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Abstract
In this note, we establish a new Carleman estimate with singular weights for the sub-
Laplacian on a Carnot groupG for functions satisfying the discrepancy assumption in
(2.16) below. We use such an estimate to derive a sharp vanishing order estimate for
solutions to stationary Schrödinger equations.
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1 Introduction

In this note, we give an elementary proof of an L2 − L2 type Carleman estimate with
singular weights for the sub-Laplacian on Carnot groups. Using such an estimate, we
present a new application to an upper bound on the maximal order of vanishing for
solutions to stationary Schrödinger equations (2.19). Such a result as in Theorem 2.2
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below constitutes a quantitative version of the strong unique continuation property and
can be thought of as a subelliptic generalization of a similar quantitative uniqueness
result due to Bourgain and Kenig in [11] (see Proposition 2.4).

Concerning the question of interest in this note, the unique continuation property,
we mention that for general uniformly elliptic equations there are essentially two
known methods for proving it. The former is based on Carleman inequalities, which
are appropriate weighted versions of Sobolev–Poincaré inequalities. This method was
first introduced by T. Carleman in his fundamental work [12] in which he showed
that strong unique continuation holds for equations of the type −�u + Vu = 0, with
V ∈ L∞

loc(R
2). Subsequently, his estimateswere generalised in [2] and [3] to uniformly

elliptic operators with C2,α
loc and C0,1

loc principal part respectively in all dimensions. We
recall that unique continuation fails in general when the coefficients of the principal
part are only Hölder continuous, see [26]. The second approach came up in the works
of Lin and Garofalo, see [20, 21]. Their method is based on the almost monotonicity
of a generalisation of the frequency function, first introduced by Almgren in [1] for
harmonic functions. Using this approach, they were able to obtain new quantitative
information for the solutions to divergence form elliptic equations with Lipschitz
coefficients which in particular encompass and improve on those in [3].

The unique continuation in subelliptic setting of a Carnot group is however much
subtler in the sense that strong unique continuation property is in general not true
for solutions to (2.19). This follows from some interesting work of Bahouri ([4])
where the author showed that unique continuation is not true for even smooth and
compactly supported perturbations of the sub-Laplacian. Subsequently in the setting
of the Heseinberg groupHn , it is shown by Garofalo and Lanconelli in [19] that if the
solutions to (2.19) additionally satisfy the discrepancy assumption of the type (2.20),
then the strong unique continuation holds. Such a result has been generalized to Carnot
groups of arbitrary step in [22]. We also refer to the recent work [18] where it is shown
that in general, the Almgren type monotonicity fails even when G = H

n . It is to be
noted that the discrepancy condition (2.20) trivially holds in the Euclidean case. See
Sect. 2 below.

The purpose of this note is to establish a new Carleman estimate in the framework
of [22] where the strong unique continuation is known so far using which we prove
the vanishing order estimate in Theorem 2.2 below. Our main results Theorem 2.1 and
Theorem 2.2 can be regarded as subelliptic generalizations of the ones in [3] and [11].

We mention that the proof of our Carleman estimate in Theorem 2.1 is based
on elementary arguments using integration by parts and an appropriate Rellich type
identity and is inspired by the recent work [9] where a similar Carleman estimate has
been established for Baouendi–Grushin operators. Our proof however additionally
exploits the discrepancy condition in (2.16) below in a very crucial way. The reader
will see that proof of our Carleman estimate relies on some non-trivial geometric facts
in the subelliptic setting that beautifully combine.

The paper is organized as follows. In Sect. 2, we introduce some basic notations,
state our main results and also gather some known results that are relevant to our work.
In Sect. 3, we prove our main results.
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2 Notations, preliminaries and statements of themain results

In this section we introduce the relevant notation, state our main results and gather
some auxiliary results that will be useful in the rest of the paper. We will follow the
same notations as in [22] and [7]. For detail, we refer the reader to the book [10]. We
now recall that a Carnot group of step h is a simply connected Lie group G whose
Lie algebra g admits a stratification g = V1 ⊕ · · · ⊕ Vh which is h nilpotent, i.e.,
[V1, Vi ] = Vi+1 for i = 1, . . . , h − 1 and [Vi , Vh] = 0 for i = 1, . . . , h. We will
denote an arbitrary element of G by g and e will denote the identity of the group G.

For any open subset � of G, We indicate with Ck
0 (�) the set of compactly supported

Ck functions in �. We will assume that g is equipped with an inner product 〈·, ·〉g
such that Vi ’s are mutually orthogonal.

By the assumptions on the Lie algebra g, any basis of horizontal layer V1 generates
the whole g. Let {e1, . . . , em} be an orthonormal basis of the first layer V1 of the Lie
algebra. We then define the corresponding left invariant smooth vector fields by

Xi (g) = dLg(ei ), i = 1, . . . ,m (2.1)

where Lg denotes the left-translation operator given by Lg(g′) = gg′ and dLg denote
its differential. Further, we assume thatG is equipped with a left invariant Riemannian
metric with respect to which {X1, . . . , Xm} is an orthonormal set of vector fields. The
sub-Laplacian corresponding to the basis {e1, . . . , em} is given by the formula

�Hu =
m∑

i=1

X2
i u. (2.2)

We note that by Hormander’s theorem, �H is hypoelliptic. We will denote the hori-
zontal gradient of u by

∇Hu =
m∑

i=1

XiuXi (2.3)

and we let

|∇Hu|2 =
m∑

i=1

(Xiu)2. (2.4)

We now define the non-isotropic dilations δλ on G by

δλ(g) = exp ◦ δ̃λ ◦ exp−1g, (2.5)

where the exponential mapping exp : g → G defines an analytic diffeomorphism
onto G and for ξ = ξ1 + ξ2 + · · · + ξh, where ξi ∈ Vi , we define

δ̃λξ = λξ1 + · · · λhξh, (2.6)

where we have assigned the formal degree i to the each element of the layer Vi . We
will denote the infinitesimal generator of the non-isotropic dilations (2.5) by Z , note



   55 Page 4 of 17 V. Arya, D. Kumar

that such smooth vector fields is characterized by the following property

d

dr
u(δr (g)) = 1

r
Zu(δr (g)). (2.7)

Hence, u ∈ C1(G) is a homogeneous function of degree k with respect to (2.5), i.e.,
u(δr (g)) = rku(g) if and only if

Zu = ku.

We will denote the bi-invariant Haar measure on G, which is obtained by lifting
via the exponential map exp the Lebesgue measure on g by dg. Let mi denote the
dimension of Vi . We then have

(d ◦ δλ)(g) = λQdg, (2.8)

where Q = ∑h
i=1 imi is referred as the homogeneous dimension of G.

Let �(g, g′) = �(g′, g) be the positive unique fundamental solution of −�H . We
have that � is left-translation invariant, i.e.,

�(g, g′) = �̃(g−1 ◦ g′) (2.9)

for some �̃ ∈ C∞(G\{e}). For every r > 0, we define

Br :=
{
g ∈ G | �(g, e) >

1

r Q−2

}
. (2.10)

In [17], Folland has proved that �̃(g) is homogeneous function of degree 2 − Q with
respect to the non-isotropic dilations (2.5). Therefore, if we define

ρ(g) = �̃(g)
−1
Q−2 , (2.11)

then ρ is homogeneous of degree 1. Hence Br can be equivalently defined as

Br = {g : ρ(g) < r}. (2.12)

We now let

ψ
de f= |∇Hρ|2. (2.13)

Since ρ is a homogeneous function of degree 1, ∇Hρ is a homogeneous function of
degree 0. Hence we have

Zψ = 0. (2.14)
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Like in [22], for a function f , we define the discrepancy E f at e by

E f
de f= < ∇H f ,∇Hρ > − Z f

ρ
|∇Hρ|2. (2.15)

We now state our main results.

2.1 Statement of themain results

Our first result is the subelliptic analogue of the well known Carleman estimate in
[11]. See also [5, 16].

Theorem 2.1 Let w ∈ C2
0 (BR \ {e}) satisfy (�Hw + Vw)2 ≤ C1ψ for some C1 > 0

and the following discrepancy assumption

|Ew| ≤ CE

ρ1−δ
|w||∇Hρ|2 (2.16)

for some δ ∈ (0, 1), where ρ is as in (2.11) and Ew denotes the discrepancy of w

as defined in (2.15) above. Also assume that the function V : G → R satisfies the
following growth condition

|V | ≤ Kψ, (2.17)

where K is a non-negative constant and ψ is as in (2.13) above. Then there exist
universal constants C, R0 > 0 depending on δ, CE and Q such that for all R ≤ R0
and α > CK 2/3 + Q, the following estimate holds

α3
∫

ρ−2α−4+εe2αρε

w2ψdg ≤ C
∫

ρ−2αe2αρε

(�Hw + Vw)2ψ−1dg, (2.18)

for ε = δ/2 and where dg is the bi-invariant Haar measure on G.

Using the Carleman estimate in Theorem 2.1 above, we derive the following quan-
titative uniqueness result for solutions to

− �Hu = Vu in BR0 , (2.19)

where R0 is as in the Theorem 2.1 and V satisfies the growth condition as in (2.17)
above.

Since the regularity issues are not our main concern, we will assume apriori that
u, Xiu, Xi X ju, Zu are in L2(B1) with respect to the Haar measure dg.

Theorem 2.2 Let u be a non-trivial solution to (2.19) where V satisfies (2.17). Fur-
thermore assume that for some δ ∈ (0, 1)

|Eu | ≤ CE

ρ1−δ
|u||∇Hρ|2. (2.20)
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Then there exists a constant C = C(Q,CE , δ) > 0 such that for all r < R0/8, we
have

||uψ1/2||L2(Br ) > Cr A, (2.21)

where A = CK 2/3+C+C
((

1 + ||uψ1/2||L2(BR0 )

)/
||uψ1/2||L2(BR0/4)

)4/3
and R0

is as in the Theorem 2.1.

We first make a remark regarding the dependence of maximal vanishing order on the
solution u.

Remark 2.3 If we consider u = Re(zk) in R2 then�u = 0 i.e., u satisfies the equation
�u + Vu = 0 for V = 0 and has vanishing order k which corresponds to its homo-
geneity. Since k ∈ Ncan be arbitrarily large, this suggests that the maximal vanishing
order has to depend on u as well.

It is worth emphasizing that, when nilpotency step of the group is 1, i.e., h = 1,
from (2.13) we have ψ ≡ 1. In this case the constant K in (2.17) can be taken to be
||V ||L∞ and the discrepancy condition (2.20) trivially holds, and therefore Theorem
2.2 reduces to the following Euclidean result in [24], which is a consequence of [11,
Lemma 3.15]:

Proposition 2.4 Let u be a solution of �u = Vu in B(0, 10) ⊂ R
n. Then, there exist

constants a1, a2 depending u, n such that

max|x |≤r
|u(x)| ≥ a1r

a2(||V ||2/3L∞+1)

for all r > 0 small enough.

Note that Proposition 2.4 is sharp in view of Meshov’s counterexample in [25]. We
also note that when V satisfies the additional hypothesis

|ZV | ≤ Kψ,

then, using a variant of the frequency function approach, the following sharper estimate
was established in [7] for solutions to (2.19),

||u||L∞(Br ) ≥ C1

(
r

R0

)C2(
√
K+1)

. (2.22)

We now make a remark regarding the discrepancy condition (2.20).

Remark 2.5 Wewould like tomention over here that there is a fairly detailed discussion
on the validity of the discrepancy assumption (2.20) in [22, Section 6] under various
symmetry assumptions. For instance, if G is a group of Heisenberg type and u has a
cylindrical symmetry, then Eu = 0. See for instance [22, Proposition 6.11] for a proof
of this fact. Moreover in the case of Heisenberg group Hn , it turns out that polyradial
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functions have zero discrepancy. Furthermore for a general Carnot group, it is easily
seen that any radial function has zero discrepancy. Therefore in such settings, if we
take� = B1 and consider potentials V aswell boundary values gwhich satisfy similar
symmetry conditions, then by energy methods ( when the norm of V is small enough)
or Fredholm alternative ( in the general case), one can obtain solutions to the following
Dirichlet problem {

�Hu = Vu in B1,

u = g on ∂B1,
(2.23)

which satisfy similar symmetry conditions ( by uniqueness) and consequently (2.20).
The existence of such symmetric solutions appear in the work of Garofalo andVassilev
in [23, Section 6]. See also [28].

The reader should note that for Laplacian on a compact manifold the counterpart
of (2.22) was first obtained using Carleman estimates by Bakri in [5]. This generalises
the sharp vanishing order estimate of Donnelly and Fefferman in [14, 15] for eigen-
functions of the Laplacian. We also mention that, for the standard Laplacian, the result
of Bakri was subsequently obtained by Zhu [29], using a variant of the frequency func-
tion approach in [20, 21]. This was extended in [8] to more general elliptic equations
with Lipschitz principal part where the authors also established a certain boundary
version of the vanishing order estimate.

We now gather some known results that will be needed in the present work. The fol-
lowing proposition below concerns the action of the sub-Laplacian on radial functions
(see [22]). This will be needed in the proof of Theorem 2.1.

Proposition 2.6 Let f : (0,∞) → R be a C2 function, and define w(g) = f (ρ(g)).
Then, one has

�Hw = |∇Hρ|2
{
f ′′(ρ) + Q − 1

ρ
f ′(ρ)

}
, in G \ {e}.

We then collect the following elementary facts from [13] and [23].

Lemma 2.7 In a Carnot group G, the infinitesimal generator of group dilations Z
enjoys the following properties:

(i) One has [Xi , Z ] = Xi , i = 1, . . . ,m.

(ii) divG(ρ−l Z) = (Q − l)ρ−l .

We also need the following Rellich type identity in the proof of Theorem 2.1, which
corresponds to Theorem 3.1 in [23]. This can be seen as the sub-elliptic analogue of
Rellich type identity in [27].

Lemma 2.8 For a C1 vector field F and v ∈ C2(G), the following holds

∫

Br
divGF |∇Hv|2 − 2

m∑

i=1

∫

Br
Xiv[Xi , F]v − 2

∫

Br
Fv�Hv
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=
∫

∂Br
|∇Hv|2 < F, ν > −2

m∑

i=1

∫

∂Br
FvXiv < Xi , ν > . (2.24)

We now state a Caccioppoli type energy inequality which will be used in the proof
of Theorem 2.2. The proof of such an energy inequality is identical to that of [9,
Lemma 4.1] and we therefore skip the details.

Lemma 2.9 Let u be a solution to (2.19) with V satisfying (2.17). Then, there exists a
universal constant C = C(Q) > 0 such that for any 0 < a < 1, we have

∫

B(1−a)R

|∇Hu|2dg ≤ C

a2R2

∫

BR

(1 + K )u2ψdg. (2.25)

3 Proof of Theorem 2.1 and 2.2

Proof of Theorem 2.1 For R ≤ R0, let w ∈ C2
0 (BR \ {e}) be as in Theorem 2.1. We

now set v = ρ−βeαρε
w, where ε and β will be chosen later depending on δ and α

respectively. Then w = ρβe−αρε
v and it is easy to see that

�Hw = v�H (ρβe−αρε

) + 2 < ∇H (ρβe−αρε

),∇Hv > + ρβe−αρε

�Hv.

(3.1)

Now we use Proposition 2.6 and recall |∇Hρ|2 = ψ to obtain

�H (ρβ e−αρε

) =
(
β(β + Q − 2)ρβ−2 + α2ε2ρβ+2ε−2

−αε (2β + ε + Q − 2) ρβ+ε−2
)
e−αρε

ψ. (3.2)

Also, it is easy to check that

2 < ∇H (ρβe−αρε

),∇Hv > =
(
2βρβ−1 − 2εαρβ+ε−1

)
< ∇Hρ,∇Hv > e−αρε

.

(3.3)

Now we use (3.2) and (3.3) in (3.1) to get

�Hw = v
(
β(β + Q − 2)ρβ−2 + α2ε2ρβ+2ε−2

−αε (2β + ε + Q − 2) ρβ+ε−2
)
e−αρε

ψ

+
(
2βρβ−1 − 2εαρβ+ε−1

)
< ∇Hρ,∇Hv > e−αρε + ρβe−αρε

�Hv.

(3.4)
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From definition (2.15) for Ev , it is easy to see that (3.4) can be equivalently written as

�Hw + Vw =
(
β(β + Q − 2)ρβ−2 + α2ε2ρβ+2ε−2

−αε (2β + ε + Q − 2) ρβ+ε−2
)
e−αρε

ψv

+
(
2βρβ−1 − 2εαρβ+ε−1

)
e−αρε

(
Zv

ρ
ψ + Ev

)
+ ρβe−αρε

�Hv

+ ρβe−αρε

V v. (3.5)

We now use the inequality (a + b)2 ≥ a2 + 2ab, with a = 2βρβ−2e−αρε
ψZv and

b = �Hw + Vw − a, where the expression for �Hw + Vw is given by (3.5), to find
∫

ρ−2αe2αρε

(�Hw + Vw)2ψ−1

≥ 4β2
∫

ρ2β−2α−4ψ(Zv)2 + 4β2(β + Q − 2)
∫

ρ2β−2α−4ψvZv

+ 4α2βε2
∫

ρ2β−2α−4+2εψvZv − 4αβε(2β + ε + Q − 2)
∫

ρ2β−2α−4+εψvZv

− 8αβε

∫
ρ2β−2α−4+εψ(Zv)2 + 8β

∫ (
βρ2β−2α−3 − εαρ2β−2α−3+ε

)
EvZv

+ 4β
∫

ρ2β−2α−2�Hv Zv + 4β
∫

ρ2β−2α−2V vZv

= I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8. (3.6)

We now estimate each of the integrals individually. In order to estimate the I2, I3 and
I4, first note that (2.14) and (ii) in Lemma 2.7 gives

div(ρ−lψv2Z) = ψv2 div(ρ−l Z) + ρ−l Z(ψv2) = (Q − l)ρ−lψv2 + ρ−lψZ(v2),

(3.7)

Also, supp(u) ⊂ (BR \ {e}) Hence, (3.7) gives
∫

ρ−lψZ(v2) = −(Q − l)
∫

ρ−lψv2. (3.8)

Thus using 2vZv = Z(v2) and (3.8), I2 becomes

4β2(β + Q − 2)
∫

ρ2β−2α−4ψvZv = 2β2(β + Q − 2)
∫

ρ2β−2α−4ψZ(v2)

= −2β2(β + Q − 2)(Q + 2β − 2α − 4)
∫

ρ2β−2α−4ψv2. (3.9)

Observe that in order to equate I2 to zero, we need the following relation between α

and β

2β − 2α − 4 + Q = 0. (3.10)
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Hence

I2 = 0. (3.11)

Again using 2vZv = Z(v2), (3.8) and (3.10) we get

I3 + I4 = −4α2βε3
∫

ρ−Q+2εψv2 + 2αβε2(2β + ε + Q − 2)
∫

ρ−Q+εψv2.

(3.12)

We now estimate the integral I6. First note that using the relation (3.10) and ρε ≤
Rε
0 < 1, we find

|I6| = 8β

∣∣∣∣
∫ (

βρ2β−2α−3 − εαρ2β−2α−3+ε
)
EvZv

∣∣∣∣

≤ 8β(β + εα)

∫
ρ−Q+1|Zv||Ev|. (3.13)

In order to simplify (3.13) we make use of the assumption (2.16) on discrepency. Now
since E f (ρ) = 0, we get

Ev = ρ−βeαρε

Ew. (3.14)

Consequently, using (3.14), (2.16) and recalling v = ρ−βeαρε
w, we deduce from

(3.13)

|I6| ≤ 8β(β + εα)CE

∫
ρ−Q+δ|Zv||v|ψ. (3.15)

From (3.10), it is easy to see that forα > Q−4,we have 2β > α.Also, we have ε < 1.
Therefore we get 8β(β + εα) ≤ 24β2. Subsequently, we apply Young’s equality in
(3.15) to find

|I6| ≤ 24β2CE

∫
ρ−Q+δ|Zv||v|ψ ≤ 12β2CE

∫
ρ−Q+δ|Zv|2ψ

+ 12β2CE

∫
ρ−Q+δ|v|2ψ.

Thus, we obtain

I6 ≥ −12β2CE

∫
ρ−Q+δ|Zv|2ψ − 12β2CE

∫
ρ−Q+δ|v|2ψ. (3.16)

Next, we simplify I7. Note that from (3.10), we have

I7 = 4β
∫

ρ2β−2α−2Zv �Hv = 4β
∫

ρ−Q+2Zv �Hv. (3.17)
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We now apply the Rellich type identity (2.24) to the vector field F = ρ−Q+2Z . Also,
note that since v is compactly supported in (BR \ {e}), the boundary terms become
zero. Therefore, (3.17) becomes

4β
∫

ρ−Q+2Zv �Hv = 2β
∫

div(ρ−Q+2Z)|∇Hv|2

− 4β
m∑

i=1

∫
Xiv[Xi , ρ

−Q+2Z ]v. (3.18)

To simplify integrals in right-hand side of (3.18), recall that from (ii) of Lemma 2.7
we have

div(ρ−Q+2Z) = 2ρ−Q+2 (3.19)

and using (i) of Lemma 2.7, it is easy to obtain

[Xi , ρ
−Q+2Z ]v = ρ−Q+2[Xi , Z ]v + Xi (ρ

−Q+2)Zv

= ρ−Q+2Xiv + (2 − Q)ρ−Q+1Xiρ Zv. (3.20)

Consequently, using (3.19) and (3.20) in (3.18) we find

4β
∫

ρ−Q+2Zv �Hv = 4β
∫

ρ−Q+2|∇Hv|2 − 4β
∫

ρ−Q+2|Xiv|2

+ 4β(Q − 2)
∫

ρ−Q+1XiρXiv Zv. (3.21)

Since |∇Hv|2 = ∑m
i=1 |Xiv|2 and {X1, X2, . . . , Xm} is an orthonormal set, we can

rewrite (3.21) as follows

4β
∫

ρ−Q+2Zv �Hv = 4β(Q − 2)
∫

ρ−Q+1〈∇Hv, ∇Hρ〉Zv. (3.22)

Now, we use the definition (2.15) for Ev in (3.22) to get

4β
∫

ρ−Q+2Zv �Hv = 4β(Q − 2)
∫

ρ−Q+1
(
Ev + Zv

ρ
ψ

)
Zv

= 4β(Q − 2)
∫

ρ−Q+1EvZv + 4β(Q − 2)
∫

ρ−Qψ(Zv)2.

(3.23)

We now use (3.14) and (2.16) in first integral of right-hand side of (3.23) to obtain
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4β
∫

ρ−Q+2Zv �Hv ≥ −4β(Q − 2)CE

∫
ρ−Q+δ|v||Zv|ψ

+ 4β(Q − 2)
∫

ρ−Qψ(Zv)2.

Subsequently we apply Young’s inequality to get

4β
∫

ρ−Q+2Zv �Hv

≥ −2β(Q − 2)CE

∫
ρ−Q+δψ |v|2 − 2β(Q − 2)CE

∫
ρ−Q+δψ(Zv)2

+ 4β(Q − 2)
∫

ρ−Qψ(Zv)2. (3.24)

We now choose R0 small enough such that CE Rδ
0 ≤ 1, consequently, CEρδ < 1.

Hence (3.24) becomes

4β
∫

ρ−Q+2Zv �Hv ≥ −2β(Q − 2)CE

∫
ρ−Q+δψv2 − 2β(Q − 2)

∫
ρ−Qψ(Zv)2 + 4β(Q − 2)

∫
ρ−Qψ(Zv)2

≥ −2β(Q − 2)CE

∫
ρ−Q+δψv2 + 2β(Q − 2)

∫
ρ−Qψ(Zv)2

≥ −2β(Q − 2)CE

∫
ρ−Q+δψv2, (3.25)

where the last inequality is a consequence of the fact that Q ≥ 2.
We now simplify I8. We use the assumption (2.17) followed by Young’s inequality
(2AB ≤ A2 + B2) with A = Kv and B = βZv to get

|I8| ≤ 4β
∫

ρ2β−2α−2|V ||v||Zv| ≤ 4βK
∫

ρ2β−2α−2ψ |v||Zv| ≤ 2K 2

∫
ρ2β−2α−2ψv2 + 2β2

∫
ρ2β−2α−2ψ |Zv|2. (3.26)

Subsequently, we use the (3.10) to find

I8 ≥ −2K 2
∫

ρ−Q+2ψv2 − 2β2
∫

ρ−Q+2ψ |Zv|2. (3.27)

Therefore using (3.11), (3.12), (3.16), (3.25), (3.27), (3.10) and (3.6), for α > Q and
R0 small enough we have we obtain
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∫
ρ−2αe2αρε

(�Hw + Vw)2ψ−1

≥ 4β2
∫

ρ−Q |Zv|2ψ − 4α2βε3
∫

ρ−Q+2εψv2 + 2αβε2(2β + ε + Q − 2)
∫

ρ−Q+εψv2

− 8αβε

∫
ρ−Q+ε(Zv)2ψ − 12β2CE

∫
ρ−Q+δ |Zv|2ψ − 12β2CE

∫
ρ−Q+δ |v|2ψ

− 2β(Q − 2)CE

∫
ρ−Q+δψv2 − 2K 2

∫
ρ−Q+2ψv2 − 2β2

∫
ρ−Q+2ψ |Zv|2. (3.28)

Now we use ε < 1, 2α > β, 2β > α, which are consequences of (3.10) and α > Q
respectively, and rearrange the terms in right-hand side of (3.28) to get

∫
ρ−2αe2αρε

(�Hw + Vw)2ψ−1

≥ 4β2
∫

ρ−Q(Zv)2ψ − 16β2
∫

ρ−Q+ε(Zv)2ψ − 12β2CE

∫
ρ−Q+δ |Zv|2ψ

− 2β2
∫

ρ−Q+2ψ |Zv|2 + 2β3ε2
∫

ρ−Q+εψv2 − 16β3
∫

ρ−Q+2εψv2

− 12β2CE

∫
ρ−Q+δ |v|2ψ − 4β2CE

∫
ρ−Q+δψv2 − 2K 2

∫
ρ−Q+2ψv2 (3.29)

At this pointwewould like tomake the crucial observation that−16β2CE
∫

ρ−Q+δψv2

can be absorbed in the term 2β3ε2
∫

ρ−Q+εψv2 provided that ε < δ and R0 is chosen
small enough. Thus we now choose ε = δ

2 and R0 small enough such that

(18 + 12CE )Rδ/2
0 < 1 and (16 + 16CE )Rδ/2

0 < ε2 (3.30)

therefore we find

4β2
∫

ρ−Q(Zv)2ψ − (16 + 12CE + 2)β2Rδ/2
0

∫
ρ−Q(Zv)2ψ ≥ 3β2

∫
ρ−Q(Zv)2ψ (3.31)

and

2β3ε2
∫

ρ−Q+εψv2 − (16 + 12CE + 4CE )β3Rδ/2
0

∫
ρ−Q+εψv2 ≥ β3ε2

∫
ρ−Q+εψv2. (3.32)

Hence using (3.31) and (3.32) in (3.29), we obtain
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∫
ρ−2αe2αρε

(�Hw + Vw)2ψ−1 ≥ 3β2
∫

ρ−Q(Zv)2ψ + β3ε2

∫
ρ−Q+εψv2 − 2K 2

∫
ρ−Q+2ψv2. (3.33)

Subsequently, if we choose

α >
2

ε2/3
K 2/3 + Q

then from (3.10), we get β3ε2 ≥ 8K 2. Hence (3.33) becomes

∫
ρ−2αe2αρε

(�Hw + Vw)2ψ−1 ≥ α3ε2

16

∫
ρ−Q+εψv2. (3.34)

We now substitute v = ρ−βeαρε
w and use (3.10) to get the desired estimate (2.18).

This completes the proof of Theorem 2.1. ��
Proof of Theorem 2.2 We adapt arguments from [6, 9]. For a given R1 < R2, AR1,R2

will denote the annulus BR2 \ BR1 . We will denote an all purpose constant by letter C
which might vary from line to line, and will depend only on CE , Q and δ. Let R0 be
as in the Theorem 2.1 and let 0 < R1 < 2R1 < R2 = R0/4. Also, we take a radial
function φ ∈ C∞

0 (B2R2), i.e., φ(g) = f (ρ(g)) for some f , such that

{
φ ≡ 0 if ρ < R1 and ρ > 2R2

φ ≡ 1 in A2R1,R2

(3.35)

and in the region AR1,2R1 ∪ AR2,2R2 , the following bounds hold,

|∇Hφ(g)| ≤ Cψ1/2

ρ(g)
, |�Hφ(g)| ≤ Cψ

ρ(g)2
. (3.36)

Note that we can assume that

||uψ1/2||L2(BR2 ) �= 0. (3.37)

Otherwise by the arguments that follow we could conclude u ≡ 0 in BR0 , which is
a contradiction to the assumption that u is a non-trivial solution to (2.19). Since u
satisfies −�Hu = Vu, w = uφ satisfies

�Hw + Vw = u�Hφ + 2〈∇Hφ,∇Hu〉. (3.38)

As ρ(g) ≥ R1, we use (3.36) to obtain

(�Hw + Vw)2 ≤ 2(u�Hφ)2 + 8|∇Hφ|2|∇Hu|2 ≤ C1ψ
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for some C1 > 0. Since φ is radial, we have Eφ = 0 and consequently we get
Ew = φEu . Also since 0 ≤ φ ≤ 1, using (2.20) we find that Ew satisfies (2.16) and
moreover by a standard limiting argument via approximation with smooth functions,
we can apply the Carleman estimate in (2.18) to w. We thus obtain

α3
∫

ρ−2α−4+εe2αρε

u2φ2ψ ≤ C
∫

ρ−2αe2αρε

(u�Hφ + 2〈∇Hφ,∇Hu〉)2ψ−1.

(3.39)

Now we use the inequality (a + b)2 ≤ 2a2 + 2b2 and Cauchy-Schwarz inequality in
the right-hand side of (3.39) to obtain

α3
∫

ρ−2α−4+εe2αρε

u2φ2ψ ≤ 2C
∫

ρ−2αe2αρε

(u2(�Hφ)2ψ−1

+ |∇Hu|2|∇Hφ|2ψ−1). (3.40)

For convenience, we will denote L2 norm of f in BR and AR1,R2 by || f ||R and
|| f ||R1,R2 respectively. Note that from (3.35), the functions ∇Hφ and �Hφ are sup-
ported in AR1,2R1 ∪ AR2,2R2 . Further using (3.35) and (3.36) in (3.40), there exists a
universal constant C such that

α3/2||ρ−α−2+ε/2eαρε

uψ1/2||2R1,R2

≤ C
(
||ρ−α−2eαρε

uψ1/2||R1,2R1 + ||ρ−α−2eαρε

uψ1/2||R2,2R2

)

+ C
(
R1||ρ−α−2eαρε |∇Hu|||R1,2R1 + R2||ρ−α−2eαρε |∇Hu|||R2,2R2

)
. (3.41)

We observe that the functions

r → r−α−2+ε/2eαrε

, r → r−α−2eαrε

are decreasing in (0, 1), therefore (3.41) gives

α3/2R−α−2+ε/2
2 eαRε

2 ||uψ1/2||2R1,R2

≤ C
(
R−α−2
1 eαRε

1 ||uψ1/2||R1,2R1 + R−α−2
2 eαRε

2 ||uψ1/2||R2,2R2

)

+ C
(
R1R

−α−2
1 eαRε

1 |||∇Hu|||R1,2R1 + R2R
−α−2
2 eαRε

2 |||∇Hu|||R2,2R2

)
.

(3.42)

From the Caccioppoli estimate in Lemma 2.9, we have

{
R1|||∇Hu|||R1,2R1 ≤ C(1 + K 1/2)||uψ1/2||4R1,

R2|||∇Hu|||R2,2R2 ≤ C(1 + K 1/2)||uψ1/2||R0 .
(3.43)
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We now use (3.43) in (3.42) and with possibly some large universal constant C, get

α3/2R−α−2+ε/2
2 eαRε

2 ||uψ1/2||2R1,R2

≤ C
(
R−α−2
1 eαRε

1 ||uψ1/2||R1,2R1 + R−α−2
2 eαRε

2 ||uψ1/2||R2,2R2

+ R−α−2
1 eαRε

1 (1 + K 1/2)||uψ1/2||4R1 + R−α−2
2 eαRε

2 (1 + K 1/2)||uψ1/2||R0

)
.

(3.44)

At this point, we can repeat the arguments as in the proof of Theorem 1.3 in [9] to get
to the desired conclusion. ��
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