ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Davis–Wielandt–Berezin radius inequalities of reproducing kernel Hilbert space operators

Sen, A and Bhunia, P and Paul, K (2023) Davis–Wielandt–Berezin radius inequalities of reproducing kernel Hilbert space operators. In: Afrika Matematika, 34 (3).

[img]
Preview
PDF
afr_mat_34-3_2023.pdf - Published Version

Download (304kB) | Preview
Official URL: https://doi.org/10.1007/s13370-023-01089-x

Abstract

Several upper and lower bounds of the Davis–Wielandt–Berezin radius of bounded linear operators defined on a reproducing kernel Hilbert space are given. Further, an inequality involving the Berezin number and the Davis–Wielandt–Berezin radius for the sum of two bounded linear operators is obtained, namely, if A and B are reproducing kernel Hilbert space operators, then η(A+B)≤η(A)+η(B)+ber(A∗B+B∗A), where η(·) and ber(·) are the Davis–Wielandt–Berezin radius and the Berezin number, respectively.

Item Type: Journal Article
Publication: Afrika Matematika
Publisher: Springer Science and Business Media Deutschland GmbH
Additional Information: The copyright for this article belongs to the Author.
Keywords: Berezin norm; Berezin number; Davis–Wielandt radius; Reproducing kernel Hilbert space.
Department/Centre: Division of Physical & Mathematical Sciences > Mathematics
Date Deposited: 26 Jul 2023 07:18
Last Modified: 26 Jul 2023 07:18
URI: https://eprints.iisc.ac.in/id/eprint/82562

Actions (login required)

View Item View Item