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1 Introduction

The (1+1)-dimensional Jackiw-Teitelboim (JT) gravity [3, 4] is one of the simplest models
of quantum gravity. This model is handy for studying conjectures relating to the geometry
of black holes and scrambling in dual quantum systems [5–13]. Holographically, it produces
the nearly conformal dynamics of the (0+1) dimensional Sachdev-Ye-Kitaev (SYK) model
at low energies [14]. It also describes the near horizon dynamics of a (3 + 1) dimensional
near-extremal Reissner-Nordstrom (RN) black hole of the Einstein-Maxwell theory upon
dimensional reduction [15–20]. Moreover, most recently, studies concerning JT gravity
have been plenty due to its usefulness in constructing models of black hole evaporation.
Especially, JT gravity coupled to the matter has been used in the calculations of quantum
extremal surfaces where the island was found, which resulted in the correct Page curve
that one expects for a unitary system [21, 22]. Nevertheless, pure JT gravity without any
sort of matter couplings is also important physically where topological properties of AdS2
manifest [23–25]. On the other hand, Karch-Randall (KR) braneworld models [26, 27] have
also played a major role in the research concerning the calculations of the entanglement
entropy of backgrounds with and without black holes [28–36]. Loosely speaking, there
exist three ways to describe these braneworld models with two branes embedded in any
arbitrary dimensions [33, 37]: i) The full “bulk” can be described by asymptotically AdSd+1
containing two AdSd branes. ii) The “intermediate” description involving both bulk and
boundary is understood as the two AdSd spacetimes (on the two branes) connected through
a defect CFT in (d− 1) spacetime dimensions at the conformal boundary. iii) Finally, the
fully “boundary” description is where everything is boiled down to describe properties of
the defect CFTd−1. Most recently, the KR braneworld model in (2 + 1) dimensions with
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two AdS2 branes embedded has been argued to give pure JT gravity in some appropriate
limits. Particularly, the authors in [1, 37] showed that in (2 + 1) dimensions, the low
energy dynamics of the two fluctuating AdS2 branes, i.e. the intermediate prescription,
is described by the pure JT gravity in two particular limits: (a) “near tensionless limit”
and (b) “imposing orbifold symmetry.” The actions coming from these two limits matches
with the action of JT gravity [1]. The two branes meet at the conformal boundary where
the defect CFT description exists. Without any brane fluctuations, the authors argued
that the entanglement surface degenerates. From the boundary perspective, this behaviour
resonates with the trivial nature of the boundary state where the exact conformal symmetry
is respected. However, adding fluctuations to the branes resulted in a unique entangling
surface with the same entanglement entropy as that of the JT gravity. In terms of boundary
prescription, these fluctuations break down the conformal invariance of the boundary state,
thus lifting the degeneracy in the entanglement entropy. Therefore, these small fluctuations
are significant for matching the physics of these two setups [1].

On a different note, holographic complexity has been another way of characterizing
quantum gravity states in recent times [38, 39]. Although the exact definition of quantum
complexity is somewhat subtle in the field theory [40–53],1 one can loosely say that quantum
complexity tries to estimate the difficulty of preparing a given quantum “target state”,
starting with a simple (usually unentangled) “reference state” using a set of simple universal
“gates” [56–58]. Holographically, complexity proposals associate either the action or the
volume of certain spacetime regions with the quantum complexity of the boundary state.
According to the ‘complexity=volume’ proposal, the complexity of a boundary state is
given by the volume of the extremal co-dimension one bulk hypersurface anchored at the
boundary [59],

CV(Σ) = max
Σ=∂B

[Vol(B)
GN`

]
(1.1)

where B is the extremal co-dimension one hyper-surface, Σ is the Cauchy slice and ` is the
AdS curvature scale.2 On the other hand, the ‘complexity=action’ proposal dictates that
the complexity of the boundary state is equal to the gravitational action evaluated on a
particular patch known as Wheeler-de Witt (WDW) patch [39, 69],

CA(Σ) = IWdW
π~

(1.2)

where IWdW is the gravitational action evaluated on the WdW patch. One may think of
this WdW patch as the domain of dependence of the maximal volume slice that appears
in the CV conjecture.

Even though these two conjectures in eqs. (1.1) and (1.2) do not yield the same results
quantitatively for the complexity; they still agree at a qualitative level. The differences in
these two bulk quantities are usually thought to be related to the non-uniqueness in the mi-
croscopic definition of complexity in the boundary theory, e.g., in the choice of elementary

1This list is by no means exhaustive. Interested readers are referred to these reviews [54, 55].
2A related conjecture is the subregion complexity proposal [60–63], which along with the full volume

complexity has also been investigated previously in the wedge holography setups [63–65]. Furthermore, a
microscopic interpretation of CV in terms of gates on tensor networks was put forward in [66–68].
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unitary gates [70]. The late-time growth rate of the complexity is proportional to 2M/π,
independent of the boundary curvature and the spacetime dimension [69, 71], in CA dual-
ity. This late time saturation of the growth rate is related to Lloyd’s bound on the rate of
computation by a system with energy M [72]. In contrast to the CV proposal, where this
late-time growth rate of the complexity also saturates, the final rate is only proportional
to the mass at high temperatures and with a coefficient that depends on the spacetime
dimension [70, 73]. From a computational perspective, the complexity is lower bounded
by the geodesic distance in a specific manifold [56, 57] and it was found that in view of
counting the total number of gates required to prepare a unitary operator, complexity
naturally scales proportionally to volume after certain optimization [74]. For CV duality,
results from JT and RN agree with each other and match with the expected behaviour of
the complexity for SYK quantum mechanics [2]. Surprisingly, the naive late-time growth
rate of the complexity coming from the CA proposal for the JT model vanishes, and this is
in conflict with general anticipations for the growth of complexity for chaotic systems like
SYK [2]. However, the late-time complexity growth rate turns out to be non-vanishing only
when one treats boundary terms appropriately [2]. Following the CA conjecture, [2, 75, 76]
discusses this analysis for the complexity growth of the JT gravity. The complexity of JT
gravity following CV conjecture and a comparison of that with the Krylov complexity of
the dual SYK model has also been discussed in [77]. A higher derivative corrected JT-like
model has further been discussed in [78], which encapsulates the near extremal behaviour
of four-dimensional black holes with arbitrary quartic corrections in four dimensions. Fur-
thermore, [79] studied the late-time growth of holographic complexity of a charged black
hole in five-dimensional AdS spacetime in the presence of quartic derivative interaction
terms using the ‘complexity = action’ conjecture.

Given the actions of the two theories match exactly e.g., the low energy effective
dynamics of the two fluctuating AdS2 branes and the pure JT gravity, one would expect
that the action complexity results to match for these two setups in the matching limit.
However, it remains an interesting problem to study the complexities of JT gravity and
the two KR branes in the braneworld model with fluctuations to check whether or not
they agree. Since complexity is conjectured to know more about the evolution of a system
than entanglement entropy, it would indeed be a fascinating fact if the complexities of
the two cases match exactly as well, strengthening this correspondence at a microscopic
level. This would mean that the quantum gravity states dual to the two backgrounds
are exactly the same. This motivates us to study the holographic complexity; however,
using the complexity equals volume proposal for these two backgrounds and taking the
appropriate limit to check this fact explicitly. More concretely, in this paper, we focus on
the late-time complexity growth rate of JT gravity arising from the fluctuations of the KR
branes in the appropriate limit. To do so, we will primarily work with a Karch-Randall
(KR) brane model (RS braneworlds with sub-critical tension) with two fluctuating AdS2
branes in (2 + 1) dimensions that were studied in [1, 37]3 and also explained in detail in

3The authors in [80] also obtained JT gravity action on the brane by a similar partial dimensional
reduction of (2 + 1) dimensional AdS gravity and the dilaton field in the JT action was found to be related
to the fluctuation on the brane.
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the next section. Our main objective is to understand the effect of these small fluctuations
on the holographic complexity of JT gravity.

The rest of the paper is constructed as follows. Section 2 is mostly a review part. In
section 2.1, we review the KR braneworld model, whereas in section 2.2, we briefly note
down the appropriate details for JT gravity. Then we discuss the holographic complexity
of JT gravity in section 2.3. In section 2.4, we review how at the level of the action the two
backgrounds can be mapped, provided one considers fluctuating branes in the braneworld
model. In section 3, we first explain the matching of the entanglement entropy for the
two cases (section 3.1). Then we compare the computations for volume complexity of
JT gravity (section 2.3) and the braneworld model with fluctuating branes (section 3.2).
Finally, in section 4, we conclude with the main results, explanations and future directions.

2 Basic review

2.1 Karch-Randall braneworld models

We start this section by briefly reviewing the KR braneworld model [26, 27] in (d + 1)
dimensions with single and double branes embedded. The following action describes the
braneworld model with a single brane embedded,

S = − 1
16πGd+1

∫
dd+1y

√
−g(R− 2Λ)− 1

8πGd

∫
ddy
√
−h(K − T ) (2.1)

where R is the Ricci scalar of the bulk space-time and Λ = −d(d−1)
2`2 , is the cosmological

constant; K is the trace of extrinsic curvature of the embedded brane with induced metric
hab and T represents the brane tension with the condition T ≤ (d − 1). We impose the
Neumann boundary condition on the metric fluctuations near the brane [1, 37],

∇n∂gαβ
∣∣
near brane = 0 (2.2)

where n represents the normal direction to the brane. Variation of the action (2.1) with
respect to bulk metric g leads to standard Einstein’s equation with a negative cosmological
constant Λ,

Rαβ − gαβ + Λgαβ = 0 (2.3)

On the other hand, the brane embedding is determined by the Israel junctions condition,

Kab = (K − T )hab (2.4)

It is straightforward to check that AdSd+1 black string geometry satisfies the equation
of motion in (2.3) with the metric,

ds2
d+1 = dρ2 + `2 cosh2(ρ/`)ds2

AdSBHd
(2.5)

where ρ is the radial direction ranges from −∞ to +∞. The brane is located at ρ =
constant and essentially describes the planar AdSd black hole geometry. The metric on the
brane is given by,

ds2
AdSBHd

= 1
u2

(
− f(u)dt̃2 + du2

f(u) + d~x2
d−2

)
(2.6)
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where u is the radial direction on the brane with a horizon at u = uh and f(u) =
(
1− ud−1

ud−1
h

)
,

is the blackening factor. One can think of this bulk AdSd+1 black string geometry as a
foliation of planar AdSd black holes at each constant radial slice i.e. ρ = constant. We
excise the bulk region beyond the brane location ρ = ρb to the conformal boundary. In the
language of “double holography” [22, 28], this system has three equivalent descriptions:

(I) a d-dimensional boundary conformal field theory (BCFT), i.e. a d-dimensional CFT
with a (d− 1)-dimensional boundary [81, 82],

(II) a d-dimensional CFT coupled to gravity on an asymptotically AdSd spaceMd, with
a half-space CFT bath coupled to Md via transparent boundary conditions at an
interface point,

(III) Einstein gravity on an asymptotically AdSd+1 space containing Md as an “end-of-
the-world” brane [26, 27, 83].

Note that the scenario relevant for the black hole information paradox is (II).4 Prescrip-
tion (I) and (III) are related via AdS/BCFT correspondence [86, 87] whereas (I) and (II)
is related via AdS/CFT correspondence. The advantage of such doubly holographic mod-
els is that the interesting semiclassical physics arising from (II) can be extracted using
computations performed classically using prescription (III) [30, 88–90]. More precisely, the
generalized entropy of (II) is well-approximated, to leading order in 1/GN , in (III) by a
classical entanglement surface computed via the Ryu-Takayanagi (RT) prescription [91]
(or its covariant extension [92]) — the surface is extremal and thus must satisfy appro-
priate boundary condition on the brane. Hence, this equivalence allows us to interpret
the quantum extremal surfaces (QES) [93, 94] in prescription (II) as RT/HRT surfaces
in prescription (III). Technically speaking, it is the matter entropy Smatter, which is well-
approximated by such an area. However, so long as the only gravitational terms on the
brane are “induced” by gravity in the bulk, the G−1

d term vanishes at tree level and thus
counts as a quantum correction which we neglect in a semiclassical approximation taking
only an effective theory on the brane. Refs. [30, 33] disscuss this in detail. Nevertheless, a
particularly useful manifestation of double holography is when the end-of-the-world brane is
“tensionless” in the sense of the Karch-Randall-Sundrum constructions [26, 27, 95]. While
such a “probe” brane does not backreact on the bulk geometry of (III), there is still a tower
of spin-2 Kaluza-Klein (KK) modes living on the brane [27]. As discussed in [29], one may
still consider scenario (II) by taking the lowest-mass mode as a graviton and the higher
modes to compose the CFT. While such a theory is not standard Einstein gravity, the result
of using a tensionless braneworld is that holographic calculations in bulk (III) do not require
particularly intricate numerics, unlike in setups with nontrivial tension parameters [28, 33].

Let us now discuss the double KR braneworld model. In this setup, we add another
positive tension brane which is described by the action,

S = − 1
16πGd+1

∫
dd+1y

√
−g(R− 2Λ)− 1

8πGd

∫
j=1,2

ddy
√
−h(Kj − Tj) (2.7)

4For a comprehensive review, interested readers are referred to [22, 84]. Also, recently, the author in [85]
applied wedge holography to study different entanglement properties of the multiverse.
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Figure 1. Two rigid branes embedded in bulk AdS space-time at the locations µ = µ1 and µ = µ2.
The angular coordinate µ is related to the bulk radial direction ρ via a coordinate transformation,
ρ = log cot µ2 . The two branes meet at the conformal defect represented by the red dot. We excise the
region beyond the brane location to the boundary. This results in the left-over bulk region shaded
in light blue. The volume of this light blue region represents the complexity of the boundary state.

The bulk geometry is still given by (2.5) and we have two branes localized at ρ = ρ1 and
ρ = ρ2 with respective tensions T1 = (d− 1) tanh(−ρ1/`) and T2 = (d− 1) tanh(ρ2/`) with
ρ1 < 0 and ρ2 > 0. Similar to the single brane scenario, we excise the bulk region that is
beyond the brane location i.e., ρ = ρ1 and ρ = ρ2. In other words, we only consider the
bulk region that is enclosed by these two branes. In the language of “wedge holography”,
it has three equivalent prescriptions [1, 33, 37, 96]:

(I) a (d− 1)-dimensional conformal field theory (CFT);

(II) two d−dimensional CFTs coupled to gravity on asymptotically AdSd spaces M(1)
d

and M(2)
d , with these two systems connected via a transparent boundary condition

at the (d− 1) dimensional defect;

(III) Einstein gravity on an AdSd+1 space containing two AdSd branes M(1)
d and M(2)

d ,
which intersect each other on the asymptotic boundary thus forming a wedge;

The scenario that is relevant for the black hole information paradox is (II), similar to the
single brane case [33]. However, unlike the single-brane situation where only one brane
is gravitating, here, both of the branes are gravitating; thus, one can consider a situation
where the thermal bath is also gravitating in the models of black hole evaporation. This con-
sideration results in a constant Page curve in higher dimensions (d > 2) [33]. However, The
exact Page curve appears only when one bipartite the whole system across the defect and
considers entanglement between these two sub-systems. Strikingly, in the (2+1) dimension,
this system gives rise to interesting physics when one considers fluctuating branes in con-
trast to its higher dimensional counterpart, where the brane fluctuations can be ignored [1].
For a better understanding of this model, we will study this double-brane system in (2+1)
dimensions and try to compute the total complexity of the corresponding microstates.
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2.2 Jackiw-Teitelboim gravity

In this section, we briefly review pure Jackiw-Teitelboim gravity (JT) gravity. This is dis-
cussed in [97] in the context of quantum extremal surfaces. Additionally, it is one of the
descriptions for the doubly holographic model of [88] when coupled to conformal matter.
We use the action in [98].5 In particular, we show that the action is extremized for configu-
rations involving fixed AdS2 backgrounds, with the matter stress tensor being related to the
dilaton by an additional set of on-shell constraints. We also specify boundary conditions on
the metric and the dilaton. The action of JT gravity itself consists of two separate parts,

IJT [g(2)
ij , ϕ] = IT [g(2)

ij ] + IG[g(2)
ij , ϕ], (2.8)

where these terms are defined as,

IT [g(2)
ij ] = ϕ0

16πG2

(∫
M
d2x
√
−gR+ 2

∫
∂M

dx
√
|γ|K

)
, (2.9)

IG[g(2)
ij , ϕ] = 1

16πG2

[∫
M
d2x
√
−gϕ

(
R+ 2

`2

)
+ 2

∫
∂M

dx
√
|γ|ϕ(K − 1)

]
. (2.10)

Here, g(2)
ij is the background metric and ϕ is the dynamical dilaton. We also have couplings

G2 and ϕ0 � ϕ. Note that IG is a dynamical term, whereas IT is topological. This be-
comes obvious by the Gauss-Bonnet theorem in the Euclidean sector; for a 2-dimensional
orientable, Riemannian manifoldME with Euler characteristic χ(ME),∫

ME

d2x
√
gER+ 2

∫
∂ME

dx
√
γEK = 4πχ(ME). (2.11)

Thus, the Euclideanized IT in the JT gravity action is,

IET = −ϕ0χ(MR)
4G2

= ϕ0
4G2

(2g + b− 2), (2.12)

where g is genus and b is the number of boundaries. In the path integral, any term of the
form exp(−IET ) corresponding to a configuration with large g or large b will be exponentially
suppressed. Consequently, in the approximation for which we consider the leading-order
term, we take g = 0 and b = 1. As mentioned in [97], this means that, semiclassically, the
topological term yields the following leading-order contribution to the entropy,

ST ≈ log exp
(
ϕ0

4G2

)
= ϕ0

4G2
. (2.13)

Now, in finding the classical configurations for the 2-dimensional bulk, we can neglect
the variation of IT (since it is topological). Furthermore, we apply the Dirichlet boundary
conditions in [97, 98] to fix the boundary metric and the boundary value of the dilaton,

γuu|∂M = 1
ε2
, ϕ|∂M = ϕb

ε
, (2.14)

5The action presented by [98] includes a holographic renormalization meant to keep the action finite on
relevant classical configurations.
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taking ε → 0 and ϕb > 0 finite. With these boundary conditions, we can neglect the
variation of the boundary terms in the action. We now focus on varying just the bulk parts
of IG and IW . First, varying by ϕ, we find that,

δ

δϕ
IG = 1

16πG2

√
−g

(
R+ 2

`2

)
. (2.15)

Classically, we thus have that the scalar curvature is fixed. Furthermore, this extends
to the semiclassical regime because we do away with any quantum backreaction in the
metric. Specifically, the background must be locally AdS2,

R = − 2
`2
. (2.16)

Upon computing the variation of (2.10), we find that,

δ

δgij
IG =

√
−g

16πG2

[
−1

2gij
(
R+ 2

`2

)
ϕ+Rijϕ−∇i∇jϕ+ gij∇2ϕ

]
.

We can apply (2.16) to eliminate the first term in the brackets. Additionally, setting
this to 0 yields the following classical equations of the motion for the dilaton,

(Rij + gij∇2 −∇i∇j)ϕ = 0. (2.17)

Interestingly, when JT gravity is classically coupled to a CFT, the matter stress tensor
is coupled to the dilaton, while the background has a fixed Ricci curvature. Since we
neglect any quantum backreaction on the metric in the semiclassical approximation, the
background remains fixed, and occurrences of the stress tensor are replaced with its ex-
pectation value [97]. Nevertheless, we consider a local AdS2 patch of the background in
lightcone coordinates,

ds2

`2
= − 4dx+dx−

(x+ − x−)2 . (2.18)

In these coordinates, the three independent components of (2.17) are,

0 = ∂+∂−ϕ+ 2
(x+ − x−)2ϕ, (2.19)

0 = − 1
(x+ − x−)2∂+

[
(x+ − x−)2∂+ϕ

]
, (2.20)

0 = − 1
(x+ − x−)2∂−

[
(x+ − x−)2∂−ϕ

]
. (2.21)

The solution for the dilaton in this coordinate is given by [97],

ϕ(x+, x−) = ϕh√
µ

1− µx+x−

x+ − x−
(2.22)

where µ and ϕh are real parameters. We perform a further coordinate transformation
which maps the light cone coordinates to Schwarzschild-like geometry in (1+1) dimension,

r = 1− µx+x−

x+ − x−
(2.23)

t = 1
√
µ
arccoth

( 1
√
µ

1 + µx+x−

x+ + x−

)
(2.24)
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This transformation yields,

ds2 = −(r2 − r2
h)dt2 + dr2

r2 − r2
h

; with µ = r2
h. (2.25)

The dilaton then becomes a function of only the radial direction r; i.e. ϕ = ϕh
rh
r.

2.3 Holographic complexity of JT gravity

This section reviews the JT gravity complexity, primarily following [2]. We will use the
‘complexity=volume’ proposal to compute the holographic complexity of JT gravity. For
that purpose, we need to find the maximal volume slice for the background metric of the
JT gravity. We choose the Schwarzschild-like (1 + 1) dimensional black hole geometry as a
background for the JT gravity, which is,

ds2 = L2

z2

[
− h(z)dt2 + dz2

h(z)

]
(2.26)

where blackening factor h(z) and the dilation profile ϕ(z) is given by,

h(z) =
(

1− z2

z2
h

)
, ϕ(z) = ϕh

zh
z

(2.27)

and L is the AdS curvature scale. We parametrized the volume slice as t ≡ t(z). To find
the maximal volume slice, we need to extremize the following volume functional,

V = L

∫
dz

z

√
−h(z)t′(z)2 + 1

h(z) ≡ L
∫
dzL (2.28)

In the above expression for the volume functional, the Lagrangian L does not explicitly
depends on t; thus, we can determine the conserved quantity E from the Lagrangian which
is constant on the entire hyper-surface,

E = − ∂L
∂t′(z) =⇒ tb = −

∫ zt

0

Ezdz
h(z)

√
E2z2 + h(z)

(2.29)

where zt is the turning point for the symmetric geodesic. At this point, the time derivative
of the radial direction vanishes i.e., 1

t′(zt) = 0 =⇒ zt = zh√
1−E2z2

h

.
Putting all these things together, we find the maximal volume after replacing (2.29)

into (2.28). This yields the expression for the maximal volume,

V = L

∫ zt

0

dz

z
√
E2z2 + h(z)

(2.30)

Note that as the boundary time, tb approaches ∞, the conserved quantity E approaches to
some critical value Ecrit. This critical value is determined by extremizing E as the function
of turning points zt. This extremization gives,

Ecrit = 1
zh

(2.31)
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Figure 2. The horizontal black line represents the maximal volume slice in JT gravity at the
boundary time tb = tL = tR.

In other words, as we go closer and closer to the infinite boundary time, the energy for these
spacelike surfaces approaches some fixed constant value. After substituting Ecrit into (2.30)
for the late times and taking the time derivative, we find the late time complexity growth,6

dCJT
dtb

∣∣∣∣
tb→∞

= 2ϕ0
G3zh

(2.32)

Following the argument of [2], we put the ϕ0/L factor by hand. This is well justified
by the expectation that the complexity should grow at a rate proportional to the number
of degrees of freedom of the dual quantum system. The number of degrees of freedom is,
in turn, proportional to the black hole entropy, and for the (1+1)-dimensional black holes,
the entropy is dominated by the extremal entropy, S0 = ϕ0

4G2
[2]. Surprisingly, we will see

later that this type of factor naturally occurs when one computes the complexity of JT
gravity from the Karch-Randall braneworlds with fluctuating branes.

2.4 JT gravity from the KR braneworld

In this section, we briefly review the emergence of JT gravity as a low energy effective
dynamics of fluctuating AdS2 branes in bulk AdS3. Before that, note that in the single
brane KR setup, the location of the brane is fixed. In that case, One can take the brane
location to be an orbifold fixed point to model an End-of-the-world (EOW) brane analogues
to O- planes in string theory [99, 100]. However, with two branes, the relative distance
between two branes can vary and thus can be treated as a dynamical variable known
as radion [101]. To study the low-energy effective theory, we will consider only small
fluctuations of these AdS2 branes about their rigid locations in (2 + 1) dimensional bulk

6We use the relation G3 = LG2.
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AdS. More concretely, let us consider two AdS2 branes located at ρ = ρ1 + δϕ1(y) and
ρ = ρ2 + δϕ2(y) with the tensions T1 and T2 respectively, where the notation y symbolise
orthogonal coordinates. These branes meet at the conformal boundary and thus form a
wedge. In addition, these brane fluctuations are considered to be small with respect to the
AdS curvature scale i.e. δϕ1/`� 1 & δϕ2/`� 1. After putting all these together, the bulk
metric can be written as,

ds2
b = dρ2 + `2 cosh2(ρ/`)gab(ρ, y)dyadyb (2.33)
≈ dρ2 + `2 cosh2(ρ/`)gab(y)dyadyb (2.34)

The above metric describes the lowest 2d graviton mode as we can disregard higher order
terms in gab(ρ, y) as δϕ1/`, δϕ2/`� 1 so, gab(ρ, y) ≈ gab(0, y) ≡ gab(y). We now plug (2.34)
back into equation (2.7) and find the leading order contribution in the action up to O(δϕ2),

Seff = S0 −
1

16πG3

∫
d2y
√
−gϕ(y)(R+ 2/`2) + Sdilaton (2.35)

where we have introduced a new variable, ϕ(y) = δϕ2(y)− δϕ1(y) and S0 is a completely
topological term given by [1, 37],

S0 = −(ρ2 − ρ1)
16πG3

∫
d2x
√
−gR[g] = − ϕ0

16πG3

∫
d2x
√
−gR[g] (2.36)

Sdilaton = − 1
8πG3

∫
d2y
√
g

[tanh ρ2
2 ∇αδϕ2∇αδϕ2 + tanh ρ1(δϕ1)2 (2.37)

−tanh ρ1
2 ∇αδϕ1∇αδϕ1 − tanh ρ1(δϕ1)2

]
(2.38)

where ϕ0 is defined in terms of the fixed distance between the two branes , i.e., ϕ0 =
(ρ2 − ρ1). We can neglect Sdilaton in two cases: (i) in the near tensionless limit when
T1, T2 → 0,7 or (ii) by imposing orbifold symmetry, δϕ2(y) = −δϕ1(y) [1, 37]. Both of
these cases lead to the bulk action up to O(ϕ2),

Seff = S0 −
1

16πG3

∫
d2y
√
−gϕ(y)(R+ 2/`2) (2.39)

This is exactly the pure JT gravity action. To study non-trivial dynamics, one further
imposes boundary conditions and a cutoff on the bulk metric,

gab
∣∣
bdy = − 1

ε2
, ϕ(y)

∣∣
bdy = ϕb

ε
. (2.40)

where ϕb = ϕhzh. With this identification of boundary condition and cutoff for the bulk
AdS3 metric, we must add the Gibbons Haling boundary to the total action,

SGHY = − 1
8πG3

∫
d2y

√
−hbdyK(3), (2.41)

7Note that when T1 = T2 = 0, the topological term exactly vanishes, as well as Sdilaton. However, the
dynamical term still exists for the exactly tensionless branes in (2.35). We work in a slightly different limit
when T1, T2 � 1 and the brane fluctuations are much smaller than the brane locations. In this limit, the
topological term in the pure JT gravity exists, and the leading order term in Sdilaton vanishes.
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Figure 3. Two fluctuating branes embedded in bulk AdS space-time. The brane location is now
a function of the orthogonal directions represented by collective notation y. We excise the region
beyond the brane position to the conformal boundary and consider the bulk portion shaded in light
blue. The low energy effective dynamics of the fluctuating branes are then correctly captured by
the JT gravity.

where hbdyab is the induced metric on the cutoff surface, and K(3) is the trace of the ex-
trinsic curvature of this surface embedded in the 3d bulk. This term precisely leads to the
boundary term in the JT gravity,

Sbdy = − 2ϕ0
16πG3

∫
∂M

dy
√
−hK − 2ϕb

16πG3

∫
∂M

dy
√
−hK (2.42)

where K is the trace of the extrinsic curvature of the cutoff boundary of the AdS2. With this
boundary term added, the full action of low energy theory arising from brane fluctuation
is [1, 37],

Seff = − ϕ0
16πG3

[ ∫
M
d2y
√
−gR[g] + 2

∫
∂M

dy
√
−hK

]
(2.43)

− 1
16πG3

[ ∫
M
d2y
√
−gϕ(y)(R[g] + 2/`2) + 2ϕb

∫
∂M

dy
√
−hK

]
(2.44)

By varying the above action with respect to the metric tensor and the dilaton field, we
arrive at the classical equation of motion,

0 = R+ 2/`2 (2.45)
0 = (Rij + gij∇2 −∇i∇j)ϕ. (2.46)

The fixed AdS2 black hole metric can be considered as the background metric for the JT
gravity,

ds2 = 1
z2

[
− h(z)dt2 + dz2

h(z)

]
(2.47)

where h(z) =
(
1− z2

z2
h

)
, is the blackening factor. By solving Einstein’s equation (2.46), one

finds the following profile for the dilaton field,

ϕ(z, t) = ϕh
zh
z
. (2.48)
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3 Matching of entanglement and complexity

3.1 Entanglement between two defects

In this section, we compute the entanglement entropy for the thermal state in (2 + 1)
dimension. We consider the nearly tensionless limit and find the minimal length connecting
the two branes through the bulk AdS. When the branes are rigid, the minimal surface lies
on the constant time slice. Thus we need to extremize the following length functional,

A =
∫
dρ

√
1 + `2 cosh2 (ρ/`)

z2h(z) z′(ρ)2 (3.1)

By making the coordinate transformation z → z∗(z), (3.1) become,

A =
∫
dρ
√

1 + `2 cosh2 (ρ/`)z∗′(ρ)2, z∗ =
∫

dz

z
√
h(z)

(3.2)

Upon extremization (3.2) leads to z∗′(ρ) = 0. Thus any z∗ = constant slices represent an
equal area or entanglement entropy between two defects,

SEE = (ρ2 − ρ1)
4G3

(3.3)

implying that the entanglement curves are infinitely degenerate. However, when one con-
siders fluctuations along with the orbifold symmetry, this infinite degeneracy is lifted, and
only the z = zh, t = 0 curve represents the entanglement entropy between the two asymp-
totic defects. Using the HRT prescription [92, 94], one finds that the entanglement entropy
is given by

SEE = ϕ0 + ϕh
4G3

. (3.4)

3.2 Holographic complexity from KR braneworld

In this section, we compute the holographic complexity using the ‘complexity=volume’
proposal in the limit when the branes are nearly tensionless s.t ρ1,2 ≈ ε1,2 � 1 and the
fluctuations are even smaller than the brane locations δϕ1,2 � ρ1,2.8 When the branes are
nearly tensionless, the curvature scale on both branes matches the curvature scale of the
bulk geometry, i.e. L1 ≈ L2 ≈ `. The ‘complexity=volume’ proposal dictates that the com-
plexity of a dual quantum system is given by the maximal volume of the bulk codimension-1
hypersurface. We evaluate this volume casewise i.e. first for rigid branes and then for the
fluctuating branes. With two fixed AdS2 branes, the bulk geometry is described by (2.5),

ds2 = dρ2 + `2 cosh2 (ρ/`)
u2

[
− f(u)dt̃2 + du2

f(u)

]
(3.5)

= dρ2 + `2 cosh2 (ρ/`)
z2

[
− h(z)dt2 + dz2

h(z)

]
(3.6)

8In this limit Sdilaton goes as O(ε4). However, our result for complexity even holds exactly when we first
consider orbifold symmetry with δϕ2(y) = −δϕ1(y) for which Sdilaton vanishes and then take the tensionless
limit to introduce some sort of locality in our setting.
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where h(z) is given by h(z) =
(
1− z2

z2
h

)
. The explicit coordinate transformation between u

and z is,
z = zh

u

2uh − u
, t̃ = 2t. (3.7)

We parametrize the volume surface by t ≡ t(z). After doing this, we need to extremize the
volume that is enclosed by these two rigid branes,

V = `

∫ ∫
dρ dz

cosh (ρ/`)
z

[
− h(z)t′2 + 1

h(z)

]1/2
(3.8)

= `2
∫
dz

(
sinh (ρ2/`)− sinh (ρ1/`)

)
z

[
− h(z)t′2 + 1

h(z)

]1/2
(3.9)

≈ `

∫
dz

(
ρ2 − ρ1

)
z

[
− h(z)t′2 + 1

h(z)

]1/2
≡ `(ρ2 − ρ1)

∫
dzL (3.10)

The last line follows because we are working in the nearly tensionless limit, sinh (ρ/`) ≈ ρ/`.
With this condition imposed, we now extremize the above volume functional in (3.10). The
Lagrangian L in (3.10) does not explicitly depends on time t; thus, we can find a conserved
quantity which remains constant on the entire hyper-surface,

E = − ∂L
∂t′(z) =⇒ tb = −

∫ zt

0

Ezdz
h(z)

√
E2z2 + h(z)

(3.11)

where zt is the turning point for the symmetric spacelike surface. At this point, the time
derivative of the z becomes zero. More precisely,

1
t′(zt)

= 0 =⇒ zt = zh√
1− E2z2

h

(3.12)

The maximal volume slice then follows by replacing (3.11) into (3.10),

V = 2`2(ρ2 − ρ1)
∫ zt

0

dz

z
√
E2z2 + h(z)

(3.13)

Note that as boundary time tb approaches∞, the conserved quantity E approaches to some
critical value Ecrit. We find this critical value by extremizing E as the function of turning
points zt. This determines the critical value Ecrit as a function of the horizon distance,

Ecrit = 1
zh

(3.14)

With the substitution of Ecrit into (3.13) for the late times and taking the time derivative,
we find the late time complexity growth,

dC
dtb

∣∣∣∣
tb→∞

≈ 2(ρ2 − ρ1)
G3zh

∼ SEET (3.15)

where SEE represents entanglement between two asymptotic defects when the branes are
held fixed, and T is the black hole temperature, T = 1

2πzh
. The separation between two

branes (ρ2 − ρ1) plays the role of the constant ϕ0 in front of the topological term in JT
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gravity when both branes are fluctuating. Thus the growth rate in (3.15) exactly matches
the growth rate found in JT gravity in (2.32). Even though the entanglement entropy of
the thermal state is constant over time, we find that the complexity of the state evolves
with time, indicating the inherent thermal nature of the state.

We next proceed to compute the complexity while the branes are fluctuating. In that
case, the bulk volume that is enclosed by these fluctuating branes is,

V = `

∫ ∫
dρ dz

cosh (ρ/`)
z

[
− h(z)t′2 + 1

h(z)

]1/2
(3.16)

= `2
∫
dz

(
sinh(ρ2+δϕ2(y)

` )− sinh(ρ1+δϕ1(y)
` )

)
z

[
− h(z)t′2 + 1

h(z)

]1/2
(3.17)

= `

∫
dz

(
(ρ2 − ρ1) + (δϕ2(y)− δϕ1(y))

)1
z

[
− h(z)t′2 + 1

h(z)

]1/2
(3.18)

= `

∫
dz

(
ϕ0 + ϕ(z)

z

)[
− h(z)t′2 + 1

h(z)

]1/2
(3.19)

= `

∫
dz

1
z

(
ϕ0 + ϕhzh

z

)[
− h(z)t′2 + 1

h(z)

]1/2
≡ `

∫
dzL (3.20)

We performed the radial integration as we went from the first to the second line in the
above volume functional. From the second to the third line, we have used the fact that we
are working in the nearly tensionless limit for the branes and thus sinh x ≈ x. Note the new
factor

(
ϕ0+ϕ(z)

)
, which comes from the dimensional reduction of the bulk radial direction.

Within this term, ϕ(z) encapsulates the information of the brane fluctuations. This extra
piece thus produces a significantly different result than complexity when the branes are
rigid. Furthermore, similar to before, the Lagrangian L in (3.20) still does not depend on
time t explicitly. Thus again we can find conserved quantity E for the volume surfaces,

E = − ∂L
∂t′(z) =⇒ tb = −

∫ zt

0

Ez2dz

h(z)
√
E2z4 + (zϕ0 + zhϕh)2h(z)

(3.21)

where zt is the turning point for the symmetric spacelike geodesics. By setting 1
t′(zt) = 0,

we find the energy for each volume hypersurface as a function of the turning point,

E =

√
z2
t − z2

h (ϕhzh + ϕ0zt)
zhz

2
t

. (3.22)

We then find the maximal volume slice as a function of E ,

V = 2`
∫ zt

0

(ϕ0z + ϕhzh)2dz

z2
√
E2z4 + (zϕ0 + zhϕh)2h(z)

(3.23)

As we are interested in the behaviour of the complexity at late times, we find the value of
E when tb →∞. In this limit, E approaches to a critical value Ecrit. We determine Ecrit by
demanding that ∂ztE = 0 for the late times. This yields the critical value Ecrit as a function
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of ϕ0 and ϕh,

Ecrit =

√
2(2ϕ2

h + ϕ0(ϕ0 +
√
ϕ2

0 + 8ϕ2
h))3/2

zh(ϕ0 +
√
ϕ2

0 + 8ϕ2
h)2

(3.24)

By inserting the value of Ecrit for the late times, we finally find the rate of growth of the
complexity at the late times,

dCKR
dtb

∣∣∣∣
tb→∞

=
2
√

2(2ϕ2
h + ϕ0(ϕ0 +

√
ϕ2

0 + 8ϕ2
h))3/2

G3zh(ϕ0 +
√
ϕ2

0 + 8ϕ2
h)2

(3.25)

≈ 2ϕ0
G3zh

(
1 + ϕ2

h

2ϕ2
0

)
+O

((
ϕh/ϕ0

)4) (3.26)

where CKR denotes the complexity of the JT gravity that arises from the fluctuating KR
branes. The last line follows as we can Taylor expand the rhs in ϕh/ϕ0 � 1. Thus, the
complexity gets a sub-leading correction to the answer found in [2]. This difference in
complexities at the late times, ∆C = CKR − CJT, grows as,

d∆C
dtb

∣∣∣∣
tb→∞

= 2ϕ2
h

G3zhϕ0
+ . . . (3.27)

which is proportional to the ϕ2
h/ϕ0 while we held fixed the temperature. This subleading

correction arises because of the brane fluctuations in bulk AdS and thus carries the sig-
nature of the fluctuations in the JT gravity complexity. In the limit when G3 → 0 and
ϕh → 0,9 the r.h.s. of (3.27) vanishes, and we get the same expression for the complexity
with rigid branes given by (3.15).

On a related note, it is well-known that JT gravity describes the near-horizon dynamics
of near-extremal RN black holes in (3+1) dimension upon dimensional reduction. In that
scenario, one identifies that ϕ0 is related to the charge of the (3 + 1) dimensional black
hole. Using this (3.27) turns into,

d∆C
dtb

∣∣∣∣
tb→∞

= 2ϕ2
h

G3zhQ2 (3.28)

where Q is the charge of the near extremal RN black hole in (3 + 1) dimension, defined as
ϕ0 = Q2

2 . Schematically the complexity of the JT gravity goes as ∼ #Q2 + #
Q2 + . . ..

4 Discussions

In this paper, we have studied the holographic complexity of Jackiw-Teitelboim (JT) arising
from two fluctuating Karch-Randal branes in (2 + 1) dimensions. These branes form a
wedge in ambient AdS spacetime, and one can use the tools of wedge holography to study
their low-energy effective dynamics. First, we consider rigid branes, which leads to the
2d Einstein-Hilbert gravity on the brane. By computing the maximal volume between

9The author in [37] considers this limit to appropriately match the physics without any brane fluctua-
tions, see section 8.
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these two branes, we find that at the late times, the complexity grows proportionally to
the separation of the branes, which plays the role of ϕ0 when the branes are fluctuating.
This is somewhat expected as the complexity growth rate is proportional to entanglement
entropy with a fixed temperature at the late times. As the entanglement entropy between
the two asymptotic defects is proportional to the distance between two branes when they
are held fixed; therefore it is correct to expect that we get the same sort of dependence
for the complexity growth rate at the late times. Even though the entanglement entropy
between the defects in the thermal state does not show any time dependence, the complexity
grows with time, as expected for a thermal state of the boundary field theory. This stems
from the basic expectation that although the entanglement is constant, the dual state still
goes through nontrivial time evolution. Hence, although there is no change in the degree
of entanglement, the complexity is supposed to capture the evolution in the state space.

After that, we studied the holographic complexity of the thermal state when the bulk
consists of two fluctuating AdS2 branes. With the nearly tensionless branes, we find that
the leading order term in the complexity grows proportionally with the ϕ0 at the late times.
Moreover, we find the first sub-leading correction is inversely proportional to ϕ0. This is an
entirely new fact. As reviewed in the main draft, the entanglement entropy for the fluctuat-
ing branes and the JT gravity theories match exactly. For the fluctuating branes in AdS3,
the HRT surface turns out to be non-degenerate and hence, unique. Unlike entanglement
entropy, the subleading difference of complexity (equals volume conjecture) between the two
theories suggests that the evolution of the two bulk theories is not completely equivalent in
the state space. It is suggestive that complexity captures some nontrivial properties of the
three-dimensional theory even after dimensional reduction, which does not seem to survive
in a computation of entanglement entropy. It also strengthens the “entanglement is not
enough” proposal [38] in the sense that complexity can capture certain differences between
the two theories in two dimensions, and hence the respective evolving states dual to the
two theories, which entanglement entropy can not. Physically, we get this difference in the
complexities because of the correct extremization of the volume functional. The authors
in [102] have recently suggested similar extremization of volume functional for de Sitter JT
gravity; however, in terms of Weyl transformation of the 2d intrinsic metric. They found
an exact match for the de Sitter JT complexity with the dS3 by appropriately choosing the
warp factor Ω(r) = ϕ(r)2, which is exactly similar to our equation in (3.20). Nevertheless,
we note down one further observation. While JT gravity is viewed as a low energy dynam-
ics of a nearly extremal RN black hole in (3+1) dimensions, the first subleading correction
is found to be inversely proportional to the square of the total charge of the RN black hole.
More concretely, the holographic complexity of the JT gravity grows as #Q2 + #

Q2 + . . .,
where Q is the charge of the RN black hole while the three-dimensional AdS curvature scale
` and dilaton at the horizon ϕh are fixed. In the limit, Q→∞, only the first term survives,
and all the sub-leading correction vanishes; thus, we recover the same result proposed in [2].

There are some interesting future directions. An immediate direction would be con-
sidering the setup with orbifold symmetry and then evaluating the complexity of the JT
gravity. In this paper, we only consider the tensionless branes; however, it would be worth
checking that even with the orbifold symmetry of the bulk setup, we indeed get the same
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result for the complexity discussed in section 3.2. Another possible future direction is to
analyze the holographic complexity of the JT gravity by using the ‘complexity=action’ pro-
posal to see if this also gives similar results that we found using the ‘complexity=volume’
proposal. This is a nontrivial exercise, as tackling the bulk action with fluctuations can be
tricky. Finally, it is also an interesting question to make such a correspondence between
the three-dimensional multi-boundary wormholes [103] by performing a systematic dimen-
sional reduction (which is also a topological theory defined on a timeslice of quotient AdS3)
and the JT gravity in the level of the action to compare the entanglement and complexity
of the two theories along the lines of [104–106]. We hope to report in these directions soon.
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