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Interplay of many-body interactions and quasiperiodic disorder in the all-bands-flat diamond chain
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We study the effects of quasiperiodic Aubry-André (AA) disorder and interactions on a one-dimensional
all-bands-flat (ABF) diamond chain. We consider the application of disorder in two ways: A symmetric one,
where the same disorder is applied to the top and bottom sites of a unit cell, and an antisymmetric one, where the
disorder applied to the top and bottom sites are of equal magnitude but with opposite signs. The single-particle
wave-packet dynamics for the clean system and when the disorder is applied symmetrically show quantum
caging; in the antisymmetric case, the wave packet spreads over the entire lattice. These results agree with our
previous study, where compact localization was observed in the case of the clean system and for symmetrically
disordered diamond lattices. In the presence of nearest-neighbor interactions, nonergodic phases are observed in
the case of a clean system and symmetrical disorder; at higher disorder strengths, we find an MBL-like phase
in the symmetric case. However, many-body nonequilibrium dynamics of the system from carefully engineered
initial states exhibit quantum caging. In the antisymmetric case, a nonergodic mixed phase, a thermal phase, and
an MBL-like phases, respectively, are observed at low, intermediate, and high disorder strengths. We observe
an absence of caging and initial state dependence (except at the intermediate disorder strength) in the study of
nonequilibrium dynamics.

DOI: 10.1103/PhysRevB.107.245110

I. INTRODUCTION

Flat-band (FB) systems, which are characterized by highly
degenerate energy levels and support compact localized
eigenstates (CLS) [1,2], has been a subject of great interest
over the last decade [3–7], although the concepts are older
where the term Aharanov Bohm (AB) caging [8–11] has been
used. Compact localized states span strictly over a few unit
cells, with zero probability amplitude elsewhere in contrast to
Anderson localization [12], where the “spread” of a state dies
down exponentially. While Anderson localization observed
in noninteracting disordered systems is now a mature topic
with a large body of literature around it, the localization
characteristics of quantum systems in the presence of both
disorder and interactions[13–18] is an actively evolving area
of research. A prominent example is the phenomenon of
many-body localization (MBL) [19–25] where the system
fails to thermalize even in the presence of interactions. Trans-
lationally invariant single-particle flat-band networks coupled
with many-body interactions have also recently gained a lot of
attention [26–31]. These models exhibit nonergodic behavior
with a lack of transport of particles for any interaction strength
exhibiting many-body flat-band localization (MBFBL)
[27,31]. This naturally motivates the study of flat-band
systems subjected to both disorder and interactions [32–34].

In one of our previous paper [32], we systematically inves-
tigated the effects of turning on interactions in the presence of
uniform disorder on the all-bands-flat (ABF) diamond chain.
This model shows a nonergodic mixed phase at low disorder
strength, separated from the MBL phase at high disorder
strength by a thermal phase at intermediate disorder strength.
The addition of disorder to flat-band systems is known to yield
exotic behavior [35–37]. In our recent paper [37], we investi-

gated the effect of a quasiperiodic Aubry-André (AA) on-site
disorder [38,39] on the ABF diamond chain. We found that the
symmetry of the applied external potential plays a crucial role.
With a symmetric disorder, it is possible to completely destroy
the degeneracy and still preserve the compact localization of
the eigenstates [40]. However, when the disorder is applied in
an antisymmetric fashion, both the degeneracy and compact
localization are destroyed and a robust flat-band-based multi-
fractality (FBM) [41–43] is observed in an extensive region of
the phase diagram. In the present paper, we study the effects
of interactions on the ABF diamond chain both in the absence
and presence of quasiperiodic disorder.

We begin by exploring single-particle dynamics, which
shows quantum caging in the long-time limit for both the
zero-disorder and symmetric disorder cases. However, when
the disorder is applied in an antisymmetric manner since the
compact localization of the eigenstates is destroyed [37], the
time-evolved state also displays a spreading over all the lattice
sites. We next investigate the properties of the clean system
when interactions are turned on. The system manifests noner-
godic phases at all interaction strengths in the zero-disorder
case. However, from a study of nonequilibrium dynamics,
we conclude that for some specially engineered initial states,
many-body systems exhibit caging behavior independent of
the strength of the interaction.

In the simultaneous presence of disorder and interactions,
the symmetry of the applied disorder is again crucial. A
symmetric disorder coupled with interactions yields noner-
godic phases in the low and intermediate disorder regimes and
MBL-like behavior in the high disorder regime. We find that
the dynamics is dependent on the initial state; in particular, we
observe quantum caging for specific engineered initial states.
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FIG. 1. Schematic representation of the diamond lattice with the
u (up), d (down), and c (centre) sites of a representative unit cell
confined by the black dashed lines. Nearest-neighbor interaction V is
represented by wiggly blue lines.

The antisymmetric application of disorder leads to a mixed
nonergodic phase at low disorder strength, a thermal phase
at intermediate disorder strength, and an MBL-like phase
at high disorder strength. The mixed phase obtained at low
disorder strength is attributed to the presence of multifractal
states in the single particle limit. Although we find initial
state dependence in the nonequilibrium dynamics (except for
intermediate disorder strengths, which yield a thermal phase),
no quantum caging behavior is seen.

This paper is organized as follows. In Sec. II, we dis-
cuss the details of the model. In Sec. III, we discuss the
effects of AA disorder on the single-particle dynamics in the
disorder-free, symmetric, and antisymmetric cases. Section IV
discusses the effects of interactions on the clean ABF dia-
mond chain. Section V explores the symmetric application
of quasiperiodic AA disorder on the interacting system. Sec-
tion VI discusses the interplay of antisymmetric application
of disorder and interactions. We then summarize our results in
Sec. VII.

II. MODEL

We study the ABF diamond lattice, where the kth unit
cell consists of three sites αk = {uk, dk, ck} (see Fig. 1). The
fermionic creation operators acting at the u (up), c (center),
and d (down) sites respectively in the kth unit cell are û†

k, ĉ†
k ,

and d̂†
k and the Hamiltonian is

Ĥ = Ĥhop + Ĥos + Ĥint, (1)

where

Ĥhop = −J
N/3∑
k=1

(−û†
k ĉk + d̂†

k ĉk + ĉ†
k ûk+1 + ĉ†

k d̂k+1 + H.c.),

Ĥos =
N/3∑
k=1

(
ζ u

k û†
k ûk + ζ c

k ĉ†
k ĉk + ζ d

k d̂†
k d̂k

)
,

Ĥint =V
N/3∑
k=1

(û†
k ûk ĉ†

k ĉk + d̂†
k d̂k ĉ†

k ĉk + ĉ†
k ĉk û†

k+1ûk+1

+ ĉ†
k ĉk d̂†

k+1d̂k+1). (2)

The total number of lattice sites is denoted by N , which
should be a multiple of 3 owing to the unit-cell structure
of the periodic lattice. The hopping amplitude is J , which

is taken to be 1 for simplicity, and V is the strength of the
nearest-neighbor interaction. For each site of the kth unit cell,
we include independent on-site Aubry-André potentials

ζ α
k = λα cos(2πkb + θp), (3)

where the strength of the potential is λα and the quasiperiod-
icity parameter b is taken to be the golden mean (

√
5 − 1)/2.

The arbitrary global phase θp is chosen randomly from a uni-
form random distribution [0, 2π ]. Here we consider two types
of correlations between the on-site energies on the up “u” and
down “d” sites: A symmetric configuration in which ζ u

k = ζ d
k

and an antisymmetric configuration in which ζ u
k = −ζ d

k .
In the clean noninteracting limit, the ABF diamond chain

possesses three flat bands at energies ±2, 0 and no dispersive
band. Consequently, the system is a good insulator, possessing
only compact localized eigenstates. The system is highly de-
generate, with the CLS occupying two unit cells. The other
states corresponding to each flat band can be obtained by
translating by an integer multiple of unit cells along the lat-
tice. In the presence of symmetric disorder, remarkably, the
eigenstates continue to be compactly localized in the origi-
nal basis [37] although the translation symmetry and, thus,
the flat-band structure are broken. On the other hand, when
the potential is applied in an antisymmetric manner, we find
neither degeneracy nor compact localization [37], but a novel
kind of flat-band-based multifractality.

III. SINGLE-PARTICLE DYNAMICS

In this section, we explore the single-particle properties
with the help of nonequilibrium dynamics of the particle den-
sity and the return probability. We will see that these results
are consistent with the static properties of the eigenstates we
obtained in our earlier study [37]. We study the dynamics by
considering two initial states, one where the single-particle oc-
cupies the lattice site “c” of the kth unit cell (|ψin〉 = |ck〉) and
the other where it occupies the lattice site “d” of the kth unit
cell (|ψin〉 = |dk〉). We choose k = N/6 so as to focus on the
sites of the central unit cell—the total number of unit cells is
N/3. Once the initial state is fixed, we obtain the time evolved
state at time t using the relation |ψ (t )〉 = ∑N

m=1 ψm(t )|m〉 =
e−iHt |ψin〉 where m denotes the site index that runs over all
the N sites, i.e., 1, 2 . . . m, . . . N . Also, selecting the “u” site
yields similar results as the “d” site case; thus, we do not show
the results here.

A. Zero-disorder case

We first study the system in the clean limit. We begin
by investigating the evolution of the particle density where
pm(t ) = |ψm(t )|2 is the probability of site m being occupied
at time t . When the initial state is chosen to be |ψin〉 = |ck〉,
the particle remains compactly localized in two unit cells at
all instances of time [see Fig. 2(a)]. On the other hand, with
the initial state taken to be |ψin〉 = |dk〉, we observe that the
particle becomes compactly localized in three unit cells at all
instances of time [see Fig. 2(c)]. Also, the number of unit
cells in which the particle is compactly localized is robust with
increasing system size.
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FIG. 2. Clean system: The particle density (whose value is repre-
sented by a color according to the code shown) as a function of time
t , with m denoting the site index, for a single-particle initially at the
(a) c site and (c) d site of the 100th unit cell for system size N = 600
(200 unit cells) in the ABF diamond lattice. The return probability
R(t ) as a function of time t for a particle initially at the (b) c site and
(d) d site of the 100th unit cell.

We next calculate the return probability, which is defined
as

R(t ) = |〈ψin|ψ (t )〉|2. (4)

It is the probability of finding the particle in the initial state
after a time t . In the disorder-free limit, we have plotted the
return probability starting from both the initial states in the

long-time limit t = 109 in Figs. 2(b) and 2(d). The spectrum
is highly degenerate in the disorder-free limit, yielding three
energy levels, i.e., E = ±2, 0. Since the return probability is
related to the level spacing of the energy levels, R(t ) shows
oscillatory behavior [44,45]. We conclude that the dynamics
of the clean system is dependent on the initial state.

B. Symmetric-disorder case

We next consider the introduction of disorder in the sym-
metric configuration,

ζ u
k = ζ d

k and ζ c
k = 0. (5)

We have previously observed [37] that in the single-particle
limit, although the degeneracy of all the flat bands is lifted,
the eigenstates are found to be compactly localized in two
unit cells at all strengths of disorder. In the disorder-free limit,
a series of transformations [37] converts the diamond lattice
into a set of entirely uncoupled sites. In the case of symmet-
ric disorder, this transformation results in a lattice made of
three-site unit cells but with an absence of intercell hopping,
indicating the preservation of the CLSs.

For the initial state |ψin〉 = |ck〉, from the evolution of the
particle density, it can be observed that the state is compactly
localized over two unit cells in the low, intermediate, and high
disorder regimes [see Figs. 3(a)–3(c)]. However, at higher
disorder λ = 100, the site on which the particle is initially
localized shows a large occupation probability at all times,
as indicated by the central white patch in Fig. 3(c). Also, in
the long-time limit, the return probability has finite magnitude
≈0.5 for λ = 0.01, 2 and a magnitude close to unity for λ =
100, as shown in Fig. 3(d). We then study the dynamics for

FIG. 3. In the symmetric case, the particle density (whose value is represented by a color according to the code shown) as a function of time
t , with m denoting the site index, for a single particle initially at the c site of the 100th unit cell with increasing disorder strength (a) λ = 0.01,
(b) λ = 2, and (c) λ = 100; and (d) evolution of the return probability R. For a single particle initially at the d site of the 100th unit cell, the
particle density as a function of time t for (e) λ = 0.01, (f) λ = 2, (g) λ = 100, and (h) evolution of the return probability R. Here system size
is N = 600, and the number of disorder realizations is 100.
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FIG. 4. In the antisymmetric case, the particle density (whose value is represented by a color according to the code shown) as a function
of time t , with m denoting the site index, for a single particle initially at the c site of the 100th unit cell with increasing disorder strength
(a) λ = 0.01, (b) λ = 2, and (c) λ = 100; and (d) particle density at t = 109 for various strengths of disorder. For a single particle initially at
the d site of the 100th unit cell, the particle density as a function of time t for (e) λ = 0.01, (f) λ = 2, and (g) λ = 100; and (h) particle density
at t = 109 for various strengths of disorder. Here system size is N = 600, and averaging over 100 disorder realizations have been considered.

the initial state |ψin〉 = |dk〉. From the evolution of the particle
density, we observe that at all strengths of disorder, the state is
compactly localized over three unit cells [see Figs. 3(e)–3(g)].
The return probability in the long-time limit has a finite value
at all disorder strengths, as shown in Fig. 3(h).

On the introduction of a symmetric disorder, the spectrum
becomes dispersive, although the eigenstates are compactly
localized. We obtain nondegenerate energy levels, whose
magnitude depends on the disorder strength. As the return
probability involves the contribution of various energy levels
through the time evolution operator U (t ) = e−iHt , its period-
icity is affected by the various energy levels and the initial
state.

There is a second way in which the symmetric disorder can
be introduced wherein only the c sites are perturbed,

ζ u
k = ζ d

k = 0 and ζ c
k �= 0. (6)

In this case, we know [37] that while the degeneracy is broken
for the upper and lower bands, the flat band at E = 0 remains
robust even at higher disorder strengths. We have checked
that the single-particle dynamics within this scenario yields
qualitatively similar results as discussed above.

C. Antisymmetric-disorder case

We next consider the application of the AA potential in an
antisymmetric manner, defined by

ζ u
k = −ζ d

k = λ cos(2πkb + θp) and ζ c
k = 0. (7)

In the single-particle limit, we observed [37] that the tini-
est of perturbation lifted the degeneracy, and the eigenstates
were no longer compactly localized. Further, we also reported
the existence of a central band with extended nonergodic

(multifractal) eigenstates separated from the Anderson local-
ized states by a fractal mobility edge |E | < 4/λ [46].

From the evolution of the particle density, we observe that
for the initial state |ψin〉 = |ck〉 the wavefunction spreads over
the entire lattice with time t at all strengths of the disorder [see
Figs. 4(a)–4(c)]. The same can be observed in the long-time
limit t = 109 [see Fig. 4(d)], with occupation probability p∞

m ,
spreading nonuniformly over the entire space at all strengths
of disorder, which is a signature of the multifractal states, as
observed in the phase diagram in the static case [37]. The
results are qualitatively the same for the dynamics associated
with the other initial state |ψin〉 = |dk〉 as shown in Figs. 4(e)–
4(h). In both cases, in the higher disorder regime λ = 100,
we observe that the site on which the particle is initially
localized shows a large occupation probability in the long-
time limit [see Figs. 4(d) and 4(h)]. For low and intermediate
disorder, we have also checked (results not shown here) that
the return probability R(t ) in the long-time limit is of the
order of O(10−2) due to the contribution of a large fraction
of multifractal eigenstates. At higher disorder strengths, it is
≈0.4 for |ψin〉 = |ck〉 and ≈1 for |ψin〉 = |dk〉 owing to the
presence of a large fraction of localized eigenstates.

IV. INTERACTING DISORDER-FREE SYSTEM

In this section, we study the effects of the interaction V
on the ABF diamond lattice in the zero-disorder limit. We
investigate the properties of the eigenstates with the help of
the many-particle inverse participation ratio (MIPR) and the
one-particle density matrix (OPDM). We also explore the
dynamics of the particle density, entanglement entropy and
return probability. For a system size N with Np being the par-
ticle number, the dimension of the Hilbert space is D = (N

Np

)
245110-4
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FIG. 5. MIPR averaged over the eigenstates in the energy win-
dow [ε − 0.01, ε + 0.01] with 1/D (D is the dimension of the Hilbert
space) where ε = 0.1, 0.2, . . . , 0.9, for a fixed interaction strength
V = 1. Here system sizes considered are N = 9, 12, and 15, and the
filling fraction is fixed as ν = 1/3.

and the filling fraction is represented by ν = Np

N . Using exact
diagonalization, we obtain the many-body energy spectra Ei

and the normalized eigenstates |ψ〉i, where i = 1, 2, . . . , D.
Expanding a normalized eigenstate |
〉 in the particle num-

ber constrained space as |
〉 = ∑D
i=1 Ci|i〉, we compute the

many-particle inverse participation ratio (MIPR),

MIPR =
D∑

i=1

|Ci|4. (8)

For a perfect delocalized eigenstate MIPR = O(1)/D, while
for an extremely localized eigenstate, MIPR = O(1). Here we
study the scaling of MIPR with D, using the relation MIPR
∝ 1

Dγ . γ is close to 0 in the MBL phase, while in a perfectly
delocalized many-body phase γ = 1 and in the nonergodic
many-body phase 0 < γ < 1 [47].

In Fig. 5, we fix the filling fraction ν = 1/3 and extract
γ by increasing the system size N . Using the relation εi =
Ei−E1
ED−E1

, where E1 and ED are the ground state and maximum
energy levels, respectively, the energy levels are rescaled to lie
within the range 0 � εi � 1. We then study MIPR averaged
over the states in the energy windows, which are specified as
[ε − 0.01, ε + 0.01], where ε = 0.1, 0.2, . . . , 0.9 at V = 1.
From the energy-resolved study, we observe that 0.57 � γε �
0.68 over the entire energy spectrum, indicating the existence
of a nonergodic phase.

The localization characteristics of a many-body system can
also be explored with the help of the one-particle density
matrix (OPDM) [48–50]. The OPDM ρo for any many-body
eigenstate |
〉 is defined as

(ρo)i j = 〈
|a†
i a j |
〉, (9)

where we have renamed the fermion operators at the various
sites of the different unit cells as (u1, d1, c1, u2, d2, c2, . . . uk,

dk, ck ) = (a1, a2, a3 . . . aN ) where a†
i (ai ) creates(annihilates)

a fermion on-site i which runs from i = 1, 2, . . . , N . A com-
pact way to define these new operators is to simply write

uk = a3(k−1)+1,

dk = a3(k−1)+2, (10)

ck = a3(k−1)+3,

where k = 1, 2, . . . , N
3 runs over the unit cells. The diagonal-

ization of the OPDM results in a basis of single-particle eigen-
states called the natural orbitals |φα〉, with α = 1, 2, . . . , N
and their occupations (eigenvalues) denoted by nα ,

ρo|φα〉 = nα|φα〉. (11)

The trace of the OPDM is equal to the total number of par-
ticles in the system tr(ρo) = ∑N

α=1 nα = Np, and the natural
orbitals are ordered with decreasing occupation: n1 � n2 �
. . . � nN .

These natural orbitals are localized in the MBL phase and
delocalized in the ergodic phase. This behavior of the natural
orbitals is a many body effect since, without interactions, the
natural orbitals of the single-particle energy eigenstates are
all localized. In a noninteracting system, each many-body
eigenstate |
〉 is a Slater determinant of Np single-particle
states, with the occupation spectrum nα = 1 for all α � Np

and zero otherwise at any strength of disorder. In the MBL
phase, all the natural orbitals corresponding to α � Np remain
almost fully occupied (〈nα〉 ≈ 1), while the others remain
almost unoccupied (〈nα〉 ≈ 0), resulting in a discontinuity
δn = nNp+1 − nNp that is close to unity. In the thermal phase,
the occupations of all the orbitals approach the mean fill-
ing fraction 〈nα〉 ≈ ν. In the ergodic phase, the occupation
spectrum is consistent with the eigenstate thermalization hy-
pothesis, while in the MBL phase, the occupations preserve a
discontinuity at an emergent Fermi edge.

From the occupation spectrum, the one-particle occupation
entropy can be calculated as follows:

So = − tr ρo ln ρo = −
∑

α

nα ln (nα ). (12)

FIG. 6. Occupation spectrum 〈nα〉 with scaled index α/N at
fixed interaction strengths (a) V = 0.1, (b) V = 1, and (c) V = 10,
for different system sizes N = 9, 12, 15 and filling fraction ν =
1/3. (d) The average OPDM entropy So with increasing interaction
strength V . Dashed lines denote the maximal value of So. Averag-
ing has been performed over the eigenstates in the energy window
ε = [0.54, 0.57].
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The one-particle occupation entropy is large and proportional
to the system size in the delocalized phase, corresponding to
the volume law of thermal states. In contrast, in the localized
phase, it is close to 0. In the ergodic phase 〈nα〉 ≈ ν, hence
for a filling fraction ν = 1/3 considered here, the maximal
value of So will be (N/3) ln 3. Thus in the thermal phase,
it corresponds to the volume law displayed by many-body
eigenstates, while it approaches 0 in the localized phase.

In Figs. 6(a)–6(c), we have plotted the occupation spectrum
〈nα〉 at different interaction strengths V = 0.1, 1, and 10 and
over a specific energy window ε = [0.54, 0.57]. We observe
that the occupations are not close to 1 or 0, indicating the
absence of MBL. Further deep in the thermal phase, 〈nα〉
are expected to become system size independent at the filling
fraction (ν = 1/3 here), while splaying out on either side
in a characteristic system-size-dependent manner; here, we
only see a monotonic decrease with almost no system size
dependence throughout. We conclude that the presence of
interaction in the ABF diamond lattice results in a nonergodic
phase—this is in agreement with the results of MIPR. We
also study the OPDM entropy So [see Fig. 6(d)] for the states
corresponding to the energies ε = [0.54, 0.57]. We observe
that So does not reach its maximal value [dashed lines in
Fig. 6(d)], nor does it decrease to 0 at any interaction strength
V , and indicates nonergodic behavior.

In Sec. III from our discussion of the single-particle dy-
namics, we have seen how the number of unit cells occupied
by the time-evolving state depends on the initial state. Here
we study many-body nonequilibrium dynamics with the help
of particle density, entanglement entropy and return proba-
bility. The study of entanglement entropy [51,52] serves as
a quantifier of localization in many-body systems. For the
many-body state |ψ〉, one can calculate the density matrix
ρ = |ψ〉〈ψ |. The system is then divided into two parts, one
with NA number of sites and the other with NB = N − NA sites.
The reduced density matrix (RDM) is calculated by tracing
over the subsystem B as ρA = TrB(ρ), and the entanglement
entropy is given by SA = −Tr(ρA ln ρA).

In order to understand the interplay of initial configuration
and interaction V , we consider two types of initial states for
the system size N = 18 and a filling fraction ν = 1/6. In the
first case, we consider an initial state of the density wave type
with particles on c sites of alternate unit cells [32],

∣∣ψc
in

〉 =
N/6∏
i=1

ĉ†
2i−1|0〉. (13)

In the second type of initial state, the d sites of alternate unit
cells are occupied,

∣∣ψd
in

〉 =
N/6∏
i=1

d̂†
2i−1|0〉. (14)

Figures 7(a)–7(c) show the dynamics starting from the
initial state given by Eq. (13). When the particles are arranged
in a manner such that |h − l| � 2 where h, l are the unit cell
indices of any pair of particles, we observe distinct CLSs
for each particle as shown by the evolution of the particle
density in Fig. 7(a). The particles show caging behavior and
remain unaffected by the interactions here. The same can be

FIG. 7. For the initial state given by Eq. (13), (a) the particle
density (whose value is represented by a color according to the code
shown) as a function of time t , where m is the site index at interaction
strength V = 1, (b) the entanglement entropy SA as a function of time
t for a subsystem of size NA = N/3, and (c) the return probability R as
a function of time t for interaction strengths V = 0.001, 0.01, 1 and
3. [(d)–(f)] Corresponding plots for the initial state given by Eq. (14).
For all cases, N = 18 and ν = 1/6.

observed from the evolution of the entanglement entropy SA,
where NA = 1/3 in Fig. 7(b). We observe that at all interac-
tion strengths, there is zero entanglement between the two
subsystems, indicating that the compact localized states are
unaffected by interaction strength V . Also, we observe that
the return probability shows perfect oscillations [see Fig. 7(c),
where time axis is shown on a linear scale to highlight the
oscillations] in the long-time limit independent of the strength
of interaction.

We then consider the initial configuration given by
Eq. (14), corresponding to a 1/6 filling fraction. However, the
CLS corresponding to the single particles spans over three unit
cells, as shown in Fig. 2(c). Consequently, from the evolution
of the particle density, we observe an overlap between the
CLS belonging to different particles in Fig. 7(d). This suggests
that interaction among the initially caged particles comes
into play. The same can also be observed from the evolution
of SA, where we plot the entanglement by considering the
subsystem size NA = 1/3. After an initial transient till t ≈ 1,
independent of the interaction strength V , the entanglement
saturates to a significant value indicating a nonergodic phase.
From Fig. 7(f), we observe that the return probability displays
continual oscillations about a nonzero mean value, although
it does not reach 1. A closer look at this figure in a linear
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scale shows that the oscillations are interaction dependent,
mainly controlled by the interaction-dependent gaps between
the degenerate bands of the many-body energy spectrum.
These energy gaps are constant throughout the dynamics, and
hence, the associated terms present in the return probability do
not vanish due to phase randomization, giving rise to energy
gap-dependent fluctuations in return probability throughout
the dynamics. This scenario is typical of a clean degenerate
system perturbed with many-body interactions [32]. This be-
havior is also consistent with the nonergodic phase argued
from the previous quantities.

V. INTERACTIONS AND SYMMETRIC DISORDER

In this section, we study the interplay of symmetric disor-
der and interactions. Specifically, we study the effects of the
application of AA disorder in a symmetric manner where the
disorder is introduced on the u and d sites,

ζ u
k = ζ d

k and ζ c
k = 0, (15)

in the presence of interactions. We first look at the eigenvalue
and eigenvector properties of this Hamiltonian, and then see
how these properties are reflected in a nonequilibrium dynam-
ical setting.

A. Statics

We start by investigating the level spacing distributions
P(s). To do this, the energy levels are arranged in ascend-
ing order, and the consecutive spacings are obtained as si =
Ei+1 − Ei. A large collection of such spacings is obtained with
the aid of several disorder realizations. Next, the si are un-
folded [53] by dividing the original level spacings by the mean
level-spacing of the spectrum. We then study the distribution
of these scaled spacings. It is well known [54] that when the
states involved are localized, the probability distribution of the
level spacings is Poissonian: P(s) = e−s. On the other hand,
for delocalized states, the probability distribution of the level
spacings is Wigner-Dyson: P(s) = π

2 se− π
4 s2

(GOE [54]).
In the disorder-free case, the single-particle ABF diamond

lattice possesses massive degeneracy with only three energy
levels. When interactions are turned on for the disorder-free
model, we observe quasidegeneracy as well as a large number
of gaps in the spectrum. On the application of disorder, while
degenerate bands are observed in the absence of interactions
in the low disorder limit, many smaller bands are observed
when the interactions are also turned on. In the case of high
disorder, both in the presence and absence of interactions, the
spectrum displays quasidegeneracy and many smaller gaps,
a behavior typically observed in quasiperiodic systems [55].
This makes the level spacing distribution not a reliable tool
for studying localization characteristics [56] in the low and
high disorder regime. In the intermediate disorder regime,
these effects are minimized due to the interplay of flat bands
and disorder. Figure 8 shows the probability distribution of
the level spacing at interaction strength V = 1 for a fixed
filling fraction ν = 1/3 and different disorder strengths λ. We
observe that the spacing distribution is neither GOE nor does it
show a perfect fit to the Poisson distribution both at λ = 0.01
[see Fig. 8(a)] and at λ = 1 [see Fig. 8(b)]. The states are

FIG. 8. In the symmetric case, level spacing distribution P(s)
with spacings s at interaction strength V = 1 for filling fraction
ν = 1/3 at disorder strength (a) λ = 0.01 and (b) λ = 1. The number
of disorder realizations is 50 for N = 15 and 200 for N = 9 and
N = 12.

neither ergodic nor localized in the low and intermediate dis-
order regimes.

As discussed above, quasidegeneracy and gaps in the
low and high disorder limits yield inconclusive results when
we study eigenvalue properties. We will now discuss MIPR
at a fixed interaction strength V = 1 and various disorder
strengths λ as shown in Fig. 9. For a fixed filling fraction
ν = 1/3, we extract the exponent γ by averaging the MIPR
over the states belonging to the energy window [ε − 0.01, ε +
0.01], where ε = 0.1, 0.2...0.9. In the low disorder regime
λ = 0.01 [see Fig. 9(a)], γ ≈ 0.6 over the entire energy
spectrum indicating a nonergodic phase. We observe simi-
lar nonergodic behavior in the intermediate regime λ = 1 as
shown in Fig. 9(b). However, in the high disorder regime with
λ = 100 [see Fig. 9(c)], the exponent has a significantly lower
value γ ≈ 0.1, which is a signature of MBL-like behavior. In
Fig. 10, we have plotted the exponent γ at different disorder
strengths and observe that it shows consistent behavior over
the entire spectrum.

We also study the OPDM here, with the help of the oc-
cupation spectrum 〈nα〉 at different disorder strengths λ =
0.01, 1, and 100 [see Figs. 11(a)–11(c)] and over a specific
energy window ε = [0.54, 0.57]. At low and intermediate dis-
order strengths, the occupation spectrum falls monotonically
with practically no dependence on system size and with no
signature of the thermal value 〈nα〉 = ν = 1/3; it also does
not quite reach close to 0 or 1 either indicating nonergodic
behavior. However, in the high disorder regime, λ = 100, it
reaches close to 0 and 1, indicating localized behavior of
the single-particle states and hence an MBL-like phase. The
OPDM entropy So is also consistent with the above inferences.
While it is quite far from its thermal value [represented by
dashed lines in Fig. 11(d)] in the low and intermediate dis-
order regimes, it shows system size independence and goes
close to 0 in the MBL-like phase.

B. Nonequilibrium dynamics

Next, we study the many-body nonequilibrium dynamics
with the help of particle density, entanglement entropy and
return probability. For the initial state given by Eq. (13), we
observe the evolution of the particle density that the CLSs cor-
responding to distinct particles remain isolated and unaffected
by the interaction strength V as shown in Figs. 12(a)–12(c)
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FIG. 9. In the symmetric case, MIPR averaged over states in the energy window [ε − 0.01, ε + 0.01] with 1/D (D is the dimension of
the Hilbert space), where ε = 0.1, 0.2, . . . , 0.9 for a fixed interaction strength V = 1 and disorder strength (a) λ = 0.01, (b) λ = 1, and
(c) λ = 100. Number of disorder realizations are 400, 200, and 50 for system sizes N = 9, 12, and 15, respectively and the filling fraction is
ν = 1/3.

for disorder strengths λ = 0.01, 1, and 100, which results in
caging. For the initial state given by Eq. (14), the amplitude
corresponding to different CLSs overlap, and the interaction
comes into play. From the time evolution of the particle
density [see Figs. 12(d)–12(f)], we observe that the compact
localized nature is no longer sustained. While nonergodic
behavior is observed at low and intermediate disorder, at
higher disorder strength (λ = 100), it is comparatively less
nonergodic in the long-time limit.

We also study the entanglement entropy and return proba-
bility dynamics for both the initial configurations as shown
in Fig. 13. In the case of the initial state corresponding to
Eq. (13), for a subsystem of size NA = 1/3, we observe that at
all disorder strengths, SA ≈ 0 [see Fig. 13(a)], which supports
the observation of caging from the particle density. From the
return probability dynamics [see Fig. 13(b)], with increasing
disorder strengths, and for V = 1, we observe that while in
the low and intermediate disorder regimes, R(t ) has a finite
value, in the higher disorder regime, it approaches unity. For
the second initial state [Eq. (14)], in the low and intermediate
disorder regimes after the transient, we observe a subdiffusive
regime, followed by SA reaching saturation at a value of the
order of the thermal value as shown in Fig. 13(c). In the high
disorder regime, we observe a logarithmically slow growth,
which eventually saturates to a subthermal value. The same

FIG. 10. The exponent γ extracted from the energy resolved
MIPR in Fig. 9 with rescaled energy ε at interaction strength V = 1
and disorder strength λ = 0.01, 1, and 100.

can be observed from the evolution of return probability [see
Fig. 13(d)]. The dynamics of return probability supports the
results observed from the particle density [see Figs. 12(d)–
12(f)] and entanglement entropy with R(t ) close to 0 in the low
and intermediate disorder regimes and with a finite magnitude
in the high disorder regime.

In Fig. 14, we study the dynamics when the initial state is
of the density wave type with particles on c sites of every unit
cell, i.e., with filling fraction ν = 1/3,

|ψin〉 =
N/3∏
i=1

ĉ†
i |0〉. (16)

The evolution of the particle density for the interaction
strength V = 1 and disorder strengths λ = 1 and 100, is

FIG. 11. Occupation spectrum 〈nα〉 with scaled index α/N at
fixed interaction strength V = 1 and disorder strengths (a) λ = 0.01,
(b) λ = 1, and (c) λ = 100, for different system sizes N = 9, 12, 15
and fixed filling fraction ν = 1/3. (d) The average OPDM entropy So

with increasing strength of disorder λ. Dashed lines denote the max-
imal value of So. Averaging has been performed over the eigenstates
in the energy window ε = [0.54, 0.57] and using 400,200, and 50
disorder realizations for system sizes N = 9, 12, and 15 respectively.
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FIG. 12. In the symmetric case, particle density (whose value is
represented by a color according to the code shown) as a function
of time t , where m is the site index, for the initial state given
by Eq. (13) for interaction strength V = 1 and increasing disorder
strengths (a) λ = 0.01, (b) λ = 1, and (c) λ = 100. Corresponding
plots show the evolution of the particle density [(d)–(f)] for the
initial state given by Eq. (14). N = 18, ν = 1/6 and 100 disorder
realizations have been considered for all cases.

shown in Figs. 14(a) and 14(b). While at low (not shown here)
and intermediate disorder, we observe that the particle density
spreads uniformly over all the sites, at high disorder strength

FIG. 13. In the symmetric case, (a) entanglement entropy SA for
a subsystem of size NA = N/3 and (b) return probability R as a
function of time t for the initial state given by Eq. (13). (c) Entan-
glement entropy SA for a subsystem of size NA = N/3 and (d) return
probability R as a function of time t for the initial state given by
Eq. (14). The interaction strength is fixed as V = 1 with increasing
disorder strengths λ. For all plots, N = 18, ν = 1/6 and number of
disorder realizations is 100.

FIG. 14. The particle density (whose value is represented by a
color according to the code shown) as a function of time t , where m
is the site index for the initial state given by Eq. (16) and for disorder
strengths (a) λ = 1 and (b) λ = 100. (c) Entanglement entropy SA

for a subsystem of size NA = N/3 and (d) return probability R as
a function of time t . Here the interaction strength is fixed to V =
1, and the system size is N = 15, with filling fraction ν = 1/3 and
averaging has been done over 50 disorder realizations. (e) In the long-
time limit t = 109, the NPR η as a function of disorder strength λ

for various system sizes N , solid lines correspond to the initial state
given by Eq. (16) while dashed lines correspond to the initial state
given by Eq. (17). (f) The scaling exponent κ as a function of disorder
strength λ. Here V = 1 and ν = 1/3, and the number of disorder
realizations are at least 50 for all the system sizes.

λ = 100, the particle density is significantly localized over
the initially occupied sites, indicating MBL-like behavior. We
also study the dynamics of entanglement entropy SA as shown
in Fig. 14(c) at V = 1. After the initial transient, SA shows
a subdiffusive growth in the low and intermediate disorder
regimes and saturates to a large value indicating delocalization
in the many-body system. The high disorder regime shows a
logarithmic growth with time t , saturating to a much lower
magnitude compared to the thermal value indicating MBL-
like behavior. The return probability dynamics is shown in
Fig. 14(d). For low disorder, it saturates to a finite value, indi-
cating nonergodic behavior, while in the intermediate disorder
regime, the magnitude is much smaller (but �= 0), indicating
that the phase has a higher nonergodic tendency. At higher
disorder strengths, it is close to unity, which is a signature of
MBL-like behavior.

We further study the normalized participation ratio (NPR)
[22], in the long-time limit (t = 109) to understand the
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many-body phases. We consider two types of initial states
with filling fraction ν = 1/3, one given by Eq. (16) and
another density wave type state with particles on d sites of
every unit cell,

|ψin〉 =
N/3∏
i=1

d̂†
i |0〉. (17)

For any time-evolved many-body state, |
(t )〉 =∑D
i=1 Ci(t )|i〉, the NPR is given as

η = 1

D
∑

i |Ci|4
.

In the long-time limit (t → ∞), η is independent of
system size N in the ergodic phase; in contrast, it decays
exponentially with the system size in the localized phase
[22]. In Fig. 14(e), we study the dependence of NPR η on
the disorder strength λ, fixed interaction strength V = 1 and
increasing system sizes. Here the solid lines correspond to
the initial state given by Eq. (16) while the dashed lines
correspond to the initial state given by Eq. (17). We observe
that in both cases, η is system size dependent at all strengths
of disorder λ, indicating the absence of the thermal phase.
Further, the exponent κ can be extracted at various disorder
strengths using the relation η ∝ e−κN . In Fig. 14(f), we plot
κ with increasing disorder strength and observe that for both
initial states, in the low and intermediate disorder regime
0 < κ < 0.5, indicating nonergodic behavior. However, at
higher disorder strength, it reaches near 0.5, which is a sign
of many-body localization [22].

For the second type of symmetric configuration, when the
disorder is only considered on the c site,

ζ u
k = ζ d

k = 0 and ζ c
k �= 0 (18)

we observe that the results are qualitatively similar to the one
discussed above.

VI. INTERACTIONS AND ANTISYMMETRIC DISORDER

In this section, we study the interplay of antisymmetric
disorder and interactions. Specifically, we consider the anti-
symmetric application of the AA disorder on the u and d sites,

ζ u
k = −ζ d

k and ζ c
k = 0, (19)

in the presence of interactions. We first study the eigenvalue
and eigenvector properties, and then investigate them in a
nonequilibrium dynamical setting as well.

A. Statics

We begin by analyzing the eigenvalue properties with the
aid of the level-spacing ratio rav [54], defined as

rav =
〈

1

N − 2

N−2∑
i=1

min[si, si+1]

max[si, si+1]

〉
. (20)

Here the energies Ei’s are first organized in ascending or-
der, which are used to obtain the energy-level spacings si =
Ei+1 − Ei. The braces in Eq. (20) represent the average over

FIG. 15. In the antisymmetric case, energy-resolved gap-ratio as
a function of the fractional eigenstate index ε for disorder strength
(a) λ = 0.01 and (a) λ = 2. The number of disorder realizations is
500, 400, and 50 for system sizes N = 9, 12, and 15, respectively.

disorder realizations. In the delocalized and localized phases,
rav is expected to be approximately 0.528 and 0.386, respec-
tively [54]. In Fig. 15, we study the energy-resolved level
spacing ratio by dividing the many-body energy spectrum into
several equal segments and calculating the local average of the
level-spacing ratio for each segment of the spectrum. While in
the low disorder regime [see Fig. 15(a)] rav ≈ 0.3 indicating a
mixed nonergodic phase, rav ≈ 0.52 for λ = 2 [see Fig. 15(b)]
suggests a thermal-like phase. As discussed in Sec. V A, in the
high disorder regime, the spectrum displays quasi-degeneracy
and many gaps; we do not show the results here as they are
inconclusive.

We next study the eigenvector properties with the help of
MIPR and the OPDM. We study MIPR at a fixed interaction
strength V = 1 and various disorder strengths λ as shown
in Fig. 16. For a fixed filling fraction ν = 1/3, we extract
the exponent γ by averaging the MIPR over the states be-
longing to the energy window [ε − 0.01, ε + 0.01], where
ε = 0.1, 0.2, . . . , 0.9. In the low disorder regime, λ = 0.01
[see Fig. 16(a)], we observe a nonergodic mixed phase owing
to the spread of the exponent γ over a wide range 0.54 < γ <

0.80. In the intermediate disorder case, γ has a significantly
higher magnitude, which signifies thermal-like behavior [see
Fig. 16(b)]. At high disorder strength λ = 100, the exponent
γ has a small magnitude ≈0.07 over the entire spectrum
indicating an MBL-like phase, as shown in Fig. 16(c). In
Fig. 17, we have plotted the exponent γ at different disorder
strengths and observe that in the low disorder regime, γ ≈ 0.8
corresponding to the energy window about ε = 0.9, which
signifies the presence of thermal-like states that contribute
to the mixed nonergodic behavior. We observe that the in-
termediate and high disorder regimes show thermal-like and
MBL-like behavior, respectively, over the entire spectrum.

We next study the OPDM with the help of the occupa-
tion spectrum 〈nα〉 at different disorder strengths λ = 0.01, 2,
and 100 [see Figs. 18(a)–18(c)] and over the energy win-
dow ε = [0.54, 0.57]. In the intermediate regime [Fig. 18(b)],
we observe that with increasing system size, 〈nα〉 spreads
about the filling fraction ν = 1/3 with a characteristic inverse
system-size variation on either side of the critical value of
the α

N , indicating a thermal phase. In contrast, in the high
disorder regime [Fig. 18(c)], 〈nα〉 reaches close to 0 and
1, indicating localized behavior of the single-particle states.
Hence, the phase is MBL like. In the low disorder regime
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FIG. 16. In the antisymmetric case, MIPR averaged over states in the energy window [ε − 0.01, ε + 0.01] with 1/D (D is the dimension
of the Hilbert space), where ε = 0.1, 0.2, . . . , 0.9 for a fixed interaction strength V = 1 and disorder strength (a) λ = 0.01, (b) λ = 2, and
(c) λ = 100. Number of disorder realizations are 400, 200, and 50 for system sizes N = 9, 12, and 15, respectively and the filling fraction is
ν = 1/3.

[(Fig. 18(a)], the occupation spectrum is neither spread about
the thermal value 〈nα〉 = ν = 1/3 nor does it reach close to
0 and 1 (like in MBL), thus indicating mixed nonergodic
behavior. The OPDM entropy So [see in Fig. 18(d)] signifies
a nonergodic phase in the low disorder regime as it neither
reaches the thermal value (dashed lines) nor the MBL value
(0). In the intermediate disorder case, So reaches its thermal
value denoted by dashed lines, especially for N = 15, while it
approaches 0 in the high disorder case, indicating MBL-like
behavior.

B. Nonequilibrium dynamics

We next study many-body nonequilibrium dynamics with
several measures such as particle density, entanglement en-
tropy, and return probability. We first consider the initial state
given by Eq. (13), a product state for a system size N = 18
and filling fraction ν = 1/6, with particles occupying the c
sites of alternate unit cells. From the evolution of the particle
density shown in Figs. 19(a)–19(c), we observe that for all
disorder strengths, the CLS-like behavior persists at early
times (t < 1). However, for time t > 1, while the particle
density spreads uniformly over the entire lattice in the low
and intermediate disorder regimes, it shows a comparatively
less ergodic behavior in the high disorder case. We also study
the dynamics for the second initial state given by Eq. (14). For

FIG. 17. The exponent γ extracted from the energy resolved
MIPR in Fig. 16 with rescaled energy ε at interaction strength V = 1
and disorder strength λ = 0.01, 2, and 100.

low and intermediate disorder strengths [see Figs. 19(d) and
19(e)], we observe that the particle density is uniformly spread
over all the sites indicating ergodic behavior. In contrast, at
higher disorder strength λ = 100 [see Fig. 19(f)], the particle
density is significantly localized over the initially occupied
sites.

The entanglement entropy and return probability dynamics
for both the initial configurations are shown in Fig. 20. In
the case of the initial state corresponding to Eq. (13), SA has
near-zero magnitude at early times, as shown in Fig. 20(a).
However, the low and intermediate disorder regimes saturate
to a large magnitude after the initial transient. At higher dis-
order strengths (λ = 100), we observe that the behavior is
relatively more localized with the entanglement entropy SA

FIG. 18. Occupation spectrum 〈nα〉 with scaled index α/N at
fixed interaction strengths V = 1 and disorder strengths (a) λ = 0.01,
(b) λ = 2, and (c) λ = 100, for different system sizes N = 9, 12, 15
and fixed filling fraction ν = 1/3. (d) The average OPDM entropy So

with increasing strength of disorder λ. Dashed lines denote the max-
imal value of So. Averaging has been performed over the eigenstates
in the energy window ε = [0.54, 0.57] and using 400,200, and 50
disorder realizations for system sizes N = 9, 12, and 15, respectively.
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FIG. 19. In the antisymmetric case, particle density (whose value
is represented by a color according to the code shown) as a func-
tion of time t , where m is the site index, for the initial state given
by Eq. (13) for interaction strength V = 1 and increasing disorder
strengths (a) λ = 0.01, (b) λ = 2, and (c) λ = 100. Corresponding
plots [(d)–(f)] show the evolution of the particle density for the
initial state given by Eq. (14). N = 18, ν = 1/6 and 100 disorder
realizations have been considered for all cases.

[see Fig. 20(a)] saturating to a lower magnitude. From the
return probability dynamics as shown in Fig. 20(b), while

FIG. 20. In the antisymmetric case, (a) the entanglement entropy
SA for a subsystem of size NA = N/3 and (b) return probability
R as a function of time t for the initial state given by Eq. (13).
(c) Entanglement entropy SA for a subsystem of size NA = N/3 and
(d) return probability R as a function of time t for the initial state
given by Eq. (14). The interaction strength is fixed as V = 1 for
various disorder strengths λ. For all plots, N = 18, ν = 1/6, and the
number of disorder realizations is 100.

for low and high disorder R(t ) saturates to a finite value
indicating nonergodic behavior, in the intermediate disorder
regime, R(t ) ≈ 0, which signifies a thermal-like phase. For
the second initial state given by Eq. (14), after the initial
transient, in the low disorder regime, we observe oscillatory
behavior followed by a subdiffusive growth after which SA

saturates near the thermal value [see Fig. 20(c)]. The behavior
of SA in the intermediate disorder regime is similar to the
low disorder case, except that the oscillatory part is absent.
After the transient, there is a subdiffusive increment in SA,
which saturates to a large value indicating delocalization in
the many-body system. In contrast, in the high disorder region,
it saturates to a low value signifying MBL. We also study the
evolution of the return probability, as shown in Fig. 20(d). In
the long-time limit, it saturates to 0 in the low and intermediate
disorder regimes indicating thermal-like behavior. At the same
time, it is close to 1 in the high disorder regime, which is a
signature of many-body localization.

We next study the nonequilibrium dynamics of the sys-
tem for the two initial states by considering filling fraction
ν = 1/3. The evolution of the particle density is shown in
Figs. 21(a) and 21(b), at the interaction strength V = 1 and
for disorder strengths λ = 2 and 100. We observe mixed non-
ergodic behavior at low disorder strength (not shown here).
In contrast, we see ergodic behavior at intermediate disorder
strengths, with the particle density spread uniformly over all
the sites. At high disorder strength λ = 100, the particle den-
sity is significantly localized over the initially occupied sites.
We also study the dynamics of entanglement entropy SA as
shown in Fig. 21(c) at V = 1. After the initial transient, SA

shows a subdiffusive growth in both the low and intermedi-
ate disorder regimes; however, it saturates to a large value
for λ = 2, indicating an ergodic phase, while for λ = 0.01,
it saturates to a comparatively lower value indicating weak
delocalization in the system. In the high disorder case, af-
ter the initial transient, SA saturates to a sub-thermal value
indicating localization. From the dynamics of the return prob-
ability [see Fig. 21(d)], we observe that it saturates to a finite
value in the low and high disorder phases. In contrast, it sat-
urates close to 0 in the intermediate phase indicating thermal
behavior.

We next study the NPR [22] in the long-time limit for
the initial states given by Eq. (16) (solid lines) and Eq. (17)
(dashed lines) as shown in Fig. 21(e). In the case of the initial
state given by Eq. (16), while η is system size dependent in
the low and high disorder regimes, it shows system size in-
dependence in the intermediate disorder case. We then extract
the exponent κ and plot it as a function of disorder strength
λ in Fig. 21(f). In the low disorder case, κ lies between 0
and 0.5, indicating nonergodic behavior while in the interme-
diate regime κ = 0, indicating a thermal phase. In contrast,
in the high disorder regime, we observe κ ≈ 0.5, which is
a signature of many-body localization. For the other initial
state given by Eq. (17), in the low disorder regime, η tends
to be system size-independent [see Fig. 21(e)], with κ close
to 0 [Fig. 21(f)], which indicates that it is close to the ergodic
phase. In the intermediate regime, the phase is thermal as η

is system size independent and κ = 0. In the higher disorder
regime, η is system size dependent with κ close to 0.5, indi-
cating an MBL-like phase.
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FIG. 21. The particle density (whose value is represented by a
color according to the code shown) as a function of time t , where
m is the site index for the initial state given by Eq. (16) for disorder
strengths (a) λ = 2 and (b) λ = 100. (c) Entanglement entropy SA

for a subsystem of size NA = N/3 and (d) return probability R as
a function of time t . Here the interaction strength is fixed to V =
1, and the system size is N = 15 with filling fraction ν = 1/3, and
averaging has been done over 50 disorder realizations. (e) In the long-
time limit t = 109, NPR η as a function of disorder strength λ for
various system sizes N , solid lines correspond to initial state given
by Eq. (16) while dashed lines correspond to initial state given by
Eq. (17). (f) The scaling exponent κ as a function of disorder strength
λ. Here V = 1 and ν = 1/3, and the number of disorder realizations
is at least 50 for all the system sizes.

VII. CONCLUSION

In this paper, we have systematically investigated the
single-particle dynamics and the interplay of many-body
interactions and quasiperiodic AA disorder in the one-
dimensional ABF diamond lattice. We find that the compact
localized states observed for the clean system and when the
disorder is applied symmetrically in the single particle case
[37] sustain quantum caging even in a nonequilibrium dy-
namical set-up. In contrast, in the long-time limit, the wave
function spreads over the entire lattice in the presence of
antisymmetric disorder. This can be attributed to the loss of
compact localization and the presence of multifractal eigen-
states in the static case [37].

In the presence of interactions and zero disorder in the
system, nonergodic phases are observed at all interaction
strengths. In general, nonequilibrium dynamics support the
findings from the static case. However, the many-body sys-
tem manifests quantum caging for specially engineered initial

states. When our interacting many-body system is subjected
to symmetric disorder, nonergodic phases are observed at low
and intermediate disorder strengths. In contrast, an MBL-
like phase is observed at higher disorder strengths. Studying
nonequilibrium dynamics, we find nonergodic regimes in the
case of low and intermediate disorder strengths, while lo-
calization characteristics dominate in the high disorder case.
Quantum caging behavior is supported for specific initial
configurations, independent of the strength of interaction or
disorder.

The antisymmetric application of disorder in the presence
of interactions in the system result in three distinct phases: A
nonergodic mixed phase at low disorder strengths, a thermal
phase at intermediate disorder strengths, and an MBL-like
phase at higher strengths of disorder. Even in the mixed noner-
godic phase, some states show thermal-like behavior. A study
of the nonequilibrium dynamics shows that for different initial
states, in the low disorder regime, a mixed phase exists with
a varying magnitude of nonergodicity; for the intermediate
disorder, the phase is always thermal. In the high disorder
case, the phase shows varying magnitudes of nonergodicity,
inclined towards many-body localization.

We also want to remark on the case when the on-site
disorder is chosen from a uniform uncorrelated random distri-
bution in the presence of interactions. Interestingly, for both
the symmetric and antisymmetric cases, the resulting phase is
similar in the low, intermediate, and high disorder strengths
to those obtained when applying the quasiperiodic disorder.
We conclude that the observed many-body phases are due to
the symmetry of the applied disorder as reported previously
in the single particle case [37]. Also, in the antisymmetric
case, the presence of mixed nonergodic, thermal and MBL-
like phases at the low, intermediate and high disorder
strengths, respectively, is qualitatively similar to phases that
emerge as a result of the application of the uniform disorder
on all sites as reported in [32].

Thus, our paper shows that the interplay of quasiperiodic
disorder, interactions and flat-band structure in the diamond
lattice results in an exciting phase diagram. Exploring dis-
tinctive phases in other interacting and disordered flat-band
systems would be an interesting direction for further research.
With the recent surge in the experimental study of engineered
flat-band systems, such phases could be realized in optical
lattices for cold atoms.
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FIG. 22. The half-chain entanglement entropy SA(ε) of all the
eigenstates as a function of the fractional eigenstate index ε for
N = 18 with ν = 1/6 for interaction strengths V = 0.1, 1, and 10.

APPENDIX: ENTANGLEMENT ENTROPY

In this section, we analyze the effect of interactions on
the ABF diamond lattice by calculating the half-chain en-
tanglement entropy SA of all the many-body eigenstates. We
first discuss the case when interactions are turned on in the
disorder-free model, and then consider cases where disorder
is applied in a symmetric and antisymmetric manner in the
presence of interactions.

Figurer 22 shows the half-chain entanglement entropy
SA of all the many-body eigenstates at various interaction
strengths V for a system size N = 18 and filling fraction ν =
1/6. For all interaction strengths, V = 0.1, 1, and 10, while a
significant fraction of the eigenstates shows a large magnitude
of the entanglement entropy, it does not vary smoothly with

FIG. 23. The half-chain entanglement entropy SA(ε) for all the
eigenstates as a function of the fractional eigenstate index ε for
disorder strength λ = 0.01 and interaction strengths (a) V = 0 and
(b) V = 1. (c) The wavefunction probability of two states indexed
as EV : 1 with SA �= 0 and EV : 13 with SA = 0. Here i = 1, . . . , D,
where D is the dimension of the particle number constraint Hilbert
space. (d) The corresponding particle density 〈a†

mam〉, where m is site
index at V = 0. For all the cases, N = 18, filling fraction ν = 1/6
and single-disorder realization has been considered.

FIG. 24. In the symmetric case, half-chain entanglement entropy
SA(ε) for all the eigenstates as a function of the fractional eigenstate
index ε for disorder strengths λ = 0.01, 1, and 100. The averaging
has been performed over 50 disorder realizations.

the fractional eigenstate index ε. This indicates the presence of
a nonergodic phase, which agrees with the MIPR and OPDM
results shown in Sec. IV.

Next, we study the application of symmetric disorder;
we have reported the presence of compactly localized states
[37] in the single-particle case. Interestingly, in the case of
noninteracting fermions, from the half-chain entanglement
entropy, we observe that the eigenstates can be broadly di-
vided into two categories [see Fig. 23(a)], one with SA �= 0

FIG. 25. (a) The half-chain entanglement entropy SA(ε) of all
the eigenstates as a function of the fractional eigenstate index ε

for N = 18 with ν = 1/6 for various disorder strengths λ and fixed
interaction strength V = 1. Here averaging has been performed over
100 disorder realizations. (b) Entanglement entropy SA averaged over
the eigenstates in the energy window ε = [0.54, 0.57] with system
size N , filling fraction ν = 1/3 and subsystem size NA = N/3. Here
interaction strength V = 1 and disorder realizations is 100. (c) The
half-chain entanglement entropy SA(ε) of all the eigenstates as a
function of the fractional eigenstate index ε for N = 18, filling frac-
tion ν = 1/6, disorder strength λ = 0.01, interaction strength V = 1
and single disorder realization. (d) Particle density 〈a†

mam〉 with site
index m, filling fraction ν = 1/3 for the infinite temperature state at
θ = 0 and V = 1.
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and the other with SA = 0. We choose a state corresponding
to SA �= 0 with index EV = 1 and another corresponding to
SA = 0, with index EV = 13. In Fig. 23(c), we have plotted
both eigenstates in the particle number-constrained space with
the index i running over 1, 2, . . . , D and observe nonzero
amplitude only on a finite number of sites . For the given state,
we calculate the particle density 〈a†

j a j〉 [see Eq. (9)] on all the
sites j = 1, 2, . . . , N as shown in Fig. 23(d). In the case of the
state corresponding to SA = 0, the particle density is zero both
at the subsystem boundary (N/2 or N/2 + 1) as well as the
system boundaries (1 or N) as periodic boundary conditions
have been considered thereby disassociating the two subsys-
tems. However, the same is not true for the states where the
entanglement is nonzero. This effect persists for all strengths
of the disorder as well as on the introduction of interactions
[see Fig. 23(b)]. We conclude that this is a many-body effect in
a disordered system hosting compactly localized states. Also,
a blind disorder averaging the entanglement entropy would
wash out this behavior, as shown in Fig. 24.

Figure 25(a) shows the half-chain entanglement entropy
for all the many-body eigenstates in the case of antisymmetric
application of disorder and interaction strength V = 1. In the
low disorder case, SA shows both rises and dips, indicating
the presence of a nonergodic mixed phase. In the intermediate

disorder regime, SA has a smooth dependence on the eigen-
states with a large magnitude indicating thermal behavior.
In contrast, for the higher disorder λ = 100, we observe SA

with a meagre value indicating MBL-like behavior. These
results agree with those discussed in Sec. VI from the study
of MIPR and OPDM. In Fig. 25(b), we plot the entanglement
entropy SA for a fixed filling fraction ν = 1/3 and subsystem
size NA = 1/3 with increasing system size N in the energy
window ε = [0.54, 0.57] [57]. We find that the intermediate
disorder case (λ = 2) follows a volume-law scaling while an
area-law-like behavior is seen in the high disorder regime
(λ = 100). In the low disorder regime, SA initially increases
and eventually saturates as a function of system size, thus
indicating nonergodic behavior. We also study a single dis-
order realization of the half-chain entanglement entropy with
λ = 0.01 and V = 1 [see Fig. 25(c)]. Unlike the symmetric
disorder case, we observe that SA �= 0 for any eigenstate.
We also study the particle density [see Fig. 25(d)] for the
infinite temperature state and observe that in the low dis-
order case (λ = 0.01), it is unevenly spread over the lattice
sites indicating nonergodic behavior. In contrast, at λ = 2,
it spreads out uniformly, showing thermal behavior, and at
higher disorder strengths λ = 100, it is localized over a few
sites.
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