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Exome-wide analysis reveals
role of LRP1 and additional
novel loci in cognition
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Summary
Cognitive functioning is heritable, with metabolic risk factors known to accelerate age-associated cognitive decline. Identifying genetic

underpinnings of cognition is thus crucial. Here, we undertake single-variant and gene-based association analyses upon 6 neurocogni-

tive phenotypes across 6 cognition domains in whole-exome sequencing data from 157,160 individuals of the UK Biobank cohort to

expound the genetic architecture of human cognition. We report 20 independent loci associated with 5 cognitive domains while con-

trolling for APOE isoform-carrier status and metabolic risk factors; 18 of which were not previously reported, and implicated genes

relating to oxidative stress, synaptic plasticity and connectivity, and neuroinflammation. A subset of significant hits for cognition indi-

cates mediating effects via metabolic traits. Some of these variants also exhibit pleiotropic effects onmetabolic traits. We further identify

previously unknown interactions of APOE variants with LRP1 (rs34949484 and others, suggestively significant), AMIGO1 (rs146766120;

pAla25Thr, significant), and ITPR3 (rs111522866, significant), controlling for lipid and glycemic risks. Our gene-based analysis also sug-

gests that APOC1 and LRP1 have plausible roles along shared pathways of amyloid beta (Ab) and lipid and/or glucose metabolism in

affecting complex processing speed and visual attention. In addition, we report pairwise suggestive interactions of variants harbored

in these genes with APOE affecting visual attention. Our report based on this large-scale exome-wide study highlights the effects of

neuronal genes, such as LRP1, AMIGO1, and other genomic loci, thus providing further evidence of the genetic underpinnings for cogni-

tion during aging.
Introduction

Cognition refers to a plethora of mental processes that

guide acquisition, transformation, storage, recovery, and

implementation of information, and is key to good health.

Understanding genetic predispositions for inter-individual

differences in age-related cognitive decline is of paramount

importance in healthy aging. Genome-wide studies on

cognition have shown that intelligence in humans is her-

itable and that individual differences can be explained by

genetic variations.1–5 Previous GWAS on cognitive func-

tioning have yielded significant positions in the genome

affecting various domains of cognition, such as episodic

memory, processing speed, reaction time, fluid intelli-

gence, and general intelligence.5–10 Non-invasive neuro-

psychological cognitive assessments serve as dependable

endophenotypes to assess brain functioning in healthy ag-

ing and dementia.11,12

The APOE (MIM: 107741) locus confers the highest ge-

netic risk for Alzheimer dementia and is also known to

be associated with nonpathological cognitive aging.13

ApoE is the major apolipoprotein that plays a central role

in maintaining homeostasis in the brain via transport

and clearance of lipids and amyloid beta (Ab). Several other

age-associated metabolic disorders, namely, obesity, type 2

diabetes, dyslipidemia, and cardiovascular disease, can act
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asmodifiable risk factors for cognitive impairment.14 Inter-

play among ApoE, lipid homeostasis, brain glucose, and Ab

trafficking in animal models of Alzheimer disease has been

reported.15

In this study, we decipher the genetic underpinnings of

cognitive functioning while considering the effects of pu-

tative interrelations with metabolic risk factors in the UK

Biobank. We also identify variants in crucial genes that

work in conjunction and interact with APOE in influ-

encing cognitive functioning at a granularity of specific

cognitive domains in the presence of lipid and glycemic

metabolic risk factors.
Material and methods

Samples and participants
We present our analysis based on whole exomes of 200,643 indi-

viduals enrolled in the UK Biobank (approved project ID 55652).16

Phenotypes
We consider six cognitive domains of simple processing speed,

episodic memory, fluid intelligence, working memory, visual

attention, and complex processing speed corresponding to

which ‘‘Reaction time,’’ ‘‘Pairs,’’ ‘‘Reasoning,’’ ‘‘Digit recall,’’

‘‘Trail making,’’ and ‘‘Digit-symbol substitution’’ cognitive

tests were administered on the UK Biobank participants
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(web resources: id¼8481) (further details in supplemental infor-

mation). All the cognition phenotypes that we have selected

have been measured on a continuous scale, and these fields

had maximum available data points across all individuals with

reported sample size >100,000 for each test, and also recom-

mended by UK Biobank as the primary item of interest for

each cognitive test. Table S1 (rows tagged as ‘‘Available’’) shows

the mean and standard deviation of the test scores pertaining to

each cognitive test for the number of individuals for whom in-

formation on at least the cognitive test score was available.

As part of covariates, we also consider age in years (quantita-

tive), genetic sex (binary–male or female), educational qualifica-

tion (categorical: based on (1) college or university degree, (2) A

levels/AS levels/equivalent, (3) either of O levels/general or sec-

ondary certificate/higher national diploma or certificate/national

vocational qualification/equivalent) (further details in supple-

mental information). We also use serum lipid (HDL, LDL, TG,

TC) and serum glucose levels quantified using clinical chemistry

analyser Beckman Coulter AU5800 (web resources: serum_bio-

chemistry.pdf) in the UK Biobank assessments as covariates. We

also use serum HbA1c levels obtained using five Bio-Rad Variant

II Turbo analyzer assay as glycemic covariates (web resources:

serum_HbA1c.pdf).

Genetic data and quality control
We download the UK Biobank population-level exome OQFE files

for �200k exomes in pVCF format (Field ID: 23156) using the

‘‘gfetch’’ utility. After extensive quality checks (details in supple-

mental information), we retain 157,160 individuals with

211,012 variants (Table S2). There are 71,566 males and 85,461 fe-

males among these individuals with ages ranging from 38 to 72

years. These individuals are predominantly White British (91%)

(Table S3) and their educational attainment levels with the cate-

gories considered are provided in Table S4.

Heritability
Before proceeding to association analyses, we assess the heritabil-

ity of the six cognition phenotypes based on unrelated individuals

using the LDAK17 model (supplemental information). Our herita-

bility estimates (Table S5) show good concordance with evidence

from previous family-based studies and GWAS ATLAS resource.18

APOE-carrier status determination
Out of 157,160 samples, 93 have missing genotype information

for APOE at either rs7412 or rs429358 or both. We determine

APOE-carrier status, by flagging samples with at least one copy of

e4 allele as risk, with at least one copy of e2 as protective/beneficial,

e1/e3 and e3/e3 carriers as neutral, to include as a categorical covar-

iate in association models (Table S6).

Statistical analyses
Single-variant association

With genetic data on the resultant 157,067 samples and 211,012

variants, we perform single-variant Wald test using rvtests.19 Our

baseline model controls for age, gender, educational qualification,

top 10 principal components, and APOE-carrier status (functional

form of the model and other details are provided in supplemental

information). Furthermore, to control for age-related metabolic

conditions that can adversely affect cognition, we add lipid levels

(serum total cholesterol, HDL and LDL direct cholesterol, triglycer-

ides), glucose, and HbA1c levels separately as covariates to the
2 Human Genetics and Genomics Advances 4, 100208, July 13, 2023
baseline model in models 2 and 3 (supplemental information).

We obtain the residuals and test the inverse-normalized residuals

against genotypes of each variant (supplemental information).

We obtain Manhattan plots (Figures S1–S5) and QQ plots

(Figures S5 and S6) to visualize our results and significant hits.

We use the LDtrait module of LDlink20 to check if variants, which

are in high LD (r2 > 0.8) and fall within5500 kbp with our signif-

icant variant, were previously associatedwith any trait listed in the

EBI-GWAS catalog.21

Coding region-specific analysis

The exome sequencing data dispensed to us by the UK Biobank

does not have the variants functionally annotated. The

sequencing design was targeted toward 39 Mbp of the human

genome and included variants in target regions and 100 bp

flanking regions upstream and downstream of each capture

target (web resources: UK Biobank exome release). Since it is

well established that non-coding regions in the genome harbor

variants associated with traits, and also regulate gene expres-

sion, control mRNA transport and assembly, and have several

other functional roles,22,23 in this paper we highlight the results

that we obtain from our analyses including all variants

(211,012) in the exome sequencing data in the main text of

this article, even though they are in introns and UTRs. Thus,

we obtain the annotations (Table S7) and filter coding region-

specific variants (filtering criteria, methodological details per-

taining to coding region-specific analysis in supplemental infor-

mation) and perform separate single-variant associations, and

subsequent analysis pertaining to 83,673 variants in the coding

region only (Tables S8–S13). We do not repeat the gene-based

tests for the coding variants separately because rvtests uses

annotation information curated from several bioinformatic da-

tabases to specify a gene unit that contains only coding regions.

Gene-based association

We performed gene-based association tests in 157,067 individuals

with kernel-based (SKAT)24 and unified kernel- and burden-based

methods (SKAT-O25) to detect the cumulative burden in genes

that work concomitantly with APOE (functional form of the

models are provided in supplemental information). Figure 1 repre-

sents the possible pathways in which APOE affects neuronal

dysfunction and hence cognition. Consideration of genes along

these pathways ensures capturing the genetic basis of cognition

in association with lipids homeostasis, glucose metabolism, and

Ab pathogenesis that plausibly play vital roles in modulating

cognition with age.

As an ancillary analysis, we also carry out whole-exome-wide

gene-based analysis. We test 16,915 genes using the same gene-

based association setup (supplemental information). We also carry

out enrichment analysis of the whole-exome-wide significant

genes using the KEGG pathway database26 integrated in the

ShinyGo tool,27 and filter pathways with a fold enrichment value

>10, false discovery rate <0.05, and having at least three genes in

the gene set. We compare our exome-wide gene-based hits with

the EBI-GWAS catalog ‘‘MAPPED_GENE’’ column to find which

of our hits had been previously mapped with cognition traits.

This column contains gene(s) mapped to the strongest SNP iden-

tified from GWAS. If the SNP is located within a gene (or overlap-

ping genes), that gene(s) is listed. If the SNP is intergenic, the up-

stream and downstream genes are listed, separated by a hyphen.

We search the ‘‘DISEASE/TRAIT’’ column of the catalog for terms

containing ‘‘cognition,’’ ‘‘cognitive performance,’’ ‘‘intelligence,’’

‘‘Alzheimer disease,’’ ‘‘dementia,’’ and investigate if the mapped

gene from these published single-variant associations contain



Figure 1. Putative pathways in which
APOE isoforms regulate neuronal
dysfunction
any of our exome-wide significant genes, and thereby assess the

novelty of our exome-wide gene-based hits. However, we do not

consider the genes for the traits which reported interaction or plei-

otropy.We note that this comparison is based on amapping of the

strongest associated SNP in the region and is not truly a gene-gene

comparison.

Pairwise epistasis

We further uncover the interactions of the significant loci discov-

ered by our single-variant association tests through pairwise epis-

tasis analysis (using plink-1.9.0 software)28 with each of the two

APOE isoform-defining SNPs (rs429358 and rs7412) (functional

form of the model and other details are provided in supplemental

information). We control for all covariates used in models 2 and 3

except APOE-carrier status and obtain the inverse-normalized re-

siduals before testing for interaction effects.

Next, we conduct a pairwise epistasis test for the variants in sig-

nificant gene hits from either the SKAT or SKAT-O models

(p < 0.0025), with APOE isoform-defining rs429358 and rs7412,

as well as all APOE SNPs in two different models (supplemental

information).

Bivariate association tests

For each of the significant variants from our single-variant associ-

ation tests, we conduct bivariate association tests for cognitive

measures and lipid levels/glycemic traits, respectively, with the

summary statistics obtained from the single-variant Wald test re-

sults using metaMANOVA and metaUSAT29 (functional forms of

the models are provided in supplemental information).
Annotation and tissue expression analysis
We annotate our exome-wide significant hits by mapping them to

nearest genes (NCBI, dbSNP; UCSC) and calculating their deleteri-

ousness using CADD30 scores, where higher scores indicate more

deleteriousness. We also assess if our identified variants are rare

(minor allele frequency [MAF] < 1%), low frequency (MAF be-

tween 1% and 5% both inclusive), or common (MAF > 5%). We

perform functional annotation of the variants uncovered using

SnpEff31 and calculate LofTool32 scores. The lower the LoFtool

score, the more intolerant is the mapped gene to functional

changes. Also, we investigate, using GTEx,33 if our variants are

eQTL loci or lie near eQTL loci or are in linkage disequilibrium

(pairwise LD obtained using 1000G EUR) with eQTL loci that

significantly regulate expression of the respectively annotated

genes in brain regions. We also use RegulomeDB34 to identify

the putative regulatory potential of our association and interac-
Human Genetics and Gen
tion signals, which provide supporting evi-

dence about how likely our variants are to

be functional.

Results

Identification of exome-wide

significant variants for cognitive

domains

From our exome-wide single-variant as-

sociation analysis on 211,012 variants
in 157,067 individuals, we identify 20 independent loci

associated with 5 different domains of cognition (Table 1)

with and without controlling for metabolic risks.

Fluid intelligence

We identify a rare variant rs115865641 in PCDHB16 (MIM:

606345) (30 UTR) associated with fluid intelligence (Ta-

ble 1). Controlling for HDL and glucose separately, we

obtain two independent significant hits—rs17876162 in

PON2 (MIM: 602447) (intronic) and rs3824734 (synony-

mous) in CPEB3 (MIM: 610606) (Table 1). Our synony-

mous rs3824734 (CPEB3) with a CADD score of 11.74 (Ta-

ble 1), implying that it is predicted to be among 7% of the

most deleterious substitutions to the genome, can be

crucial for pinpointing the role of this gene in cognition.

This CPEB3 variant is also obtained as a significant signal

from the same models from our coding region-specific

analysis (Table S8).

Simple processing speed

We detect rs3813363 (50 UTR of SAMD3), and rs17662853

(missense variant in KANSL1 [MIM: 612452]) (CADD score

of 23.9) (Table 1) to be associated with simple processing

speed in the baseline as well as all models controlling for

lipid and glycemic traits. rs3813363 is within 500 kbp

and in high LD (r2 > 0.8) of both rs11154580 and

rs6937866, known to be associated with reaction time5

(Figure 2). Highly deleterious rs17662853 is in high LD

(r2 ¼ 0.856) with intronic rs10775404 (CADD score of

1.782) previously associated with reaction time (Figure 2),5

highlighting that our missense variant can be more im-

pactful, andmore likely to be causal. rs17662853 is also ob-

tained as a significant hit from our coding region-specific

analysis from all models (Table S8). We also identify two

variants—rs73922480 and rs77285514 (synonymous and

intronic GPR108 [MIM: 618491], respectively, 80 bp apart)

to be associated with mean reaction time in the baseline

model as well as controlling for HbA1c (Table 1).

rs73922480 in GPR108 is also obtained as a significant

hit from the baseline model as well as models controlling

from HDL and glucose, respectively, from our coding re-

gion-specific analysis (Table S8). Controlling for HbA1c,

we additionally identify rs201404149 (synonymous
omics Advances 4, 100208, July 13, 2023 3



Table 1. Single-variant association analysis

Phenotype/domain: Fluid intelligence score/reasoning, fluid intelligence cognitive domain

Models

Chr:Position; rsid – REF/ALT
(ALT ¼ effect allele); effect
allele frequency

Informative
samples

Effect size: b
(effect allele)

Standard error
(SE) p value

Variance
explained (%)

Previously known
for cognition

Genomic annotation;
mapped gene

CADD score
(Phred scaled);
LofTool score

Baselinea chr5:141185287;
rs115865641 –
G/A; 0.009

36,547 0.036 0.006 7.33E�08 0.002 no 30 UTR variant;
PCDHB16

3.05;
0.71

Baseline þ HDL chr7:95406923;
rs17876162 – A/G;
0.001

31,885 0.035 0.007 6.04E�08 3.16E�04 no intron variant;
PON2

5.37;
0.82

chr10:92240093;
rs3824734 – A/G;
0.594

31,885 �0.042 0.008 1.48E�07 0.086 no synonymous
variant;
CPEB3

11.74;
0.06

Baseline þ Glucose chr7:95406923;
rs17876162 – A/G;
0.001

31,852 0.036 0.007 4.75E�08 3.20E�04 no intron variant;
PON2

5.37;
0.82

chr10:92240093;
rs3824734 – A/G;
0.594

31,852 �0.043 0.008 1.13E�07 0.087 no synonymous
variant;
CPEB3

11.74;
0.06

Phenotype/Domain: Mean time to identify matches/simple processing speed cognitive domain

Models
Chr:Position; rsid – REF/ALT
(ALT ¼ effect allele); effect allele frequency

Informative
samples

Effect size: b
(effect allele)

Standard error
(SE) p value

Variance
explained (%)

Previously known
for cognition

Genomic annotation;
mapped gene

CADD score
(Phred scaled);
LofTool score

Baseline chr6:130365270;
rs3813363 - C/T; 0.324

121,127 �0.024 0.004 5.91E�08 0.025 yes 50 UTR variant;
SAMD3

7.30;
0.94

chr17:46171482;
rs17662853 - G/A; 0.149

121,127 �0.025 0.005 1.04E�07 0.016 yes missense variant
(p.Thr221Ile);
KANSL1

23.90;
–

chr19:6732114;
rs73922480 - C/T; 0.001

121,127 �0.584 0.106 3.66E�08 0.097 no synonymous
variant;
GPR108

4.16;
0.76

chr19:6732194;
rs77285514 - C/T; 0.002

121,127 �0.448 0.085 1.45E�07 0.066 no intron variant;
GPR108

0.59;
0.76

(Continued on next page)
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Table 1. Continued

Phenotype/Domain: Mean time to identify matches/simple processing speed cognitive domain

Models
Chr:Position; rsid – REF/ALT
(ALT ¼ effect allele); effect allele frequency

Informative
samples

Effect size: b
(effect allele)

Standard error
(SE) p value

Variance
explained (%)

Previously known
for cognition

Genomic annotation;
mapped gene

CADD score
(Phred scaled);
LofTool score

Baseline þ HDL chr6:130365270;
rs3813363 - C/T; 0.324

105,977 �0.025 0.005 1.59E�07 0.026 yes 50 UTR variant;
SAMD3

7.30;
0.94

chr12:440788;
rs11062991 - G/T; 0.011

105,977 �0.109 0.021 1.78E�07 0.026 no intron variant;
CCDC77

4.22;
1.00

chr15:70891939;
rs2959174 - G/T; 0.407

105,977 �0.022 0.004 1.96E�07 0.024 no intron/synonymous
variant; LRRC49/THAP10

2.75;
0.48

chr17:46171482;
rs17662853 - G/A; 0.149

105,977 �0.027 0.005 1.22E�07 0.018 yes missense variant
(p.Thr221Ile); KANSL1

23.90;
–

Baseline þ LDL chr6:130365270;
rs3813363 - C/T; 0.324

115,316 �0.025 0.004 3.89E�08 0.027 yes 50 UTR variant;
SAMD3

7.30;
0.94

chr17:46171482;
rs17662853 - G/A; 0.149

115,316 �0.026 0.005 9.70E�08 0.017 yes missense variant
(p.Thr221Ile);
KANSL1

23.90;
–

Baseline þ TC chr6:130365270;
rs3813363 - C/T; 0.324

115,520 �0.024 0.004 4.79E�08 0.026 yes 50 UTR variant;
SAMD3

7.30;
0.94

chr15:70891939;
rs2959174. - G/T; 0.407

115,520 �0.022 0.004 8.61E�08 0.024 no intron/synonymous
variant; LRRC49/THAP10

2.75;
0.48

chr17:46171482;
rs17662853 - G/A; 0.149

115,520 �0.028 0.005 1.17E�08 0.019 yes missense variant
(p.Thr221Ile);
KANSL1

23.90;
–

Baseline þ TG chr6:130365270;
rs3813363 - C/T; 0.324

115,425 �0.024 0.004 6.03E�08 0.026 yes 50 UTR variant;
SAMD3

7.30;
0.94

chr17:46171482;
rs17662853 - G/A; 0.149

115,425 �0.027 0.005 2.83E�08 0.018 yes missense variant
(p.Thr221Ile);
KANSL1

23.90;
–

Baseline þ Glucose chr6:130365270;
rs3813363 - C/T; 0.324

105,898 �0.025 0.005 8.10E�08 0.028 yes 50 UTR variant;
SAMD3

7.30;
0.94

chr12:440788;
rs11062991 - G/T; 0.011

105,898 �0.110 0.021 1.46E�07 0.027 no intron variant;
CCDC77

4.22;
1.00

chr17:46171482;
rs17662853 - G/A; 0.149

105,898 �0.028 0.005 4.27E�08 0.019 yes missense variant
(p.Thr221Ile);
KANSL1

23.90;
–

(Continued on next page)
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Table 1. Continued

Phenotype/Domain: Mean time to identify matches/simple processing speed cognitive domain

Models
Chr:Position; rsid – REF/ALT
(ALT ¼ effect allele); effect allele frequency

Informative
samples

Effect size: b
(effect allele)

Standard error
(SE) p value

Variance
explained (%)

Previously known
for cognition

Genomic annotation;
mapped gene

CADD score
(Phred scaled);
LofTool score

Baseline þ HbA1c chr1:25826774;
rs201404149 - C/T; 0.001

115,563 �0.311 0.060 1.93E�07 0.027 no synonymous variant;
MTFR1L

9.64;
–

chr6:130365270;
rs3813363 - C/T; 0.324

115,563 �0.025 0.004 4.50E�08 0.026 yes 50 UTR variant;
SAMD3

7.30;
0.94

chr15:70832754;
rs3825970 - G/A; 0.586

115,563 0.022 0.004 1.64E�07 0.024 no synonymous variant;
LARP6

0.895;
0.18

chr15:70832865;
rs1549317 - A/G; 0.589

115,563 0.023 0.004 9.71E�08 0.025 no synonymous variant;
LARP6

6.676;
0.18

chr17:46171482;
rs17662853 - G/A; 0.149

115,563 �0.025 0.005 1.64E�07 0.016 yes missense variant
(p.Thr221Ile);
KANSL1

23.90;
–

chr19:6732114;
rs73922480 - C/T; 0.001

115,563 �0.595 0.112 1.03E�07 0.101 no synonymous variant;
GPR108

4.16;
0.76

chr19:6732194;
rs77285514 - C/T; 0.002

115,563 �0.476 0.089 1.07E�07 0.074 no intron variant;
GPR108

0.59;
0.76

Phenotype/Domain: Maximum correct symbol-digit substitutions/complex processing speed cognitive domain

Models
Chr:Position; rsid –
REF/ALT (ALT ¼ effect allele); effect allele frequency

Informative
samples

Effect size:
b (effect allele)

Standard error
(SE) p value

Variance
explained (%)

Previously known
for cognition

Genomic
annotation;
mapped gene

CADD score
(Phred scaled);
LofTool score

Baseline chr16:27462539;
rs12932325 – G/A; 0.142

35,174 �0.040 0.007 8.56E�08 0.039 no intron variant;
GTF3C1

0.88;
0.28

Baseline þ LDL chr12:112482065;
rs12301915-C/A; 0.013

33,433 0.039 0.007 8.69E�08 0.004 no intron variant;
PTPN11

14.34;
0.05

Baseline þ TC chr12:112482065;
rs12301915-C/A; 0.013

33,495 0.039 0.007 1.12E�07 0.004 no intron variant;
PTPN11

14.34; 0.05

Baseline þ HbA1c chr11:70324575;
rs71467481- G/A; 0.021

33,503 0.030 0.006 1.15E�07 0.004 no intron variant;
PPFIA1

0.09;
0.23

Phenotype/Domain: Proportion of incorrect pair matches/episodic memory domain

Models

Chr:Position; rsid –
REF/ALT (ALT ¼
effect allele); effect allele frequency

Informative
samples

Effect size:
b (effect
allele)

Standard
error (SE) p value

Variance
explained (%)

Previously known
for cognition

Genomic annotation;
mapped gene

CADD score
(Phred scaled);
LofTool score

Baselinea chr1:109508840;
rs146766120-C/T; 0.001

34,120 �1.080 0.180 3.93E�08 0.319 no missense variant
(p.Ala25Thr);
AMIGO1

15.97;
–

chr2:130356125;
rs77807661 - C/T; 0.002

34,120 �2.157 0.378 1.82E�07 1.711 no synonymous variant;
PTPN18

6.70;
0.41

chr6:33688801;
rs111522866-C/T; 0.002

34,120 �0.882 0.147 4.62E�08 0.243 no intron variant;
ITPR3

0.06;
0.05

(Continued on next page)
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Table 1. Continued

Phenotype/Domain: Proportion of incorrect pair matches/episodic memory domain

Models

Chr:Position; rsid –
REF/ALT (ALT ¼
effect allele); effect allele frequency

Informative
samples

Effect size:
b (effect
allele)

Standard
error (SE) p value

Variance
explained (%)

Previously known
for cognition

Genomic annotation;
mapped gene

CADD score
(Phred scaled);
LofTool score

Baseline þ LDLa chr5:90502412;
rs7725495 –
G/A; 0.002

32,423 �0.034 0.006 1.86E�07 3.74E�04 no intron variant;
POLR3G

0.59;
0.53

Baseline þ HbA1ca chr1:109508840;
rs146766120-C/T; 0.001

32,494 �1.091 0.186 7.80E�08 0.326 no missense variant
(p.Ala25Thr);
AMIGO1

15.97;
–

chr2:130356125;
rs77807661-C/T; 0.002

32,494 �2.598 0.408 5.81E�09 2.481 no synonymous variant;
PTPN18

6.70;
0.41

chr2:236419198;
rs3754644 –
T/C; 0.001

32,494 �0.971 0.158 1.92E�08 0.235 no missense variant
(p.Gln369Arg);
IQCA1

7.61;
–

chr6:33688801;
rs111522866 –
C/T; 0.002

32,494 �0.927 0.149 1.30E�08 0.269 no intron variant;
ITPR3

0.06;
0.05

chr16:28904132;
rs73529530-T/C; 0.003

32,494 �0.044 0.008 1.31E�07 0.001 no intron variant;
ATP2A1

0.08;
0.08

Phenotype/Domain: Duration of alphanumeric trail/visual attention domain

Models
Chr:Position; rsid –
REF/ALT (ALT ¼ effect allele); effect allele frequency

Informative
samples

Effect size:
b (effect allele)

Standard error
(SE) p value

Variance
explained (%)

Previously known
for cognition

Genomic annotation;
mapped gene

CADD score
(Phred scaled);
LofTool score

Baseline þ HDLa chr1:46001049;
rs11589562-T/C; 0.419

27,214 �0.050 0.009 7.64E�08 0.122 no intron variant;
MAST2

7.84;
0.84

Chr: chromosome; b: effect size of the association; SE: standard error of b.
Combined annotation-dependent depletion (CADD) score evaluates the deleteriousness of the variants. Higher the CADD score, more deleterious is the variant.
Loftool score: a gene intolerance score based on loss of function variants. A lower score indicates more intolerance of the mapped gene to functional variation.
We note that the effect allele given in our single-variant association allele is not always the risk allele for cognitive decline. The direction of association has different implication on cognition for different phenotypes. For
example, when the direction of association of the effect allele is negative for average trail duration, mean reaction time and proportion of incorrect matches, the effect allele is actually the protective allele for cognitive decline,
whereas a positive association implies that the effect allele is the risk increasing allele for cognitive decline. Similarly, negative association of effect allele with fluid intelligence score as well as with maximum symbol-digit
substitutions imply that the effect allele is in essence the risk allele affecting cognition in their corresponding domains and vice versa.
The alleles denoted in bold are the alleles that are affecting cognition adversely, and hence are termed ‘‘risk alleles’’ in themain text. Since all variants are biallelic, risk allele frequency¼ 1 – effect allele frequency, in cases where
risk allele is the non-effect allele.
aGC corrected models.
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Figure 2. Effects of cognition-associated variants with related metabolic and brain structure traits
Previously known statistically significant effects of our exome-wide significant cognition-associated loci (mapped to nearest genes) on
related metabolic and brain structure (obtained from the EBI-GWAS catalog) is highlighted in a pink-purple gradient. Darker color sig-
nifies more significant association (lower p value). Gray signifies no significant association.
MTFR1L), rs3825970, and rs1549317 (synonymous LARP6

[MIM: 611300]) associated with mean reaction time (Ta-

ble 1). We identify hits rs11062991 (intronic CCDC77)

and rs2959174 (synonymous THAP10 [MIM: 612538])

while controlling for serum HDL (Table 1). rs11062991and

rs2959174 are also associated with mean reaction time

when we control for glucose and total cholesterol, respec-

tively. rs2959174 in THAP10 is also obtained as a signifi-

cant hit from the HDL-adjusted model from our coding re-

gion-specific analysis (Table S8).

Complex processing speed

We find rs12932325 (intronic GTF3C1 [MIM: 603246]) asso-

ciated with complex processing speed from the baseline

model. Controlling for LDL and total cholesterol levels inde-

pendently, we detect rs12301915 (intronic PTPN11 [MIM:

176876]) (Table 1). Controlling for HbA1c, we identify

rs71467481 (intronic PPFIA1 [MIM: 611054]) as another sig-

nificant hit (Table 1).

Episodic memory

We identify three variants, rs146766120 (missense AMIGO1

[MIM: 615689]), rs77807661 (synonymous PTPN18 [MIM:

606587]), and rs111522866 (intronic ITPR3 [MIM:

147267]), to be associatedwith episodicmemory in the base-

line as well as controlling for serum HbA1c levels (Table 1).

The missense AMIGO1 variant is also yielded as a significant

hit fromallmodels except theone controlling forHDL inour

coding region-specific analysis (Table S8). rs146766120

(CADDscoreof15.97) is among the top�3%deleterious var-
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iants. Similarly, the PTPN18 variant is also a significant hit

from all models in our coding region-specific analysis

(Table S8). From the HbA1c-controlledmodels, we addition-

ally identify rs3754644 (missense IQCA1) and rs73529530

(intronic ATP2A1 [MIM: 108730]) to be associated with

episodic memory (Table 1). Missense rs3754644 (IQCA1) is

also significant from all except the models controlling for

HDL and glucose in our coding region-specific analysis

(Table S8). Upon controlling for LDL, we find rs7725495 (in-

tronic POLR3G [MIM: 617456]) to be associated with

episodic memory (Table 1).

Visual attention

We detect rs11589562 (intronic MAST2 [MIM: 612257]) as

associated with visual attention,measured by alphanumeric

trail duration, when controlling for HDL levels (Table 1).

rs11589562 can significantly control expression of several

nearby genes, includingMAST2 in different brain regions.

Genes implicated in cognition from kernel and burden

tests

We identify APOC1 (MIM: 107710) to be significantly asso-

ciated with complex processing speed and visual attention

in baseline model and in models controlling for LDL, total

cholesterol, triglycerides, and HbA1c (Table S14). APOC1

(�5 kb downstream of APOE) encodes the smallest of all

lipoproteins participating in lipid transport and meta-

bolism and is known to be pleiotropically associated with

serum HDL, LDL, triglyceride and cholesterol, and HbA1c



levels.35 Animal model studies have indicated the role of

APOC1, expressed in astrocytes and endothelial cells of

hippocampus, in cognitive processes in both an APOE-

dependent and -independent manner.36 rs4420638

(APOC1) has been implicated in general intelligence6 and

CSF biomarker levels.37 However, we report evidence of

APOC1 influencing two specific cognitive domains

through the collective burden of all variants in the gene

in a human population that was previously undocu-

mented. We could uncover this effect of APOC1 after

filtering out the more plausible effects of APOC1 in lipid

and glycemic pathways, thereby highlighting the indepen-

dent role of APOC1 in cognition and the importance of

considering appropriate co-occurring metabolic risks in ge-

netic epidemiological studies.

Controlling for HDL and the baseline covariates, we also

identify LRP1 (MIM: 107770) as a significant gene influ-

encing visual attention (Table S14). A few targeted studies

indicate thatLRP1 SNPs andhaplotypes influence cognitive

performance inChinese patients with risk of Alzheimer dis-

ease.38,39 This gene encodes the low-density lipoprotein re-

ceptor-related protein1, an endocytotic receptor with over

40 ligands including ApoE and Ab, regulating Ab uptake

and clearance across the blood-brain barrier along with its

signaling role in Alzheimer disease pathology.40 Our results

provide evidence from large-scale human whole-exome-

based analysis on the role of the elusiveLRP1 in visual atten-

tion, which was not known before.

Our ancillary analyses in exome-wide gene-based tests

reveal 514 genes associated across six cognition domains

(Tables S15–S21). It is worth noting that some of our sin-

gle-variant hits replicate in this analysis, with respect to

mapped gene (further details in supplemental information

under section gene-based association test). We find signifi-

cant inter-domain overlap between the genes uncovered,

especially between episodicmemory, visual attention, com-

plex processing speed, and fluid intelligence (Table S22),

highlighting the integrative role of these domains in gen-

eral cognition.41–43 Pathway enrichment analysis carried

out with exome-wide significant genes associated with

each of the six cognitive domains reveals five pathways

(Table S23): (1) long-term depression (PPP2R1A [MIM:

605983], GRIA2 [MIM: 138247], PRKG2 [MIM: 601591],

PLA2G4F, PLA2G4E), (2) mannose type O-glycan biosyn-

thesis (POMT2 [MIM: 607439], POMGNT1 [MIM: 606822],

POMT1 [MIM: 607423]), (3) ras signaling pathway (GNB1

[MIM: 139380], MAPK10 [MIM: 602897], RASGRP1 [MIM:

603962], PTPN11), (4) spinocerebellar ataxia (MAPK10,

OMA1 [MIM: 617081], DAB1 [MIM: 603448]), and (5) pep-

tidyl-tyrosine dephosphorylation involved in activation of

protein kinase activity (PTPRH [MIM: 602510], PTPRB

[MIM: 176882], PTPRO [MIM: 600579]).

In total, we identify 514 genes across 6 cognitive do-

mains and observe that 139 genes for fluid intelligence, 6

for simple processing speed, 8 for working memory, 33

for complex processing speed, 47 for visual attention,

and 144 for episodic memory have never been reported
Hu
to be associated with cognition, intelligence, or Alzheimer

disease and related dementia.

Pleiotropy and mediation

Out of the 20 independent loci (Figure 3A), 15 independent

loci (PCDHB16, PON2, MTFR1L, SAMD3, LARP6, KANSL1,

GPR108, PPFIA1, PTPN11, AMIGO1, PTPN18, IQCA1,

POLR3G, ITPR3, and ATP2A1) exhibit pleiotropic effects on

lipid and/or glycemic phenotypes (Tables S24–S28). Interest-

ingly,we identify suggestivemediatingeffectsof4of these20

loci on their respective cognitive domains. rs115865641

(PCDHB16), associatedwithfluid intelligence inourbaseline

model, is also found to be associated with HDL and glucose,

but showseffect sizes reduced inmagnitudewhenwecontrol

for HDL and glucose levels separately, and is also pleiotropi-

cally associated with lipid and glycemic traits (Table S24).

This suggests that serum HDL and glucose levels could

partially mediate the effect of rs115865641 on fluid intelli-

gence along with its pleiotropic effect. Similar effects are

observed for rs201404149 (MTFR1L) associated with simple

processing speed controlling for HbA1c. rs201404149 is sig-

nificant from the baseline model, pleiotropically associated

with serum glucose levels and this variant shows a reduced

effect size onmean reaction timewhencontrolling for serum

glucose levels (Table S25), indicating that the effect of this

varianton reaction timecouldbepartiallymediated through

its effect on serumglucose levels, providing further evidence

of metabolic risk affecting cognition. Similarly, the PPFIA1

variant rs71467481 is significant in the baseline model,

and is associated with serum glucose levels but shows a

reduced effect size comparedwith baselinewhencontrolling

for glucose, implying that the effect of this variant may be

mediated through glucose homeostasis in influencing com-

plexprocessing speed. This variant also showspleiotropic as-

sociation with HDL, LDL, and glucose levels (Table S27).

rs73529530 in ATP2A1 shows association with HDL and

glucose levels in addition to pleiotropic association with

cognition phenotype and all lipid levels and serum glucose

levels. rs73529530mayalsoaffect episodicmemorybymedi-

ation through serum HDL and glucose levels as reflected by

the reduction in magnitude of effect size compared with

baseline when the phenotype is controlled for HDL and

glucose levels (Table S28).

From our analysis restricted to coding region, we observe

rs17662853 (KANSL1), rs73922480 (GPR108), rs146766120

(AMIGO1), rs77807661 (PTPN18), and rs3754644 (IQCA1)

to exhibit pleiotropic effects with lipid and glycemic phe-

notypes as well (Tables S11 and S12). In addition, this anal-

ysis shows evidence of rs3824734 (CPEB3) exhibiting pleio-

tropic effect on cognition and both lipid and glycemic

phenotypes, respectively (Table S10).

Expression profile analysis

eQTL analysis of significant loci associated with fluid

intelligence

We identify rs115865641 (30 UTR of PCDHB16) associ-

ated with fluid intelligence scores from the baseline
man Genetics and Genomics Advances 4, 100208, July 13, 2023 9
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Figure 3. Summary figure showing association hits mapped to nearby genes corresponding to diverse cognition domains and their
interactions with APOE
(A) Variants and genes we have uncovered associated with diverse cognition domains. The genes to which our single-variant hits have
been annotated and the genes identified from gene-based tests (given in bold) are represented here. The variants that are eQTLs for the
genes they have been mapped to are represented in red; those that are eQTLs for nearby genes are in green; and those that are eQTLs for
both their annotated and nearby genes are represented in light blue. The genes corresponding to variants that are suggestive eQTLs
(because of their proximity to eQTL variants) are shown in black. The missense variants are represented with asterisk sign (*) beside their
corresponding genes. The figures in the subpanels (indicated by the black arrows) show the effect size of each significant variant uncov-
ered from the different statistical models used for each of the cognition domains. In each subplot, the color-coded rectangles denote the
model from which the variants have been shown to be significant. The color coding for different models is consistent with the color
coding used for obtaining Manhattan and QQ plots as well. These variants have been plotted according to their position in the genome,
assuming that the breadth of each of the rectangles represent the genome in order (not drawn to scale). Information on the genomic
annotation of the significant hits are represented by symbols given in the legend of each subplot. UTR variants are represented by circles,
intronic variants by diamonds, synonymous variants by hexagon, and missense variants are marked with a star symbol. Effect size of a
variant should be interpreted as the amount by which the phenotype is increased or decreased (depending on the sign: positive or nega-
tive) when one copy of the effect allele increases keeping all other factors constant.
(B) Circos plot showing pairwise interactions (significant and suggestive) of loci with APOE influencing diverse domains of cognition.
The numbers on the periphery of the circle represent the chromosome. The purple lines represent interactions influencing episodic
memory, the yellow lines represent interactions influencing simple processing speed, and the turquoise lines represent interactions
affecting visual attention. Tables 2 and 3 contain related details.
model. Controlling for HDL and glucose levels sepa-

rately, we obtain two independent significant hits—

rs17876162 in PON2 and rs3824734 in CPEB3.

rs3824734 is an eQTL controlling significant expression

of CPEB3 in cerebellar hemispheres (NES ¼ 0.22, p ¼
3.8 3 10�5) (Table S29), which is known for its role in

influencing intelligence.44 Even though rs115865641

(rare variant) is not a significant eQTL controlling

expression of PCDHB16 as per GTEx data, we find that

all eQTL variants lying within 5500 kb of our variant

significantly control expression of PCDHB16 in the cere-

brum, which contains the prefrontal cerebral cortex—the

postulated seat of fluid intelligence44,45—and also in

cerebellar hemispheres, hippocampus, and basal ganglia

(Table S30). Tissue-specific expression data reveal that

PON2 is highly expressed in frontal cortex, anterior

cingulate cortex, and basal ganglia (Figure S7), which
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are areas in the brain correlated with fluid

intelligence.45–47

eQTL analysis of significant loci associated with simple pro-

cessing speed

We find that rs3813363 in SAMD3, the association hit

for mean reaction time from all models, as a significant

eQTL controlling expression of SAMD3 in the cortical re-

gions of the brain (NES ¼ �0.4, p ¼ 1.1 3 10�5)

(Table S29). Several studies have established that cortical

regions of the brain are well correlated with reaction

time phenotypes assessing the domain of simple process-

ing speed.48 Similarly, rs17662853—the missense hit

in KANSL1 for reaction time, is an eQTL with significant

expression for KANSL1 in the cerebellum (NES ¼ �0.4;

p ¼ 2.3 3 10�5) and anterior cingulate cortex (NES ¼
�0.49; p ¼ 2.5 3 10�5) (Table S29), regions responsible

for perception and motor response whose co-ordination
3



is necessary for completion of a reaction time task.48,49

rs17662853 is also an eQTL controlling expression of

NSFP1, LRRC37A (MIM: 616555), ARL17A, ARL17B,

RP11-798G7.8, NSF (MIM: 601633), NSFP1, and

FAM215B in several brain regions including cortex

and cerebellum (Table S29), highlighting the importance

of significantly associated variants obtained from

exome-wide analysis that could regulate expression of

nearby genes relevant to the biology of the trait. eQTL

variants in GPR108 significantly control expression of

GPR108 in various brain tissues with the lead eQTLs

within 500 kbp of our lead SNP controlling GPR108

expression significantly in the cortex (Table S30). Our

eQTL analysis reveals that loci around 500 kbp of

rs11062991 (intronic CCDC77) most significantly regu-

lates expression of CCDC77 in hypothalamus and cere-

bellar hemispheres (Table S30). rs2959174 (synonymous

THAP10/intronic LRRC49) is a significant eQTL regulating

the high expression of LARP6 in cerebellum, cerebellar

hemispheres, and putamen of basal ganglia, hippocam-

pus, and cortex (Table S29). Thus, our eQTL analysis re-

veals another relevant gene LARP6 for understanding

the biology of cognition, even though the identified

variant itself annotates to LRRC49 and THAP10 with less

relevance to cognition.50 The LARP6 loci identified from

our analysis (rs3825970 and rs1549317) is also a signifi-

cant eQTL controlling LARP6 expression in cerebellum,

cerebellar hemispheres, and putamen of basal ganglia

(Table S29). eQTLs within 500 kbp of rs201404149 (syn-

onymous MTFR1L) are significant for expression of

MTFR1L in cerebellum, cortex, frontal cortex, cerebellar

hemispheres, and caudate nucleus of basal ganglia

(Table S30).

eQTL analysis of significant loci associated with complex pro-

cessing speed

The baseline model for this domain yields one significant

hit—rs12932325 in the intronic region of GTF3C1.

rs12932325 is an eQTL for IL21R (Table S29) that impacts

Alzheimer disease pathology by enhancing brain and pe-

ripheral immune and inflammatory responses and leads

to increased deposition of Ab plaques.51 Both the models

controlling for LDL and total cholesterol levels indepen-

dently yield an intronic variant in PTPN11 as a significant

hit for complex processing speed. The lead eQTL variant

near 5500 kb of this variant significantly controls expres-

sion of PTPN11 in the substantia nigra of the brain

(Table S30). Research has shown that Parkinson disease

causes loss of dopamine-producing neurons in the sub-

stantia nigra and dopaminergic processes are shown to

be involved in cognitive functions such as processing

speed.52 Controlling for HbA1c, we identify rs71467481

in the intronic region of PPFIA1 as another significant hit

for complex processing speed. Our eQTL analysis shows

that variants around 500 kbp of this SNP can significantly

regulate expression of PPFIA1 in many brain regions

(Figure S8; Table S30). We find that variants in APOC1 act

as significant eQTLs for regulating its expression in basal
Hum
ganglia and amygdala (Table S31), where basal ganglia is

known to be involved in playing an important role in com-

plex processing speed.53

eQTL analysis of significant loci associated with episodic

memory

We identify a significant missense variant rs146766120 in

AMIGO1 to be associated with episodic memory with and

without controlling for serumHbA1c levels. AMIGO1 is ex-

pressed in the astrocytes, hippocampus, and cortical neu-

rons, and it is postulated to influence neuron survival.54

In our eQTL analysis too, we find that variants within

500 kb of rs146766120 significantly influences expression

of AMIGO1 in the brain, especially in the cortex (NES ¼
0.2, p ¼ 8.2 3 10�12) and hippocampus (NES ¼ 0.17, p ¼
1.4 3 10�11) (Figure S9; Table S30), areas in the brain

that interact among each other to encode and retrieve

episodic memory,55,56 thus highlighting the importance

of our identified hit in influencing episodic memory. Simi-

larly we identify another synonymous variant rs77807661

in PTPN18 both with and without controlling for serum

HbA1c levels. Significant eQTL variants around 500 kbp

of rs77807661 can regulate expression of PTPN18 in cor-

tex, prefrontal cortex, cerebellum, cerebellar hemispheres,

caudate basal ganglia, and nucleus accumbens (Figure S10;

Table S30), thus pinpointing the established crucial role of

the cerebellum in episodic memory via cortical-cerebellar

brain networks.57 Studies also suggest that memory forma-

tion in the hippocampus is guided by motivational signif-

icance of events whose effect on memory is thought to

depend on interactions between the hippocampus, ventral

tegmental area, and nucleus accumbens.58 The baseline

model as well as themodel controlling for HbA1c also yield

rs111522866 in the intronic region of ITPR3 as another sig-

nificant variant for episodic memory. eQTL variants

around 500 kb of this variant significantly influence

expression of ITPR3 in cerebellar hemispheres as well as

in caudate basal ganglia (Table S30). Upon controlling for

LDL, we find another variant, rs7725495 in the intronic re-

gion of POLR3G, to be associated with episodic memory.

eQTL variants within 500 kb of rs7725495 significantly in-

fluences expression of POLR3G in the cerebellum, cortex,

anterior cingulate cortex, hypothalamus, nucleus accum-

bens, and putamen (Table S30). We identify two additional

hits—missense rs3754644 (IQCA1) and rs73529530 (in-

tronic ATP2A1)—to be associated with episodic memory

when controlled for HbA1c levels. eQTL variants around

500 kb of rs3754644 also significantly control IQCA1

expression in the amygdala, cerebellar hemispheres, cere-

bellum, cortex, frontal cortex, anterior cingulate cortex,

and nucleus accumbens (Table S30). eQTL variants around

500 kb of rs73529530 significantly regulate expression of

ATP2A1 in the hypothalamus (Table S30).

eQTL analysis of significant loci associated with visual atten-

tion

We get an association signal of rs11589562 for visual atten-

tion when we adjust for HDL level. This variant is located

in the intronic region of the MAST2 gene. eQTL analyses
an Genetics and Genomics Advances 4, 100208, July 13, 2023 11



Table 2. Interaction analysis with variants identified from single-variant association tests

Domain: Episodic memory

Model

Interacting SNP1
(chr:Pos_REF_ALT;
rsid mapped gene)

Main effect
size (SNP1);
p value

ALT_AF
(SNP1)

Interacting SNP2
(chr:Pos_REF_ALT;
rsid mapped gene)

Main effect size
(SNP2);
p value

ALT_AF
(SNP2)

Interaction
effect size

Test statistic:
CHISQ p value

Baseline chr19:44908684_T_C;
rs429358 (APOE)

0.036;
0.001

0.1531 chr1:109508840_C_T;
rs146766120 (AMIGO1)

�0.885;
4.68E�11

0.0014 �1.151 7.869 0.0050a

chr19:44908822_C_T;
rs7412 (APOE)

�0.001;
0.924

0.0799 chr6:33688801_C_T;
rs111522866 (ITPR3)

�0.853;
6.46E�11

0.0016 �1.271 9.14 0.0025a

Baseline þ
HbA1c

chr19:44908684_T_C;
rs429358 (APOE)

0.035;
0.002

0.1531 chr1:109508840_C_T;
rs146766120 (AMIGO1)

�0.769;
4.68E�09

0.0014 �1.154 7.723 0.0055b

chr19:44908684_T_C;
rs429358 (APOE)

0.034;
0.002

0.1531 chr2:130356125_C_T;
rs77807661 (PTPN18)

�1.993;
2.42E�10

0.0018 �1.774 4.203 0.0404

chr19:44908822_C_T;
rs7412 (APOE)

0.004;
0.790

0.0799 chr6:33688801_C_T;
rs111522866 (ITPR3)

�0.840;
5.26E�10

0.0016 �0.968 5.296 0.0214

Domain: Simple Processing Speed

Model

Interacting SNP1
(chr:Pos_REF_ALT;
rsid (mapped gene)

Main effect
size (SNP1);
p value

ALT_AF
(SNP1)

Interacting SNP2
(chr:Pos_REF_ALT;
rsid (mapped gene)

Main effect size
(SNP2);
p value

ALT_AF
(SNP2)

Interaction
effect size

Test statistic:
CHISQ p value

Baseline þ
HbA1c

chr19:44908822_C_T;
rs7412 (APOE)

�0.009;
0.213

0.0799 chr19:6732114_C_T;
rs73922480 (GPR108)

�0.496;
9.55E�08

0.0014 �0.733 5.096 0.0240

chr19:44908822_C_T;
rs7412 (APOE)

�0.009;
0.213

0.0799 chr19:6732194_C_T;
rs77285514 (GPR108)

�0.418;
9.63E�08

0.0016 �0.542 3.865 0.0493

aThis interaction remains significant after Bonferroni’s correction with five multiple comparisons (p ¼ 0.05/5 ¼ 0.01).
bThis interaction remains significant after Bonferroni’s correction with nine multiple comparisons (p ¼ 0.05/9 ¼ 0.056).
show that this variant controls expression for MAST2 in

the cerebral cortex (NES ¼ 0.21, p ¼ 7.70 3 106) and cere-

bellum (NES ¼ 0.26, p¼ 4.63 106) (Table S29). It is known

that the posterior parietal lobe of the cortex assesses the vi-

sual scene and interacts with the frontal lobes in choosing

object of interest to plan visually guidedmovement.59 This

variant is also an eQTL significantly influencing expression

of CCDC163, TESK2 (MIM: 604746), and PIK3R3 (MIM:

606076) in several brain regions (Table S29). MAST2 is

highly expressed in the hypothalamus and substantia ni-

gra (Figure S11). Several studies have found oxytocin, syn-

thesized in several nuclei of the hypothalamus, to regulate

visual attention and eye movements to external sensory/

social stimuli.60 In addition, studies have shown dopa-

mine-producing neurons in the ventral tegmental area

and substantia nigra to be related to multiple aspects of vi-

sual attention.60 We find that variants in APOC1 and LRP1

also act as significant eQTLs for regulating their expression

in basal ganglia and cerebellar hemispheres (Table S31),

crucial to visual attention.60

Interaction analyses

Our epistasis analysis conducted with significant variants

from the single-variant analysis reveals four pairs of signif-

icant epistatic interactions (at nominal level of signifi-

cance) with the APOE isoform-defining variants (rs7412

and rs429358) for episodic memory and simple processing

speed (Table 2; Figure 3B). Each of the variants that

interact with either of the two APOE variants exerts a sig-

nificant effect on the phenotype in addition to its interac-

tion effect. These variants are rare, with large effect sizes
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conforming to the general consensus that rarer variants

have larger effect sizes. Out of these interactions, we

find the interaction between rs429358 (APOE) and

rs14676612 (AMIGO1) and between rs429358 and

rs111522866 (ITPR3) of particular interest. The interac-

tion between rs429358 (APOE) and rs14676612 (AMIGO1)

is significant even after Bonferroni’s correction (five valid

tests in baseline model, cutoff ¼ 0.05/5 ¼ 0.01 and nine

valid tests in the HbA1c-controlled model, cutoff ¼
0.05/9 ¼ 0.056) (indicated with footnotes a and b, respec-

tively, in Table 2). Interactions between rs429358 (APOE)

and rs14676612 (AMIGO1) from all models (except HDL

adjusted) remain significant at nominal level when we

restrict our analysis to the coding region (Table S9). The

APOE-AMIGO1 interaction obtained from the model con-

trolling for glucose in our coding region-specific analysis,

is also significant after multiple hypothesis correction

(Table S9). Similarly, the interaction between rs7412 and

rs111522866 (ITPR3) in the baseline model is also signifi-

cant after Bonferroni’s multiple testing adjustment

(p < 0.01) (indicated by footnote a in Table 2). We also

see another rs429358 (APOE) - rs77807661 (PTPN18)

interaction at nominal level of significance when we tease

out the effect of serum HbA1c on episodic memory (Ta-

ble 2; Figure 3B). Significant GPR108 variants also exhibit

suggestive (nominally significant) interaction effect with

APOE for simple processing speed (Table 2; Figure 3B).

In addition, we also find evidence of interaction between

APOE variants (rs429358, rs7412) and rs3754644 (IQCA1)

from models controlling for LDL and triglyceride in cod-

ing region-specific analysis (Table S9).
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Table 3. Interaction analysis of variants in genes identified from gene-based association tests

Domain: Visual attention

Model

Interacting SNP1
(chr:Pos_REF_ALT;
rsid mapped gene)

Interacting SNP2
(chr:Pos_REF_ALT;
rsid mapped gene)

Interaction
effect size

Test statistic:
CHISQ p value

Baseline chr19:44908822_C_T;
rs7412 (APOE)

chr19:44919304_T_G;
rs1064725 (APOC1)

0.196 4.543 0.0331

Baseline þ HDL chr19:44905910_C_G;
rs440446 (APOE)

chr12:57143889_C_T;
rs185694830 (LRP1)

0.463 5.829 0.0158

chr19:44905910_C_G;
rs440446 (APOE)

chr12:57193273_G_A;
rs138348495 (LRP1)

0.177 6.501 0.0108a

chr19:44906731_C_T;
rs143063029 (APOE)

chr12:57183854_C_T;
rs138993371 (LRP1)

�2.357 5.449 0.0196

chr19:44906745_G_A;
rs769449 (APOE)

chr12:57201197_C_T;
rs34949484 (LRP1)

�0.238 7.135 0.0076

chr19:44908684_T_C;
rs429358 (APOE)

chr12:57183939_G_A;
rs34423990 (LRP1)

�1.523 4.066 0.0438

chr19:44908684_T_C;
rs429358 (APOE)

chr12:57201197_C_T;
rs34949484 (LRP1)

�0.230 9.178 0.0024

chr19:44908822_C_T;
rs7412 (APOE)

chr12:57190715_C_T;
rs1800183 (LRP1)

0.269 4.873 0.0273

chr19:44908822_C_T;
rs7412 (APOE)

chr12:57194415_C_T;
rs138980324 (LRP1)

0.464 5.211 0.0224a

chr19:44908822_C_T;
rs7412 (APOE)

chr12:57195284_C_T;
rs1800142 (LRP1)

0.288 6.502 0.0108a

Baseline þ HbA1c chr19:44908822_C_T;
rs7412 (APOE)

chr19:44919304_T_G;
rs1064725 (APOC1)

0.186 3.898 0.0483

aThese interactions are also significant in the coding region-specific interaction analysis, at nominal level of significance.
The epistasis analysis conducted on the basis of gene-

based tests reveals nine significant epistatic interactions

between five APOE (rs440446, rs143063029, rs769449

rs429358, and rs7412) and eight LRP1 SNPs (Table 3) to

be associated with visual attention, adjusting for HDL

levels at nominal level of significance. Out of these, three

interactions (footnote a in Table 3)—namely between

rs440446 and rs138348495 (LRP1, MAF ¼ 0.0085),

rs7412 and rs138980324 (LRP1, MAF ¼ 0.0028), rs7412

and rs1800142 (LRP1, MAF ¼ 0.0083)—remain significant

in the separate analysis restricted to coding region variants

at the nominal level. We detect another nominally signif-

icant interaction between rs7412 (APOE) and rs1064725

(APOC1) associated with visual attention while controlling

for baseline covariates and for HbA1c independently

(Table 3).
Discussion

Our study is a comprehensive analysis to understand the

genetic architecture of human cognition via single-

variant-based, gene-based association, pairwise interac-

tion, mediation, and pleiotropy analyses (Figure 4).

Our single-variant and gene-based association identifies

independent loci in PCDHB16, PON2, CPEB3, LRRC49/

THAP10, CCDC77, LARP6, MTFR1L, GPR108, GTF3C1,
Hum
PTPN11, PPFIA1, AMIGO1, ITPR3, PTPN18, IQCA1,

ATP2A1, POLR3G, MAST2, APOC1, and LRP1, which have

not been previously reported, and previously known

KANSL1 and SAMD3 as associated with diverse cognition

domains (Figure 3A) in baseline as well as while adjusting

for serum lipids and glycemic levels, which are postulated

to be modifiable metabolic risk factors for cognition. These

genes are known to function in pathways relevant to cogni-

tion. For instance, PCDHB16 localizes mainly in the post-

synaptic compartment and serves as a candidate gene

for specification of synaptic connectivity and neuronal

networks,61 a key element for cognition. PON2

(Paraoxonase-2), a mitochondrial enzyme, has higher

expression in dopaminergic regions such as striatum, stria-

tal astrocytes, and cortical microglia,62 which highlights its

role in protecting cells fromoxidative damage andneuroin-

flammation.62CPEB3 is involved in synapticprotein regula-

tion, acting as a negative regulator of AMPA receptor sub-

units GluA1 and GluA2 to maintain long-term synaptic

plasticity.63 Koolen-de Vries syndrome/17q21.31 microde-

letion syndrome characterized by intellectual disability

has been attributed to mutations in KANSL1.64 One study

showed that autophagosome accumulation at excitatory

synapses in KANSL1-deficient neurons led to reduced syn-

aptic density, reduced transmission via GRIA/AMPA recep-

tors, alongwith impairment of neuronalnetwork activity.65

A recent study showed thatMTFR1L expression changed in
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Figure 4. Workflow of this study
Blue boxes represent the information about the data and quality checks performed; the yellow boxes are indicative of the phenotypes
and genes considered for gene-level analysis. Red boxes highlight the statistical tests performed; and the purple box indicates down-
stream analysis performed, such as annotations, gene expression analysis, and mediation analysis.
thehippocampus andcerebral cortex inmemantine-treated

transgenic Alzheimer-diseased mice.66 Memantine is an

FDA-approved prescription drug administered to improve

learning and memory for moderate-to-severe Alzheimer

cases, suggesting the importance of our identified loci in

MTFR1L for understanding cognition in the pathophysi-

ology of Alzheimer disease. AGTF3C1 locus has been found

to be significantly associatedwith entorhinal cortical thick-

ness, anAlzheimer disease-relatedneuroimaging biomarker

(Figure 2),67,68 which is in linkage disequilibrium with our

GTF3C1 variant, signifying that our variants could poten-

tially influence such related traits, and thus allude to the

shared genetic mechanisms of cognition, Alzheimer dis-

ease, and gray matter density. PTPN11 is a tyrosine phos-

phatase that activates MAPK pathway, plays a critical role

in synaptic plasticity and memory formation,69 and inter-

acts with tau in Alzheimer patients.70 Mutations in

PTPN11 have been associated with numerous syndromes;

especially known is theNoonan syndrome,which is known

to affect human cognition,67 along with cardiovascular ab-

normalities and congenital heart defects.71 PPFIA1 encodes

the neuronal scaffold protein liprin-a1 functioning in

active synaptic zones and post-synaptic sites,72 and has

been proposed as a candidate gene involved in late-onset

Alzheimer disease etiology.73 AMIGO1, required for myeli-

nation of developing neurons and playing important role

in neural plasticity in adult nervous system, is a commonly

altered marker gene in Alzheimer patients.74 PTPN18 is a

non-receptor tyrosine phosphatase expressed in neural tis-

sues, likely influencing Alzheimer disease progression.75

ITPR3 encodes inositol 1,4,5-trisphosphate receptor, type

3, whichmediates release of intracellular calcium and facil-

itates crucial intra-organellarCa2þ signal transmission from

the endoplasmic reticulum (ER) to the mitochondria76 to
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maintainproper cognition. IQCA1, found tobe upregulated

in the hippocampus of Alzheimer-like monkeys compared

with normal aged monkeys, is postulated to be associated

with brain AMPKa2 activity, playing a pivotal role in de

novo protein synthesis, an indispensable phenomenon for

long-term synaptic plasticity and memory formation.77

ATP2A1 encodes proteins associated with mitochondria-

associated-ER membrane (MAM),78 and disruption at this

locus could perturb MAM functioning, which is posited to

play a role in Alzheimer disease pathogenesis. We thus

note that these implicatedvariants andgenes, through their

functioning in synaptic plasticity and connectivity, oxida-

tive stress, and neuroinflammation, could play vital roles

in influencing cognition, and thus in some instances

possibly impact the pathology of Alzheimer disease and

related dementias. Interestingly, all-risk alleles of single-

variant hits (highlighted in bold in Table 1, detailed inter-

pretation in footnotes and legend) affecting cognition

adversely are common in the population with allele fre-

quency >5%, thus highlighting the significance of our

work for studying the genetic context of cognitive abilities

of individuals in the general population to understand

the risk factors for cognitive decline.We also obtain signifi-

cant hits harbored in the coding region that are in LD with

genotyped variants identified by Davies et al.5 associated

with reaction time, thus highlighting the importance

of exome-based analysis in uncovering likely causal

associations.

MAF is one of the widely used metrics to study genetic

variation at population level and the proportion of rare

variants (MAF < 1%) contributing to complex traits is an

important metric for understanding their heritability and

genetic architecture. Functional annotation of our signifi-

cant hits shows that, among the variants mapped to genes
3



Figure 5. Phenotypic variance explained
with respect to evolutionary constraint
acting on the variants identified from sin-
gle-variant association tests
This figure represents the proportion of
phenotypic variance explained by the
exome-wide significantly associated variants
for diverse cognitive domains vs. their intol-
erance to genic functional changes as indi-
cated by their LofTool scores. The lower
the LoFtool score, the more intolerant are
the mapped genes to functional changes.
Coral and green solid circles represent com-
mon, low-frequency variants, respectively,
while turquoise and violet solid circles repre-
sent rare variants. The sizes of the circles are
proportional to the minor allele frequency
of the corresponding variants represented
by the circles.
with lower tolerance to loss of function effects (LoFTool

score < 0.25), the rare variants (MAF < 1%) explain higher

proportion of variance compared with low frequency (MAF

1%–5%) and common variants (MAF > 5%), a phenome-

non conforming to the general consensus that rare vari-

ants exhibit higher effects (in terms of magnitude of effect

size) (Figure 5). Nonetheless, even among the variants

mapped to genes exhibiting moderate intolerance to loss-

of function (LoFTool score between 0.25 and 0.5), we see

that the common variants explain a lower proportion of

phenotypic variation than the rare variants (Figure 5).

Thus, our results show that common variants that explain

comparatively less proportion of phenotypic variation can

also map to genes that are moderately intolerant to loss of

function. Most of our association signals from the single-

variant association analysis are most likely to affect tran-

scription factor (TF) binding and affect expression of a

gene target (RegulomeDB rank: 1d, 1f, 2a) (Table S32).

The other hits (rank: 4–6) have binding evidence due to be-

ing located in a functional region implicated in TF binding

and DNase peak demonstrating protein binding sites

(Table S32). Similarly, for the suggestively interacting vari-

ants in APOE, APOC1, and LRP1, we find evidence that

these variants are likely to be highly functional (rank: 1b,

1f, 2b, 4) via their regulatory effects in the genome

(Table S32).

Out of the 20 independent loci (Table 1; Figure 3A),

rs3824734 (CPEB3) implicated in fluid intelligence,

rs3813363 (SAMD3) and rs3825970 (LARP6) implicated in

simple processing speed are eQTL loci, significantly control-

ling expression of their respective genes in cerebellum, cor-

tex, and basal ganglia. rs2959174 (LRRC49/THAP10) and

rs12932325 (GTF3C1), associated with simple and complex

processing speed, respectively, are significant eQTL, control-

ling expression of nearby genes such as LARP6 and IL21R,

respectively. rs11589562 (MAST2) associated with visual

attention and rs17662853 (KANSL1) associated with simple
Hum
processing speed are significant eQTLs, controlling expres-

sion of the respective mapped genes as well as nearby genes.

For the remaining loci, namely rs115865641 (PCDHB16),

rs73922480 (GPR108), rs11062991 (CCDC77), rs201404149

(MTFR1L), rs12301915 (PTPN11), rs71467481 (PPFIA1),

rs146766120 (AMIGO1), rs77807661 (PTPN18), rs1115

22866 (ITPR3), rs7725495 (POLR3G), rs3754644 (IQCA1),

and rs73529530 (ATP2A1), we observe eQTLs in the vicinity

(5500 kbp) controlling the expression of their respectively

annotatedgenes indifferentbrain regionspertinent to cogni-

tion (Table S30). The genes mapped to these 12 variants are

highly expressed in brain regions deemed responsible for

completion of neuropsychological tasks corresponding to

respective cognitive domains. All of these 12 variants are

either rare or low frequency (MAF ranging from 0.1% to

2%) and that could be one possible reason for them to have

lower LD R2 values with the identified eQTLs in the vicinity.

But, interestingly, all these variants are likely to affect either

TF binding or are located in theDNase peak, thus enhancing

chromatinaccessibility (TableS32,RegulomeDBranks:1f, 2a,

4, 5, 6) and could possibly regulate transcriptional activity.

On the other hand, the eQTLs in their vicinity are also likely

to be highly functional by virtue of thembeing eQTLs. Thus,

these variants could have some regulatory role in expression

of genes responsible for cognition.

Our study reveals a previously unknown evidence of LRP1

associationwith cognition. Furthermore,we find that six out

of the eight LRP1 SNPs that interact with APOE (at nominal

level of significance) are rare and the remaining two are of

low frequency. Targeted experiments have shown roles for

APOC1 and LRP179 in cognitive decline or neurodegenera-

tion; however, our interaction analysis (Figure 3B; Table 3)

now identifies suggestive SNPs in APOC1 and LRP1 acting

in conjunction with well-recognized APOE in governing

cognitive abilities, thus providing evidence for the role of

LRP1 on cognition. In total, we identify 2 Bonferroni-level

significant and 12 nominally significant pairwise
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interactions relevant to episodic memory, simple processing

speed, visual attention between APOE and our exome-wide

associated hits, many of them are interestingly rare (MAF

0.12%–4%). Our study shows evidence of interactions espe-

cially between APOE and AMIGO1, APOE, and ITPR3, and

suggestive interactions of APOE with PTPN18 and GPR108

in influencing cognition or neurodegeneration, which was

hitherto unreported.

We uncover in total 514 loci associated with different

domains of cognition by performing exome-wide

burden- and kernel-based association testing at gene

level, the high number of hits being anticipated because

whole-exome-based approaches lead to large-scale dis-

coveries. For instance, Davies et al.5 identified 709 genes

for general cognition where their gene sets and gene

property analysis points to neurodevelopmental path-

ways implicated in general cognition with expression

levels significant in cerebellum and cortex. In our

exome-wide gene-based analysis we find five pathways

related to long-term depression, ras signaling, mannose

type O-glycan biosynthesis, spinocerebellar ataxia, and

peptidyl-tyrosine dephosphorylation involved in inacti-

vation of protein kinase activity. Even though the path-

ways uncovered are non-specific to cognition, the genes

co-occurring in the pathways have been linked to cogni-

tion and Alzheimer disease. For example, the PTPR fam-

ily genes are known to play vital roles in cell adhesion,

neurite growth, and cell differentiation.80 PPP2R1A has

been found to be associated with Alzheimer disease and

visuospatial domain.81 There exists evidence of de novo

mutations in GRIA2 potentially causing neurodevelop-

mental disorders with language impairment and behav-

ioral abnormalities.82 PLA2G4E has been identified as a

candidate gene for resilience in Alzheimer disease.83

mRNAs for O-glycan biosynthesis genes like POMT2

have been found to be altered in Alzheimer disease in

multiple regions of the brain.84 In general, the relation-

ships between glycosylation modulation and neuroin-

flammation have been explored, which are key for cogni-

tive functioning.85 OMA1 is a gene known to function in

mitochondrial dynamics, which gets affected in patho-

logical conditions of Alzheimer disease.86 DAB1 plays a

regulatory role in Reelin signaling in the adult brain

through synaptic functioning and is required for normal

functioning.87 Genome-wide analysis in APOE-e4 homo-

zygotes as well functional enrichment studies have iden-

tified DAB1 as a protective candidate gene in Alzheimer

disease etiology.88

Nevertheless, with exome-wide analysis yielding a

large number of significant results, it becomes difficult

to pinpoint genes and provide holistic interpretation.

On the contrary, incorporation of a priori knowledge of

biological pathways into the analysis is often found to

yield relevant biological insights that cannot be detected

by focusing on genes that provide strongest attestation

of differential expression.89,90 Here, our knowledge-

driven approach (based on 20 genes) leverages the widely
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established information of biological pathways in which

APOE functions and is relevant to Ab deposition degrada-

tion and clearance with relevant metabolic risk factors;

the major processes, when disrupted, could lead to mem-

ory impairment and cognitive decline.91 Our detailed

eQTL analysis of the implicated genes and variants in

these pathways also reveal their significant regulatory

roles in expression in cerebellum, cortex, and basal

ganglia. Thus, our context specific findings provide po-

tential basis for experimental interrogation.

Upon analyzing the subset of variants belonging to only

exon-coding regions, we find significant variants in NOS-

TRIN (MIM: 607496), OMA1 (MIM: 216081), HIGD1B,

DDX27 (MIM: 616621), AMTN (MIM: 610912), NKX2-5

(MIM: 600584), BBS9 (MIM: 607968), PTF1A (MIM:

607194), E2F7 (MIM: 612046), FAM210A (MIM: 617975),

PGAM1 (MIM:171900), KMT2D (MIM: 602113), and HPR

(MIM:140210) (Table S8) for four domains of cognition.

The relevance of many of these hits to biological basis of

cognition is not clear. Notably, though, the KMT2D

variant—rs3782357— is in LD (R2 > 0.97) with variants

previously associated with intelligence, verbal numerical

reasoning, and reaction time.5,6,92 Also, NOSTRIN binds

an enzyme responsible for nitric oxide production, which

is a mediator in neurotransmission, inflammation, and

vascular homeostasis.93 The hits in AMIGO1, CPEB3,

GPR108, IQCA1, KANSL1, PTPN18, and THAP10 are signif-

icant from the single-variant association analysis

comprising variants from capture region plus flanking re-

gions as well as in this coding region-specific analysis,

and these genes have established biological roles in

neuronal processes including cognition. Overall, our re-

sults highlight that coding missense and disruptive vari-

ants as well as variants flanking exonic transcripts are

crucial to understanding the genetic architecture of com-

plex traits, such as cognition, because potential functional

regulatory roles of variants are important and ought to be

considered for interpretation of their effects on traits.

Despite several strengths of this study, we acknowledge

the fact that the results reported hereinmust be considered

in the light of some limitations. Firstly, even though the

initial sample size is quite large (�157,000), effective sam-

ple sizes varies for each test (�27,000–121,000), and is less

because we have ensured that each participant has non-

missing data on all variables of interest (phenotype and co-

variates) for all models (Table S1). Secondly, cognition can

be affected by a multitude of factors apart from age-related

metabolic conditions of dyslipidemia and glycemic risk,

for instance, obesity, cardiovascular disease, hypertension,

physical activity, mood, personality, social activity, smok-

ing status, alcohol consumption, income, etc.,94,95 which

we have not considered as covariates in our model. So

there also lies the possibility of residual confounding in

our results. Thirdly, our analyses has been based on indi-

viduals from primarily European ancestry. So caution

must be exercised while generalizing the results for diverse

ancestries.
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varez-Linera, J., Ramos González, A., Karama, S., and Colom,

R. (2014). Subcortical regional morphology correlates with

fluid and spatial intelligence. Hum. Brain Mapp. 35, 1957–

1968. https://doi.org/10.1002/hbm.22305.

47. Rhein, C., Mühle, C., Richter-Schmidinger, T., Alexopoulos, P.,

Doerfler, A., and Kornhuber, J. (2014). Neuroanatomical corre-

lates of intelligence in healthy young adults: the role of basal

ganglia volume. PLoSOne 9, e93623. https://doi.org/10.1371/

journal.pone.0093623.

48. Paraskevopoulou, S.E., Coon, W.G., Brunner, P., Miller, K.J.,

and Schalk, G. (2021). Within-subject reaction time vari-

ability: role of cortical networks and underlying neurophysio-

logical mechanisms. Neuroimage 237, 118127. https://doi.

org/10.1016/j.neuroimage.2021.118127.

49. Coon, W.G., Gunduz, A., Brunner, P., Ritaccio, A.L., Pesaran,

B., and Schalk, G. (2016). Oscillatory phase modulates the

timing of neuronal activations and resulting behavior. Neuro-

image 133, 294–301. https://doi.org/10.1016/j.neuroimage.

2016.02.080.

50. Rouillard, A.D., Gundersen, G.W., Fernandez, N.F., Wang, Z.,

Monteiro, C.D., McDermott, M.G., and Ma’ayan, A. (2016).

The harmonizome: a collection of processed datasets gathered

to serve and mine knowledge about genes and proteins. Data-

base 2016, baw100. https://doi.org/10.1093/database/baw100.

51. Agrawal, S., Baulch, J.E.,Madan, S., Salah, S., Cheeks, S.N., Krat-

tli, R.P., Subramanian, V.S., Acharya, M.M., and Agrawal, A.

(2022). Impact of IL-21-associated peripheral and brain cross-

talk on the Alzheimer’s disease neuropathology. Cell. Mol.

Life Sci.79, 331.https://doi.org/10.1007/s00018-022-04347-6.

52. Nguyen, H., Hall, B., Higginson, C.I., Sigvardt, K.A., Zweig, R.,

and Disbrow, E.A. (2017). Theory of cognitive aging in Parkin-

son disease. J. Alzheimers Dis. Parkinsonism 7. https://doi.

org/10.4172/2161-0460.1000369.

53. Botzung, A., Philippi, N., Noblet, V., Loureiro de Sousa, P., and

Blanc, F. (2019). Pay attention to the basal ganglia: a volumetric

study in early dementia with Lewy bodies. Alzheimer’s Res.

Ther. 11, 108. https://doi.org/10.1186/s13195-019-0568-y.

54. Chen, Y., Hor, H.H., and Tang, B.L. (2012). AMIGO is ex-

pressed inmultiple brain cell types andmay regulate dendritic

growth and neuronal survival. J. Cell. Physiol. 227, 2217–

2229. https://doi.org/10.1002/jcp.22958.

55. Dickerson, B.C., and Eichenbaum, H. (2010). The episodic

memory system: neurocircuitry and disorders. Neuropsycho-

pharmacology 35, 86–104. https://doi.org/10.1038/npp.

2009.126.

56. Meenakshi, P., and Balaji, J. (2017). Neural circuits of memory

consolidation and generalisation. J. Indian Inst. Sci. 97, 487–

495. https://doi.org/10.1007/s41745-017-0042-4.

57. Andreasen,N.C.,O’Leary,D.S.,Paradiso, S.,Cizadlo,T.,Arndt, S.,

Watkins, G.L., Boles Ponto, L.L., and Hichwa, R.D. (1999). The

cerebellum plays a role in conscious episodic memory retrieval.

Hum. Brain Mapp. 8, 226–234. https://doi.org/10.1002/(SICI)

1097-0193(1999)8:4<226::AID-HBM6>3.0.CO;2-4.

58. Kahn, I., and Shohamy, D. (2013). Intrinsic connectivity be-

tween the hippocampus, nucleus accumbens, and ventral

tegmental area in humans. Hippocampus 23, 187–192.

https://doi.org/10.1002/hipo.22077.

59. Das, M., Bennett, D.M., andDutton, G.N. (2007). Visual atten-

tion as an important visual function: an outline of
an Genetics and Genomics Advances 4, 100208, July 13, 2023 19

https://doi.org/10.1093/bioinformatics/btv602
https://doi.org/10.1038/ng.2653
https://doi.org/10.1101/gr.137323.112
https://doi.org/10.1371/journal.pone.0118859
https://doi.org/10.1371/journal.pone.0118859
https://doi.org/10.3390/ijms20235939
https://doi.org/10.3389/fgene.2018.00410
https://doi.org/10.3389/fgene.2018.00410
https://doi.org/10.3389/fnins.2020.00743
https://doi.org/10.3389/fnins.2020.00743
https://doi.org/10.1017/S104161020999072X
https://doi.org/10.1194/jlr.R075796
https://doi.org/10.1037/a0018198
https://doi.org/10.1371/journal.pone.0221353
https://doi.org/10.1097/JCP.0000000000000941
https://doi.org/10.1097/JCP.0000000000000941
https://doi.org/10.1038/s41598-017-02304-z
https://doi.org/10.1038/s41598-017-02304-z
https://doi.org/10.1016/j.neuroimage.2020.116576
https://doi.org/10.1002/hbm.22305
https://doi.org/10.1371/journal.pone.0093623
https://doi.org/10.1371/journal.pone.0093623
https://doi.org/10.1016/j.neuroimage.2021.118127
https://doi.org/10.1016/j.neuroimage.2021.118127
https://doi.org/10.1016/j.neuroimage.2016.02.080
https://doi.org/10.1016/j.neuroimage.2016.02.080
https://doi.org/10.1093/database/baw100
https://doi.org/10.1007/s00018-022-04347-6
https://doi.org/10.4172/2161-0460.1000369
https://doi.org/10.4172/2161-0460.1000369
https://doi.org/10.1186/s13195-019-0568-y
https://doi.org/10.1002/jcp.22958
https://doi.org/10.1038/npp.2009.126
https://doi.org/10.1038/npp.2009.126
https://doi.org/10.1007/s41745-017-0042-4
https://doi.org/10.1002/(SICI)1097-0193(1999)8:4&lt;226::AID-HBM6&gt;3.0.CO;2-4
https://doi.org/10.1002/(SICI)1097-0193(1999)8:4&lt;226::AID-HBM6&gt;3.0.CO;2-4
https://doi.org/10.1002/(SICI)1097-0193(1999)8:4&lt;226::AID-HBM6&gt;3.0.CO;2-4
https://doi.org/10.1002/(SICI)1097-0193(1999)8:4&lt;226::AID-HBM6&gt;3.0.CO;2-4
https://doi.org/10.1002/hipo.22077


manifestations, diagnosis andmanagement of impaired visual

attention. Br. J. Ophthalmol. 91, 1556–1560. https://doi.org/

10.1136/bjo.2006.104844.

60. Lockhofen, D.E.L., and Mulert, C. (2021). Neurochemistry of

visual attention. Front. Neurosci. 15, 643597. https://doi.

org/10.3389/fnins.2021.643597.

61. Junghans, D., Heidenreich, M., Hack, I., Taylor, V., Frotscher,

M., and Kemler, R. (2008). Postsynaptic and differential local-

ization to neuronal subtypes of protocadherin b16 in the

mammalian central nervous system. Eur. J. Neurosci. 27,

559–571. https://doi.org/10.1111/j.1460-9568.2008.06052.x.

62. Giordano, G., Cole, T.B., Furlong, C.E., and Costa, L.G. (2011).

Paraoxonase 2 (PON2) in the mouse central nervous system: a

neuroprotective role? Toxicol. Appl. Pharmacol. 256, 369–

378. https://doi.org/10.1016/j.taap.2011.02.014.

63. Qu, W.R., Sun, Q.H., Liu, Q.Q., Jin, H.J., Cui, R.J., Yang, W.,

Song,D.B., andLi, B.J. (2020). Role ofCPEB3protein in learning

and memory: new insights from synaptic plasticity. Aging 12,

15169–15182. https://doi.org/10.18632/aging.103404.

64. Moreno-Igoa, M., Hernández-Charro, B., Bengoa-Alonso, A.,
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