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a b s t r a c t 

Theoretical understanding of Plug-and-Play (PnP) algorithms, where an off-the-shelf denoiser is used for 

image regularization, is an active research topic. In this work, we study the problems of exact and sta- 

ble signal recovery from compressively sensed (CS) measurements using PnP algorithms. We focus on a 

class of linear denoisers for which it is possible to associate a convex regularizer �. We consider the 

CS problem of minimizing �( x ) subject to A x = A ξ, where A is the random sensing matrix and ξ is the 

ground truth. We prove that if A is Gaussian and ξ lies in the range of the associated denoiser W , then 

the minimizer is almost surely ξ if rank (W ) is less than the number of measurements and almost never 

otherwise. We extend the result to subgaussian matrices, except that we can guarantee exact recovery 

only with high probability. For noisy measurements, we consider a robust analogue of the recovery prob- 

lem and prove that the error between the recovered and the ground-truth signal is bounded by the noise 

strength. In particular, we derive the sample complexity of CS as a function of reconstruction error and 

success rate. We perform numerical experiments to validate our theoretical findings. 

© 2023 Elsevier B.V. All rights reserved. 
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. Introduction 

Linear inverse problems such as deblurring, superresolution, 

nd compressed sensing come up in image recovery applications 

rom partial or corrupted measurements [1,2] . The abstract prob- 

em is that we are given measurements b ∈ R 

m of the form 

 = A ξ + η, (1) 

here ξ ∈ R 

n is the ground-truth image, η is white Gaussian noise, 

nd A ∈ R 

m ×n is the application-specific forward model. The ob- 

ective is to recover ξ from b and A . This problem is ill-posed 

s stated; hence the need for regularization [3] . The standard ap- 

roach is to pose the recovery task as an optimization problem: 

inimize 
x ∈ R n f ( x ) + λ�( x ) , (2) 

here f ( x ) := ‖ A x − b ‖ 2 / 2 is the loss function, � : R 

n → R is

ome regularizer and λ > 0 is a tuning parameter. Note that ‖ ·‖ 
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s used to denote the Euclidean norm. If � is convex, (2) can 

e solved using iterative algorithms such as ISTA and ADMM [4] . 

hese algorithms require that the proximal map of �, 

rox � ( u ) := 

argmin 
x ∈ R n 

1 

2 

‖ 

x − u ‖ 

2 + �( x ) , (3) 

an be computed efficiently (in closed form or iteratively). For ex- 

mple, the ISTA update x k → x k +1 is given by 

 k +1 = prox τ�

(
x k − τ∇f ( x k ) 

)
, 

here τ > 0 is a constant step size. From a Bayesian viewpoint, 

rox �( u ) performs denoising of u , where the prior on the recon- 

truction x is derived from � [3] . Motivated by this observation, 

lug-and-Play (PnP) regularization was proposed in [5,6] . In PnP, 

he proximal map within ISTA or ADMM is replaced by a power- 

ul Gaussian denoiser D : R 

n → R 

n , such as NLM [7] , BM3D [8] , etc.

or example, applied to ISTA, the PnP update x k → x k +1 becomes 

 k +1 = D 

(
x k − τ∇ f ( x k ) 

)
. (4) 

he updates for ADMM are more involved than ISTA, and we refer 

he reader to [4] for details. 

The core idea in PnP is to directly deploy the denoiser instead 

f having to specify � and go through its proximal map. Although 

his is somewhat ad hoc, remarkably, PnP has been shown to work 
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ell in practice for many imaging applications [6,9–11] . Follow- 

ng the empirical success of PnP, its theoretical aspects have been 

nvestigated in several works; see for example [12,13] and refer- 

nces therein. A fundamental question is, can PnP be interpreted 

s a regularization mechanism? This translates to whether the de- 

oiser in PnP can be expressed as the proximal map of a (convex) 

unction. This is unlikely to be true for nonlinear denoisers such 

s DnCNN and BM3D. On the other hand, it is shown in a series

f papers that an explicit convex regularizer � can be associated 

ith specific linear denoisers [6,14–17] . In particular, the following 

s a restatement of [14, Theorem 2] . 

heorem 1.1. Let D be a linear operator of the form D ( x ) = W x ,

here W ∈ R 

n ×n is symmetric and has eigenvalues in [0,1]. Then D 

s the proximal map of the following (extended-real-valued) convex 

unction: 

W 

( x ) := 

{
1 
2 

x � (I − W ) W 

† x , if x ∈ R (W ) , 
+ ∞ , otherwise , 

(5) 

here R (W ) denotes the range of W and W 

† is the pseudoinverse of

 . 

We note that the expression of �W 

in [14] , which is given us- 

ng a condensed eigenvalue decomposition of W , can be shown to 

e equivalent to (5) . By Theorem 1.1 , we can associate the reg-

larizer �W 

with W . Subsequently, it is not difficult to estab- 

ish the convergence of PnP [6,16,18] . For example, if ( x k ) is the

equence generated by (4) , where D is the linear denoiser W , 

hen f ( x k ) + λ�W 

( x k ) converges to the minimum of f + λ�W 

[17] .

ractical denoisers satisfying the condition in Theorem 1.1 include 

SG-NLM [6] , GMM [14] and GLIDE [19] . 

The next natural question is how strong is the prior induced by 

W 

, i.e., how well can it capture the characteristics of the ground- 

ruth image? We turn to the theory of compressed sensing (CS) to 

nswer this question. A classical result in CS theory states that if 

 is a random Gaussian matrix and if the ground-truth ξ is sparse, 

hen ξ can be recovered approximately with high probability using 

 1 minimization [2,20] , i.e., by solving the problem 

inimize ‖ x ‖ 1 

ubject to ‖ A x − b ‖ � δ. 

n particular, if η = 0 (clean measurements), then with high prob- 

bility ξ can be recovered exactly by solving 

minimize ‖ x ‖ 1 

subject to A x = A ξ. 
(6) 

n this work, we explore whether similar guarantees can be ob- 

ained for compressed sensing using PnP. More specifically, we ask 

he following questions. 

i) Exact Recovery : Consider the analogue of (6) using the PnP 

regularizer �W 

: 

minimize �W 

( x ) 

suject to A x = A ξ. 

Using (5) , we can rewrite the above problem as follows: 

minimize x � (I − W ) W 

† x 
subject to A x = A ξ, x ∈ R (W ) . 

( P 0 ) 

Is ξ the unique minimizer of this problem? Since we work with 

a random A , any such guarantee will be probabilistic. 

ii) Robust Recovery : Consider the general problem of recovery in 

the presence of measurement noise: 

minimize x � (I − W ) W 

† x 

subject to ‖ 

A x − b ‖ 

2 � δ2 , x ∈ R (W ) . 
( P δ ) 
2 
Let x ∗ be a minimizer of ( P δ). If η (measurement noise) is small, 

can we guarantee that the error 
∥∥x ∗ − ξ

∥∥ is small? Further- 

more, can we bound 

∥∥x ∗ − ξ
∥∥ in terms of η? 

A natural question is why do we switch from the unconstrained 

roblem (2) to the constrained formulations ( P 0 ) and ( P δ)? The 

eason is that the hard constraints in ( P 0 ) and ( P δ) make the the-

retical analysis more tractable than the unconstrained problem 

2) , where the regularizer �W 

imposes only a soft penalty. This 

s indeed inspired by the classical CS theory [2,20] , where the 

ame trick is used for simplifying the analysis. Moreover, it is ev- 

dent that the exact recovery is improbable to achieve in the un- 

onstrained case (even in the absence of noise) because �W 

is a 

moothly varying function. Subsequently, investigating the possibil- 

ty of exact recovery necessitates switching to the constrained for- 

ulation. We also note that (2) and ( P δ) are equivalent for appro- 

riate choices of δ and λ [21] . On the algorithmic side, the ques- 

ion is whether ( P δ) can be solved as in classical PnP [6] , namely,

y plugging denoiser D into some suitable proximal algorithm? As 

hown in [22] , this can indeed be done within the framework of 

he ADMM algorithm. 

We expect that exploring the above questions will help us un- 

erstand why PnP works well in practice. Recent works such as 

9,13] have successfully used PnP for reconstructing images from 

ompressively sensed measurements, albeit using nonlinear de- 

oisers. Linear symmetric denoisers of the form in Theorem 1.1 are 

ell suited to explore questions in this area since they induce a 

onvex regularizer that can be expressed using an explicit formula. 

n fact, this property is known to be true so far only for linear de-

oisers [16,17] . The linearity of W coupled with the convexity of 

W 

in Theorem 1.1 makes the problem tractable. 

In this paper, we provide probabilistic guarantees on exact and 

obust compressed sensing recovery that address the questions 

osed above. We focus on the case where A is a random Gaus- 

ian or Rademacher matrix. In the Gaussian case, we prove that it 

s improbable to achieve exact recovery if the rank of W is greater 

han m ( Theorem 2.1 ). This leads us to consider low-rank denoisers 

uch as the GLIDE filter [19] . We prove that for low-rank denois- 

rs, exact recovery is achieved with probability 1 if A is Gaussian 

nd m ≥ rank (W ) ( Theorem 2.3 ), and with high probability, if A

s Rademacher and m ≥ O ( rank (W )) ( Theorem 2.5 ). Furthermore, 

e prove that robust recovery is possible with high probability for 

oth Gaussian and Rademacher A ( Theorem 2.6 ). In particular, we 

btain the sample complexity of robust compressed sensing as a 

unction of distortion error and success rate. We briefly discuss 

 possible extension of our results to randomized sensing matri- 

es in bounded orthonormal systems, such as discrete Fourier or 

adamard projections ( Section 5.2 ). Our analysis is inspired by the 

lassical CS theory; therefore, most of our probabilistic guarantees 

ear resemblance to analogous classical CS results on exact and ro- 

ust recovery. To the best of our knowledge, this is the first work 

o provide a connection between classical CS results and CS using 

nP. We note that a preliminary version of this work appears in a 

onference proceeding [23] , where the focus is mainly on empirical 

bservations. 

Throughout this paper, unless specified otherwise, W denotes a 

n × n ) symmetric matrix with eigenvalues in [0,1], i.e., W is a lin-

ar denoiser satisfying the conditions in Theorem 1.1 . We consider 

ymmetric denoisers in this paper just to keep the exposition sim- 

le. Note that all our results can be extended to the case where W

s a non-symmetric denoiser such as a kernel filter [24] ; see dis- 

ussion in Section 5.6 in this regard. 

We state and discuss the main results in Section 2 . Proofs of 

hese results are deferred to Section 3 and their numerical valida- 

ion to Section 4 . In Section 5 , we relate our work to existing com-
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ressed sensing literature, as well as discuss some implications and 

uture research directions arising from our work. 

. Exact and robust recovery 

In this section, we formally state and discuss our results on 

xact and robust recovery. The technical proofs are deferred to 

ection 3 . We first focus on the case where A is a (m × n ) ran-

om sensing matrix. In particular, if the entries of A are i.i.d. Gaus- 

ian with mean 0 and variance 1 /m , then we refer to A as a

andom Gaussian matrix [25] . First, we state an improbability re- 

ult which implies that exact recovery is improbable from random 

aussian measurements if the number of measurements are less 

han rank (W ) and ξ is not a fixed point of W (i.e., W ξ 
 = ξ). In the

ollowing theorem and thereafter, N (·) denotes the null space of a 

atrix. 

heorem 2.1. Let A be a (m × n ) random Gaussian matrix and W be

statistically) independent of A . Let ξ be a feasible point of ( P 0 ), i.e.,

∈ R (W ) . If m < rank (W ) and ξ / ∈ N (I − W ) , then with probability

, ξ is not a minimizer of ( P 0 ). 

The theorem can be interpreted as follows: if the rank of W is 

arge, then unless ξ ∈ N (I − W ) , we can never recover ξ even if ξ
s a feasible point of ( P 0 ). An interesting case is when W is doubly-

tochastic and irreducible; for example, DSG-NLM [6, Appendix B] . 

or such matrices, the Perron-Frobenius theorem implies that 

 (I − W ) = { α1 : α ∈ R } [24] . It follows from Theorem 2.1 that we

an almost never achieve exact recovery except for the uninterest- 

ng case where ξ = α1 for some α ∈ R ; i.e., ξ is a constant signal. 

orollary 2.2. If A is a random Gaussian matrix, W is doubly- 

tochastic and irreducible, and ξ is not a constant signal, then the 

robability that ξ is a solution of ( P 0 ) is 0. 

In the light of Theorem 2.1 , we focus on low-rank denoisers. 

s an example, consider the GLIDE filter [19] . This is a symmetric 

enoiser that satisfies the conditions in Theorem 1.1 and whose 

ank is user-configurable. Importantly, as discussed in [19] , GLIDE 

s able to achieve denoising quality comparable to NLM [7] and 

M3D [8] while having very low rank, e.g. a rank of 50 when the 

mage size is 150 × 150 [19] . 

The following theorem states that if ξ is a feasible point of ( P 0 ), 

hen exact recovery can be achieved almost surely from sufficiently 

any random Gaussian measurements. 

heorem 2.3. Let A be a (m × n ) random Gaussian matrix, and W be

statistically) independent of A . If m ≥ rank (W ) and ξ ∈ R (W ) , then

is the unique minimizer of ( P 0 ) with probability 1. 

Theorem 2.3 implies that more measurements are required for 

xact recovery if W has a large rank. Since the essence of com- 

ressed sensing is to work with fewer measurements, we should 

hus use a low-rank denoiser. On the other hand, reducing the rank 

f W shrinks the space of recoverable signals since ξ is required to 

ie in R (W ) . Thus, choosing the rank of the denoiser involves a

rade-off between the number of measurements and the space of 

xactly recoverable signals. 

The proof of Theorem 2.3 does not use any property of the 

aussian distribution other than absolute continuity (i.e., it ad- 

its a density function). Therefore, Theorem 2.3 holds for any 

andom sensing matrix A whose entries are independent contin- 

ous random variables. Theorems 2.1 and 2.3 together imply that 

f ξ ∈ R (W ) , then we obtain exact recovery from random Gaussian 

easurements with probability 1 if m ≥ rank (W ) and with proba- 

ility 0 if m < rank (W ) . 

Note that for random subgaussian sensing matrices, 

heorem 2.3 is not necessarily applicable because subgaussian 
3 
andom variables need not be continuous. A random variable X

s said to be subgaussian if Prob 
[| X| > α

]
� 2 e −cα2 

for some con-

tant c > 0 and all α > 0 [25] ; examples of subgaussian random

ariables are given in [25, Sec. 2.5] . Note that in particular, the 

ademacher distribution, 

rob 

[
X = 1 

]
= Prob 

[
X = −1 

]
= 1 / 2 , 

nd the Gaussian distribution are both subgaussian. A (m × n ) ran- 

om matrix A is said to be subgaussian if its entries are i.i.d. sub- 

aussian random variables with mean 0 and variance 1 /m . How- 

ver, in this paper, unless specified otherwise, we restrict the term 

subgaussian” to specifically mean either Gaussian or Rademacher 

istributions. The following property of subgaussian matrices can 

e found in [26,27] . 

emma 2.4. Let A be a (m × n ) random subgaussian matrix. Then 

here exists a function γ : (0 , 1) → R + such that for any x ∈ R 

n that

s independent of A , 

rob 

[ 
(1 − ε) ‖ 

x ‖ 

2 � ‖ 

A x ‖ 

2 � (1 + ε) ‖ 

x ‖ 

2 
] 

� 1 − 2 e −mγ (ε) 

or all ε ∈ (0 , 1) . 

More specifically, γ (ε) := ε2 / 6 if A is Gaussian [28, 

emma 23.3] , and γ (ε) := ε2 / 4 − ε3 / 6 if A is Rademacher [29,

emma 4] . Thus, for random subgaussian matrices, γ is continuous 

nd strictly increasing. The following theorem gives a probabilistic 

uarantee of exact recovery for subgaussian sensing matrices. 

heorem 2.5. Let A be a (m × n ) random subgaussian matrix, W be

ndependent of A , and ξ ∈ R (W ) . For β ∈ (0 , 1) , suppose 

 � 

ln (2 /β) + r ln (12 / 0 . 99) 

γ (0 . 99 / 2) 
, (7) 

here r = rank (W ) and γ is the function in Lemma 2.4 . Then with

robability at least 1 − β , ξ is the unique minimizer of ( P 0 ). 

For the robust recovery problem ( P δ) with A as a random sub- 

aussian matrix, the following theorem gives a probabilistic bound 

n ‖ x ∗ − ξ‖ , where x ∗ is a minimizer of ( P δ). 

heorem 2.6. Let A be a (m × n ) random subgaussian matrix, and 

 be independent of A . For ε, β ∈ (0 , 1) , suppose 

 � 

ln (4 /β) + r ln (12 /ε) 

γ (ε/ 2) 
, (8) 

here r = rank (W ) and γ is the function in Lemma 2.4 . Then with

robability at least 1 − β , 

x ∗ − ξ
∥∥ � 

(
1 + 

2 

1 − ε

)
dist 

(
ξ, R (W ) 

)
+ 

δ + ‖ η‖ 

1 − ε
, (9) 

here dist 
(
ξ, R (W ) 

)
is the distance of ξ from R (W ) . 

For the Gaussian case in particular, the lower bound in (8) re- 

uces to O 

(
ε−2 r ln (1 /ε) 

)
. Theorem 2.6 involves a trade-off be- 

ween the lower bound on m and the upper bound on the recov- 

ry error. For a fixed denoiser W and probability 1 − β , the lower 

ound in (8) decreases from + ∞ to a finite value as ε increases 

rom 0 to 1; this is because γ (ε) → 0 as ε → 0 for both Gaussian

nd Rademacher matrices. On the other hand, the upper bound in 

9) increases to + ∞ as ε increases from 0 to 1. Note that β can

e interpreted as the failure rate of robust recovery, whereas ε
s a parameter that controls the recovery accuracy. According to 

heorem 2.6 , we need more measurements for accurate recovery 

ith high success rate; this is consistent with intuition. 

Since n � m , the condition given by (8) is fulfilled provided the 

ower bound is at most n . In Appendix A.2 , we explain that if

 > ( ln 4 + r ln 12) /γ (1 / 2) , then (8) is satisfied for (β, ε) belong-

ng to an appropriate subset of (0 , 1) × (0 , 1) ; see Proposition A.1 .
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ubsequently, Theorem 2.6 is applicable for large-sized signals such 

s images. A similar observation applies to Theorem 2.5 . 

emark 2.7. Note that Lemma 2.4 holds for random subgaussian 

atrices which are neither Gaussian nor Rademacher, with the dif- 

erence being that ε is allowed to take values in (0 , 1 / 2] ; see [27,

heorem 3.1] . Subsequently, Theorems 2.5 and 2.6 have counter- 

arts for other types of subgaussian matrices. 

. Proofs of main results 

In this section, we give the proofs of theorems in Section 2 . 

e denote the set of (n × n ) symmetric, positive semidefinite ma- 

rices by S 
n + . Note that from the properties of W stipulated in 

heorem 1.1 , we get that W , (I − W ) W and (I − W ) W 

† belong to

 

n + ; these facts are used in some of the proofs. A few of the proofs

equire some results from high-dimensional probability, which are 

ncluded in Appendix A.1 . 

.1. Proof of theorem 2.1 

roof. Consider the following convex program: 

minimize �( y ) := ( y + ξ) � (I − W ) W 

† ( y + ξ) 
subject to y ∈ R (W ) ∩ N (A ) . 

(10) 

otice that as ξ ∈ R (W ) , ξ is a solution of ( P 0 ) if and only if 0

s a solution of (10) . Using the optimality condition for a convex 

rogram, 0 is a solution of (10) if and only if ∇�(0 ) � ( y − 0 ) � 0

or all y ∈ R (W ) ∩ N (A ) ; in other words, the equivalent condition

s 

(I − W ) W 

† ξ
)

� y � 0 ∀ y ∈ R (W ) ∩ N (A ) . 

ote that R (W ) ∩ N (A ) = 

(
N (W ) + R (A 

� ) 
)⊥ . As a result, 0 is a

olution of (10) if and only if 

I − W ) W 

† ξ ∈ 

(
N (W ) + R (A 

� ) 
)
. (11)

Let q := (I − W ) W 

† ξ; now, we show that q 
 = 0 . Suppose ξ ∈
 

(
(I − W ) W 

† 
)
. Note that 

 

(
(I − W ) W 

† 
)

= N (I − W ) � N (W 

† ) ;
oreover, since W ∈ S 

n + , we have N (W 

† ) = N (W ) . Thus, there ex-

st unique v 1 ∈ N (I − W ) and v 2 ∈ N (W ) such that ξ = v 1 + v 2 .
ow, since ξ ∈ R (W ) , note that v 2 = ( ξ − v 1 ) ∈ R (W ) ∩ N (W ) =
 0 } . Therefore, ξ = v 1 ∈ N (I − W ) , which is a contradiction. 

Let rank (W ) = r � n and { u r+1 , . . . , u n } be a basis of N (W ) . Let

 1 , . . . , a m 

be the columns of A 

� . Now, we can rewrite (11) as fol-

ows: 

 ∈ span ( u r+1 , . . . , u n ) + span ( a 1 , . . . , a m 

) . (12) 

otice that to prove the theorem, it suffices to show that 

12) holds with probability 0. It follows from the eigendecompo- 

ition of W ∈ S 
n + that R 

(
(I − W ) W 

† 
)

⊆ R (W ) . Subsequently, q =
I − W ) W 

† ξ ∈ R (W ) = N (W ) ⊥ . Therefore, q , u r+1 , . . . , u n are lin-

arly independent. Moreover, since m + 1 � r, the cardinality of the 

et { q , u r+1 , . . . , u n , a 1 , . . . , a m 

} is at most n . Since a 1 , . . . , a m 

are in-

ependent Gaussian random vectors, using Lemma A.1 , the proba- 

ility that q , u r+1 , . . . , u n , a 1 , . . . , a m 

are linearly dependent is 0. �

.2. Proof of theorem 2.3 

roof. It follows from ( P 0 ) that if A | R (W ) is injective and ξ ∈ R (W ) ,

hen ξ is the only feasible point of ( P 0 ); thus, it is the unique

inimizer [23, Theorem 3] . Therefore, it suffices to show that if 
4 
 � R (W ) , then the restriction of a (m × n ) random Gaussian ma-

rix A to R (W ) is injective with probability 1. 

Let rank (W ) = r and the columns of U ∈ R 

n ×r form of a basis

f R (W ) . Let a 

� 
1 
, . . . , a 

� 
m 

be the rows of A ; note that a 1 , . . . , a m 

re independent Gaussian random vectors. Now, since W is inde- 

endent of A , we have U 

� a 1 , . . . , U 

� a m 

as independent Gaussian 

andom vectors. Subsequently, by Lemma A.1 , U 

� a 1 , . . . , U 

� a r are 

inearly independent with probability 1. Therefore, rank (U 

� A 

� ) = 

ank (AU ) = r with probability 1; in other words, the restriction of 

 to R (W ) is injective with probability 1. �

.3. Proof of theorem 2.5 

roof. Apply Lemma A.2 with U = R (W ) and ε = 0 . 99 . We get

hat with probability at least 

 − 2(12 / 0 . 99) r e −mγ (0 . 99 / 2) � 1 − β, 

e have 

‖ 

A z ‖ 

‖ 

z ‖ 

� 1 − ε > 0 ∀ z ∈ R (W ) \ { 0 } , 
nd therefore, A | R (W ) is injective. Subsequently, the theorem fol- 

ows from the fact that if the restriction of A ∈ R 

m ×n to R (W ) is

njective and ξ ∈ R (W ) , then ξ is the unique feasible point and

inimizer of ( P 0 ). �

.4. Proof of theorem 2.6 

roof. Let ˆ ξ = �R (W ) ( ξ) , where �R (W ) is the orthogonal projec- 

ion onto R (W ) . Note that ( ξ − ˆ ξ) is statistically independent of 

 . Thus, the inequality in Lemma 2.4 implies that with probability 

 1 − 2 e −mγ (ε) , we have 

 A ( ξ − ˆ ξ) ‖ � (1 + ε) ‖ ξ − ˆ ξ‖ � 2 ‖ ξ − ˆ ξ‖ . (13)

rom Lemma A.2 , by letting U = R (W ) , we get that with probabil-

ty � 1 − 2 ( 12 /ε) r e −mγ (ε/ 2) , 

1 − ε) ‖ 

z ‖ 

� ‖ 

A z ‖ 

∀ z ∈ R (W ) . (14) 

sing De Morgan’s laws and the union bound, we get that 

13) and (14) simultaneously hold with probability � 1 −
 ( 12 /ε) r e −mγ (ε/ 2) − 2 e −mγ (ε) . Since r � 1 and γ is an increasing 

unction, 

 

−mγ (ε) � e −mγ (ε/ 2) � ( 12 /ε) 
r e −mγ (ε/ 2) ;

ubsequently, 

 ( 12 /ε) 
r e −mγ (ε/ 2) + 2 e −mγ (ε) � 4 ( 12 /ε) 

r e −mγ (ε/ 2) � β, 

here the last inequality follows from (8) . Therefore, (13) and 

14) simultaneously hold with probability � 1 − β . 

Now, in order to complete the proof, we need to show that if 

13) and (14) hold, then (9) holds. Note that 

x ∗ − ξ
∥∥ � ‖ x ∗ − ˆ ξ‖ + ‖ ̂

 ξ − ξ‖ . (15) 

ince x ∗ is a feasible point of ( P δ), we have ‖ A x ∗ − b ‖ � δ. Further-

ore, since x ∗ − ˆ ξ ∈ R (W ) , using (14) and the triangle inequality, 

e get 

1 − ε) ‖ x ∗ − ˆ ξ‖ � ‖ A x ∗ − A ̂

 ξ‖ 

� ‖ b − A ̂

 ξ‖ + ‖ 

A x ∗ − b ‖ 

� ‖ A ξ + η − A ̂

 ξ‖ + δ

� ‖ A ( ξ − ˆ ξ) ‖ + ‖ η‖ + δ. (16) 
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Fig. 1. Results on exact recovery for a one-dimensional signal from random Gaussian measurements (see the main text for a description of the experiment). In (a), we show 

the ground-truth signal ξ (blue) and the recovered signal x ∗ (red) for m = r = 100 , where r = rank (W ) and ξ ∈ R (W ) . Note that ξ and x ∗ coincide exactly. In (b), we plot 

the empirical probability of exact recovery as a function of m for 4 different values of r. The empirical probability as a function of both m and r is shown in (c) as a color 

plot. Note that for every fixed r, the empirical probability undergoes a sharp transition from 0 to 1 at m = r, as predicted by Theorems 2.1 and 2.3 . (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Table 1 

Theoretical and empirical lower bounds on m for achieving exact recovery with 

probability � 0 . 9 from Rademacher measurements, for different values of r = 

rank (W ) . The theoretical bound is the right side of (7) , and the empirical bound 

is approximately found from the plots in Fig. 3 . 

r 50 100 150 200 

m (Theoretical) 3113 6152 9192 12231 

m (Empirical) 120 190 280 370 
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δ
d

ow, it follows from (13) and (16) that 

 x ∗ − ˆ ξ‖ � 

2 

1 − ε
‖ ξ − ˆ ξ‖ + 

δ + ‖ η‖ 

1 − ε
. (17) 

ince dist 
(
ξ, R (W ) 

)
= ‖ ξ − ˆ ξ‖ , combining (15) and (17) , we obtain

9) . �

. Numerical results 

In this section, we perform numerical simulations to validate 

he theoretical results and study the tightness of the bounds in 

ection 2 . We note that comparing the performance with other re- 

onstruction methods is not our aim here, since PnP methods have 

lready been empirically observed to produce state-of-the-art re- 

ults in several imaging applications [9–11] . Therefore, we solely 

ocus on PnP regularization using linear denoisers; we do not per- 

orm extensive comparisons with competing reconstruction tech- 

iques, or even PnP using nonlinear denoisers for that matter. 

.1. Exact recovery from Gaussian measurements 

We validate Theorems 2.1 and 2.3 in this experiment. We work 

ith one-dimensional signals throughout, with n = 512 . We con- 

ider different W ’s having ranks ranging from 50 to 510 in steps of

0. For constructing W having a specified rank r, we take the best 

ank- r approximation (using SVD) of the DSG-NLM matrix [6] . For 

ach W , we ensure that ξ ∈ R (W ) by applying W to a scan-line

rom a natural image; one such ξ for r = 100 is shown in Fig. 1 (a).

 is taken to be a (m × n ) random Gaussian matrix. We consider

12 different values of m , ranging from 1 to 512. For each m , we

enerate 100 random realizations of A . For each realization, we 

enerate noiseless measurements y = A ξ and record the fraction of 

imes we obtain x ∗ = ξ (exact recovery), where x ∗ is obtained by 

olving ( P 0 ). This is the empirical probability of exact recovery for 

he designated values of r and m . This is plotted in Figs. 1 (b) and

c) for different values of r and m . As asserted in Theorems 2.1 and

.3 , we observe exact recovery with probability 0 when m < r and 

ith probability 1 when m � r; this corroborates the claims in the 

wo theorems. 

.2. Exact recovery from subgaussian measurements 

In this experiment, we compute the empirical probability of ex- 

ct recovery for the case where A is a random Rademacher ma- 

rix, i.e., each A i j takes values ±1 / 
√ 

n with equal probability. For 

his experiment, we fix ξ to be a 64 × 64 image ( n = 4096 ) and

 to be the GLIDE filter [19] . Recall that the rank r of GLIDE is

ser-configurable. Since the image size (and hence the run-time of 
5

he recovery algorithm) is large, we restrict ourselves to 4 differ- 

nt values of r, namely 50 , 100 , 150 , 200 . For each r, we generate

∈ R (W ) by applying W to the Mandril image. As an example, the

mage ξ for r = 200 is shown in Fig. 2 (a). Further, we fix a few

ifferent values of m and perform 100 random trials in which we 

raw a realization of A , set y = A ξ, and obtain x ∗ by solving ( P 0 ).

he solution is obtained by running 400 iterations of the CSALSA 

lgorithm [18] . We assume that exact recovery is achieved if the 

SNR of the image x ∗ with respect to ξ is greater than 80 dB. This 

orresponds to a mean-squared error (MSE) of less than 10 −8 (as- 

uming that the image intensity values are between 0 and 1). Thus, 

or each r and m we record the empirical probability of exact re- 

overy. 

A plot of the empirical probability is shown in Fig. 3 as a func-

ion of m for different values or r. As expected, for a fixed r, the

robability increases as m increases. On the other hand, for a fixed 

alue p ∈ (0 , 1] , the minimum value of m required to obtain ex-

ct recovery with probability at least p increases with r. In Fig. 2 , 

e show an example of the error image | x ∗ − ξ| (on a log scale)

or r = 200 and three different values of m ; here, | x ∗ − ξ| denotes

he component-wise absolute value of x ∗ − ξ. Note that the error 

ecreases as m increases, which is consistent with what we intu- 

tively expect. 

To examine the tightness of the lower bound (7) , we calcu- 

ate the right side of (7) for β = 0 . 1 and the aforementioned val-

es of r; this gives the theoretical minimum number of measure- 

ents that guarantee exact recovery with probability at least 0.9. 

he values are noted in Table 1 . We note that the actual minimum

alue of m (found using Fig. 3 ) is much smaller than the theoret- 

cal bound in each case, indicating that the bound in (7) is quite 

oose. Since the image size is small, some of the lower bounds are, 

n fact, greater than n ; see the discussion at the end of Section 2 . 

.3. Robust recovery 

Theorem 2.6 implies that if we fix the parameters β , ε, η and 

, then the bound (9) holds with probability at least 1 − β across 

ifferent realizations of A , provided m is sufficiently large. We take 
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Fig. 2. Ground-truth and error images for the recovery of a 64 × 64 image from Rademacher measurements with rank (W ) = 200 . The images in (b), (c) and (d) are color 

plots of log 10 | x ∗ − ξ| for different values of m ; refer to the colorbar on top. A is a Rademacher matrix of appropriate size in each case. As expected, the error reduces with 

increasing m . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Empirical probability of exact recovery (vertical axis) of a 64 × 64 image 

from Rademacher measurements as a function of m (horizontal axis), for different 

values of r = rank (W ) . The green horizontal line indicates a probability of 0.9; this 

is used in Table 1 . (For interpretation of the references to colour in this figure leg- 

end, the reader is referred to the web version of this article.) 
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 to be a Rademacher matrix and ξ as the Mandril image (resized 

o 64 × 64 ). W is the GLIDE filter computed using ξ as the guide

mage. Since the guide image is ξ itself, we expect that ξ / ∈ R (W ) ;

ndeed, we verified this numerically by computing the distance of 

from R (W ) . We fix β = 0 . 1 , η as Gaussian noise with variance 

 . 05 2 , δ = 1 . 2 ‖ η‖ (to ensure that problem ( P δ) is feasible), and 

= 0 . 8 . Plugging these values into Theorem 2.6 , we get that with

robability at least 0.9, the error 
∥∥x ∗ − ξ

∥∥ is less than the right 

ide of (9) if 

 � 125 . 75 + 92 . 32 r. 

or r = 50 , 100 , 150 , 200 , the right side of the above inequality

valuates to 4742 , 9358 , 13924 and 18590. In practice, by conduct- 

ng 100 random trials, we observed that for all four values of r, 

9) holds with probability 1 even for m as low as 500 (and higher).

or the case r = 200 , the right side of (9) evaluates to ≈ 30 0 0 ,

hereas the average value of the left side over the 100 trials is 

370 . Thus, the bound in (8) , as well as the probability bound

 − β , are observed to be loose in practice. 

.4. Application: ECG signal recovery 

While PnP has mostly been used for imaging applications in the 

ast, it can in principle be used for compressed sensing of other 

ignals. In particular, we show how it can be used for ECG sig- 

al recovery from compressed Gaussian measurements, where the 

econstruction is performed by solving ( P δ). We take the ground- 

ruth signal ξ as the first 512 samples of an ECG signal from the 

IT-BIH Arrhythmia Database [31] , i.e., n = 512 . For m = 150 , we

enerate the measurement vector b = A ξ + η, where A ∈ R 

m ×n is a
6

andom Gaussian matrix and η is Gaussian noise having standard 

eviation 5 × 10 −3 . W is taken to be the SVD-based low-rank ap- 

roximation of DSG-NLM with rank 150. The DSG-NLM denoiser 

s computed from a guide (surrogate) signal (see Section 5.3 ); we 

btain a surrogate signal by running 20 iterations of the compu- 

ationally efficient CoSaMP algorithm [30] . The final solution x ∗ is 

hen obtained by solving ( P δ), where feasibility is ensured by set- 

ing δ = 2 ‖ η‖ . The result is shown in Fig. 4 , along with the signal-

o-noise ratio (SNR) of x ∗ with respect to ξ; for comparison, we 

lso show the reconstruction obtained using the LASSO algorithm 

 � 1 minimization) [2] . Although we do not advocate the superior- 

ty of PnP over existing methods, it is evident from the SNR levels 

hat its reconstruction quality is better than LASSO. 

. Discussion 

.1. Relation to existing work 

Our results are similar in spirit to those in classical compressed 

ensing [2,20,28] . For example, one of the central results in com- 

ressed sensing is as follows: An r-sparse signal in R 

n (i.e., a sig- 

al having at most r non-zero samples) can, with high probability, 

e recovered exactly from m noiseless random Gaussian measure- 

ents if m � O (r log n ) [28, Sec. 23.3] . On the other hand, our re-

ult requires m ≥ rank (W ) for exact recovery from Gaussian mea- 

urements. In this sense, rank (W ) plays a similar role to sparsity 

n classical compressed sensing. 

For PnP regularization, however, a probabilistic analysis of ex- 

ct and robust recovery has not been attempted before to the 

est of our knowledge. The papers [13] and [32] are somewhat 

elated to the current work. In [13] , error bounds are established 

or images recovered from compressive measurements using the 

nP-ISTA algorithm. The main difference compared to our work is 

hat [13] takes a purely algorithmic approach, whereas we view 

he recovery problem from an optimization perspective using the 

xplicit PnP regularizer �W 

. Moreover, probabilistic guarantees are 

ot given in [13] . In [32] , the recovered image is taken to be the

inimizer of ‖ A x − b ‖ 2 , where the feasible set is the range of a 

enerative model such as a generative adversarial network or vari- 

tional auto-encoder. Our work is similar in that we also require 

he reconstruction to lie in the range of a denoiser. However, there 

s no obvious direct relationship between our work and [32] . An- 

ther difference is the denoisers considered—while we work with 

inear denoisers, [13,32] use neural networks as the denoiser or 

enerative model. 
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Fig. 4. ECG signal recovery from m = 150 random Gaussian noisy measurements. The signal length is n = 512 . The surrogate signal x g is obtained using CoSaMP [30] , and is 

used to construct W . The final estimate x ∗ is then found by solving ( P δ ). The reconstruction using LASSO is shown for comparison. 
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Fig. 6. Ground-truth and examples of reconstructed images for the experiment in 

Fig. 5 with rank (W ) = 10 0 0 , where ξ ∈ R (W ) . A is a random realization of (18) in 

each of the examples in (b) and (c). The image size is 128 × 128 . 

Fig. 5. Empirical probability of exact recovery (vertical axis) of a 128 × 128 image 

from randomized Fourier measurements as a function of m (horizontal axis) for 

different values of r = rank (W ) . 
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.2. Extension to randomized Fourier measurements 

Theorems 2.5 and 2.6 apply to sensing matrices that satisfy the 

oncentration inequality in Lemma 2.4 . The well-known Johnson- 

indenstrauss (JL) Lemma, stated below as Lemma 5.1 , is a general- 

zation of Lemma 2.4 to a finite set of points as opposed to a single

oint [26–28] . Thus, we can conclude that the recovery guarantees 

n Theorems 2.5 and 2.6 apply in general to sensing matrices sat- 

sfying the JL Lemma. 

emma 5.1. Let A be a random subgaussian matrix, and Q ⊆ R 

n be 

 finite set of unit vectors (w.r.t. the � 2 norm) that are independent of

 . Then for any ε ∈ (0 , 1) , with probability at least 1 − 2 | Q| e −mγ (ε) 

e have 

 − ε � ‖ 

A x ‖ 

2 � 1 + ε ∀ x ∈ Q, 

here γ is the function in Lemma 2.4 . 

For signals having a large number of samples (e.g. images), 

andom Fourier or Hadamard measurements are computationally 

ore efficient than (sub)-Gaussian measurements [33] . The sens- 

ng matrix for the former can be written as 

 = 

1 √ 

m 

SFD , (18) 

here S ∈ R 

m ×n is a random subset of m rows of the n × n iden-

ity matrix (a random sampling operator), F ∈ C 

n ×n is an orthogo- 

al transform such as the unnormalized discrete Fourier or Walsh- 

adamard transform, and D ∈ R 

n ×n is a random diagonal matrix 

ith diagonal entries drawn uniformly from {−1 , 1 } . Unlike Gaus- 

ian measurements, Fourier and Hadamard transforms can be com- 

uted in O (n log n ) time without storing the matrix F [33] . This

s particularly useful for images. The following is a restatement of 

33, Theorems 2.1 and 3.1] , which asserts that (18) satisfies a some- 

hat different version of the JL Lemma. 

emma 5.2. Let A be a random (m × n ) matrix in (18) . Let Q be a

nite subset of the unit ball in R 

n , that is independent of A . If m =
 

(
ε−4 ( log | Q| )( log 

4 
n ) 

)
, then for any ε ∈ (0 , 1) , with probability at

east 0 . 98 × 0 . 99 we have 

 − O (ε) � ‖ 

A x ‖ 

� 1 + O (ε) 

niformly for all x ∈ Q. 

Thus, in principle, it could be possible to derive probabilistic 

uarantees for exact and robust recovery for the sensing model 

n (18) . However, since the hidden constants in the above O (·) 
otation are not explicitly given in [33] , it is difficult to derive 

nalogues of Theorems 2.5 and 2.6 for this model. Nevertheless, 

e can numerically verify that exact recovery can be achieved if 

 is large enough. We perform a similar experiment to that in 

ection 4.2 , but for randomized Fourier measurements. We take 

he image size to be 128 × 128 ( n = 16384 ). A plot of the empirical

robabilities of exact recovery is shown in Fig. 5 for four different 
7 
alues of r. Note that the general trend is similar to what we ex- 

ect, i.e., more measurements are required for a higher probability 

f exact recovery. We leave a rigorous analysis of this observation 

or future work. Fig. 6 shows a visual example of the recovered 

mages. 

.3. Independence of W and A 

Note that in the theorems in Section 2 , we require W to be sta-

istically independent of the random matrix A . Practical denoisers 

uch as DSG-NLM and GLIDE require access to a guide signal/image 

o populate W . In the experiments in Section 4 , we constructed W

rom some fixed guide signal, and generated random observations 

ia A independently of W . This automatically ensured the indepen- 

ence of W and A . We did this because we were interested in ob-

erving the recovery behavior when W is fixed and A is random, 

nd therefore, it was necessary to fix a common W for all random 

ealizations of A . However, in practical CS reconstruction scenar- 

os, a priori, we do not have access to a guide signal. Instead, the 

uide signal is obtained by applying preprocessing techniques to 

he observation b . For example, we can run a small number of PnP 

terations, say l, in which W is generated using the image in the 

revious iteration, and then keep W fixed from the (l + 1) th itera- 

ion onward, e.g., see [6,16,17,34] . The guide signal is thus the im- 

ge in the l th iteration, which indirectly depends on b , and hence 
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n A (as b = A ξ + η). Therefore, strictly speaking, W is not inde-

endent of A . However, the relationship between W and A is com- 

licated due to the technique used to generate the guide signal. 

he upside is that the statistical independence of W and A seems 

o be a reasonable assumption in practice. This is similar to the 

ollowing claim in [24] : for image denoising, computing W from 

 pre-filtered version of the noisy image (as opposed to the noisy 

mage itself) largely removes the statistical dependence of W on 

he noise. 

.4. Role of R (W ) 

Note that the lower bounds on m in Theorems 2.3, 2.5 and 

.6 depend only on r, the dimension of R (W ) , and not on the am-

ient dimension n . In contrast, in classical compressed sensing, for 

xactly recovering an r-sparse signal we need m � O (r log n ) [28,

ec. 23.3] ; note that the lower bound on m depends on n . The rea-

on that n appears in this bound can be attributed to the fact that 

he set of r-sparse signals is the union of 
(

n 
r 

)
canonical subspaces 

f dimension r. On the other hand, the PnP regularizer (5) forces 

olutions of ( P δ) and ( P 0 ) to lie in R (W ) . Thus, in our analysis,

e need to consider only signals in the subspace R (W ) instead 

f a union of subspaces. Since the dimension of R (W ) has no re-

ation with the ambient dimension n , the lower bounds on m in 

heorems 2.3, 2.5 and 2.6 depend only on r and not on n . 

On a related note, the prior that the ground truth is in R (W )

s strong enough to yield non-trivial recovery guarantees in the 

orm of Theorems 2.3, 2.5 and 2.6 without explicitly using the real- 

alued part of the objective function, x � (I − W ) W 

† x . Indeed, it can

e observed from the proofs that the only information about �W 

e have used is that it is infinite outside R (W ) , implying that the

olution lies in R (W ) . In this aspect, our recovery guarantees are

imilar to [32] . In [32] , the reconstructed signal is regularized by 

equiring it to lie in the range of a generative model instead of us- 

ng an explicit regularization function. However, we note that the 

eal-valued component of the objective function �W 

is used in the 

roof of Theorem 2.1 . 

Recall from the experiments in Sections 4.2 and 4.3 that the 

ounds on m in Theorems 2.5 and 2.6 are loose. A possible avenue 

o make these tighter could be using the properties of the real- 

alued component x � (I − W ) W 

† x . However, this is a non-trivial 

ask and is left for future work. 

.5. numerical solution of ( P 0 ) and ( P δ) 

The constrained problem ( P δ), and hence its special case ( P 0 ), 

an be solved using the CSALSA algorithm [18] . CSALSA is an itera- 

ive algorithm designed to solve constrained problems of the form: 

inimize �( x ) 

ubject to ‖ A x − b ‖ 

2 � δ2 , 

hich is precisely the problem ( P δ) with � = �W 

. One of the steps

n each iteration of CSALSA is to evaluate the proximal map of �. 

n our case, this simply reduces to applying the denoiser W . The 

est of the steps in CSALSA are quite straightforward and can be 

ound in [18] . 

.6. Closing remarks and future work 

We can extend the results in Section 2 to proximable 

on-symmetric linear denoisers characterized in [16] . For non- 

ymmetric kernel filters of the form W = D 

−1 K (e.g., NLM, bilat- 

ral filter and LARK [24] ), where the normalization matrix D ∈ S 
n ++ 

nd kernel matrix K ∈ S 
n + , the spectrum of W lies in [0,1] and W is
8 
emisimple [16] . Let V�V 

−1 be an eigenvalue decomposition of W 

uch that VV 

� = D 

−1 [16, Sec. IV-B] . Subsequently, using the expo- 

ition in [16] and [17] , we can associate the following regularizer 

up to a scalar multiplication) with W : 

W 

( x ) = 

{
1 
2 

〈
(I − W ) x , W 

g x 
〉
D 
, if x ∈ R (W ) , 

∞ , otherwise , 

here W 

g := V�† V 

−1 is a reflexive generalized inverse of W [35, 

ef. 2] and 〈·, ·〉 D is the inner-product w.r.t. D ∈ S 
n ++ . 

At the end of Sections 5.2 and 5.4 , we have discussed a few

pen questions arising from the current work and possible direc- 

ions of future research. Furthermore, an interesting question that 

ill be explored in an upcoming work is bounding the recovery 

rror for general linear inverse problems such as deblurring, in- 

ainting, and superresolution. In this regard, it can be shown that 

nder suitable conditions, 

 x ∗ − ξ‖ � c(W , A ) 

√ 

d( ξ, W , A ) 2 + 

(‖ η‖ + δ
)

2 , (19) 

here x ∗ is a minimizer of ( P δ). Interestingly, this bound requires 

hat rank (W ) ≥ m . The difficulty with this bound is that for the 

ompressed sensing problem, c and d in (19) are random variables 

ince they depend on A . Subsequently, unlike (9) , we do not get a

lobal bound on the recovery error from (19) . This question will be 

nvestigated in future work. 
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1. Auxiliary results 

We state a couple of auxiliary results which are used in 

ection 3 . We believe that the first result, stated below, is known; 

or the completeness, we are providing its proof which follows 

rom the fact that the Lebesgue measure of a proper subspace of 

 

n is zero. 

emma A.1. Let y 1 , . . . , y k be independent R 

n -valued random vec- 

ors, where k � n , with distributions which are absolutely continuous 

ith respect to the Lebesgue measure on R 

n . Let v , . . . , v ∈ R 

n be
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[  

[

inearly independent vectors, where k + l � n . Let B be the event that

 1 , . . . , v l , y 1 , . . . , y k are linearly dependent. Then Prob (B ) = 0 . 

roof. Since v 1 , . . . , v l are linearly independent, the event B oc- 

urs if and only if there exists i ∈ { 1 , . . . , k } such that y i ∈
pan ( v 1 , . . . , v l , y 1 , . . . , y i −1 ) . Let p = Prob (B ) ; note that 

p = Prob 

( k ⋃ 

i =1 

[
y i ∈ span ( v 1 , . . . , v l , y 1 , . . . , y i −1 ) 

])

� 

k ∑ 

i =1 

Prob 

[
y i ∈ span ( v 1 , . . . , v l , y 1 , . . . , y i −1 ) 

]
. 

et p i denote the i th term in the above sum. To show p = 0 , it suf-

ces to show that each p i = 0 . Notice that for i � 2 , 

p i = E 

[ 
Prob 

[
y i ∈ span ( v 1 , . . . , v l , y 1 , . . . , y i −1 ) 

∣∣y 1 , . . . , y i −1 

]] 
, 

(A.1) 

here the expectation is with respect to y 1 , . . . , y i −1 . Note that for 

rbitrary c 1 , . . . , c i −1 ∈ R 

n , since y 1 , . . . , y k are independent random 

ectors, 

rob 

[ 
y i ∈ span ( v 1 , . . . , v l , y 1 , . . . , y i −1 ) 

∣∣y 1 = c 1 , . . . , y i −1 = c i −1 

] 
= Prob 

[
y i ∈ span ( v 1 , . . . , v l , c 1 , . . . , c i −1 ) 

]
. (A.2) 

oreover, since 1 � i � k and k + l � n , the dimension of

pan ( v 1 , . . . , v l , c 1 , . . . , c i −1 ) ⊆ R 

n is strictly less than n , and

ence its Lebesgue measure is zero. Now, since y 1 , . . . , y k are 

bsolutely continuous random vectors, it follows from (A.1) and 

A.2) that p i = 0 for i � 2 . A similar argument holds for the case 

 = 1 . �

The following Lemma is a straightforward generalization of [26, 

emma 5.1] , and it can be proved along the same lines. The only 

ifference is that in Lemma A.2 , U is an arbitrary subspace of R 

n ,

hereas [26, Lemma 5.1] focuses on the case where U is a canon- 

cal subspace. 

emma A.2. Let A be a random subgaussian matrix. Let U be a fixed

ubspace of R 

n that is independent of A , and dim U = r < n . Then,

or any ε ∈ (0 , 1) , with probability at least 1 − 2(12 /ε) r e −mγ (ε/ 2) we

ave 

1 − ε) ‖ 

x ‖ 

� ‖ 

A x ‖ 

� (1 + ε) ‖ 

x ‖ 

∀ x ∈ U , (A.3) 

here γ is the function in Lemma 2.4 . 

2. When does (8) hold? 

Let L : (0 , 1] × (0 , 1] → R + be defined as follows: 

 (β, ε) := 

ln (4 /β) + r ln (12 /ε) 

γ ( ε/ 2) 
; (A.4) 

his gives the lower bound in (8) . Recall from Section 2 that for

andom subgaussian matrices, γ is a continuous and strictly in- 

reasing function. Notice that the numerator and denominator in 

A.4) are strictly decreasing and increasing functions of ε. Further- 

ore, 

∂L 

∂β
= 

−1 /β

γ (ε/ 2) 
< 0 . 

herefore, L is a strictly decreasing function in each variable. Con- 

equently, 

inf 
,ε∈ (0 , 1] 

L (β, ε) = L (1 , 1) . (A.5) 

oreover, note that for arbitrary ˆ β, ̂  ε ∈ (0 , 1] , we have 

lim 

→ 0 
L (β, ̂  ε) = lim 

ε→ 0 
L ( ̂  β, ε) = ∞ . (A.6) 
9

The following proposition asserts that if n is sufficiently large, 

hen we can get legitimate lower bounds on m from (8) . 

roposition A.1. If n > L (1 , 1) , then there exist unique β0 , ε0 ∈
0 , 1) such that L (β0 , 1) = L (1 , ε0 ) = n . Furthermore, 

(i) Given β1 ∈ (β0 , 1) , there exists unique ε1 ∈ (ε0 , 1) such that 

L (β1 , ε1 ) = n and L (β1 , ε) < n for all ε ∈ (ε1 , 1) . 

(ii) Given ε1 ∈ (ε0 , 1) , there exists unique β1 ∈ (β0 , 1) such that 

L (β1 , ε1 ) = n and L (β, ε1 ) < n for all β ∈ (β1 , 1) . 

roof. Since n > L (1 , 1) , using (A .5), (A .6) along with the fact that

 is continuous and a strictly decreasing function in each variable, 

e can conclude that there exist unique β0 , ε0 ∈ (0 , 1) such that

 (β0 , 1) = L (1 , ε0 ) = n . 

Next, we prove the statement-(i); notice that statement-(ii) can 

e proved along similar lines. Given β1 ∈ (β0 , 1) , since L is a

trictly decreasing function in each variable, we have 

L (β1 , 1) < L (β0 , 1) = n, 

 (β1 , ε0 ) > L (1 , ε0 ) = n. 

ubsequently, using the fact L is continuous and a strictly decreas- 

ng function in the second variable, we can conclude that there 

xists unique ε1 ∈ (ε0 , 1) such that L (β1 , ε1 ) = n and L (β1 , ε) < n

or all ε ∈ (ε1 , 1) . �
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