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SUMMARY

The Epithelial-to-Mesenchymal Transition (EMT) is a hallmark of cancermetastasis
and morbidity. EMT is a non-binary process, and cells can be stably arrested en
route to EMT in an intermediate hybrid state associated with enhanced tumor
aggressiveness and worse patient outcomes. Understanding EMT progression
in detail will provide fundamental insights into themechanisms underlyingmetas-
tasis. Despite increasingly available single-cell RNA sequencing (scRNA-seq) data
that enable in-depth analyses of EMT at the single-cell resolution, current inferen-
tial approaches are limited to bulk microarray data. There is thus a great need for
computational frameworks to systematically infer and predict the timing and dis-
tribution of EMT-related states at single-cell resolution. Here, we develop a
computational framework for reliable inference and prediction of EMT-related
trajectories from scRNA-seq data. Our model can be utilized across a variety of
applications to predict the timing and distribution of EMT from single-cell
sequencing data.

INTRODUCTION

The Epithelial-Mesenchymal Transition (EMT) is a reversible dynamic cellular process involving the trans-

formation of membrane-bound epithelial cells to motile mesenchymal cells. Although EMT was initially

discovered in the setting of embryogenesis,1 its importance in wound healing and the migration of cells

to distant organs during metastasis is now appreciated and these topics have become active areas of

research.2,3

EMT is driven by biomechanical and biochemical signals that lead to the loss of apical-basal polarity and

cell-cell junctions. These structural disturbances in organization arise because of the down-regulation of

epithelial biomarkers and up-regulation of mesenchymal biomarkers.4,5 Multiple EMT-associated tran-

scription factors orchestrate EMT in an elaborate gene regulatory circuit.4,6,7 As a result, EMT is not only

affected by genetic alterations but is also driven by epigenetic and post-transcriptional modifications.8,9

Thus, this process and its phenotypic implications are imperfectly understood by studying whole genome

sequencing or allelotyping alone, particularly evident in studies attempting to identify mutant genes un-

derlying metastasis10

Studying EMT and its role in cancer progression is further complicated by the presence of non-cancer cells

in the Tumor Microenvironment (TME), such as cancer-associated fibroblasts11,12 and tumor-associated

macrophages,13 which interact with and are in close proximity to tumor cells, leading to difficulties in dis-

tinguishing tumor cells en route to EMT from the TME.14 Consequently, there is an ongoing debate on the

exact contributions of EMT in cancer metastasis15: Mesenchymal cells are known to escape from the adap-

tive immune system, actively present in the tumor stroma.16,17 On the other hand, epithelial cells can also

break away from the tumor and travel collectively as circulating tumor cells (CTC) such that their epithelial

marker expression patterns remain intact. Although some studies report cells going through partial EMT,

others report that the leaders at the edge of the clusters display promiscuous gene expression patterns

whereas the inner layers remain more uniform.18,19

EMT conceptualization has benefited significantly from the theoretical prediction of a hybrid intermediate

state whose properties fall on a spectrum between epithelial and mesenchymal phenotypes.20 This
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phenotypic spectrum permits fine-tuned adaptations to environmental cues through cellular plasticity that

can manifest as enhanced tumor aggressiveness in the clinic. Consequently, recent investigations have

focused on the partial EMT state and its subsequent transition as the main culprit behind metastasis.21,22

Moreover, it is now appreciated that this hybrid state is non-transient and reinforced by phenotypic stability

factors (PSF), such as GRHL2 and NFATc, which enhance tumor-initiation.23,24

TGFb is a critical EMT inducer, both in-vitro and in-vivo, that acts through transcriptional regulation result-

ing in the down-regulation of E-cadherin (E-cad) and further up-regulation of TGFb in a positive feedback

loop.7 TGFb EMT induction in-vitro is known to be reversible whereby TGFb withdrawal results in a reverse

MET. Notably, not all cells are responsive to the EMT-inducing signal resulting in considerable phenotypic

intra-tumoral heterogeneity and coexistence amongst multiple states25 (Figure 1B). This has been rein-

forced by experimental observations supporting the existence of phenotypic transitions amongst EMT

states and model-driven predictions of phenotypic heterogeneity generated by noisy cell division.26,27

Furthermore, the environmental cues that govern these cell state transitions are highly context-spe-

cific.28,29 This in turn highlights the importance of computational frameworks that interrogate context-spe-

cific EMT in the absence of cell-division.

Prior computational frameworks have successfully inferred epithelial, hybrid, andmesenchymal states from

transcriptomic data.30–33 However, these methods were all optimized to explain microarray data, and are

often ill-equipped to perform well on moremodern approaches. Thus, there is a significant need to identify

and predict context-specific EMT-related trajectories at transient and steady states from next-generation

sequencing data.

Here, we provide a dual theoretical and data-driven framework, COMET (Cell line-specific Optimization

Method of EMT Trajectories) for understanding the stochastic progression of EMT at stationary popula-

tions (Figure 1C). We track the dynamics of these systems, which are treated with an EMT-induction factor,

and show that COMET can successfully predict the timing and distribution of EMT states. Next, we accu-

rately infer the three epithelial, hybrid, and mesenchymal trajectories from single-cell RNA sequencing

(scRNA-seq) data using COMET. We show that COMET explains early and late transition dynamics of

context-specific EMT and relates the timing and equilibrium distribution to systemic noise through EMT

induction exposure time. In addition, we show that COMET reveals tumor subtype plays a more significant

role than induction factors with respect to the dynamics of time-course EMT data which can give us insights

into the patterns and extent of context-specific metastasis.

Model development

EMT population dynamics modeled with a three-state continuous-time Markov chain

We consider a non-dividing population ofN cells, each of which belonging to one of three states; Epithelial

(E), Hybrid (H), andMesenchymal (M). We denote by pkðtÞ the relative abundance of population k (k ˛ fE;H;
Mg). For each time-point t, we have:

pEðtÞ + pHðtÞ+pMðtÞ = 1: (Equation 1)

We model this process as a Continuous-Time Markov Chain (CTMC).34 Letting PðtÞ denote the probability

transition matrix of this Markov chain, this process evolves temporally via Equation 2:

PðtÞ = etG =
XN
j = 0

ðtGÞn
n!

; (Equation 2)

whereG is the infinitesimal generator matrix representing the rates of transitions between the states of the

system, given by Equation 3:

G =

0
@�mE mE 0

lE �ðlE + lMÞ lM
0 mM �mM

1
A: (Equation 3)

The rates mk (resp. lk ) represent the transition rates out of (resp. into) state k (k ˛ fE;Mg). It can be shown

that this system permits a unique equilibrium distribution, which is represented by pN = ½pE;N;pH;N;pM;N�
and satisfies

pNPðtÞ = pN;pNG = 0: (Equation 4)
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Figure 1. Stochastic Phenotypic Transition Model

(A) Illustration of the continuous-time three-state model and the four allowable transitions with their corresponding rates.

Phenotypic stability factors enhance the stability of the intermediate state, and their corresponding transition rates (m) are

assumed to be symmetric.

(B) Illustration of cell populations undergoing division-independent induced EMT, characterized by epithelial cells that

lose their cell-cell junctions and apical-basal polarity. On treatment withdrawal cells regain their epithelial characteristics

through MET. PSFs stabilize the hybrid state by making the transition rates into the hybrid state symmetric.

(C) Illustrates the flow of data through the dual data-driven and theoretic model of COMET. The data-driven pipeline on

the left is run for a specific number of top variable genes (from 10 to 100 in increments of 5). First, the raw read count matrix

is quality controlled and filtered for the top 10 variable genes. The matrix is MAGIC imputed and reduced in

dimensionality via UMAP. This is followed by K-means clustering, and every cluster is labeled through the KSmethod. The

inferred trajectories are then aligned to the trajectories of the flow cytometry data through DTW alignment, and this

process - enclosed within the lavender box - is repeated for a different number of variable genes in the filtration step from

10 to 100 in increments of 5. The trajectories with the minimum DTW distance are then fitted to the CTMCmodel, and the

interstate transition rates are captured through this process.
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The stationary distribution in this case can be solved using Equations. (3)-(4) and is given by

pN =

�
4E

1+4E+4M

1

1+4E+4M

4M

1+4E+4M

�
; (Equation 5)
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where 4ihli=mi:

Phenotypic stability factors augment transitions into the hybrid state

PSFs have been previously reported23,24 and act to stabilize the H phenotype. Here, we assume that

their effect on EMT symmetrically enhances transitions into the H state (mE = mM = m as shown in Fig-

ure 1A). In this case, we can explicitly derive the transition probability matrix, PðtÞ, through eigenvalue

decomposition of the generator matrix, G and Equation 2 (See supplemental information for detailed

solution). PðtÞ can be represented as a function of the stationary distribution and given by (Equation 6)

where k1 = � h1 = m, k2 = � h2 = lE þ lM þ m, k3 = k2 � k1 = lE þ lM:

P =

0
BBBBBB@

pN;E + e� k1t

�
1 � lE

k3

�
1 � pN;He

� k3t
��

pN;H

�
1 � e� k2t

�
pN;M � e� k1t

�
pN;M +

lM

k3
pN;H

�
pN;E

�
1 � e� k2t

�
pN;H + e� k2tð1 � pN;HÞ pN;M

�
1 � e� k2t

�
pN;E � e� k1t

�
pN;E +

lE

k3
pN;H

�
1 � e� k3t

��
pN;H

�
1 � e� k2t

�
pN;M + e� k1t

�
1 � lM

k3

�
1 � p

(Equation 6)

The temporal evolution described above can be extended by adding a spatial dimension. The dynamics of

transitions in this case can be tracked by assuming a 1-dimensional signaling factor (such as TGFb) inversely

influences the rates of transitions into the epithelial, and mesenchymal states (lE , and lM) through a

sigmoidal function. We show in the supplemental information that in this case the hybrid state is constant

in space (See Figure S1).

In addition, the environmentmay be subject to discrete temporal changes.We let the times associated with

each transition consist of an ordered set 0 = T0 <T1 </<Ti <.TM (TM denotes the terminal time), and

denote by DTjhTj � Tj� 1. We also denote by lE;i, lM;i , and mi the rates associated on the interval Ti %

ti %Ti+1. Then, for the stochastic matrix Pi corresponding to ti we have via the Chapman-Kolmogorov

Equation that,

PðtÞ =

 Yi
j = 1

Pj

�
DTj

�!
Piðt � TiÞ; for Ti % t%Ti+1 (Equation 7)

Our approach therefore can capably handle any description of temporal dynamics that may be divided into

finitely many time-homogeneous regimes.

Symmetric noise tunes the temporal evolution of EMT trajectories

Empirical evidence supports a relationship between longer exposure time to the EMT stimulating signal

and noisier gene expression patterns resulting from the stochasticity of the underlying biological mecha-

nisms (intrinsic noise).35 In addition, cells are subject to stochasticity in the stimulating signal resulting from

longer exposure to the inducing factor (extrinsic noise).36 We account for both sources of noise using a

noise parameter a that symmetrically scales the three transition rates such that l0i = ali;m
0 = am. The a

parameter influences the temporal evolution of the process without affecting the stationary distribution

given in Equation 5.

RESULTS

TGFb time-course flow cytometry data reveals early and late EMT dynamics

Our model was trained on tri-replicate flow cytometry data from Jia et al.37 Cells were treated with 5 ng/

mL of TGFb for a variable amount of time, after which treatment was withdrawn. This was repeated where

withdrawal occurred for 3 biological replicates starting from day 3 to day 27 in increments of 3 days. The

data was classified using a dual-color reporter system which tracked the expression of two well-estab-

lished EMT biomarkers, E-cad (RFP) and ZEB1 (GFP). Although there is current debate on the role of

ZEB1 in EMT induction for the MCF10A cell line,38 many studies have reported ZEB1 as a reliable

biomarker in this setting.39–42 Furthermore, we note that the general pattern of increase in the H and

M fractions following EMT induction with TGFb is in agreement with previous studies.43 Through this re-

porter system four cases of RFP+GFP- (E), RFP+GFP+ (H), RFP-GFP+ (M), and RFP-GFP- were identified.

To isolate the three EMT-related trajectories, we normalized the three EMT-related cell fractions by the

sum of E, H, and M cells.
4 iScience 26, 106964, July 21, 2023



Figure 2. Time-course Flow Cytometry Data

(A–C) The experimental fraction of cells in (A) E, (B) H, and (C) M phenotypic states in time. The original flow cytometry

data was normalized by omitting RFP-GFP- cells for each replicate.44 Data shows a transient increase in the fraction of cells

in the H state in the short-term that is followed by a transition into the M state long-term.
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In reconstructing the temporal evolution of the three replicates via the above processed signals, we noted a

pattern of short-term phenotypic stability followed by a long-term transition to a steady state under

continued EMT induction (Figure 2). More specifically, the temporal EMT distribution was characterized

by an initial predominance of the E fraction that declined and transiently transitioned into an H phenotype

as shown in Figures 2A and 2B. This H phenotype then slowly transitioned into anM phenotype resulting in

the stable co-existence of H and M cells (Figures 2B and 2C). Surprisingly, the H and M trajectories of the

data switched at day 18. However, in absence of any specific underlying biological reason, we considered

this switch as an empirical artifact and discarded it for any training purposes. Motivated by these findings,

we proceeded to fit a dual-regime CTMC to the time-course data.

After calculating themean of the trajectories over the three replicates, the first Markov chain was fitted from

day 0 to the day where the H trajectory peaked (day 3). The system evolved via a probability transition ma-

trix with parameters determined from an assumed hidden stationary distribution at day 3. We hypothesized

that on reaching that threshold the system switches to a different regime until relaxation to a steady state.

The second regime then began at day 3 and relaxed to steady state with the distribution at day 18 assumed

to be the stationary distribution. This regime was normalized in time relative to the first regime, which was

selected arbitrarily (we later discuss the approximation of steady-state using day 18 values).

Increases in the relaxation time to equilibrium distributions observed during the second regime were ac-

counted for by applying the noise parameter discussed above to optimally fit the theoretic trajectories to

empirical data in this regime (Figure 3A). Without loss of generality, we first set one of the transition rates

(lE ) to a and solved for the others by equating Equation 5 to the empirical stationary distribution. Optimi-

zation was performed using the fminsearch function in MATLAB to find the optimal a minimizing the total

squared error between the three theoretic and corresponding empirical trajectories45 (Figure 3B). For

further validation, we also applied a non-linear unconstrained optimization method, fminunc, that utilizes

gradient descent and confirmed agreement in optimal parameters (See Figure S2 in supplemental informa-

tion). Collectively, we find that our two-regime approach performs well at characterizing empirical pheno-

typic fractions.
COMET’s CTMC framework predicts enhanced transition rates en route to MET as a result of

longer TGFb exposure

The same procedure was repeated to minimize the Mean Squared Error (MSE) between the three theoretic

and corresponding empirical trajectories following TGFb treatment withdrawal. Here, we assumed that

phenotypic reversion would ultimately recapitulate the initial, pre-TGFb distributions. Using this approach,

we found that the a values correlate directly with TGFb treatment exposure (Figure 3C). In addition, we
iScience 26, 106964, July 21, 2023 5



Figure 3. Stochastic Modeling Framework Applied to Time-course EMT Data

(A) The two-regime Markov chain (dotted) fits the non-monotonic phenotypic composition of EMT induction observed

empirically (solid, averaged over 3 biological replicates).

(B) Numerical optimization is performed to fit the time-course data in part (A) by identifying the best-fit a.

(C) Experimental and theoretical phenotypic trajectories for EMT through time as a function of TGFb treatment induction

explained by increasing values of fitted a.

(D) This panel shows how stochastic Gillespie simulations generate distributions that are in large agreement with the

experimental results. Gillespie simulations were performed over sufficiently large number of iterations to ensure steady

state was reached (10000). The resulting values were then trimmed and normalized based on their inter-arrival times. The

smallest inter-arrival times belonged to the third case (treatment withdrawal at day 9). This panel shows only one run of the

simulations.
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simulated the randomarrival of the four possible transitions between the three states as shown in Figure 3D,

using Gillespie algorithm46 and found great consistency between simulations and theoretic fractions.

COMET infers the three EMT-related trajectories from scRNA-seq data

To evaluate our theoretical CTMCmodel on additional empirical data and to extend our framework into an

analytical tool, we developed a data-driven pipeline that enables inference of EMT-related trajectories

from scRNA-seq data. Time-dependent data of four cell lines (A549, DU145, MCF7, and OVCA420) treated

with three EMT induction factors (10 ng/mL of TGFb, 10 ng/mL of TNF, and 30 ng/mL EGF),47 and dose-

dependent steady state data of MCF10A cell line treated with various doses of TGFb48 were used to infer

the three EMT-related trajectories.

We applied initial quality control (which included filtering based on the number of expressed house-

keeping genes, total expressed genes, and mitochondrial percentage), followed by library size normaliza-

tion and data filtration using previously reported EMT-related genes.30 Next, we extracted the top 100

most variable genes using Seurat49 in R across each available combination of cell line and induction
6 iScience 26, 106964, July 21, 2023



Figure 4. Data-driven Pipeline Scoring of Time-dependent Data

(A) Shows the Circos plot for the top 100 highly variable genes. The plot demonstrates that highly variable EMT-

associated genes are shared among cell lines rather than across treatments. The length of the incoming arrows to every

subsection of the plot indicates the number of genes that are common between two cases. Each colored slice is related to

a specific induction factor (clockwise lighter to darker: TGFb, EGF, and TNF).

(B–D) Each panel slice represents the mean KS score over 10 runs of the algorithm when using 10 to 100 highly variable

genes (increasing clockwise in increments of 5). As shown in the plots, the mean KS scores appear to follow the same

pattern across cell lines and do not depend on the EMT induction factors.
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factor.47 We found that the top variable genes were largely shared among cell lines rather than EMT induc-

tion factors (Figure 4A).

We then filtered the data further by identifying the 10 most highly variable genes, followed by imputation

via MAGIC.50 This was followed by dimensionality reduction via UMAP51 and K-means clustering (The

UMAP plots for one run of the algorithm - with data filtered for the optimal number of EMT genes - for

the four cell lines is shown in Figures S3–S6 in supplemental information). We then labeled the three clus-

ters using a previously developed EMT metric, the Kolmogorov-Smirnov (KS) based method.31 KS scoring

was performed on every cell based on their MAGIC imputed genetic profile with respect to the top 100

variable genes included (The top 100 variable EMT genes for every cell line and induction factor is reported

in Table S1). This decision was made to ensure enough genes exist for KS scoring. Lastly, to associate the

three clusters with E, H, and M phenotypes, we took the average of the KS scores for every cluster and

sorted the clusters such that low, intermediate, and high KS scores corresponded with E, H, and M states,

respectively.

From the fraction of cells in every cluster we inferred the three EMT-related trajectories and repeated the

same procedure as before, this time varying the number of included variable genes starting from the top 15

to the top 100 in increments of 5. Owing to the stochasticity of our algorithm, we repeated this procedure

10 times for each cutoff and found the mean KS scores (Figures 4B–4D).

Consistent with the original study and other investigations of this data,47,52 the pattern of the mean KS

scores was found to be highly dependent on the cell line than EMT induction factor (See Tables S2–S4 for

TGFb, EGF, and TNF cases respectively.). This finding, in light of the conservation of variable genes within
iScience 26, 106964, July 21, 2023 7



Figure 5. COMET Predicts the Timing and Distribution of Context-specific EMT

Figures (A), (B), (C), and (D) are time-dependent data of four cell lines treated with 10 ng/mL of TGFb for seven days which underwent MET following

treatment withdrawal for three days. Figures (E) and (F) represent the steady state information of the MCF10A cell line treated with various doses of TGFb.

(A) Shows the UMAP plots for the four cell lines treated with TGFb. Archetypal analysis with two archetypes54 was performed on data and is shown in the

figure. The figures demonstrate a clear transition from the E archetype to the M archetype for the three cases of A549, DU145, and OVCA420.

(B) This panel shows the inferred time-course trajectories with confidence intervals for 10 runs of the algorithm. The blue region depicts the duration of

treatment.

(C) Heatmaps show the DTW distances resulting from the DTW alignment of the three EMT trajectories inferred using the pipeline and flow cytometry data.

The lowest total DTW distance was used to choose the cutoff of highly variable genes which resulted in the time-course trajectories in the panel above.

(D) The stochastic model was fitted to the mean trajectories of the 10 runs for the optimal cutoff.

(E) The UMAP plot shows a transition from the E to M phenotypes as a function of treatment dose (gene cutoff 45).

(F) Plot illustrates the inferred trajectories from the data-driven pipeline for the dose-dependent data. The specific transition rates for each case are reported

in Figure S23.
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cell lines experiencing distinct induction treatment, further substantiates our prior finding that phenotypic

transitions are dominated largely by the particular cell line, and not the particular induction factor, involved

in undergoing an EMT.Our approach predicts that A549 andDU145 cell lines exhibit highermean KS scores

(A549-TGFb: 0.501,DU145-TGFb: 0.559, A549-EGF: 0.059,DU145-EGF: 0.596, A549-TNF: 0.405, andDU145-

TNF: 0.648) compared toOVCA420 andMCF7 (OVCA420-TGFb: � 0:110,MCF7-TGFb: � 0:276,OVCA420-

EGF: � 0:074, MCF7-EGF: � 0:340, OVCA420-TNF: � 0:374, and MCF7-TNF: � 0:259) over a majority of

cutoffs (Figures 4B–4D), which is consistent with previously reported findings ofMCF730 andOVCA42053 ex-

hibiting E characteristics. Moreover, prior work identified a higher percentage of hybrid cells for DU145 and

coexistence of E, H, andM fractions for A549,30 which can also be appreciated by constructing our inferred

trajectories for day 0 (Figure 5B). Intriguingly, this suggests that our approach reliably quantifies EMTpheno-

typic composition at the single-cell resolution from next generation sequencing data.

Next, to account for the variability in different runs of the algorithm, we calculated confidence intervals for

every trajectory (See Figures S7–S18 in supplemental information for inferred trajectories with confidence

intervals. Figures 5A, and 5B show the UMAP and inferred trajectories with confidence intervals for the

optimal cutoffs of highly variable EMT genes respectively). Occasionally, we observed that the inclusion

of 5 additional genes drastically changes the EMT trajectories (Figures S7–S18). This is likely because of
8 iScience 26, 106964, July 21, 2023
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an abrupt change in the number of resolvable H states based on the genes included which could not be

detected by our three-state model. Our pipeline inferred ambiguous and highly variable trajectories for

the majority of the EGF and TNF cohort (all inferred trajectories for these cases are reported in

Figures S11–S18). We note that from the phase contrast images reported by Cook and Vanderhyden,47

it is indeed unclear whether cells went through EMT in these cases. As a result, we proceeded with our sub-

sequent analysis performed on TGFb-treated cell lines only.

We hypothesized that EMT in this additional dataset would temporally evolve in a similar fashion as the flow

cytometry data of Jia et al.37 and could thus be explained by our framework. Toward this end, we optimized

the number of EMT-related genes that result in mean trajectories most similar to those of the originally

considered flow cytometry data by utilizing Dynamic Time Warping (DTW) alignment. DTW alignment op-

timizes the alignment of time-course trajectories by tweaking the time axis recursively.55 As a result, the

DTW distance can be used to measure similarities in dynamics of transitions by ignoring the context-spe-

cific timing of events.

We performed DTW alignment of the scRNA-seq trajectories with the corresponding trajectories of the

mean signal of the flow cytometry data. The resulting heatmap which illustrates the DTW distances for

every cutoff of highly variable genes is shown in Figure 5C. The cutoff with the lowest sum of DTWdistances

of the three trajectories from the flow cytometry data was considered for fitting the stochastic model to

time-dependent data. Although for the optimal cases we observed cells to be on a spectrum from epithe-

lial to mesenchymal phenotypes on the UMAP plot (Figures S3–S6), we noticed that the measured EMT

spectrum visualized by UMAP plots became less discernible as we increased or decreased the number

of included highly variable genes (Figures S3–S6). To quantify this phenomenon, we fit aminimum spanning

tree (MST) to the UMAP plot tomeasure the pairwise distances between cells in Figure S19 and showed that

the maximum edge of the tree is minimized in the neighborhood of the optimal cutoff of variable gene (the

minima fall between a cutoff of 40–55 for all TGFb cases; Figure S19 in supplemental information).

We next proceeded to test our results on an independent dataset featuring dose-dependent EMT induc-

tion.48 Because the optimal cutoff of highly variable genes fell uniformly between 40 and 55, we considered

a cutoff of the top 45 highly variable genes for this analysis (Figure 5E depicts the dimension reduction plot

for the dose-dependent data where cells treated with low doses of TGFb at steady state move from one

cluster in the neighborhood of an E archetype to an M phenotype as the dose of treatment increases).

The resulting optimal trajectories for the time-dependent and dose-dependent data with confidence

intervals are shown in Figures 5B and 5F respectively. Although our 45-gene approach exhibited some

differences between the predicted and simulated phenotypic fractions as a function of dose reported by

previous studies, our overall trends were in general agreement56 (Figure 5F). From the steady state frac-

tions obtained from the dose-dependent data, it is evident that the distribution of fractions for the flow cy-

tometry data at day 18 resembles the equilibrium state fractions closely (roughly 113.6 pM, see supple-

mental information for dimensionality analysis).
COMET CTMC predicts time dynamics of context-specific EMT

To further evaluate the dynamical effects of various induction factors on a cell-line-specific basis, we next

fitted COMET’s CTMC model to time-dependent data of each of the four cell lines treated with TGFb. We

then fitted Markov chains from day 0 to the day where the H state peaked with the timescale normalized

based on the flow cytometry data. Given our prior analysis on empirical time-course proportions, we per-

formed this normalization assuming that TGFb induction, with a different dose on a distinct cell line, would

follow similar dynamics en route to EMT. However, the stationary distribution of both regimes was deter-

mined based on the time-dependent data because of the discrepancies in cell line type and dose of TGFb

as well as lack of available steady state information. For one of the cell lines, A549, the H state was maxi-

mized at day 0 thus we only fitted a single Markov chain to the data, assuming this case starts within the

second regime. This assumption is supported by the fact that CEACAM6, an inducer of EMT,57 is the

most variably expressed gene at day 0 for A549 across all treatment cases (Figures S20–S22 in supple-

mental information). For all cases, the second regime of the Markov chain was fitted from the day when

the hybrid state peaked to the day of treatment withdrawal (day 7).

Next, we proceeded to apply the noise parameter, a, to explain changes in the temporal evolution of the

Markov chain. We then fitted a separateMarkov chain following treatment withdrawal from day 7 to the end
iScience 26, 106964, July 21, 2023 9



Figure 6. Time-dependent and Dose-dependent Data Cell Cycle Scoring

(A–C) Illustrate the cell cycle scores for every cell line of the time-dependent data. Similar to the KS scores, cell cycle

scores appear to be more cell line dependent than induction factor specific.

(D) Shows the cell cycle fractions for the dose-dependent data. Cell cycle fractions at steady state are reported as a

function of TGFb dose. Cell cycle information starts with a high percentage of cells in the G2M phase which declines,

followed by a transient increase in the G1 phase and an increase in S phase long-term.
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of the experiment (day 10) assuming the trajectories revert back to the initial distribution at day 0. Similarly,

the optimal fit was obtained using the a parameter. The final results are shown in Figure 5D. Because our

optimization depends on the MSE of three trajectories, occasionally an optimized theoretic curve only fits

one trajectory well while poorly fitting the other two (A549 of Figure 5D). In these cases, a similar MSE can

be obtained through a larger or smaller a parameter that optimally fits the other two trajectories. Overall,

we observed reasonable consistency in our inferred trajectories and the CTMC theoretic trajectories (See

Figure S23 in supplemental information for the exact inter-state transition rates for the second regime and

following treatment withdrawal for the TGFb cases).
Cell cycle scoring of the time-dependent data reveals cell line-dependent cell cycle fractions

To further evaluate the utility of COMET, we next interrogated the growth rates of cells by extracting cell

cycle fractions through Seurat normalization and performing cell cycle scoring.49 Consistent with previous

reports,58 we found cell cycle stages to be similar across different cell lines for the time-dependent data as

shown in Figures 6A–6C.

We assessed the trends in G1 phase of cell cycle stages of time-dependent data during TGFb treatment

using Kendall Tau statistic59 and found that in general the G1 stage positively trends for TGFb treated cells

during treatment (day 0–7) as shown in Figure 6A, consistent with previous reports.60 However, this trend

was stronger for the two cell lines with lower mean KS scores (MCF7: 0.6, and OVCA420: 0.8) than DU145

and A549 (DU145: � 0:2, and A549: 0.4) (Figure 6A). This is consistent with previous reports of normal

epithelial cells arresting at G1 phase following TGFb EMT induction whereas those with high cell prolifer-

ation fail at cell-cycle arrest resulting from genomic instabilities and mitotic defects.61

We also discovered a higher proportion of cells in S and G2M phases that happened to coincide with the

two cell lines having higher KS scores (DU145, and A549) as they progressed through EMT. Furthermore, we
10 iScience 26, 106964, July 21, 2023
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found the fraction of cells in G1 phase to be relatively high for the MCF7 cell line compared to the other cell

lines at baseline day. Surprisingly, in cell cycle scoring the dose-dependent data we observed the fraction

of cells in the S phase increasing as a function of TGFb dose (Figure 6D). Consistent with studies reporting

an increase in the fraction of cells in S phase as a result of a decrease in p21 expression while cells go

through EMT,62 COMET predicted an increase in the fraction ofM cells as a function of dose for the optimal

cutoff (Figure 5F). However, as reported in Figure S24 in supplemental information, for a cutoff of 100 highly

variable genes COMET predicted a higher percentage of cells in the hybrid state for the dose-depen-

dent data.
GSEA resolves enrichment in cancer-specific hallmarks for each of the EMT-related

phenotypes across distinct cell lines

Lastly, to further test the ability of COMET to accurately infer the three EMT states from time-dependent

scRNA-seq data, we performed Gene Set Enrichment Analysis (GSEA)63 on every run of the pipeline for the

optimal number of highly variable genes. We start our analysis with the TGFb signaling pathway because

we assume cells would be up-regulated for the TGFb signaling pathway when undergoing EMT and down-

regulated following treatment withdrawal with the intensity of these patterns dependent on the rate and

fraction of cells undergoing each process.

For instance, as shown in Figure 5D, a large fraction of E cells in the A549 sample appear to have undergone

EMT before TGFb treatment, appearing stationary post-treatment. This would suggest that the E cluster

may be significantly enriched for TGFb signaling, which we in fact confirm (Figure 7C). Similarly, the dy-

namics of the M proportion appear to indicate a rapid decline following treatment withdrawal and indeed

we find that the TGFb signaling pathway is depleted in this case. Lastly, theH trajectory of the A549 cell line

appears to have amixed response where TGFbwithdrawal results inmore noticeable effects than induction.

A similar pattern is observed for DU145. In this case, the majority of the E cells reside in the pre-treatment

regime thus significant up-regulation of the TGFb signaling pathway occurs for the E cluster. Although the

M fraction almost reverts back to its initial fraction at a shorter period. Thus, TGFb signaling pathway is

down-regulated for the M trajectory. On the other hand, the H fraction is almost stabilized across time

and because the other cells are transitioning into theH state, a larger fraction of hybrid cells is up-regulated

for TGFb pre-treatment.

In contrast, for the MCF7 case, the three trajectories appear to stably coexist and thus we do not observe

either up-regulation or down-regulation for any of the clusters. As mentioned previously, we are unsure

whether this cell line underwent EMT in the original data.47 Lastly, for the OVCA420 cell line almost all of

the three trajectories revert back to their initial fraction and the pattern of EMT progression andMET is fairly

symmetric. TheGSEA analysis faithfully captures this observation, with enrichment scores approaching zero

with small deviance for the E and H trajectories (as they do not fully revert back to the initial day fractions).

We then analyzed the EMT hallmark cases and noted their similarity to the TGFb signaling pathway en-

richment scores. However, issues arise during GSEA analysis of EMT-related clusters because of the

concomitant existence of both E and M biomarkers in the gene set. As a result, net zero enrichment may

be reported when, for example, the up-regulation of Emarkers happens concurrently with the down-regu-

lation of M markers (Figure 7A).

We observed a transition from up-regulation to down-regulation from E to M clusters for the P53 pathway

gene set across all cell lines (Figure 7D). This collective pattern is consistent with previous reports that high-

light the role of the P53 pathway in regulating EMT by binding to the miR-200c promoter.64 Surprisingly,

this contrasted with our observation of different patterns of up-regulation or down-regulation of the angio-

genesis hallmarks across different cell lines. Although angiogenesis followed the same pattern of the EMT

gene set in the case of A549 (Figures 7A and 7B), it followed the exact opposite pattern for DU145 (Fig-

ure 7B). Although the tumor stroma is known to influence patterns of vascularization for different tumor

types, our results suggest tumor sub-type-specific patterns of angiogenesis in the absence of tumor stroma

and under the influence of the same signaling factor.65

From the gene set enrichment analysis of cell lines for the notch signaling pathway, we observed a pattern

of up-regulation to down-regulation only for the OVCA420 case. For DU145 andMCF7, we did not observe
iScience 26, 106964, July 21, 2023 11



Figure 7. GSEA Plots of Relevant Hallmarks for Each Phenotypic State

GSEA plots are overlapped for 10 runs of the algorithm. The baseline separates the up-regulated and down-regulated

genes. Every one-third of the circular plot bound by dashed lines represents one phenotypic state (Lines falling inside the

baseline circle demonstrate an abundance of down-regulated hallmark genes and lines falling outside the circle show an

abundance of up-regulated hallmark genes).

(A–E) Shows cluster-specific GSEA plot for the EMT hallmarks, it is evident from the plot that the EMT hallmark gene set is

more variable across states for DU145 and A549. An overall up-regulation trend for the EMT gene set transitions to a

down-regulation trend for the mesenchymal state. GSEA plots for the three phenotypic states are given for

(B) angiogenesis, (C) TGFb signaling, (D) P53 pathway, and (E) notch signaling.
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significant up-regulation or down-regulation of the notch signaling pathway. However, for A549 we

observed a slight up-regulation of the notch signaling pathway. This result is inconsistent with previous re-

ports of TGFb directly resulting in the up-regulation of notch ligand after EMT induction. However, the cell

lines used in this study are different and from Figure 7E, our results suggest tumor type dependent pattern

for notch signaling activation.66

As shown in Figures 7A–7D, the patterns of GSEA up-regulation or down-regulation are more pronounced

across the four gene sets of EMT, angiogenesis, TGFb signaling, and P53 pathway in the cell lines with

higher KS scores (A549, and DU145) versus those with lower KS scores (OVCA420, and MCF7).

Furthermore, we note a similar pattern of GSEA enrichment for clusters across several different hallmarks

for the same cell line. We evaluated the similarities between gene sets via pairwise Jaccard distance and

the number of shared genes across gene sets fell below 10%. This result suggests extensive cross talks be-

tween these processes and the existence of gene regulatory networks controlling the concurrent up-regu-

lation or down-regulation of gene sets across cell lines. Collectively, enrichment analysis further validates

COMET’s characterization of scRNA-seq signatures of each of the three relevant phenotypes, and can be

more generally used to investigate pathways that are actively involved in maintaining each state.
DISCUSSION

Despite the vast body of EMT-related studies, our understanding of EMT and its specific role in metastasis

is far from complete. Owing to the multifaceted role of transcriptional regulation in driving EMT,67 interro-

gating metastasis at the genetic level has often yielded in inaccurate findings,10 and there is a larger need

for tools to infer the dynamics of EMT at the phenotypic level.
12 iScience 26, 106964, July 21, 2023
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Here, we presented an analytic tool, COMET, for reliably inferring and predicting EMT trajectories from

scRNA-seq data. We applied COMET to time-course data of cell lines treated with TGFb, and showed

that our method was able to recapitulate the findings of previous reports at the single-cell level.30 Reliable

identification of EMT-related phenotypic fractions from increasingly available scRNA-seq data will enable

us to better understand EMT and its pattern of progression in cancer.

Although there are at present three well-established EMT metrics that are widely used,30–32 each are

trained on microarray data with one metric inferring the three E, H, and M phenotypes using only CDH1,

VIM, and CLDN7.30 As a result, applying these methods to scRNA-seq data presents unique challenges.

Unlike microarray data, the normalization of scRNA-seq data requires a different approach, and many of

the housekeeping genes relied on for normalization in previous studies are filtered out. Furthermore, dur-

ing our analysis we found that several known EMT biomarkers, such as CDH1, VIM, and CLDN7, were not

among the most variable genes in the data we analyzed. To better elucidate the difficulties of applying

these metrics to scRNA-seq data, we added CDH1, VIM, and CLDN7 to the list of EMT genes post-filtration

and re-ran the pipeline. We associated the expression values of these three biomarkers with the clustering

results from a previous run of the pipeline, in which they were excluded from the list of EMT genes. As

demonstrated in Figure S25 in supplemental information, although the three clusters appear to be well-

separated, it is nearly impossible to resolve the data based on the expression of these three biomarkers

alone. Moreover, applying the KS method to microarray data also presents its own obstacles. The thresh-

olds imposed on KS scores for the identification of phenotypes often fail because of the differences in the

normalization and data processing steps of scRNA-seq data. Therefore, to infer EMT-related states from

time course scRNA-seq data, COMET utilizes a hybrid cluster-based KS scoring pipeline.

On reliable identification of EMT related phenotypes, COMET feeds the inferred states to a continuous-

time Markov chain for the characterization of EMT dynamics in a stationary population of cells. Markov

chains have been widely used to model phenotypic transitions in plastic populations.68,69 Previous models

have employed both discrete-time and continuous-timeMarkov chains to describe transitions in heteroge-

neous populations, with successful applications in various biological phenomena.70–72 Our model assumed

no influence from cell division or genetics, which may contribute to tumor heterogeneity, but we also

expect that their effects are negligible within the short time frame of the in-vitro experiments considered

here.

Using COMET, we showed that our inferred trajectories collectively followed a pattern of a short-term

monotonic increase in the H state followed by a transition to theM phenotype leading to the stable coex-

istence of the two phenotypes. This pattern was exceptionally not observed for the MCF7 data among the

TGFb-treated cohort. We note that based on the phase contrast images of the MCF7 cell line reported by

Cook and Vanderhyden,47 cells do not display fully epithelial characteristics at day 0 and their progression

through EMT is subsequently unclear. As a result, this heterogeneity may confound the ability of our pipe-

line to resolve the EMT trajectories where the gene expression signature does not undergo phenotypic

transitions.73 However, this observation was constricted to the time length of the study. We note that for

the scRNA-seq data, cell lines were only treated with the EMT induction factor for 7 days and as the original

paper states it is unclear whether cells reached steady state distribution at day 7.47

Adding to this complexity is the fact that we observed a switch between the H andM trajectories at day 18

from the flow cytometry data of Jia et al.37 which was acquired over a longer period of 30 days. Although we

discarded data from days 18 � 30, assuming the switch is an empirical artifact, this temporal in-homoge-

neity can be theoretically modeled via a separate CTMC regime. However, the lack of available gene

expression data for this period limited our ability to investigate the underlying reasons behind this empir-

ical switch through other concurrent processes such as cell cycle scoring or GSEA. Furthermore, this pattern

of a switch between H andM phenotypes was not consistent with our dose-dependent steady-state distri-

butions obtained from the data of Panchy et al.48 Nonetheless, our analytic tool, COMET, provides re-

searchers with the ability of reliably investigating this switch further on longer time-course scRNA-seq

data in the future.

Our approach, although useful for robustly characterizing EMT at the single-cell level, is not without limi-

tation. Phenotypically heterogeneous cells can exhibit gene expression profiles that cooperate or interfere

with overall signal detection,74 and this is further compounded by noisy cellular division.26 Although we
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have assumed in our analysis that populations under study were non-dividing, cell cycle scoring suggested

the variable presence of division signatures across available experimental contexts as shown in Figure 6.

However, despite this simplifying assumption, COMET performed exceptionally well in cases of even

higher proliferating cell lines such as DU145 which has an abundance of cells in S phase (See Figure 6A).

This result may suggest that the dominating contribution to EMT heterogeneity in the datasets considered

here are driven by stochastic transitions rather than by cell-division.

Furthermore, there is a lack of consensus in the literature on the number of H phenotypes75 with their esti-

mation possibly dependent on the number of biomarkers considered for EMT classification. Additional

studies have also suggested that EMT is a non-Markovian process because of the existence of several mi-

crostates within macrostates.76 In our model, we specifically optimized the number of EMT biomarkers

based on their ability to resolve the data into three states depending on their sample-specific gene expres-

sion variation. Using a rigorous validation procedure, we showed that the number of highly variable genes,

selected as representative of EMT and commonly chosen arbitrarily in computational studies, can drasti-

cally change the results of the analysis. Although our general findings on multiple independent time-

and dose-dependent datasets47,48 were consistent with previous reports, because of the lack of predefined

sample-specific E, H, and M fractions from scRNA-seq data, subsequent analysis on additional EMT-spe-

cific datasets will further test COMET’s predictive accuracy. Our modeling approach, given sufficient avail-

ability of additional detailed data, could be used in an identical manner to account for and study multiple

intermediate phenotypes in EMT.

Using COMET, our data-driven pipeline captured the phenotypic spectrum observed following dimension

reduction of EMT-related genes and found through archetypal analysis with two archetypes (E and M) that

the H state with an intermediate KS score is always spatially intermediary to E and M. This observation is in

broad agreement with the recent specialist-generalist frameworks devised for the EMT process whereby

the E and M populations are predicted to be optimized for one task at hand, whereas the H population

confers fitness advantages owing to better collective performance at multiple tasks.77

In addition, previous models included the possibility of directly transitioning from an epithelial state into a

mesenchymal state during EMT,78 andmanymore report that cells transition into an epithelial state without

ever visiting the intermediate state during MET.79,80 In our approach, we decided to assume all transitions

proceed through an intermediate state as cells are shown to retrace the EMT footsteps through a contin-

uum of positions in the space of EMT-related genes while going through MET. However, we note that this

reverse transition happens much faster than EMT, thus it may bemore difficult to observe this phenomenon

empirically.

One of themain assumptions of our model was the symmetric effects of PSFs on the transition rates into the

H state. This is supported to an extent by the symmetric trajectories and consistency between predicted

theoretic and inferred trajectories in Figure 5D. However, some evidence has suggested that the stronger

presence of PSFs delays the transition into the H state in addition to the longer mean residence time within

theH state.24 We demonstrate through Gillespie simulation in Figure S26 that the short-term stability of the

EMT-related trajectories can be explained by relaxing this assumption and the entire process can be

modeled via a single CTMC (See supplemental information for full solution). However, we emphasize

that a single-regime model as an alternative approach would introduce another free parameter, which

would require further investigation. We also note that to gain a deeper understanding of the extent of

regime changes during early versus late EMT induction, it is important to examine the constitutive relation-

ship between the transitions and the time homogeneity of the Markov chain. This topic warrants further

exploration in future work, and empirical analyses will be necessary to support or refute any hypotheses.

Our analysis showed concurrent up-regulation and down-regulation of the angiogenesis, TGFb signaling,

and P53 pathway hallmarks consistent with the EMT hallmark. The low number of common genes between

these sets suggests the possible existence of a strong gene regulatory network controlling these pro-

cesses. Future work inferring the gene regulatory networks governing context-specific EMT would provide

additional insights into the underlying mechanisms that govern the phenotypic transition rates.

Lastly, to further extend our framework to in-vivo data at the tumor setting, we need to account for the

difficulties of distinguishing stem-like cells from the elements of the TME and detecting them in circulation
14 iScience 26, 106964, July 21, 2023
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in-vivo.15 Adding to this complexity is the fact that cells can also break away from the primary tumor and

travel collectively as CTCs while retaining their epithelial characteristics. This phenomenon, also known

as the Unjamming Transition (UJT), may happen separately from EMT and contribute to metastasis.81 As

a result, although our simplistic model could infer and predict EMT trajectories at the single-cell resolution,

future work needs to consider the complex interactions of tumor cells with the TME to reliably understand

the progression of EMT in vivo.

In conclusion, we introduced COMET, an EMT trajectory inferential and predictive analytic tool. Utilizing

COMET, we further resolve the context-specific nature of EMT and argue that the observed pattern of pro-

gression is highly dependent on the tumor subtype. Here, we specifically applied COMET to EMT data.

However, we anticipate that our general framework is widely applicable for studying phenotypic transitions

in other biological processes with intermediate phenotypes.

Limitations of the study

Here, we presented a dual data-driven theoretical framework to infer EMT-related trajectories and predict

the timing and distribution of consequent phenotypic intra-tumoral heterogeneity from scRNA-seq data.

We confirmed the validity of our results through cell cycle scoring and gene set enrichment analysis. How-

ever, we note that our pipeline was only applied on cell line data and as mentioned in the manuscript, there

is a large debate on the role of EMT in cancer metastasis and future investigation is required to assess the

applicability of our method more thoroughly on tumor data in the presence of stroma.
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Group/Stochastic_EMT_2023.
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METHOD DETAILS

Model development

We consider a population of fixed size consisting of N total cells divided into 3 sub-populations Epithelial

(E), Hybrid (H), and Mesenchymal (M), where H is intermediary to E and M states. The dynamics of these

transitions will be modeled as a continuous-time Markov process, so that the inter-arrival times for each

event are exponentially distributed. Transition rates to (resp. from) the ith state to the next step will be de-

noted as li (resp. mi ) for i˛ fE;Mg. In general, these transition rates are governed by the cellular environ-

ment and as such may vary due to the result of a particular signaling effect w, which we assume fixed for

a given cell type, as well as the effects of cell spatial location of the EMT phenotype, so that li = liðx;y;
z;wÞ, mi = miðx;y;z;wÞ. In the results to follow we consider a time inhomogeneous process, which assumes

that dynamics are described at some environmental state that is fixed in time. Toward this end, we let the

state space consist of the ordered set E;H;M, E <H<M. Let XðtÞ be the random variable denoting the

particular state of the population at time t. Let PðtÞ denote the transition matrix of the process and let

pðtÞ denote the row vector detailing the distribution of states at time t. We may express the evolution of

this process via the generator matrix G so that

PðtÞ = etG =
XN
j = 0

ðtGÞn
n!

; (Equation 8)
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where the infinitesimal generator matrix, G, is given by

G =

0
@�mE mE 0

lE �ðlE + lMÞ lM
0 mM �mM

1
A: (Equation 9)

The Kolmogorov forward equation for this process is

dP

dt
= PðtÞG: (Equation 10)

Which can be written as:

p0
ijðtÞ =

X
k˛ S

pikðtÞgkj (Equation 11)

for all i,j ˛ S

Let p = ðpE ;pH;pMÞ denote the stationary distribution of the process corresponding to

pPðtÞ = p;pG = 0: (Equation 12)

Together with the probability constraint, Equation. (12), we can solve the following system of

equations

�mEpE + lEpH = 0; lMpH � mMpM = 0;pE +pH +pM = 1: (Equation 13)

This system admits a unique solution for the stationary distribution, given by

p = ðpE pH pM Þ =

�
4E

1+4E+4M

1

1+4E+4M

4M

1+4E+4M

�
;where4ihli

�
mi: (Equation 14)

The eigenvalues of the transition probability matrix can be found by solving the characteristic equation

(Equation 15):

detðG � hIÞ = 0: (Equation 15)

By definition, h0 = 0 is one root that corresponds to v0 = ð 1 1 1 ÞT . The remaining are found to be:

h1;2 =
1

2

�
� ðlE + lM + mE + mMÞG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlE+lM+mE � mMÞ2 � 4lMðmE � mMÞ

q �
: (Equation 16)

From Equation 16, it is clear that h1; h2 < 0, and each can be used to solve for a corresponding

eigenvector.

Considering that PSFs stabilize the hybrid phenotype in a symmetric fashion, thenwemay takemE = mMh m. In

this case, the generator becomes

G =

0
@�m m 0

lE �ðlE + lMÞ lM
0 m �m

1
A (Equation 17)

and Equation 16 simplifies considerably to

h1;2 =
1

2

�
� ðlE + lM + 2mÞG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlE+lMÞ2

q �
; (Equation 18)

giving

h1 = � m;h2 = � ðlE + lM + mÞ: (Equation 19)
h1;2 =
1

2

�
� ðlE + lM + 2mÞG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlE+lMÞ2

q �
; (Equation 20)

The corresponding eigenvectors solve0
@ 0 m 0

lE �ðlE + lM � mÞ lM
0 m 0

1
Av1 = 0;

0
@ lE + lM m 0

lE m lM
0 m lE + lM

1
Av2 = 0: (Equation 21)
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Thus, we may take the diagonalization matrix, Q = ð v0 v1 v2 Þ, as

Q =

0
@ 1 lM �m

1 0 lE + lM
1 � lE �m

1
A (Equation 22)

Note that nhdet Q may be calculated by expansion along the first row of Q:

n = = 1





 0 lE + lM
� lE �m





 � lM





 1 lE + lM
1 �m





+ ð � mÞ




 1 0
1 � lE





 (Equation 23)
= ðlE + lMÞðlE + lM + mÞ> 0: (Equation 24)

Q is therefore invertible. Its inverse may be calculated as

Q� 1 =
1

n

0
@ lEðlE + lMÞ mðlE + lMÞ lMðlE + lMÞ

lE + lM +m 0 �ðlE + lM +mÞ
� lE ðlE + lMÞ �lM

1
A: (Equation 25)

Q and Q� 1 can be used to diagonalize the infinitesimal generator via:

G = QLQ� 1; (Equation 26)

where

L =

0
@0 0 0

0 �m 0
0 0 �ðlE + lM +mÞ

1
A: (Equation 27)

Clearly,

Gn = QLnQ� 1: (Equation 28)

Therefore, we have

PðtÞ =
XN
j = 0

tn

n!
QLnQ� 1 = QetLQ� 1: (Equation 29)

Considering

k1 = � h1 = m (Equation 30)
k2 = � h2 = lE + lM +m
k3 = k2 � k1 = lE + lM;

Now if we evaluate Equation. (29), and express the result in terms of the stationary distribution from Equa-

tion. (14), we may express the exact distribution by

P =

0
BBBBBBBBBBB@

pE + e� k1t

�
1 � lE

k3

�
1 � pHe

� k3t
��

pH

�
1 � e� k2t

�
pM � e� k1t

�
pM +

lM

k3
pH

�
1 � e� k3t

��

pE

�
1 � e� k2t

�
pH + e� k2tð1 � pHÞ pM

�
1 � e� k2t

�

pE � e� k1t

�
pE +

lE

k3
pH

�
1 � e� k3t

��
pH

�
1 � e� k2t

�
pM + e� k1 t

�
1 � lM

k3

�
1 � pHe

� k3t
��
:

1
CCCCCCCCCCCA

(Equation 31)

12.2. Flow cytometry data

The flow cytometry data was acquired through a Z-Cad dual sensor which was inserted into an MCF10A cell

line.37 This sensor consisted of two components; a green fluorescent protein (GFP) reporter and a red fluo-

rescent protein (RFP) reporter. While the former was regulated by ZEB, the latter was regulated through

E-cad. Throughout the time-course experiment, a consistent cell density was maintained for each passage

(5000 cells/cm 2). We note that during the experiment, less proliferative cells (cell confluence 50%) had a
iScience 26, 106964, July 21, 2023 21



ll
OPEN ACCESS

iScience
Article
tendency of switching to a mesenchymal state. However, their contribution to the unexpected rise of cells

with aH phenotype after day 18 was unclear. The fraction of cells in E, H, and M states were found by count-

ing the number of RFP+GFP-, RFP+GFP+, and RFP-GFP+ cells.37 Since the RFP-GFP- cells were excluded

from counting, the three fractions were normalized for inferring E, H, and M trajectories.
Gillespie simulation

Gillespie simulations were performed in Matlab 2021. We simulated the arrival of four exponential random

variables with parameters representing the transition rates of the CTMC. At discrete time steps, the system

updated with the fastest arriving transition events. There were four transition events from E to H, H toM,M

to H, and H to E. The rates of transitions were drawn from an exponential distribution. We ran simulations

until sufficiently enough steps had passed (10000 iterations) and the system had reached steady state. For

Figure 3D, the timescale was normalized and trimmed based on the case with the lowest timescale (Treat-

ment withdrawal at day 9). Approximate number of iterations needed to recapitulate Figure 3D are: 98, 733,

4000, and 154.
Gene set enrichment analysis

GSEAwas performed using the fgsea package82 in R 4.2.1. Cells in every cluster were quality controlled and

library size normalized.Wilcoxon test was then performed on genes and the resulting rankings were feeded

to fgsea. All of the reference genes used in this analysis where from the MSigDB database. GSEA was then

repeated 10 times for every cluster and the results were overlapped and attached to the results across all

clusters in a circular fashion.
QUANTIFICATION AND STATISTICAL ANALYSIS

The Graphical abstract was created with Biorender. All other graphical illustrations were created with Af-

finity Designer. The mathematical model and simulation were performed using Matlab 2021. The data-

driven pipeline, data processing, and data analysis were performed in R 4.2.1.
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