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NEUTROSOPHIC PROGRAMMING APPROACH TO MULTILEVEL
DECISION-MAKING MODEL FOR SUPPLIER SELECTION PROBLEM IN A

FUZZY SITUATION

Ahmad Yusuf Adhami1, Anas Melethil1 and Firoz Ahmad2,3

Abstract. In supply chain management, the selection of suppliers is vital and plays a valuable role
in the performance of organizations. A hierarchical structure, with different levels in the selection of
suppliers, is employed, wherein sequential decisions are made from the highest to the lowest level.
Decision variables, called controlling factors, are divided into several categories. In the decision-making
process, often because of the lack of confidence or uncertainty, It becomes challenging for decision-
makers to give explicit/crisp values to any parameter, resulting in uncertainty in the problem. In this
paper, we address a multi-level supplier selection problem with fuzzy supply and demand. To avoid
decision conflicts, superior or upper-level decision-makers give tolerances that could be used as a possible
relaxation. Thus, the problem is employed with fuzzy constraints. Based on a neutrosophic decision
set, the neutrosophic compromise programming approach (NCPA) is used as a solution technique
with the idea of an indeterminacy degree as well as different objectives for membership and non-
membership degrees. Membership functions (Linear-type) are used to develop satisfactory solutions by
fuzzily describing objective functions and controlling factors. A numerical illustration is provided to
demonstrate the validity and appropriateness of NCPA.
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1. Introduction

The supplier’s role is crucial for an organization to excel in a competitive market. Selecting a reliable supplier
who can be advantageous for the organization, considering various restrictions related to price, trait, continuance,
demand, and supply is called a supplier selection problem (also called a sourcing decision problem). In a
competitive milieu, customers’ satisfaction is directly proportional to the selection of the best supplier, which
consequently improves the efficiency of the supply chain. Moreover, the selection of felicitous suppliers enhances
quality measures by reducing the levels of non-conformity of the products, enhancing resilience to fulfil the
needs of end customers and lowering lead time during different phases. The supplier selection problem (SSP)
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comprises several characteristics, including both qualitative and quantitative elements. SSP can be expressed
as a linear programming problem. The multiobjective SSP is considered under the uncertain situation. It is
assumed that an automobile company places an ordered quantity to the different suppliers for multiple parts
to identify the quota allocation in a supply chain. For this purpose, the decision-makers are strictly against
the shortage of parts, specific with the different capacities and budget allocation. Due to real-life complexity,
vagueness and ambiguousness among the parameters are taken as type-2 triangular fuzzy numbers (T-2TF),
which is more realistic. The decision-makers main aim is to handle the T-2TF parameters so that the minimum
total cost associated with ordering the aggregate demand, the rejected items of the suppliers, and the late
delivered items are obtained. The supplier selection problem is a well-known and integral component of the
supply chain planning problems. The selection of best suppliers depends on various criteria such as overall
performance ratings, less rejection of items, timely delivery, fulfilling aggregate demand, etc. The literature
suggested that a large part is dedicated to SSP as a multi-criteria decision-making problem in interval type-2
fuzzy uncertainty.

1.1. Research gaps and motivation

The neutrosophic programming approach is a well-renowned and emerging optimization technique and can
be applied to a vast range of real-life decision-making problems such as multilevel decision-making models for
supplier selection problems. It has several work motivations that make it a promising area of research. Some of
these work motivations include:

– Dealing with uncertainty and imprecision: the supplier selection problem in a fuzzy environment is charac-
terized by a high degree of uncertainty and imprecision, making it challenging to make informed decisions.
The neutrosophic programming approach provides a means of dealing with such uncertainties by allowing
for the representation of partial truths and indeterminacy.

– Flexibility in modeling: the neutrosophic programming approach provides a flexible modeling framework
that can accommodate different levels of decision-making, including strategic, tactical, and operational deci-
sion levels. This flexibility allows for a more comprehensive and integrated approach to supplier selection
problems.

– Handling complex and conflicting criteria: the supplier selection problem involves multiple criteria, often
with conflicting objectives. The neutrosophic programming approach can be used to handle such complex
and conflicting criteria by incorporating multiple objectives and constraints in the decision-making process.

– Integration of domain knowledge: the neutrosophic programming approach can be integrated with domain
knowledge to improve the decision-making process. This integration allows for the incorporation of expert
knowledge and experience into the model, which can enhance the accuracy and relevance of the decision-
making process.

– Potential for practical applications: the neutrosophic programming approach has the potential for practical
applications in supplier selection problems in various industries, including manufacturing, logistics, and
supply chain management. The development and application of neutrosophic programming models can lead
to better decision-making and improved performance in these industries.

– Overall, the neutrosophic programming approach provides several work motivations that make it an exciting
and promising area of research for the supplier selection problem in a fuzzy environment.

– Multi-level supplier selection problem with fuzzy supply and demand is considered.
– Neutrosophic compromise programming approach is used to solve above considered problem.
– Membership functions (Linear type) are also used to develop satisfactory solutions by fuzzily describing

objective functions.

The paper is organised and structured in a way that makes sense in light of the proposed work. The first two
sections are an introduction and literature review, while the third contains some preliminary material. After
introducing the concept of multilevel decision-making in Section 4, we then formulate the model in Section 5
with an emphasis on supplier selection problems involving fuzzy parameters. The neutrosophic compromise
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programming approach to the above problem and its algorithm has been covered in detail in Sections 6 and 7.
Section 8 provides a case study that was analysed computationally. The proposed work’s managerial benefits
are outlined in Section 9. The conclusion is presented in Section 10, along with some recommendations for the
future.

2. Literature review

Several researchers have conducted various studies on SSP. In the early twenty-first century, different methods
were employed by researchers for the solution of SSP [12]. Kumar et al. [32] developed a model using fuzzy sets;
that reduced total purchasing costs, late deliveries, and rejected goods; and satisfied all objectives of a multi-
objective integer programming problem concerning the selection of vendors. Analytic hierarchy process (AHP)
and fuzzy linear programming were used by Kumar et al. [33] to find the most cost-effective suppliers. Lee [34]
used Fuzzy AHP for supplier selection and ranked suppliers according to profit, marketing opportunity, cost, and
risk. Xu et al. [50] worked on a deterministic multi-item aggressive lot size problem with collaborative business
loads discount. Ghodsypour and O’ Brain [26] examined the overall cost of logistics in supplier selection under
multiple sources, multiple criteria, and capacity constraint conditions. Crama et al. [21] employed optimal pro-
curement decisions in the presence of total quantity discounts and alternative product recipes. Xia and Wu [49]
considered multi-criteria SSP in the volume discount problem. Mansini et al. [36] studied quantity discounts
and truckload shipping in supplier selection problems. The inventory, supplier selection, and transportation pro-
gramming problems were modelled by Choudhary and Shankar [20] using goal programming, and the solutions
were compared to examine the benefits and drawbacks of each approach. Kar [30] utilized a mix of the Neural
Network Algorithm, AHP, and fuzzy sets to choose suppliers. Cardenas-Barron et al. [18] created a strategy
for handling SSP-based lot sizing for multi-product, multi-period inventories. Muneeb et al. [40] developed a
bi-level decision planning model for municipal solid waste management with cost reliability under an uncertain
environment. Muneeb et al. [48] developed a bi-level decision-making approach for the vendor selection problem
with random supply and demand.

Multilevel organizations work as hierarchical structures composed of mutual decision-making units. Decisions
are performed sequentially in a hierarchical system, beginning at the top and proceeding to the bottom. Each
decision-maker attempts to maximize his earnings, yet the decisions of higher-level decision-makers influence
his decision via after-effects. The upper-level decision maker initially defines the aim, and then subordinate
levels are free to have their responses or optima, calculated in insulation. For the organization’s overall benefit,
the top/upper-level decision maker can modify the decisions at a lower level. In multilevel programming, the
fundamental problem is that a single objective is considered at each level. In the work of Migdalas et al. [38],
the approach involving multilevel single-objective problems could be found. However, considering multilevel,
multiobjective problems is a more realistic approach. In this regard, Fuzzy Goal Programming was used by
Baky [14] to carve a bi-level multiobjective problem model and bi-level multiobjective fractional programming
problems. Based on the uncertainty, Ke et al. [31] contributed with an approach by amalgamating a genetic
algorithm, simulations, and neural network into multilevel programming. The multilevel multiobjective problem
was solved using Fuzzy Goal Programming by Pramanik et al. [44]. Adhami et al. [2] developed a multilevel
decision-making model for the supplier selection problem in a fuzzy situation. They used membership functions
for the controlling factors and goals for optimal solutions.

In realistic problems, specifically with the problems in supplier selection, it is only sometimes viable to
ascertain the accurate values of the parameters involved in the problem. Only a limited amount of information
may be feasible depending on prior knowledge and understanding. Then comes the element of uncertainty. As
a result, the parameters can have various types of uncertainty, such as fuzzy numbers and random variables
with known mean and variance. If the parameters are random variables, following some probability distribution,
these problems might be dealt with a stochastic programming approach. Fuzzy techniques can be used if the
uncertainties are due to vagueness or obscureness. These uncertainties in the parameters can be attributed to
a lack of appropriate information, sudden shifts in the harmony of the environment, a need for newly cast
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products, and shortages of highly desired outcomes, and in the current scenario of the pandemic, intermittent
lockdowns, among other things.

The fuzzy programming approach (FPA) came into existence after the invention of fuzzy sets (FS) by
Zadeh [51]. Zimmermann [52] applied the concepts of FS theory with suitable membership functions to solve
linear programming problems involving multiobjective functions, wherein multiple objectives are converted into
a single objective, after which FPA maximizes the membership function (belongingness). Applications of FPA
can be found in abundance in various problems of optimization [25, 35, 45]. The FPA considers the degree of
belongingness; in some cases, dealing with a non-membership function may be critical (non-belongingness). To
overcome this issue, the intuitionistic fuzzy set (IFS), a continuation of FS, was proposed by Atanassov [13].
Because it also addresses non-membership function (non-belongingness) or the element’s failure in the col-
lection, IFS is more cognition-based than FS. Based on IFS, the intuitionistic fuzzy programming approach
(IFPA) has grown in prominence among real-time multiobjective optimization techniques. Several researchers
have used IF and IFS, with varying degrees of modification, to solve optimization problems. Angelov [11] intro-
duced the optimization technique to handle practical issues in an intuitionistic fuzzy environment. Bharti and
Singh [17] solved multiobjective linear programming issues in an interval-valued intuitionistic fuzzy context. A
new method for a multiobjective, multiple-choice, intuitionistic fuzzy transportation problem was proposed by
Chakraborty et al. [19], which makes use of a chance operator. Sayed and Abo-Sinna [24] developed an approach
for a fully intuitionistic fuzzy multiobjective fractional transportation problem. Adhami and Ahmad [1] created
an interactive Pythagorean-hesitant fuzzy computational method for the multiobjective transportation issue
under uncertainty.

Along with the previously mentioned advances of IF and IFS, a set known as a neutrosophic set (NS) has
recently emerged. The word “neutrosophic,” which distinguishes it from FS and IFS, literally means “knowledge
of neutral thoughts” [47]. Smarandache introduced the idea of a neutrosophic set [47]. Future studies in this
area will build on this idea of neutrality/indeterminacy in NS. The neutrosophic compromise programming
technique (NCPA) has been developed based on NS to find the optimal answer to the multiobjective optimiza-
tion problem. The NCPA considers three membership functions: maximizing truth (belongingness), minimizing
falsity (non-belongingness), and indeterminacy (belongingness to some extent) [47]. Rizk-Allah et al. [46] built
a neutrosophic compromise programming model to discover the best compromise solution, and they validated
it by evaluating the ranking degree with the TOPSIS technique. Simultaneously, Pramanik [43] established the
concept of neutrosophic linear goal programming for multiobjective optimization with uncertainty and inde-
terminacy. Pamucar et al. [23] proposed a model that is a recollection of a new weight aggregator, which uses
pairwise comparison for fuzzy neutrosophic decision-making tactics for supplier assessment and selection. The
NCPA optimizes the indeterminacy/neutral degree of satisfaction, maximizing and minimizing the decision
makers’ satisfaction and dissatisfaction.

Pervin et al. [41] proposed investigating the ideal retailer’s replenishment options for deteriorating items,
including time-dependent demand, to demonstrate more practical situations within economic-order quantity
frameworks. To combine the facility placement problem and the transportation problem inside a multi-objective
context, Das and Roy [22] created the multi-objective transportation-p-facility location model. Mondal et al. [39]
and Ahmad [3,4] created a multi-objective multi-product multi-period two-stage sustainable opened- and closed-
loop supply chain planning to ensure supply across production centers and hospitals. Barman et al. [15] offer a
multi-objective sustainable economic production quantity model with partial back ordering shortages, in which
the consequences of sustainability are examined and resolved using the Fuzzy Goal Programming approach.
Pervin et al. [42], Ahmad and John [5] and Ahmad et al. [8,9] studies develop an integrated vendor-buyer model
for decaying items. Shortages are permitted for both the vendor and the buyer to regulate the degradation
rate. Ghosh et al. [27] initiate a multi-objective solid transportation problem with a preservation technology
connection in a Pythagorean fuzzy environment. Mardanya et al. [37] established a transportation problem
strategy that considers the multi-modal transport framework to optimize overall transportation cost under the
rough interval approximation. Multi-objective decision-making was created by Ghosh et al. [28] and used in
the design of real-world transportation problems. Using neutrosophic linear programming, fuzzy programming,
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and the global criteria technique, a compromise solution to the multi-objective transportation problem is devel-
oped. Giri and Roy [29] and Ahmad et al. [6, 7] introduced neutrosophic programming (NP) and Pythagorean
hesitant fuzzy programming (PHFP) to extract a better compromise solution for a multi-objective, green, four-
dimensional, fixed-charge transportation problem.

This paper considers a multilevel supplier selection problem with fuzzy demand and supply. Decision impasses
are alleviated by allowing for possible exemptions in the form of tolerances offered by higher-level decision-
makers. Fuzzy restrictions are used to solve the problem. The NCPA, based on a neutrosophic decision set, is
used as a solution technique with the concept of indeterminacy degree and membership and non-membership
degree of various objectives.

3. Preliminaries

This section discusses some definitions related to FS, IFS, and NS.

3.1. Fuzzy set (FS)

Definition 3.1 ([16]). A fuzzy set A on a universe of discourse X is defined by a membership function 𝜇𝐴(𝑥),
which maps each element x of X to a value between 0 and 1, denoting the degree of membership of x in A. The
membership function 𝜇𝐴(𝑥) is a real valued function defined on X

𝜇𝐴(𝑥) : 𝑋 → [0, 1].

Definition 3.2 ([16]). The triplet �̃�(𝑝, 𝑞, 𝑟), indicating the lower, middle, and upper values of a membership
function are called parabolic fuzzy number if its membership function expressed as

𝜇�̃�(𝑦) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(︁
𝑦−𝑝
𝑞−𝑝

)︁2

, if 𝑝 ≤ 𝑦 ≤ 𝑞;
1, if 𝑦 = 𝑞;(︁

𝑟−𝑦
𝑟−𝑞

)︁2

, if 𝑞 ≤ 𝑦 ≤ 𝑟;
0, otherwise.

(3.1)

Defuzzification of parabolic number [25]: Defuzzification is the process of finding a crisp or deterministic value
of the fuzzy number. The defuzzified value function 𝑑 of the parabolic fuzzy number �̃�(𝑝, 𝑞, 𝑟) is given as

𝑑
(︁
�̃�

)︁
=

(𝑝 + 2𝑞 + 𝑟)
4

· (3.2)

3.2. Intuitionistic fuzzy set (IFS)

Definition 3.3 ([13]). Let there be a universal set 𝑌 ; then, an IFS 𝑊 in 𝑌 , is given by the ordered triplets as
follows:

𝑊 =
{︀
𝑦, 𝜇𝑊 (𝑦), 𝑣𝑊 (𝑦)

⃒⃒
𝑦 ∈ 𝑌

}︀
,

where 𝜇𝑊 (𝑦) : 𝑌 → [0, 1]; 𝑣𝑊 (𝑦) : 𝑌 → [0, 1].
With conditions 0 ≤ 𝜇𝑊 (𝑦) + 𝑣𝑊 (𝑦) ≤ 1. Where 𝜇𝑊 (𝑦) and 𝑣𝑊 (𝑦), denote the membership and non-

membership functions of the elements 𝑦 ∈ 𝑌 into the set 𝑊.

3.3. Neutrosophic set (NS)

Definition 3.4 ([47]). Let there be universal set 𝑌 , such that 𝑦 ∈ 𝑌 , then a neutrosophic set 𝐴 in 𝑌 is expressed
by three membership functions, viz., truth 𝑇𝐴(𝑦), indeterminacy 𝐼𝐴(𝑦) and a falsity 𝐹𝐴(𝑦) and is denoted by
the following form:

𝐴 =
{︀
𝑦, 𝑇𝐴(𝑦), 𝐼𝐴(𝑦), 𝐹𝐴(𝑦)

⃒⃒
𝑦 ∈ 𝑌

}︀
, (3.3)
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where 𝑇𝐴(𝑦), 𝐼𝐴(𝑦), and 𝐹𝐴(𝑦) are real standard or non-standard subsets belonging to ]0−, 1+], also given as
𝑇𝐴(𝑦) : 𝑌 → ]0−, 1+], 𝐼𝐴(𝑦) : 𝑌 → ]0−, 1+], and 𝐹𝐴(𝑦) : 𝑌 → ]0−, 1+]. Also, there is no restriction on the sum
of 𝑇𝐴(𝑦), 𝐼𝐴(𝑦), and 𝐹𝐴(𝑦), so we have,

0− ≤ sup𝑇𝐴(𝑦) + 𝐼𝐴(𝑦) + sup𝐹𝐴(𝑦) ≤ 3+. (3.4)

Definition 3.5 ([47]). A single valued neutrosophic set (SVNS) 𝐴 over a universal set 𝑌, is defined as

𝐴 =
{︀
𝑦, 𝑇𝐴(𝑦), 𝐼𝐴(𝑦), 𝐹𝐴(𝑦)

⃒⃒
𝑦 ∈ 𝑌

}︀
, (3.5)

where 𝑇𝐴(𝑦), 𝐼𝐴(𝑦), and 𝐹𝐴(𝑦) ∈ [0, 1] and 0 ≤ 𝑇𝐴(𝑦) + 𝐼𝐴(𝑦) + 𝐹𝐴(𝑦) ≤ 3, for each 𝑦 ∈ 𝑌.

Definition 3.6 ([47]). Let 𝐴 and 𝐵 be the two SVNS’𝑠, then the union and intersection of 𝐴 and 𝐵 is defined
by SVNS 𝐶and 𝐷 that is, 𝐶 = (𝐴∪𝐵) and 𝐷 = (𝐴∩𝐵) respectively, whose truth 𝑇𝐶(𝑦), indeterminacy 𝐼𝐶(𝑦)
and falsity 𝐹𝐶(𝑦) membership functions are given by

𝑇𝐶(𝑦) = max(𝑇𝐴(𝑦), 𝑇𝐵(𝑦)),
𝐼𝐶(𝑦) = max(𝐼𝐴(𝑦), 𝐼𝐵(𝑦)),
𝐹𝐶(𝑦) = min(𝐹𝐴(𝑦), 𝐹𝐵(𝑦)) for each 𝑦 ∈ 𝑌.

4. Model for multilevel decision making

An 𝑛-level, the multilevel programming problem is considered, in which the objective is to be minimized at
each level. An 𝑛-level multilevel problem, in addition to the set of constraints, may be represented as follows:

min
𝑥1

𝑍1 = 𝑧1(𝑥1, 𝑥2, . . . , 𝑥𝑛)

min
𝑥2

𝑍2 = 𝑧2(𝑥1, 𝑥2, . . . , 𝑥𝑛)
...

min
𝑥𝑛

𝑍𝑛 = 𝑧𝑛(𝑥1, 𝑥2, . . . , 𝑥𝑛)

subject to the constraints :
g(𝑥1, 𝑥2, . . . , 𝑥𝑛) (≤ / ≥ / =)𝑏

𝑥𝑖 ≥ 0, 𝑖 = 1, 2, . . . 𝑛

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.0)

In the formulation given in equation (4.0), the decision variables are partitioned into different levels. This means
that the first level controls the first decision variable, the second level controls the second decision variable, and
so on. The hierarchy is from the first level to the last level. The first-level decision-maker is the first to execute
his policies and develop the solution to set the goal. He asks others at the lower levels for their optima, which
are obtained separately. The first-level decision-maker then amends these lower-level decisions to boost the
organization’s overall performance. This method is repeated until a satisfactory solution at all levels is reached.

Multilevel decision-making for the supplier selection problem

The general formulation for the multilevel supplier selection problem is provided in this section. The following
assumptions are being considered:

– Only one supplier is to be assigned to purchase a particular item.
– For any item, shortages from suppliers are not permissible.
– No discounts of any type are considered.
– Demand and supply of an item are considered to be fuzzy.
– All the objectives, viz., minimizing the whole cost, the aggregate number of rejected items, and the total

number of late deliveries, are fuzzy.
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4.1. Denotations

𝑍1 Cost incurred for ordering the total demand
𝑍2 Total number of the items that are rejected
𝑍3 Number of the items that are delivered late
𝑤𝑖 Quantity to be purchased from the supplier 𝑖
𝑐𝑖 Cost incurred for ordering the aggregate demand
𝑞𝑖 Proportion of the rejected items delivered by the supplier 𝑖.
𝑙𝑖 Proportion of the late deliveries by the supplier 𝑖.
𝐷 Total demand for the product over a definite planning period
𝑃 Minimum tolerable rating of a supplier
𝐹 Least resilience value in a supplier’s supply quota.
𝐵𝑖 Budget availability for the supplier 𝑖.
𝑈𝑖 Capacity of the supplier 𝑖.
𝑟𝑖 Rating of the supplier 𝑖.
𝑠𝑖 Quota resilience for the supplier 𝑖.

The formulation of the problem involving three objectives with a set of system and policy constraints for a
supplier selection problem can be as follows:

I level

Min 𝑍1 =
𝑛∑︁

𝑖=1

𝑐𝑖𝑤𝑖, (4.1)

where some of 𝑤𝑖 satisfies.

II level

Min 𝑍2 =
𝑛∑︁

𝑖=1

𝑞𝑖𝑤𝑖, (4.2)

where some of 𝑤𝑖 satisfies.

III level

Min 𝑍3 =
𝑛∑︁

𝑖=1

𝑙𝑖𝑤𝑖 (4.3)

subject to
𝑛∑︁

𝑖=1

𝑤𝑖 ≥ 𝐷 (4.4)

𝑤𝑖 ≤ 𝑈𝑖, 𝑖 = 1, 2, . . . , 𝑛 (4.5)
𝑛∑︁

𝑖=1

𝑠𝑖𝑤𝑖 ≥ 𝐹 (4.6)

𝑛∑︁
𝑖=1

𝑟𝑖𝑤𝑖 ≥ 𝑃 (4.7)

𝑐𝑖𝑤𝑖 ≤ 𝐵𝑖, 𝑖 = 1, 2, . . . , 𝑛 (4.8)
𝑤𝑖 ≥ 0, and integer, 𝑖 = 1, 2, . . . , 𝑛. (4.9)

The objective function (4.1) is to minimize the entire cost associated with the problem. The objective function
(4.2) seeks to minimize the total number of goods rejected after delivery. The objective function (4.3) aims
to minimize the supplier’s overall number of late deliveries. The constraint (4.4) applies to the demand. The
constraint (4.5) is for the providers’ maximum capacity. Based on the various quotas ordered from other vendors,
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constraint (4.6) has the least adaptability. Supplier ratings constitute the constraint (4.7). The limits represented
by constraint (4.8) ensure that the purchase price does not exceed the budget allotted to particular providers.
The constraint (4.9) assures that the decision variable is non-negative and has an integer value.

5. Multilevel decision-making for the supplier selection problem with fuzzy
parameters

As discussed in Section 1, the exact value of the parameters is only sometimes possible to attain. Vagueness
in the parameters is due to non-exact estimates of the parameters provided by the decision maker. In such
circumstances, this uncertainty must be considered while solving the problem. This vagueness can be dealt
with fuzzy techniques. In this multilevel decision-making model for the supplier selection problem (MLSSP),
ambiguous problem uncertainties are converted into deterministic types using ranking function techniques.

The multilevel decision-making problem for the supplier selection with fuzzy parameters can be given as
follows:

I level

Min 𝑍1 =
𝑛∑︁

𝑖=1

𝑐𝑖𝑤𝑖, (5.1)

where some of 𝑤𝑖 satisfies.

II level

Min 𝑍2 =
𝑛∑︁

𝑖=1

𝑞𝑖𝑤𝑖, (5.2)

where some of 𝑤𝑖 satisfies.

III level

Min 𝑍3 =
𝑛∑︁

𝑖=1

𝑙𝑖𝑤𝑖 (5.3)

subject to
𝑛∑︁

𝑖=1

𝑤𝑖 ≥ �̃� (5.4)

𝑤𝑖 ≤ 𝑈𝑖, 𝑖 = 1, 2, . . . , 𝑛 (5.5)
𝑛∑︁

𝑖=1

𝑠𝑖𝑤𝑖 ≥ 𝐹 (5.6)

𝑛∑︁
𝑖=1

𝑟𝑖𝑤𝑖 ≥ 𝑃 (5.7)

𝑐𝑖𝑤𝑖 ≤ 𝐵𝑖, 𝑖 = 1, 2, . . . , 𝑛 (5.8)
𝑤𝑖 ≥ 0, and integer, 𝑖 = 1, 2, . . . , 𝑛. (5.9)

where 𝑐𝑙,𝑞𝑙, 𝑙𝑙, 𝑈𝑙 are the fuzzy parameters of the total cost, the total number of rejected items, the total number
of late deliveries and total capacity. In addition, supply and demand are also assumed to be fuzzy. These can
be defuzzfied by using equation (3.2). The problem can then be represented as follows:

I level

Min 𝑍1 =
𝑛∑︁

𝑖=1

𝑑(𝑐𝑖)𝑤𝑖, (5.10)

where some of 𝑤𝑖 satisfies.
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II level

Min 𝑍2 =
𝑛∑︁

𝑖=1

𝑑(𝑞𝑖)𝑤𝑖, (5.11)

where some of 𝑤𝑖 satisfies.

III level

Min 𝑍3 =
𝑛∑︁

𝑖=1

𝑑
(︁
𝑙𝑖

)︁
𝑤𝑖 (5.12)

subject to
𝑛∑︁

𝑖=1

𝑤𝑖 ≥ 𝑑
(︁
�̃�

)︁
(5.13)

𝑤𝑖 ≤ 𝑑
(︁
𝑈𝑖

)︁
, 𝑖 = 1, 2, . . . , 𝑛 (5.14)

𝑛∑︁
𝑖=1

𝑠𝑖𝑤𝑖 ≥ 𝐹 (5.15)

𝑛∑︁
𝑖=1

𝑟𝑖𝑤𝑖 ≥ 𝑃 (5.16)

𝑐𝑖𝑤𝑖 ≤ 𝐵𝑖, 𝑖 = 1, 2, . . . , 𝑛 (5.17)
𝑤𝑖 ≥ 0, and integer, 𝑖 = 1, 2, . . . , 𝑛 (5.18)

where 𝑑(𝑐𝑖), 𝑑(𝑞𝑖), and 𝑑
(︁
𝑈𝑖

)︁
are the defuzzified values of 𝑐𝑖, 𝑞𝑖, and 𝑈𝑖 respectively.

6. Neutrosophic compromise programming approach (NCPA) for multilevel
decision-making for the supplier selection problem with fuzzy parameters

An approach, conceptualized on neutrosophic set theory has been promulgated to solve multilevel decision-
making for the supplier selection problem with fuzzy parameters. In the neutrosophic compromise programming
approach (NCPA), three membership functions are considered: maximization of the degree of truth, maximiza-
tion of indeterminacy, and minimization of falsity membership function.

If fuzzy decision is denoted by 𝐷, fuzzy goal by 𝐺, and fuzzy constraints by 𝐶, then the neutrosophic decision
set, denoted by 𝐷𝑁 , can be defined as:

𝐷𝑁 =
(︂

𝐾
∩

𝑘=1
𝐺𝑘

)︂(︂
𝐿
∩

𝑙=1
𝐶𝑙

)︂
= (𝑤, 𝑇𝐷(𝑤), 𝐼𝐷(𝑤), 𝐹𝐷(𝑤)), (6.1)

where 𝑇𝐷(𝑤) = max
{︂

𝑇𝐺1(𝑤), 𝑇𝐺2(𝑤), 𝑇𝐺3(𝑤)
𝑇𝐶1(𝑤), 𝑇𝐶2(𝑤)

}︂
, ∀ 𝑤 ∈ 𝑊 (6.2)

𝐼𝐷(𝑤) = max
{︂

𝐼𝐺1(𝑤), 𝐼𝐺2(𝑤), 𝐼𝐺3(𝑤)
𝐼𝐶1(𝑤), 𝐼𝐶2(𝑤)

}︂
, ∀ 𝑤 ∈ 𝑊 (6.3)

𝐹𝐷(𝑤) = min
{︂

𝐹𝐺1(𝑤), 𝐹𝐺2(𝑤), 𝐹𝐺3(𝑤)
𝐹𝐶1(𝑤), 𝐹𝐶2(𝑤)

}︂
, ∀ 𝑤 ∈ 𝑊 (6.4)

where 𝑇𝐷(𝑤), 𝐼𝐷(𝑤), and 𝐹𝐷(𝑤) are the truth membership function, indeterminacy membership function and
a falsity membership function, respectively, of neutrosophic decision set 𝐷𝑁 .

At different levels, we define each objective function’s lower and upper bounds. These bounds can be obtained
as follows:
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First, the objective function at an individual level is solved under the given constraints. After that, 𝐾
solution sets are obtained. Let these solution sets be denoted by 𝑊 1, 𝑊 2, . . . ,𝑊𝐾 the obtained solutions are
then substituted for each objective function, yielding the lower and upper bounds for each objective function
as follows:

𝑈𝑘 = max
[︀
𝑍𝑘

(︀
𝑊 𝑘

)︀]︀
and 𝐿𝑘 = min

[︀
𝑍𝑘

(︀
𝑊 𝑘

)︀]︀
, 𝑘 = 1, 2, . . . ,𝐾. (6.5)

The lower and upper bounds can now be obtained as follows [26]:

For truth membership: 𝑈𝑇
𝑘 = 𝑈𝑘, 𝐿𝑇

𝑘 = 𝐿𝑘 (6.6)

For indeterminacy membership: 𝑈 𝐼
𝑘 = 𝐿𝑇

𝑘 + 𝑠𝑘, 𝐿𝐼
𝑘 = 𝐿𝑇

𝑘 (6.7)

For falsity membership: 𝑈𝐹
𝑘 = 𝑈𝑇

𝑘 , 𝐿𝐹
𝑘 = 𝐿𝑇

𝑘 + 𝑡𝑘 (6.8)

where 𝑠𝑘 and 𝑡𝑘 ∈ (0, 1) are predetermined real numbers assigned by decision-makers.
Under a neutrosophic environment, the linear membership functions are defined using lower and upper

bounds.

𝑇𝑘(𝑍𝑘(𝑤)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 𝑍𝑘(𝑤) < 𝐿𝑇

𝑘

𝑈𝑇
𝑘 − 𝑍𝑘(𝑤)
𝑈𝑇

𝑘 − 𝐿𝑇
𝑘

if 𝐿𝑇
𝑘 ≤ 𝑍𝑘(𝑤) ≤ 𝑈𝑇

𝑘

0 if 𝑍𝑘(𝑤) > 𝑈𝑇
𝑘

(6.9)

𝐼𝑘(𝑍𝑘(𝑤)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 𝑍𝑘(𝑤) < 𝐿𝐼

𝑘

𝑈 𝐼
𝑘 − 𝑍𝑘(𝑤)
𝑈 𝐼

𝑘 − 𝐿𝐼
𝑘

if 𝐿𝐼
𝑘 ≤ 𝑍𝑘(𝑤) ≤ 𝑈 𝐼

𝑘

0 if 𝑍𝑘(𝑤) > 𝑈 𝐼
𝑘

(6.10)

𝐹𝑘(𝑍𝑘(𝑤)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 𝑍𝑘(𝑤) > 𝑈𝐹

𝑘

𝑍𝑘(𝑤)− 𝐿𝐹
𝑘

𝑈𝐹
𝑘 − 𝐿𝐹

𝑘

if 𝐿𝐹
𝑘 ≤ 𝑍𝑘(𝑤) ≤ 𝑈𝐹

𝑘

0 if 𝑍𝑘(𝑤) < 𝐿𝐹
𝑘

(6.11)

For all objective functions 𝐿
(.)
𝑘 ̸= 𝑈

(.)
𝑘 . If 𝐿

(.)
𝑘 = 𝑈

(.)
𝑘 , then the value of the membership will be equal to 1.

Using the approach in [16], the MLSSP can be expressed as follows:

Max min
𝑘=1,2,...,𝐾

𝑇𝑘(𝑍𝑘(𝑤))

Max min
𝑘=1,2,...,𝐾

𝐼𝑘(𝑍𝑘(𝑤))

Min max
𝑘=1,2,...,𝐾

𝐹𝑘(𝑍𝑘(𝑤))

subject to
𝑛∑︁

𝑖=1

𝑤𝑖 >= 𝑑(𝐷)

𝑤𝑖 ≤ 𝑑
(︁
𝑈𝑖

)︁
, 𝑖 = 1, 2, . . . , 𝑛

𝑛∑︁
𝑖=1

𝑠𝑖𝑤𝑖 ≥ 𝐹

𝑛∑︁
𝑖=1

𝑟𝑖𝑤𝑖 ≥ 𝑃
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𝑐𝑖𝑤𝑖 ≤ 𝐵𝑖, 𝑖 = 1, 2, . . . , 𝑛

𝑤𝑖 ≥ 0, and integer, 𝑖 = 1, 2, . . . , 𝑛

Using auxiliary parameters, the above problem can be transformed into the following form:

Max 𝛼 (6.12)
Max 𝛽 (6.13)
Min 𝛾 (6.14)
subject to 𝑇𝐾(𝑍𝑘(𝑤)) ≥ 𝛼 (6.15)

𝐼𝑘(𝑍𝑘(𝑤)) ≥ 𝛽 (6.16)
𝐹𝑘(𝑍𝑘(𝑤)) ≤ 𝛾 (6.17)

𝑛∑︁
𝑖=1

𝑤𝑖 ≥ 𝑑
(︁
�̃�

)︁
(6.18)

𝑤𝑖 ≤ 𝑑
(︁
𝑈𝑖

)︁
, 𝑖 = 1, 2, . . . , 𝑛 (6.19)

𝑛∑︁
𝑖=1

𝑠𝑖𝑤𝑖 ≥ 𝐹 (6.20)

𝑛∑︁
𝑖=1

𝑟𝑖𝑤𝑖 ≥ 𝑃 (6.21)

𝑐𝑖𝑤𝑖 ≤ 𝐵𝑖, 𝑖 = 1, 2, . . . , 𝑛 (6.22)
𝑤𝑖 ≥ 0, and integer, 𝑖 = 1, 2, . . . , 𝑛 (6.23)

The same problem can be further expressed using a linear membership function as follows:

Max 𝛼 + 𝛽 − 𝛾 (6.24)

subject to
𝑛∑︁

𝑖=1

𝑤𝑖 ≥ 𝑑
(︁
�̃�

)︁
(6.25)

𝑤𝑖 ≤ 𝑑
(︁
𝑈𝑖

)︁
, 𝑖 = 1, 2, . . . , 𝑛 (6.26)

𝑛∑︁
𝑖=1

𝑠𝑖𝑤𝑖 ≥ 𝐹 (6.27)

𝑛∑︁
𝑖=1

𝑟𝑖𝑤𝑖 ≥ 𝑃 (6.28)

𝑐𝑖𝑤𝑖 ≤ 𝐵𝑖, 𝑖 = 1, 2, . . . , 𝑛 (6.29)
𝑤𝑖 ≥ 0, and integer, 𝑖 = 1, 2, . . . , 𝑛 (6.30)

𝑍𝑘(𝑤) +
(︀
𝑈𝑇

𝑘 − 𝐿𝑇
𝑘

)︀
𝛼 ≤ 𝑈𝑇

𝑘 (6.31)

𝑍𝑘(𝑤) +
(︀
𝑈 𝐼

𝑘 − 𝐿𝐼
𝑘

)︀
𝛽 ≤ 𝑈 𝐼

𝑘 (6.32)

𝑍𝑘(𝑤)−
(︀
𝑈𝐹

𝑘 − 𝐿𝐹
𝑘

)︀
𝛾 ≤ 𝐿𝐹

𝑘 (6.33)
𝛼 ≥ 𝛽, 𝛼 ≥ 𝛾, 𝛼 + 𝛽 + 𝛾 ≤ 3 (6.34)
𝛼, 𝛽, 𝛾 ∈ (0, 1) (6.35)

Ultimately, the above model gives the compromise solution for MLSSP.
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Figure 1. Flow chart of proposed model.

7. Algorithm for neutrosophic compromise programming approach

A step-wise summary of the proposed method can be presented as follows:

Step 1. Formulate the multilevel supplier selection problem with fuzzy parameters, as discussed in Section 5.
Step 2. Using the defuzzification method, given in equation (3.2), transform the problem into a crisp form.
Step 3. Solve objective functions at each level individually with the set of constraints and contrive the pay-off

matrix, as shown in Table 2.
Step 4. For each level, determine each objective function’s upper and lower bounds.
Step 5. For truth, indeterminacy, and falsity membership functions, define the upper and lower bounds as in

equations (6.6)–(6.8).
Step 6. Under a neutrosophic environment, define the liner membership function as in equations (6.9)–(6.11).
Step 7. Formulate the neutrosophic problem defined by equations (6.12)–(6.23) and convert it to the neutro-

sophic compromise programming problem specified by equations (6.24)–(6.35).
Step 8. Solving the converted multilevel decision-making for the supplier selection problem parameters using

an optimizing software package.

8. Computational study

To demonstrate the procedure, an illustrative example is considered [10]. An automobile company which
orders auto parts from different suppliers is considered. The resources are limited, and few parameters are fuzzy
in nature. As a result, specific professionals are assigned to design the selection criteria and select providers
based on the specified quality and its restrictions. The proposed NCPA approach is utilised to solve MLSSP with
three unique objectives: minimize overall ordering cost, rejection rate, and item delivery time within a given set
of resources at the level I, level II and level III respectively. The data as shown in Table 1 is considered. The
solution results are obtained using LINGO 16.
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Table 1. Input parameters.

Parameters Suppliers (i)

1 2 3 4 5 6

𝐶𝑖($) (2, 3, 4) (1, 2, 3) (3, 4, 5) (1, 1, 1) (4, 5, 6) (4, 6, 8)

𝑞𝑖 (0.04, 0.05, 0.06) (0.01, 0.02, 0.07) (0, 0, 0) (0.03, 0.04, 0.05) (0.01, 0.02, y0.03) (0, 0.02, 0.04)

𝑈𝑖(
′00) (40, 60, 100) (100, 150, 240) (30, 40, 70) (20, 30, 40) (25, 35, 65) (30, 40, 50)

𝑙𝑖 (0.01, 0.02, 0.03) (0, 0.01, 0.02) (0.07, 0.08, 0.09) (0.01, 0.02, 0.03) (0, 0.01, 0.02) (0.01, 0.02, 0.03)

𝑟𝑖 0.85 0.80 0.97 0.81 0.82 0.90

𝑠𝑖 0.01 0.02 0.06 0.04 0.02 0.03

𝐵𝑖 14 000 27 000 12 000 1900 18 000 5000

7 8 9 10 11 12

𝐶𝑖 ($) (5, 7, 9) (3, 6, 9) (1, 2, 3) (2, 6, 6) (1, 1, 1) (2, 7, 8)

𝑞𝑖 (0.01, 0.02, 0.03) (0, 0.01, 0.02) (0.04, 0.06, 0.08) (0, 0, 0) (0.02, 0.03, 0.04) (0.01, 0.02, 0.07)

𝑈𝑖

(︀′00
)︀

(15, 25, 35) (15, 20, 25) (40, 60, 80) (16, 25, 34) (20, 30, 40) (15, 20, 25)

𝑙𝑖 (0, 0.02, 0.04) (0.03, 0.04, 0.05) (0.02, 0.03, 0.04) (0.01, 0.02, 0.03) (0, 0.01, 0.02) (0.01, 0.02, 0.03)

𝑟𝑖 0.92 0.87 0.86 0.97 0.80 0.84

𝑠𝑖 0.05 0.02 0.02 0.04 0.03 0.06

𝐵𝑖 2000 9000 10 000 12 000 3000 9000

𝐷 𝐹 𝑃

(22 000, 30 000, 54 000) 1020 31 280

The formulation of the problem using the data in Table 1 is given as follows:

I level

Min 𝑍1 = (2, 3, 4)𝑤1 + (1, 2, 3)𝑤2 + (3, 4, 5)𝑤3 + (1, 1, 1)𝑤4 + (4, 5, 6)𝑤5

+ (4, 6, 8)𝑤6 + (5, 7, 9)𝑤7 + (3, 6, 9)𝑤8 + (1, 2, 3)𝑤9

+ (2, 6, 6)𝑤10 + (1, 1, 1)𝑤11 + (2, 7, 8)𝑤12

where 𝑤1, 𝑤2, 𝑤3, 𝑤4 satisfy

II level

Min 𝑍2 = (0.04, 0.05, 0.06)𝑤1 + (0.01, 0.02, 0.07)𝑤2 + (0, 0, 0)𝑤3 + (0.03, 0.04, 0.05)𝑤4 + (0.01, 0.02, 0.03)𝑤5

+ (0, 0.02, 0.04)𝑤6 + (0.01, 0.02, 0.03)𝑤7 + (0, 0.01, 0.02)𝑤8 + (0.04, 0.06, 0.08)𝑤9

+ (0, 0, 0)𝑤10 + (0.02, 0.03, 0.04)𝑤11 + (0.01, 0.02, 0.07)𝑤12

where 𝑤5, 𝑤6, 𝑤7, 𝑤8 satisfy

III level

Min 𝑍3 = (0.01, 0.02, 0.03)𝑤1 + (0, 0.01, 0.02)𝑤2 + (0.07, 0.08, 0.09)𝑤3 + (0.01, 0.02, 0.03)𝑤4 + (0, 0.01, 0.02)𝑤5

+ (0.01, 0.02, 0.03)𝑤6 + (0, 0.02, 0.04)𝑤7 + (0.03, 0.04, 0.05)𝑤8 + (0.02, 0.03, 0.04)𝑤9

+ (0.01, 0.02, 0.03)𝑤10 + (0, 0.01, 0.02)𝑤11 + (0.01, 0.02, 0.03)𝑤12

subject to 𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 + 𝑤5 + 𝑤6 + 𝑤7

+ 𝑤8 + 𝑤9 + 𝑤10 + 𝑤11 + 𝑤12 ≥ (22 000, 30 000, 54 000)
𝑤1 ≤ (40, 60, 100) 100
𝑤2 ≤ (100, 150, 240) 100



1320 A.Y. ADHAMI ET AL.

𝑤3 ≤ (30, 40, 70) 100
𝑤4 ≤ (20, 30, 40) 100
𝑤5 ≤ (25, 35, 65) 100
𝑤6 ≤ (30, 40, 50) 100
𝑤7 ≤ (15, 25, 35) 100
𝑤8 ≤ (15, 20, 25) 100
𝑤9 ≤ (40, 60, 80) 100
𝑤10 ≤ (16, 25, 34) 100
𝑤11 ≤ (20, 30, 40) 100
𝑤12 ≤ (15, 20, 25) 100
0.01𝑤1 + 0.02𝑤2 + 0.06𝑤3 + 0.04𝑤4 + 0.02𝑤5 + 0.03𝑤6

+ 0.05𝑤7 + 0.02𝑤8 + 0.02𝑤9 + 0.04𝑤10 + 0.03𝑤11 + 0.06𝑤12 ≥ 1020
0.85𝑤1 + 0.80𝑤2 + 0.97𝑤3 + 0.81𝑤4 + 0.82𝑤5 + 0.90𝑤6

+ 0.92𝑤7 + 0.87𝑤8 + 0.86𝑤9 + 0.97𝑤10 + 0.80𝑤11 + 0.84𝑤12 ≥ 31 280
(2, 3, 4)𝑤1 ≤ 14 000
(1, 2, 3)𝑤2 ≤ 27 000
(3, 4, 5)𝑤3 ≤ 12 000
(1, 1, 1)𝑤4 ≤ 1900
(4, 5, 6)𝑤5 ≤ 18 000
(4, 6, 8)𝑤6 ≤ 5000
(5, 7, 9)𝑤7 ≤ 2000
(3, 6, 9)𝑤8 ≤ 9000
(1, 2, 3)𝑤9 ≤ 10 000
(2, 6, 6)𝑤10 ≤ 12 000
(1, 1, 1)𝑤11 ≤ 3000
(2, 7, 8)𝑤12 ≤ 9000
𝑤𝑖 ≥ 0, and integer, 𝑖 = 1, 2, . . . , 12

The crisp model using equation (3.2) will be as follows:

I level

Min 𝑍1 = 3𝑤1 + 2𝑤2 + 4𝑤3 + 𝑤4 + 5𝑤5 + 6𝑤6 + 7𝑤7

+ 6𝑤8 + 2𝑤9 + 5𝑤10 + 𝑤11 + 6𝑤12

where 𝑤1, 𝑤2, 𝑤3, 𝑤4 satisfy.

II level

Min 𝑍2 = 0.05𝑤1 + 0.03𝑤2 + 0𝑤3 + 0.04𝑤4 + 0.02𝑤5

+ 0.02𝑤6 + 0.02𝑤7 + 0.01𝑤8 + 0.06𝑤9

+ 0𝑤10 + 0.03𝑤11 + 0.03𝑤12

where 𝑤5, 𝑤6, 𝑤7, 𝑤8 satisfy.
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III level

Min 𝑍3 = 0.02𝑤1 + 0.01𝑤2 + 0.08𝑤3 + 0.02𝑤4 + 0.01𝑤5

+ 0.02𝑤6 + 0.02𝑤7 + 0.04𝑤8 + 0.03𝑤9

+ 0.02𝑤10 + 0.01𝑤11 + 0.02𝑤12

subject to 𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 + 𝑤5

+ 𝑤6 + 𝑤7 + 𝑤8 + 𝑤9

+ 𝑤10 + 𝑤11 + 𝑤12 ≥ 34 000
0.01𝑤1 + 0.02𝑤2 + 0.06𝑤3 + 0.04𝑤4 + 0.02𝑤5

+ 0.03𝑤6 + 0.05𝑤7 + 0.02𝑤8 + 0.02𝑤9

+ 0.04𝑤10 + 0.03𝑤11 + 0.06𝑤12 ≥ 1020
0.85𝑤1 + 0.80𝑤2 + 0.97𝑤3 + 0.81𝑤4 + 0.82𝑤5

+ 0.90𝑤6 + 0.92𝑤7 + 0.87𝑤8 + 0.86𝑤9

+ 0.97𝑤10 + 0.80𝑤11 + 0.84𝑤12 ≥ 31 280
𝑤1 ≤ 6500
𝑤2 ≤ 16 000
𝑤3 ≤ 4500
𝑤4 ≤ 3000
𝑤5 ≤ 4000
𝑤6 ≤ 4000
𝑤7 ≤ 2500
𝑤8 ≤ 2000
𝑤9 ≤ 6000
𝑤10 ≤ 2500
𝑤11 ≤ 3000
𝑤12 ≤ 2000
3𝑤1 ≤ 14 000
2𝑤2 ≤ 27 000
4𝑤3 ≤ 12 000
𝑤4 ≤ 1900
5𝑤5 ≤ 18 000
6𝑤6 ≤ 5000
7𝑤7 ≤ 2000
6𝑤8 ≤ 9000
2𝑤9 ≤ 10 000
5𝑤10 ≤ 12 000
𝑤11 ≤ 3000
6𝑤12 ≤ 9000
𝑤𝑖 ≥ 0, and integer, 𝑖 = 1, 2, . . . , 12

The payoff matrix is created by considering each objective separately, as shown in Table 2.
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Table 2. Individual best and worst solution.

Decision variables Individual objective values
𝑍1 𝑍2 𝑍3

(3415.6, 13500, 3000, 1900, 2227.9, 833.3, 285.7, 0, 5000, 2400, 3000, 1500) 103286.4 1153.719 783.9719
(3510.5, 13500, 3000, 1900, 3600, 833.3, 285.7, 1500, 2080.4, 2400, 3000, 1500) 113592.5 1025.735 772.0051
(2425.6, 13500, 2707.6, 1900, 3600, 833.3, 285.7, 0, 5000, 2400, 3000, 1500) 106007.3 1131.659 754.5037

Notes. The bold values represents the “Individual best and worst solutions.”

The upper and lower bound for each objective function are as follows:

𝑈1 = 113592.5; 𝐿1 = 103286.4
𝑈2 = 1153.719; 𝐿2 = 1025.735
𝑈3 = 783.9719; 𝐿3 = 754.5037

Using equations (6.6)–(6.8), the upper and lower bound for the truth, indeterminacy, and falsity membership
functions are as follows:

𝑈𝑇
1 = 𝑈1 = 113592.5; 𝐿𝑇

1 = 𝐿1 = 103286.4

𝑈 𝐼
1 = 𝐿𝑇

1 + 𝑠1 = 103286.4 + 𝑠1; 𝐿𝐼
1 = 𝐿𝑇

1 = 103286.4

𝑈𝐹
1 = 𝑈𝑇

1 = 113592.5; 𝐿𝐹
1 = 𝐿𝑇

1 + 𝑡1 = 103286.4 + 𝑡1

𝑇1(𝑍1(𝑤)) =

⎧⎨⎩
1 if 𝑍1(𝑤) < 103286.4
11.02− 𝑍1(𝑤)

10306.1 if 103286.4 ≤ 𝑍1(𝑤) ≤ 113592.5
0 if 𝑍1(𝑤) > 113592.5

𝐼1(𝑍1(𝑤)) =

⎧⎨⎩
1 if 𝑍1(𝑤) < 103286.4
1 + 103286.4−𝑍1(𝑤)

𝑠1
if 103286.4 ≤ 𝑍1(𝑤) ≤ 103286.4 + 𝑠1

0 if 𝑍1(𝑤) > 103286.4 + 𝑠1

𝐹1(𝑍1(𝑤)) =

⎧⎨⎩
1 if 𝑍1(𝑤) > 113592.5
𝑍1(𝑤)−103286.4−𝑡1

10306.1−𝑡1
if 103286.4 + 𝑡1 ≤ 𝑍1(𝑤) ≤ 113592.5

0 if 𝑍1(𝑤) < 103286.4 + 𝑡1

Similarly for the second objective;

𝑈𝑇
2 = 𝑈2 = 1153.719; 𝐿𝑇

2 = 𝐿2 = 1025.735

𝑈 𝐼
2 = 𝐿𝑇

2 + 𝑠2 = 1025.735 + 𝑠2; 𝐿𝐼
2 = 𝐿𝑇

2 = 1025.735

𝑈𝐹
2 = 𝑈𝑇

2 = 1153.719; 𝐿𝐹
2 = 𝐿𝑇

2 + 𝑡2 = 1025.735 + 𝑡2

𝑇2(𝑍2(𝑤)) =

⎧⎨⎩
1 if 𝑍2(𝑤) < 1025.735
9.01− 𝑍2(𝑤)

127.984 if 1025.735 ≤ 𝑍2(𝑤) ≤ 1153.719
0 if 𝑍2(𝑤) > 1153.719

𝐼2(𝑍2(𝑤)) =

⎧⎨⎩
1 if 𝑍2(𝑤) < 1025.735
1 + 1025.735−𝑍2(𝑤)

𝑠2
if 1025.735 ≤ 𝑍2(𝑤) ≤ 1025.735 + 𝑠2

0 if 𝑍2(𝑤) > 1025.735 + 𝑠2

𝐹3(𝑍2(𝑤)) =

⎧⎨⎩
1 if 𝑍2(𝑤) > 1153.719
𝑍2(𝑤)−1025.735−𝑡2

127.984−𝑡2
if 1025.735 + 𝑡2 ≤ 𝑍2(𝑤) ≤ 1153.719

0 if 𝑍2(𝑤) < 1025.735 + 𝑡2
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For the third objective:

𝑈𝑇
3 = 𝑈3 = 783.9719; 𝐿𝑇

3 = 𝐿3 = 754.5037

𝑈 𝐼
3 = 𝐿𝑇

3 + 𝑠3 = 754.5037 + 𝑠3; 𝐿𝐼
3 = 𝐿𝑇

3 = 754.5037

𝑈𝐹
3 = 𝑈𝑇

3 = 783.9719; 𝐿𝐹
3 = 𝐿𝑇

3 + 𝑡3 = 754.5037 + 𝑡3

𝑇3(𝑍3(𝑤)) =

⎧⎨⎩
1 if 𝑍3(𝑤) < 754.5037
26.61− 𝑍3(𝑤)

29.47 if 754.5037 ≤ 𝑍3(𝑤) ≤ 783.9719
0 if 𝑍3(𝑤) > 783.9719

𝐼3(𝑍3(𝑤)) =

⎧⎨⎩
1 if 𝑍3(𝑤) < 754.5037
1 + 754.5037−𝑍3(𝑤)

𝑠3
if 754.5037 ≤ 𝑍3(𝑤) ≤ 754.5037 + 𝑠3

0 if 𝑍3(𝑤) > 754.5037 + 𝑠3

𝐹3(𝑍3(𝑤)) =

⎧⎨⎩
1 if 𝑍3(𝑤) > 783.9719
𝑍3(𝑤)−754.5037−𝑡3

29.4682−𝑡3
if 754.5037 + 𝑡3 ≤ 𝑍3(𝑤) ≤ 783.9719

0 if 𝑍3(𝑤) < 754.5037 + 𝑡3

Now, the simplified neutrosophic model for MLPP is given as follows:

Max 𝛼 + 𝛽 − 𝛾

subject to 𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 + 𝑤5

+ 𝑤6 + 𝑤7 + 𝑤8 + 𝑤9 + 𝑤10 + 𝑤11 + 𝑤12 ≥ 34 000
0.01𝑤1 + 0.02𝑤2 + 0.06𝑤3 + 0.04𝑤4 + 0.02𝑤5

+ 0.03𝑤6 + 0.05𝑤7 + 0.02𝑤8 + 0.02𝑤9

+ 0.04𝑤10 + 0.03𝑤11 + 0.06𝑤12 ≥ 1020
0.85𝑤1 + 0.80𝑤2 + 0.97𝑤3 + 0.81𝑤4 + 0.82𝑤5

+ 0.90𝑤6 + 0.92𝑤7 + 0.87𝑤8 + 0.86𝑤9

+ 0.97𝑤10 + 0.80𝑤11 + 0.84𝑤12 ≥ 31 280
𝑤1 ≤ 6500
𝑤2 ≤ 16 000
𝑤3 ≤ 4500
𝑤4 ≤ 3000
𝑤5 ≤ 4000
𝑤6 ≤ 4000
𝑤7 ≤ 2500
𝑤8 ≤ 2000
𝑤9 ≤ 6000
𝑤10 ≤ 2500
𝑤11 ≤ 3000
𝑤12 ≤ 2000
3𝑤1 ≤ 14 000
2𝑤2 ≤ 27 000
4𝑤3 ≤ 12 000
𝑤4 ≤ 1900
5𝑤5 ≤ 18 000



1324 A.Y. ADHAMI ET AL.

6𝑤6 ≤ 5000
7𝑤7 ≤ 2000
6𝑤8 ≤ 9000
2𝑤9 ≤ 10 000
5𝑤10 ≤ 12 000
𝑤11 ≤ 3000
6𝑤12 ≤ 9000
3𝑤1 + 2𝑤2 + 4𝑤3 + 𝑤4 + 5𝑤5

+ 6𝑤6 + 7𝑤7 + 6𝑤8 + 2𝑤9

+ 5𝑤10 + 𝑤11 + 6𝑤12 + (113592.5− 103286.4)𝛼 ≤ 113592.5
0.05𝑤1 + 0.03𝑤2 + 0𝑤3 + 0.04𝑤4 + 0.02𝑤5

+ 0.02𝑤6 + 0.02𝑤7 + 0.01𝑤8 + 0.06𝑤9

+ 0𝑤10 + 0.03𝑤11 + 0.03𝑤12 + (1153.719− 1025.735)𝛼 ≤ 1153.719
0.02𝑤1 + 0.02𝑤2 + 0.08𝑤3 + 0.02𝑤4 + 0.01𝑤5

+ 0.02𝑤6 + 0.02𝑤7 + 0.04𝑤8 + 0.03𝑤9 + 0.02𝑤10

+ 0.01𝑤11 + 0.01𝑤12 + (783.9719− 754.5037)𝛼 ≤ 783.9719
3𝑤1 + 2𝑤2 + 4𝑤3 + 𝑤4 + 5𝑤5

+ 6𝑤6 + 7𝑤7 + 6𝑤8 + 2𝑤9

+ 5𝑤10 + 𝑤11 + 6𝑤12 + (103286.4 + 𝑠1− 103286.4)𝛽 ≤ 103286.4 + 𝑠1
0.05𝑤1 + 0.03𝑤2 + 0𝑤3 + 0.04𝑤4 + 0.02𝑤5

+ 0.02𝑤6 + 0.02𝑤7 + 0.01𝑤8 + 0.06𝑤9

+ 0𝑤10 + 0.03𝑤11 + 0.03𝑤12 + (1025.735 + 𝑠2− 1025.735)𝛽 ≤ 1025.735 + 𝑠2
0.02𝑤1 + 0.02𝑤2 + 0.08𝑤3 + 0.02𝑤4 + 0.01𝑤5

+ 0.02𝑤6 + 0.02𝑤7 + 0.04𝑤8 + 0.03𝑤9

+ 0.02𝑤10 + 0.01𝑤11 + 0.01𝑤12 + (754.5037 + 𝑠3− 754.5037)𝛽 ≤ 754.5037 + 𝑠3
3𝑤1 + 2𝑤2 + 4𝑤3 + 𝑤4 + 5𝑤5

+ 6𝑤6 + 7𝑤7 + 6𝑤8 + 2𝑤9

+ 5𝑤10 + 𝑤11 + 6𝑤12 − (113592.5− 103286.4− 𝑡1)𝛾 ≤ 103286.4 + 𝑡1
0.05𝑤1 + 0.03𝑤2 + 0𝑤3 + 0.04𝑤4 + 0.02𝑤5

+ 0.02𝑤6 + 0.02𝑤7 + 0.01𝑤8 + 0.06𝑤9

+ 0𝑤10 + 0.03𝑤11 + 0.03𝑤12 − (1153.719− 1025.735− 𝑡2)𝛾 ≤ 1025.735 + 𝑡2
0.02𝑤1 + 0.02𝑤2 + 0.08𝑤3 + 0.02𝑤4 + 0.01𝑤5

+ 0.02𝑤6 + 0.02𝑤7 + 0.04𝑤8 + 0.03𝑤9

+ 0.02𝑤10 + 0.01𝑤11 + 0.01𝑤12 − (783.9719− 754.5037− 𝑡3)𝛾 ≤ 754.5037 + 𝑡3
𝑤𝑖 ≥ 0, and integer, 𝑖 = 1, 2, . . . , 12
𝛼 ≥ 𝛽, 𝛼 ≥ 𝛾, 𝛼 + 𝛽 + 𝛾 ≤ 3
𝛼, 𝛽, 𝛾 ∈ (0, 1)

The above problem is solved using LINGO 16.0, on an Intel(R) core i5-4210U CPU @1.7 GHz and 8 GB of
RAM. The result is shown in Table 3.
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Table 3. Compromise solution results.

Decision variables Objective values

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6 𝑤7 𝑤8 𝑤9 𝑤10 𝑤11 𝑤12 Min 𝑍1 Min 𝑍2 Min 𝑍3

2940 13 500 3000 1900 3600 833 286 460 3837 2400 3000 1356 108 291 1088 968

9. Managerial benefits

Using Neutrosophic Programming (NP) in multi-level decision making for supplier selection problems with
fuzzy parameters can provide a number of managerial benefits, such as:

– Improved handling of uncertainty: Neutrosophic Programming enables the explicit representation of uncer-
tainty and indeterminacy in decision-making. When dealing with fuzzy parameters like cost, quality, and
delivery times, this can help managers make more informed decisions.

– Enhanced risk management: by incorporating various levels of uncertainty and indeterminacy, Neutrosphic
Programming can assist managers in a more effective risk management approach to supplier selection.
Managers are able to identify potential risks associated with each supplier and make more informed decisions
as a result.

– Better problem-solving: Neutrosophic Programming provides a structured approach to problem-solving that
can assist managers in analysing and resolving complex supplier selection problems involving fuzzy param-
eters.

– Increased efficiency: managers can spend less time and money choosing suppliers by using Neutrosophic
Programming to help them make more informed and effective decisions.

– Improved supplier performance: the performance of suppliers can be enhanced over time by using a more
structured and informed approach to selection, which will result in better quality, faster delivery, and lower
costs.

– Sensitivity analysis: managers can determine which factors have the biggest influence on the final solution
and make wise decisions by using the sensitivity analysis of Neutrosophic Programming in multi-level decision
making for supplier selection problems with fuzzy parameters. By taking into consideration the potential
trade-offs between various variables and objectives, this can assist managers in making decisions that are more
effective and efficient. Sensitivity analysis in Neutrosophic Programming involves analyzing the objective
function values as decision variables change. This can help determine which variables are most important
and which can be changed without affecting the solution.

10. Conclusions and future scopes of the study

The supplier selection problem is vital in overall project management in the present scenario. Herein, we
have considered uncertainties that can be involved in the parameters of the mathematical model for SSP. These
uncertainties are fuzzy in nature and match many real-life situations. A hierarchical model was developed for
SSP and was solved by NCPA to obtain the best compromise solution. The contributions of this paper are
summarized below:

– The parameters in the concerned problem are considered fuzzy, which may be the case in many real-life
situations.

– To the best of the author’s knowledge, neutrality/indeterminacy is an area that has hitherto not been well
explored for SSP.

– The NCPA can effectively and efficiently be applied to the developed multilevel SSP model.
– The present work can efficiently apply to advertizing, portfolio selection, and other problems.
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Finally, in supplier selection issues with fuzzy parameters, neurosophic programming offers a powerful tool
for multi-level decision making. The explicit representation and manipulation of uncertainty and indeterminacy
made possible by Neutrosophic Programming can aid managers in making more informed, effective, and efficient
supplier selection decisions. This could lead to better risk management, increased transparency, and increased
decision-making efficiency from suppliers. Managers can achieve their objectives and improve outcomes for their
organisations by using NP in supplier selection. There are still some gaps in the research that require filling in
at some point. The following are some of the research gaps that currently exist in this area:

– Lack of practical applications: although NP has been investigated on a theoretical level, there is a severe
shortage of practical applications and real-world case studies that demonstrate the usefulness of NP in
multi-level decision making for fuzzy-parameter supplier selection problems.

– Limited research in specific industries: NP has been applied to a variety of decision-making problems, but
research on its use in specific industries, such as the manufacturing and retail industries, is limited.

– Integration with other decision-making techniques: integration of NP with other decision-making techniques
is possible, but research on the combination of NP with other optimization methods and decision-making
techniques is limited.

– Comparison with other methods: NP has been compared to other decision-making techniques, but more
extensive comparisons with other optimization and decision-making techniques are required to demonstrate
its effectiveness and advantages.

Addressing these gaps can facilitate in expanding the practical applications of NP and enhancing its efficiency
in real-world decision-making scenarios.
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