Sen, A and Bhunia, P and Paul, K (2023) Davis–Wielandt–Berezin radius inequalities of reproducing kernel Hilbert space operators. In: Afrika Matematika, 34 (3).
|
PDF
afr_mat_34-3_2023.pdf - Published Version Download (304kB) | Preview |
Official URL: https://doi.org/10.1007/s13370-023-01089-x
Abstract
Several upper and lower bounds of the Davis–Wielandt–Berezin radius of bounded linear operators defined on a reproducing kernel Hilbert space are given. Further, an inequality involving the Berezin number and the Davis–Wielandt–Berezin radius for the sum of two bounded linear operators is obtained, namely, if A and B are reproducing kernel Hilbert space operators, then η(A+B)≤η(A)+η(B)+ber(A∗B+B∗A), where η(·) and ber(·) are the Davis–Wielandt–Berezin radius and the Berezin number, respectively.
Item Type: | Journal Article |
---|---|
Publication: | Afrika Matematika |
Publisher: | Springer Science and Business Media Deutschland GmbH |
Additional Information: | The copyright for this article belongs to the Author. |
Keywords: | Berezin norm; Berezin number; Davis–Wielandt radius; Reproducing kernel Hilbert space. |
Department/Centre: | Division of Physical & Mathematical Sciences > Mathematics |
Date Deposited: | 26 Jul 2023 07:18 |
Last Modified: | 26 Jul 2023 07:18 |
URI: | https://eprints.iisc.ac.in/id/eprint/82562 |
Actions (login required)
View Item |