Biswas, R and Prosad, A and Krishna, L and Raghunathan, V (2023) Enhanced Four Wave Mixing from MoS2 disks Supporting Higher-order Anapole Resonance. In: 2D Photonic Materials and Devices VI 2023, 31 Jan - 2 February 2023, San Francisco.
Full text not available from this repository.Abstract
Layered material such as Transition Metal Dichalcogenides (TMDCs) are known to exhibit very high refractive index making them an excellent candidate for building resonant optical structures that facilitate strong nonlinear optical interaction. In particular, third order nonlinear processes such as third harmonic generation and four wave mixing (FWM) can be significantly boosted in thick TMDC based nanodisks by exciting non-radiating Mie resonances such as anapole modes. Here, we report enhanced FWM from isolated MoS2 disks supporting higher-order anapole resonances. The MoS2 disks were fabricated by patterning an MoS2 flake dry-transferred on a 2.2 micron thick thermal SiO2 deposited on a silicon wafer. Scattering cross sectional FDTD simulations were performed to extract the dimension of the MoS2 nanodisk to ensure higher order napoleon modes lie within the desired signal wavelength range (1400-1600nm) with a fixed pump wavelength of 1040nm. The final dimensions of MoS2 disk has a diameter of 1.62µm and a height of 108nm. FWM measurements involving two pump photon and one signal photon were performed by varying the input signal wavelength. Maximum experimental enhancement of 150 times at 1470nm when compared with the UN-patterned MoS2 flake region obtained. Such emerging optical nano structure based on layered material has potential use as efficient wavelength converters across widely separated wavelength band.
Item Type: | Conference Paper |
---|---|
Publication: | Proceedings of SPIE - The International Society for Optical Engineering |
Publisher: | SPIE |
Additional Information: | The copyright for this article belongs to SPIE |
Keywords: | Layered semiconductors; Molybdenum compounds; Photons; Refractive index; Silica; Silicon oxides; Silicon wafers; Sulfur compounds; Transition metals, 2d material; Anapole resonance; Dichalcogenides; Four-wave-mixing; High-order; Higher-order; Layered material; Mie resonance; Nanodisks; Third-order nonlinearity, Four wave mixing |
Department/Centre: | Division of Electrical Sciences > Electrical Communication Engineering |
Date Deposited: | 15 Jun 2023 09:35 |
Last Modified: | 15 Jun 2023 09:35 |
URI: | https://eprints.iisc.ac.in/id/eprint/82044 |
Actions (login required)
View Item |