO andQuickdraw datasets
are used during training, and themodel is evaluated on all 56 categories at test time. Similarly,
for the PASCAL-VOC dataset, all data points which correspond to 12 classes, which are
common with QuickDraw, are used during the training. During the evaluation, the dataset
from all 12 classes is utilized.

4.5 Implementation details

Weuse PyTorch v1.0.1with CUDA10.0 andCUDNNv7.1 to train themodel using stochastic
gradient descent (SGD) with a momentum of 0.9 on one NVIDIA 1080-Ti with a batch size
of 10. The learning rate was initially set at 0.01, but it decays with a rate of 0.1 after every four
epochs, and it is trained for 30 epochs. The constant K in (4) is fixed at 256 and m+ = 0.3
andm− = 0.7 in (9) and (10) for all experiments. To obtain the sentence embeddings average
of the features of the final layer of BERT is utilized. The BERT model is fine-tuned with
a learning rate of 5e − 5, and triplet loss is used during fine-tuning along with the hard-
negative mining on the mini-batch. For optimal results, the cross-modal attention model is
trained incrementally. Firstly, the localization model is trained without attention. Then, the
attention model is added to it, and it is trained again. The training protocol is the same as
explained before, and it is the same for both steps.

4.6 Results and discussion

We now quantitatively and qualitatively evaluate our model in different settings on the MS-
COCOandPASCAL-VOCdatasets.Ourmodel on theMS-COCOdataset is compared against
other related approaches in Table 1 in both open and closed-set settings. For the sketch-only
experiments, the proposed cross-modal attention model significantly outperforms both mod-
ified Faster-RCNN and CoATex-based baselines. This is primarily because, unlike faster
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Table 1 Results in one-shot open-set and closed-set settings on the MS-COCO-Val-2017 dataset

Method Fusion Open Set Closed Set
%AP@50 %mAP %AP@50 %mAP

Modified Faster RCNN – 7.4 5.4 31.5 18.0

CoATex [25] – 12.4 6.3 48.5 28.0

Ours

Sketch only [71] – 15.0 7.4 50.0 30.1

Gloss only – 15.2 7.6 54.2 32.7

Sketch + gloss Late 16.0 7.8 53.3 32.5

Sketch + gloss Concat 18.8 9.6 53.4 32.6

Sketch + gloss OPS 19.7 10.0 54.4 33.0

Bringing semantics using the additional queries, such as gloss and object category names, generally has a pos-
itive effect on the localization performance. Further, orthogonal projection-based scoring clearly outperforms
other fusion techniques in challenging open-set settings

R-CNN, the cross-modal attention framework effectively incorporates the query information
using spatial compatibility (attention)maps to generate region proposals that are relevant. Fur-
ther, the CoATex baseline [25] utilizes the non-local feature maps and channel co-excitation
module, and these modules are sensitive toward the domain gap present between query and
image feature maps in our task. The proposed method, on the other hand, addresses this by
computing a spatial compatibility (attention) map directly. Our model, by virtue of cross-
modal attention, integrates query information in the image feature map before feeding it
through the region proposal network. Consequently, our model is intrinsically able to gen-
erate relevant object proposals even for unseen object categories. As a result, our approach
outperforms the baselines on unseen object categories.

However, when comparing the sketch-only model with the gloss-only model, the gloss-
only model performs significantly better. Both these models have similar architectures aside
from the modality of the query. Therefore, it indicates that text-only queries contain infor-
mation that can be utilized better for object localization. Furthermore, we combine both
the sketch query and the gloss query in our method, utilizing orthogonal-projection based
scoring, and find that it leads to significant improvement in the localization performance;
for example, in the close-set setting, we get 3.8% improvement when sketch queries are
used along with object gloss. This improvement is even more significant (i.e., 4.7%) in an
open-set setting, indicating that incorporating semantic information and shape information
helps create a better representation for object localization (Refer Table 1).

Compared with the multimodal fusion baselines, the proposed orthogonal-projection-
based proposal scoring scheme shows significant performance improvement, indicating that
the proposed scheme is able to better capture the complementary information present in
multiple modalities. The late fusion technique combines the predicted localization from each

Table 2 Results in one-shot
open-set setting on VOC
test-2007 dataset

Method mAP

Modified Faster RCNN 0.65

CoATex [25] 0.61

Ours (Sketch only) [71] 0.65
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Table 3 Results in one-shot
open-set setting on
MS-COCO-Val-2017 dataset.

Modality %AP@50 %mAP

Sketch only 15.0 7.4

Gloss only 15.2 7.6

Sketch + gloss 19.7 10.0

Sketch + gloss with class 20.3 10.6

Sketch + gloss + class 23.6 12.9

This table shows if the category name is available for query, the local-
ization performance of our method can be further improved

of the queries, indicating that combining predictions from multiple sub-optimal queries does
not give a sufficient improvement in performance. The concatenation fusion does not impose
any constraints on the fusion output and, therefore, leads to sub-optimal results.

The results for the PASCAL-VOC dataset are reported in Table 2. PASCAL-VOC is a
small-size dataset, and for our experimental setting, it contains a small number of training
images (≈ 9K) with inadequate variability between the classes present in the dataset. It
should be noted here that the training set contains only nine classes that are common with
the QuickDraw dataset. The proposed method is comparable to the modified faster-RCNN
baseline, suggesting that query-guided object localization is hard in case of insufficient data.
The CoATex baseline suffers degradation in performance, indicating that it is unable to
integrate sketch information in the image feature map during proposal generation in the case
of small data size and large domain gap. Due small training size, gloss query experiments
are not performed on PASCAL-VOC.

4.6.1 Ablation study

Instead of the gloss of an object, the class name of an object can also be used as a query
modality. We used class in two ways: i) append the object class at the beginning of the gloss
and then use it as a query, and ii) use the word2vec embedding of the object class along

Fig. 3 We have shown some examples of the query sketches from the QuickDraw! and target images from the
MS-COCO dataset
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Table 4 Effect of m and K on the
localization performance

m K
0.35 0.3 0.25 200 256 312

mAP 9.8 10.0 8.2 9.1 10.0 9.5

%AP@50 19.5 19.7 16.2 18.3 19.7 19.0

The experiments are performed in MS-COCO dataset

with the object gloss and the sketch. In Table 3, gloss with class refers to the case when the
object category is appended in front of the gloss. The results in Table 3 suggest that using the
class name, if available, helps in performance improvement. Moreover, using the word2vec
embeddings of the class name along with the sketch and the gloss gives a 3.9% improvement
in performance. However, word2vec embeddings are trained on a large dataset set to learn
semantic similarity between words, and therefore it violates the true open set experimental
setting (Fig. 3).

4.6.2 Effect ofm andK

In this experiment, we studied the effect of margin m and scaling factor K on the localization
performance of the model (Refer Table 4). The proposed model is fairly robust to changes in
these parameters, and the best results are obtained when m = 0.3 and K = 256.

4.6.3 Comparison across different dataset splits

In this experiment, we compared our proposed Orthogonal Proposal Scoring (OPS) with the
Concatenation fusion on different splits of train and test categories. As shown in Table 5, the
performance of both of these methods varies across the splits, and our proposed OPS method
performs the best across all splits.

4.6.4 Additional experiments

Sketches are heterogeneous in quality, and they often tend to capture complementary informa-
tion on an object’s shape, characteristics, and appearance, and many times multiple sketches
of an object can be utilized. Therefore, we also compare the proposedmultimodal localization
with multiple sketch-based localization, and in order to utilize multiple sketches, we use the
following two fusion techniques [71]: (i) Feature Fusion Image feature maps for different
sketch queries are first generated, and then global max pool operation is applied to fuse these
feature maps. Let an image be queried by N sketches that belong to the same object category
c ∈ C , which is denoted as set {s1c , . . . , sNc }. These queries are then fed through the sketch

Table 5 The performance
comparison of the proposed OPS
scoring with the Concatenation
fusion for different sets of classes
in the Open set

Fusion Split1 Split 2 Split 3 Split 4 Avg
AP@50 AP@50 AP@50 AP@50 AP@50

Concat 18.8 16.4 18.1 17.8 17.8

OPS 19.7 17.6 19.9 18.9 19.0

We used the sketch of the class along with the Gloss of the class in this
experiment. The experiments are performed on MS-COCO dataset
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backbone network, and suppose the representation learned for the nth sketch is denoted as
nsφS

c . These feature map representations for each query are concatenated together to yield a
composite feature map Rw×h×d×N . Finally, a global max pool operation is performed across
all N channels to obtain a fused feature map for the sketch queries.
(ii) Attention Fusion For each of the N sketch queries, attention maps are first generated
and concatenated. Then depth-wise mean pool operation is applied to obtain the resultant
fused attention map, which is used as input to the object localization pipeline (Section 3.3).

We perform an experiment where we use multiple (five) sketch queries instead of one, and
these results are reported in Table 1. We observe that using multiple sketch queries improves
the localization performance compared to using just a single sketch query. However, utilizing
multiple modalities seems to perform better than fusing multiple sketch queries for both the
open-set and closed-set experimental settings (refer to Table 6). It could be attributed to
the fact that the textual data are pretrained such that it captures the semantic similarity of
the object categories and, therefore, captures complementary information from the visual
representation.

4.6.5 Qualitative results and failure analysis

To illustrate the effect of introducing the gloss as a query and the sketch, we visualize the
localization results when the only sketch or gloss is available for the query and when both
modalities are available. As shown in Fig. 4, the gloss of an object is able to assist the sketch
query to generate better localization for the case of open-set queries. These visualizations,
along with the empirical results, illustrate that using semantic information from the gloss and
shape information from the sketch helps improve the localization performance for unseen
categories. In the fifth row, themodel is not able to discriminate evenwhen both the sketch and
the gloss are available for query. Similarly, in the sixth row, the model is confused about the
object represented by the queries and is only able to localize the part of the object. Moreover,
when localization for either of the query is correct, the combined model is able to localize
the object with better confidence.

Moreover, in Fig. 5, we showed some qualitative results in whichwe query the same image
with two different queries belonging to separate classes. As shown in the figure, the model
is able to localize the correct objects.

Table 6 Comparison of the multi-sketch localization with multimodal localization in multi-query closed-set
and open-set categories setting on the MS-COCO-val-2017 dataset

Method Open Set Closed Set
%AP@50 %mAP %AP@50 %mAP

Ours (Sketch only) [71] 15.0 7.4 50.0 30.1

+Feature Fusion(3 Sketches) 17.1 7.3 51.9 31.0

+Feature Fusion (5 Sketches) 16.3 7.6 52.6 32.0

+Attention Fusion(3 Sketches) 17.6 7.5 52.0 31.0

+Attention Fusion (5 Sketches) 17.1 8.0 53.1 32.0

+Gloss 19.7 10.0 54.4 33.0

Here, five sketches mean we use five randomly selected sketch queries. Further, Open Set and Closed Set
represent disjoint and common train and test categories, respectively

123



Multimedia Tools and Applications

Fig. 4 The localization results are shown for the case when only the sketch query (third column), only gloss
query (fourth column), and both sketch and gloss queries (fifth column). The results are shown for the open-set
setting, i.e., these categories are unseen during training. The first two columns show sketch and gloss queries.
We observe that having gloss brings semantics to the model and thereby enables it to perform better than
sketch only localization. The last two rows show some of the failure cases

4.6.6 Comparison on computational time

Our model is computationally efficient. On average, it takes 0.08 seconds per query (sketch
+ gloss) to localize objects in the target scene. Compared to this CoATex [25] and modified
faster RCNN takes 0.07 and 0.06 seconds per query, respectively, for localizing objects in the
target scene (Refer Table 7). All these experiments are run on a system with Nvidia 1080-Ti
GPU (with 11 GB VRAM) on Intel Xeon 4208 CPU (64 GB RAM).
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Fig. 5 The multi-target localization results are shown for the case when both sketch and gloss query is
available. The results are shown for the open-set setting. The first column shows the sketch queries, and
the second column shows the corresponding gloss queries using two different colors, i.e., blue and purple.
Corresponding localizations in the target image are shown using the same colors as the gloss queries. [Best
viewed in color]

Table 7 The average inference
time comparison of the models

Model Inference time (in seconds)

Modified Faster RCNN 0.06

CoATex [25] 0.07

Ours 0.08

All the models are evaluated on the same system with Nvidia 1080-Ti
GPU (with 11 GB VRAM) on Intel Xeon 4208 CPU (64 GB RAM)

Fig. 6 The presented plots illustrate the progression of the training loss curves for the proposed model
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4.6.7 Training loss curves

The Fig. 6 show the progression of the total training loss along with the component loss.

5 Conclusion

In this paper, we have investigated multimodal query-guided object localization in natural
images. Our proposed framework seamlessly fuses sketch and text queries and generates
object proposals that are relevant to the query. We further proposed a novel proposal scor-
ing mechanism using the orthogonal projection. The noticeable performance gain achieved
over the baselines establishes the efficacy of the proposed framework. Moreover, the pro-
posed framework, by virtue of query-guided proposal generation and our novel proposal
scoring scheme, is also effective for open-set object localization. We have performed exten-
sive experiments and demonstrated the utility of bringing semantics using gloss in the object
localization framework. Our work further strengthens the argument in the literature, i.e.,
effectively using information across multiple modalities and exploiting their complementary
nature can improve performance on learning tasks.
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