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Significance

Mutations are important because 
they provide raw material for 
evolution. Some types of 
mutations occur more often than 
others, and the strength of such 
mutational bias varies across 
species. It is not clear how this 
variation arises. We 
experimentally measured the 
immediate effects of changing 
the mutation bias of Escherichia 
coli and used simulations to 
understand the long-term 
effects. Altering mutational bias 
is beneficial whenever the new 
bias increases sampling of 
mutational classes that were 
previously undersampled. We 
also show that historically, 
bacteria have often experienced 
such beneficial bias switches. Our 
work thus demonstrates the 
importance of mutational biases 
in evolution. By allowing 
exploration of new mutational 
space, altered mutation biases 
could drive rapid adaptation.
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Shifts in mutation spectra enhance access to beneficial 
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Biased mutation spectra are pervasive, with wide variation in the magnitude of muta-
tional biases that influence genome evolution and adaptation. How do such diverse biases 
evolve? Our experiments show that changing the mutation spectrum allows populations 
to sample previously undersampled mutational space, including beneficial mutations. 
The resulting shift in the distribution of fitness effects is advantageous: Beneficial muta-
tion supply and beneficial pleiotropy both increase, while deleterious load reduces. More 
broadly, simulations indicate that reducing or reversing the direction of a long-term 
bias is always selectively favored. Such changes in mutation bias can occur easily via 
altered function of DNA repair genes. A phylogenetic analysis shows that these genes are 
repeatedly gained and lost in bacterial lineages, leading to frequent bias shifts in opposite 
directions. Thus, shifts in mutation spectra may evolve under selection and can directly 
alter the outcome of adaptive evolution by facilitating access to beneficial mutations.

mutation bias | distribution of fitness effects | pleiotropy | adaptive walk | DNA repair

The mutation spectrum describes the frequency of various classes of sampled mutations 
[e.g., transversions (Tv) vs. transitions (Ts)] and is often governed by the action of DNA 
repair enzymes. By determining the pool of genetic variants available for selection, muta-
tion spectra can shape key genome features [e.g., nucleotide (1, 2), codon and amino acid 
composition (3)], even if under selection for thousands of generations (4); determine the 
genetic basis of adaptation (5–9), driving convergent evolution (10–12); and shape the 
evolution of resistance to antibiotics (13–15) and anticancer drugs (16). Thus, mutation 
spectra are important for adaptive evolution, but their role is underappreciated (5). The 
mutation spectrum is instantaneously and relatively easily altered by loss-of-function 
mutations in DNA repair genes, e.g., as observed in “mutators” that also have higher 
mutation rates (17). The elevated mutation rate increases the supply of beneficial muta-
tions, facilitating rapid adaptation (18). However, spectral shifts also occur without asso-
ciated mutation rate changes, such as with the loss of some bacterial DNA repair enzymes 
(17), and under nutritional or anaerobic stress (19, 20). Diverse mutation spectra occur 
even across natural yeast strains and closely related species of Chlamydomonas, despite 
similar mutation rates (21, 22).

In fact, most species analyzed so far have a skewed mutation spectrum (i.e., some 
mutational classes are overrepresented compared to others), with substantial variation in 
the magnitude of bias (23, 24) (experimental data from microbes are summarized in 
SI Appendix, Table S1). This diversity implies major evolutionary shifts in mutation spec-
tra. However, the frequency, underlying evolutionary processes, and consequences of 
spectrum shifts are unknown. For instance, do spectral shifts evolve under selection? A 
spectral shift may persist if the new bias favors mutational classes that are inherently 
advantageous (5, 25), allowing the evolved bias to hitchhike with beneficial mutations. It 
has also been speculated that stress-induced changes in mutation spectra may enhance 
sampling of new beneficial mutations by altering the distribution of fitness effects (DFE) 
(19, 26). However, prior studies have failed to find consistent support for general selective 
benefits of specific mutational classes. For instance, transition mutations (Ts) are not 
consistently more beneficial (or less deleterious) than transversions (Tv) (27, 28), and the 
fixation probability of Ts vs. Tv mutations in genomes is clade specific (29). Hence, specific 
mutational classes do not seem to be universally beneficial, and the observed diversity in 
mutation bias remains puzzling.

We addressed these gaps using a combination of experiments, simulations, and phy-
logenetic analyses. To measure the immediate evolutionary impact of the mutation spec-
trum, we first estimated the genome-wide DFE of new mutations in Escherichia coli. We 
manipulated the mutation spectrum by deleting a DNA repair gene (creating a ΔmutY 
“mutator” strain) from our wild-type strain (“WT”), altering both the mutation spectrum 
and rate (17). Allowing independent lineages of both strains to evolve under mutation 
accumulation (MA), we sequenced whole genomes of evolved isolates to identify strains D
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carrying a single new mutation each. Thus, we minimized the 
impact of selection on the mutation spectrum and the DFE, while 
also decoupling the effects of the mutator’s spectrum from its high 
mutation rate. Measuring the effect of each single mutation on 
population growth rate, we determined the effects of mutation 
spectrum on the beneficial mutation supply, genetic load, and 
pleiotropic effects. Next, to test the generality and longer-term 
evolutionary consequences of shifts in mutation spectra, we per-
formed both adaptive walk and full-population simulations. 
Finally, we inferred evolutionary transitions in DNA repair 
enzymes across the bacterial phylogeny to estimate the frequency 
of changes in the direction of mutation bias. Our results show 
that shifts in mutation spectra can fuel adaptation via previously 
undersampled evolutionary paths.

Results and Discussion

The Mutator DFE Has More Beneficial Mutations That Reduce 
the Expected Genetic Load and Alter Pleiotropic Effects. From 
MA experiments conducted in rich media (LB), we obtained 80 
evolved WT (30) and 79 mutator strains, each carrying a single 
distinct mutation with respect to its ancestor (Datasets S1–S12). 
We measured the selective fitness effect (relative growth rate) of 
each mutation in the MA environment (LB) as well as 15 other 
environments with different carbon sources, including some that 
are used by E. coli in the mouse gut (31). With this large set 
of fitness effects, we constructed environment-specific empirical 
DFEs [WT data for some environments were previously reported 
(30)]. Since bacterial MA experiments can cause oversampling of 
beneficial mutations and undersampling of deleterious mutations, 
we used a correction (32) that retains the measured selective effect 
(s) of each mutation but estimates and corrects for selection bias by 
changing the frequency of mutations with a given selective effect 
(SI Appendix, Fig. S1 A–C and Datasets S1–S12). These corrected 
DFEs thus provide accurate estimates of the fraction of beneficial 
mutations (fb) and the average selective effect (s).

Correcting for selection bias during MA results in DFEs with 
coarsely binned fitness histograms, which we used to calculate the 
fraction of neutral (–0.05 < s < 0.05, conservatively accounting for 
a maximum of ~5% fitness measurement error), beneficial (s > 
0.05), and deleterious (s < –0.05) mutations for each strain in all 
16 environments. The DFEs and fb values varied across environ-
ments (Fig. 1 and SI Appendix, Fig. S1), but the mutator often had 
a greater fraction of beneficial mutations and fewer deleterious 
mutations (Fig. 1, Chi-square tests are reported in SI Appendix, 
Table S2; pooling data across all environments, average fb = 36% 
vs. 28% for mutator vs. WT). Thus, compared to WT, the mutator 
had more beneficial-shifted DFEs. The mean fitness effects of muta-
tions were also significantly more beneficial in the mutator (paired 
Welch’s two-sample test, P = 0.043; SI Appendix, Fig. S2A), 
although medians were not significantly different (P = 0.35, 
SI Appendix, Fig. S2B). Finally, mutations had larger absolute 
effects in WT than those in the mutator (Wilcoxon’s rank-sum test, 
W = 662920, P = 1.4 × 10−14); hence, the mutator’s beneficial-shifted 
DFEs could not have arisen because of overall larger-effect muta-
tions. These results indicate a broad selective advantage to the 
mutator, independent of its mutation rate. In addition, accounting 
for the skewed DFEs and order-of-magnitude higher mutation rate 
(µWT = 1.8 × 10−10 per bp per generation, µmutator = 1.4 × 10−9, 
SI Appendix, Table S3), we estimated (following ref. 33) that on 
average, the mutator should have an ~13-fold greater genome-wide 
supply of beneficial mutations (SI Appendix, Table S4) and ~five-
fold higher genetic load (number of deleterious mutations per 
genome) than that of the WT (SI Appendix, Table S5). In contrast, 

if we ignored the mutator’s distinct DFE and accounted only for 
its mutation rate, both the supply of beneficial mutations and the 
deleterious genetic load would be nearly 10-fold greater than those 
of WT (SI Appendix, Tables S4 and S5; only the load is significantly 
affected by the corrected DFE). Thus, depending on their mutation 
rate and DFE, mutators may have a substantially higher supply of 
beneficial mutations and smaller genetic load than previously 
believed.

The high fb values observed in some environments (Fig. 1) con-
tradict the general expectation that beneficial mutations should be 
rare (34). It is possible that some of the beneficial mutations we 
observed will not be as beneficial with respect to other fitness com-
ponents (e.g., under competition, as seen in ref. 35). However, many 
other studies—including with microbes and plants—have also 
reported a large number of beneficial mutations (36–42). Such large 
fb values have been partially attributed to an improved ability to 

Fig.  1. Mutator DFEs have a larger fraction of beneficial mutations than 
those of WT. Stacked bar plots show the observed proportion of beneficial (fb), 
deleterious and neutral mutations in WT and mutator (Mut). Average values 
for data pooled across environments are given in the key. Asterisks indicate 
significant differences between WT and mutator fb in each environment, 
colored to show the strain with higher fb (Chi-square test’s output is shown 
in SI Appendix, Table S2).
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measure small-effect beneficial mutations (39, 43, 44) that are more 
common than expected (45), especially at low effective population 
sizes (36). Several studies also show very rapid and large fitness 
increases during laboratory experimental evolution of E. coli, con-
sistent with the availability of large-effect beneficial mutations (35, 46). 
Finally, we note that most prior studies provide approximate or indi-
rect estimates of the DFE via random mutagenesis of a single gene, 
and focus only on the beneficial part of the DFE, or infer the DFE 
by fitting a model to time series data from selection or MA lines (34). 
Further, they do not estimate the number of underlying mutations 
to account for epistasis. Our direct, genome-wide estimates of the 
DFE of single, randomly sampled new mutations support the idea 
(47, 48) that new beneficial mutations may be more common than 
generally believed. However, this is clearly an issue whose resolution 
needs more empirical data.

Next, we estimated the pleiotropic effects of mutations 
(Fig. 2A), which are important because they can facilitate adap-
tation (via synergistic pleiotropic benefits) and shape fitness 
tradeoffs (via antagonistic pleiotropy) in new environments. The 
mutator had a distinct distribution of pleiotropic effects in all the 
16 environments (compare SI Appendix, Fig. S2 C and D, 
Chi-square tests: P < 10–5 in each case, SI Appendix, Table S6), 
characterized by a higher incidence of beneficial synergistic plei-
otropy and lower deleterious synergistic pleiotropy. However, both 

strains had low antagonistic pleiotropy (Fig. 2 B and C). Beneficial 
mutations in the mutator were also beneficial across many more 
environments (Kolmogorov–Smirnov test comparing the two dis-
tributions in Fig. 2F, D = 0.41, P = 3.1 × 10−6), whereas delete-
rious mutations were deleterious in fewer environments than those 
of WT (D = 0.56, P = 2.63 × 10−11; Fig. 2F and SI Appendix, 
Fig. S3). Despite this qualitative association between mutational 
effects, overall, the magnitude of fitness effects was not correlated 
across environments (only 38 of 120 correlations were significant 
in WT and 22 of 120 significant in mutator, Spearman’s rank 
correlation, P < 0.05). Thus, new beneficial mutations in the muta-
tor are more likely to facilitate adaptation across many environ-
ments, but are no more likely to generate tradeoffs. Interestingly, 
simulating an increase in the median fitness effect of the WT DFE 
without changing its shape (“WT-beneficial shift”) mimicked 
pleiotropic effects observed in the mutator in all but two environ-
ments (Fig. 2D and SI Appendix, Fig. S2E and Table S6). 
Conversely, simply reducing the median fitness effect in the WT 
DFE (“WT-deleterious shift”) lowered beneficial synergistic plei-
otropy in all the 16 environments (Fig. 2E and SI Appendix, 
Fig. S2F and Table S6). Ignoring the mutation spectrum can thus 
cause overestimation of a mutator’s genetic load and underesti-
mation of the supply and pleiotropic effects of beneficial 
mutations.

Fig. 2. Beneficial-shifted DFE alters pleiotropic effects. (A) Schematic showing possible pleiotropic effects of mutations in two environments (W: relative fitness). 
(B–E) Median proportions of pleiotropic fitness effects (across 15 focal environments, excluding LB; also see SI Appendix, Fig. S2 C–F) of mutations in WT and 
mutator, and WT DFE artificially shifted toward either beneficial or deleterious mutations. Schematics indicate global DFEs (WT = cyan, mutator = pink, WT shifted 
= light blue); black lines: relative fitness = 1. (F) Pleiotropic effects of mutations across multiple environments. Frequency distributions show the proportion of 
mutations with consistent fitness effects (beneficial or deleterious) in a given number of environments. Black lines indicate medians.D
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The Mutator’s Beneficial-Shifted DFE Arises from Its Distinct 
Mutation Spectrum. We had hypothesized that the mutator’s 
distinct DFE could arise from its biased spectrum. However, other 
global effects of the initial mutY gene deletion could also lead to 
a DFE shift. For instance, if deleting mutY reduced the mutator’s 
fitness, a larger fraction of new mutations might be beneficial (49). 
However, the mutator ancestor had lower fitness than that of WT 
in only three environments (Fig. 3A and SI Appendix, Table S7). 
Alternatively, epistatic interactions with mutY could increase the 
deleterious effect of new mutations in the WT. However, paired 
WT and mutator strains carrying the same mutation had similar 
fitness in all but one environment (Fig.  3B  and  SI  Appendix, 
Table S8). Thus, the observed shift in the mutator DFE cannot 
be explained by global effects of the mutY deletion. The difference 
across strains was also robust across mutational classes: Mutations 
were more beneficial in the mutator even when comparing only 
base-pair substitutions, or coding, noncoding, synonymous, or 
nonsynonymous mutations (SI  Appendix, Fig.  S4). Note that 
several prior examples of large-effect beneficial synonymous 
mutations mean that our results for synonymous mutations are 
not entirely unexpected (50).

Next, we asked whether the mutator is biased toward muta-
tional classes that happen to be more beneficial (or less deleteri-
ous). We defined mutation bias as the proportion of mutations 
belonging to a specific mutational class [e.g., Tv bias = number 
of Tv mutations/(number of Tv + number of Ts mutations)]. 
Regardless of the type of bias, we could compare mutation biases 
across the new mutations sampled by WT and mutator, because 
barring the deletion of mutY, both ancestral genomes were iden-
tical. The mutator strongly favors transversions, GC→AT muta-
tions, base-pair substitutions (BPS), and coding mutations 
(Fig. 3C and SI Appendix, Table S3). Interestingly, in the WT 
strain, Tv and GC→AT mutations were more likely to be bene-
ficial (29% for both) than Ts and AT→GC mutations (25% ben-
eficial each). Overall, the median fitness effect of transversions and 
GC→AT mutations was less deleterious than that of transitions 
and AT→GC mutations (Fig. 3 D and E; fitness effects pooled 
across environments, SI Appendix, Table S9). Note that excluding 
lethal mutations in WT—all of which were transversions—would 
enhance this effect. Pooling data from both strains, Tv were more 
beneficial than Ts (Wilcoxon’s rank-sum test: P = 8.5 × 10−9), and 
GC→AT mutations were more beneficial than AT→GC (Wilcoxon’s 
rank-sum test: P = 9.1 × 10−9).

Could these differences arise from context-specific effects of 
mutations in the two strains? This is unlikely for several reasons. 
First, Tv and GC→AT mutations had similar fitness effects in 
both strains (given the highly imbalanced sample sizes, we used 
permutation analysis with two-sample t tests; 61% and 85% of 
subsamples showed no difference between WT and mutator for 
Tv and GC→AT, respectively; excluding lethal mutations: 73% 
and 87% of subsamples showed no difference between WT and 
mutator for Tv and GC→AT, respectively). Second, among the 
set of 19 mutations that we tested in both WT and mutator back-
grounds (Fig. 3B), each type of mutation (Ts, Tv, GC→AT, and 
AT→GC) had similar fitness effects in both strain backgrounds 
(Wilcoxon rank-sum tests, n = 9 to 10, P > 0.05 in each case). 
Other types of mutation biases did not show consistent differences 
across strains (SI Appendix, Fig. S4 and Table S9). Finally, other 
aspects of the mutations (e.g., genomic location or specific amino 
acid changes) also did not differ across strains (SI Appendix, 
Figs. S5 and S6 and Tables S10 and S11). We suggest that future 
work with larger sample sizes would be useful to confirm the lack 
of context-specific effects of mutations observed in our data.

Overall, our results indicated that the mutation spectrum—
specifically the strong Tv and GC→AT bias—appeared to drive 
the distinct DFE of the mutator, because the mutator samples 
these specific mutational classes more than the WT. However, it 
was unclear why Tv and GC→AT mutations should be more 
beneficial.

Simulations Demonstrate a General Benefit of Reducing or 
Reversing Mutation Bias. To test the generality of our empirical 
results and uncover underlying mechanisms, we simulated adaptive 
walks in an NK fitness landscape (ref. 51 and Methods Summary), 
modeling sequences of N nucleotides such that mutations could 
be classified as Ts vs. Tv or GC→AT vs. AT→GC. Starting from 
a randomly chosen ancestor sequence and mutation spectrum 
(Tv bias = fraction of transversions), we allowed populations 
to explore successive mutational steps at randomly chosen loci 
(bases). A mutation that confers a relative fitness increase of 1 + 
s fixes (a step in the walk is taken) with probability 2s; that is, 
we assumed a strong-selection weak-mutation (SSWM) regime. 
At various points during the walk, we simulated mutations to 
generate a DFE, computed fitness effects given the underlying 
fitness landscape (affected by K other randomly chosen loci, to 
incorporate epistasis), and calculated the fraction of beneficial (fb) 
and deleterious (fd) mutations and their effect sizes. We initially 
set N = 200 and K = 1 (each locus epistatically coupled to 1/199 
= 0.5% loci) and present the average outcomes for 500 adaptive 
walks on 500 randomly generated fitness landscapes (SI Appendix, 
Fig. S7 A and B shows variation across walks).

As expected, the mean population fitness increased during the 
adaptive walk, with a concomitant reduction in fb and beneficial 
effect size, an increase in fd, and a relatively constant deleterious 
effect size (Fig. 4A). Setting ancestral Tv bias to 0.45 (mimicking 
our WT), we compared the DFE generated by the ancestor at 
various time points, to the DFE that would be created if the bias 
were changed at that time (mimicking our ΔmutY strain). The 
bias-shifted (“shifted”) strain thus has the same fitness and 
sequence as the ancestor and an identical mutation rate, differing 
only in spectrum. As the ancestor evolved (i.e., fb decreased), a 
stronger bias shift (i.e., higher Tv) allowed the bias-shifted strain 
to sample proportionally more beneficial mutations than those of 
the ancestor (Fig. 4B). More generally, exploring well-adapted 
populations (fb = 0.04) but varying both the ancestral and shifted 
mutation spectra, we find that shifted strains that reduce or reverse 
the ancestral bias (i.e., increase the sampling of mutations that 
were undersampled by the ancestor, Fig. 4B) have the greatest 
advantage (SI Appendix, Fig. S8). Our results hold across a differ-
ent axis of the mutation spectrum (GC→AT bias, SI Appendix, 
Fig. S9), and in more rugged fitness landscapes with higher epista-
sis (SI Appendix, Fig. S10 A and B). Importantly, adapting popu-
lations did not “exhaust” a small set of beneficial mutations; rather, 
they fixed distinct mutations as they explored a large number of 
diverse pathways that represent a subset of many possible fitness 
peaks (SI Appendix, Fig. S10C). Our results also hold in full pop-
ulation simulations with multiple segregating mutations (relaxing 
the SSWM assumption), where deleterious mutations can fix 
(Fig. 4 C and D and SI Appendix, Fig. S11). In fact, when more 
mutations are accessible, we observe the same beneficial effects of 
bias shifts, but these effects emerge more quickly. Finally, these 
effects are also observed in full population simulations when the 
fitness landscape is defined using a codon-based rather than a 
nucleotide model (SI Appendix, Fig. S12). Importantly, our sim-
ulation results imply that the benefit of a specific mutation class 
(e.g., Tv) is not universal, but is context dependent: Increased 
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Fig. 3. Differences in WT and mutator DFEs are best explained by differences in mutation spectra. (A) Growth rate of WT and mutator ancestors (n = 12 to 24/
strain/environment). Asterisks: significant differences between strains (SI Appendix, Table S7). (B) Pair-wise differences in the fitness effects of 19 mutations across 
genetic backgrounds (mutator – WT); asterisks: significant difference from zero (black dotted line; SI Appendix, Table S8). (C) Observed mutation biases in WT 
and mutator MA lines (including those with multiple mutations); the number of mutations of each type is noted. Asterisks: significant differences in proportions 
across strains (SI Appendix, Table S3). (D and E) Fitness effects of different mutation classes, for MA-evolved isolates carrying single mutations. Boxplots (colored 
by strain and mutation class) show median, quartiles, and range of relative fitness effects of mutations (open diamonds: outliers). Each boxplot was constructed 
with n × 16 data points (n = number of mutations, shown below each plot; pooled effects from 16 environments). Black horizontal lines: fitness impact = 0. 
Asterisks: significant differences across mutation classes (ANOVA output, SI Appendix, Table S9; for imbalanced sample sizes, permutation tests as described 
for SI Appendix, Fig. S4); nd: not determined.
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sampling of any mutational class that was previously poorly 
explored is beneficial.

Thus, our simulation results can be broadly generalized in the 
form of three key predictions: 1) reducing or reversing an ancestral 
mutation bias is always beneficial, 2) the magnitude of the benefit 
increases with the degree to which the new bias opposes the ances-
tral bias, and 3) the magnitude of the benefit increases when the 
ancestor has evolved with a given bias for longer intervals of time 
(i.e., as the ancestor gets better adapted). Our experimental data 
with the ΔmutY strain support the first prediction, since we found 

that overall, the mutator (with a reversal of the Tv bias, i.e., sam-
pling many more transversions than those of the WT ancestor, 
Fig. 3D) had higher fb values than those of WT. Interestingly, the 
WT GC→AT bias was reinforced in the mutator, rendering the 
results in Fig. 3E puzzling. However, ~88% of all GC→AT muta-
tions in the mutator are also transversions. Hence, our mutator’s 
observed beneficial-shifted DFE is explained by its strong Tv bias, 
which opposes the existing WT bias toward Ts.

Although our data are generally explained by the simulation 
results, some puzzling observations remain. The simulations 

Fig. 4. Simulations show a general benefit of reversing or reducing mutation bias. (A) Change in mean population fitness, fraction of beneficial and deleterious 
mutations (fb and fd), and mean magnitude of beneficial and deleterious effects (sb and sd) over the course of adaptive walks of a WT ancestor. (B) Impact of altering 
the WT mutation bias on fb at different points along the adaptive walk [Tv bias = Tv/(Ts+Tv); gray dashed line: WT bias], as a function of the new mutation bias 
(shifted Tv bias). Reinforcements shift an existing bias further away from the unbiased state in the same direction. Reductions shift toward the unbiased state 
but not past it, and reversals shift the bias toward and past the unbiased state. Line color: WT fb at a given time; steeper lines (lighter colors): later evolutionary 
time, better-adapted WT. This figure shows simulation results for an ancestral Tv bias of 0.45; results for the full range of possible ancestral Tv biases (0.1 to 0.9) 
are shown in SI Appendix, Fig. S8. (C and D) Results as in A and B but for simulated populations of 100,000 individuals evolving for up to 100,000 generations with 
a mutation rate of 10−4 per genome per generation; the mean number of segregating genotypes in each generation was 77.8. (E and F) Impact of introducing a 
mutation bias in an unbiased ancestor (“anc”), as a function of the new bias (shifted Tv or GC→AT bias). Panels show the results of simulations identical to those 
described in panel B, but starting with an unbiased ancestor.
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predict that the mutator should have higher fb in all environments, 
but we do not observe this pattern as consistently as expected 
(Fig. 1). Further, in apparent contradiction to prediction 3 above, 
the difference in fb between WT and mutator is lowest in LB 
(where ancestral growth rate is highest and presumably E. coli is 
best adapted). However, note that LB is not an “ancestral” envi-
ronment in an evolutionarily meaningful sense: During domesti-
cation, laboratory strains of E. coli did not evolve under selection 
for growth on LB (52), and our strains evolved for a very short 
time in LB under minimal selection. Additionally, absolute growth 
rate is not a reliable indicator of the relative degree of or period 
of adaptation to an environment, because it is also strongly influ-
enced by nutrient availability. Indeed, fb was not correlated with 
ancestral growth rate across environments in either strain 
(Spearman’s rank correlation test, WT: rho = –0.217, mutator: 
rho = –0.18; P > 0.05 in each case). Hence, to understand the 
environment-specific differences in DFEs, future studies would 
need to explicitly test predictions 2 and 3 (described above) under 
conditions where the precise degree of bias change and the length 
of evolutionary time in an environment can be measured and/or 
manipulated.

Our simulation results demonstrate general conditions under 
which a change in mutational bias can be selectively advantageous. 
But how does mutation bias emerge in the first place? To address 
this, we note that an unbiased spectrum, by definition, samples 
all possible states in the state space with equal probability. The 
unbiased Tv fraction is thus 0.67 because 2/3rd of all possible 
single-nucleotide changes are transversions. For GC→AT bias, in 
the randomly generated genomes in our simulations, the unbiased 
spectrum is 0.5, while for genomes with extreme GC content, the 
unbiased state may change (e.g., in a GC-rich genome, the rate 
of GC→AT mutations would need to be higher to sample every 
possible alternative state with equal probability). Starting from an 
unbiased ancestor, we find that introducing mutation bias does 
not, on average, change the beneficial fraction of the DFE (Fig. 4 
E and F). Thus, if an ancestor could somehow achieve an unbiased 
state, there is no consistent selective pressure that would oppose 
the subsequent introduction of bias. In fact, in particular unbiased 
walks, introducing mutation bias can improve access to beneficial 
mutations, when by chance more of the remaining beneficial 
mutations are of a particular type (SI Appendix, Fig. S7C); in these 
cases, selection would drive the spectrum away from the unbiased 
state. We emphasize however that this unbiased state is distinct 
from a “null” expectation that may reflect various biochemical and 
enzymatic processes that influence mutation biases. The exact 
impact of these processes remains unclear and varies across organ-
isms, such that a biologically meaningful and generalizable null 
expectation is not easily defined (53, 54). Nonetheless, after evo-
lution under any existing bias, we predict that changes to the DFE 
that reduce or reverse the bias are favored, allowing the population 
to explore mutational space that was previously undersampled, 
and thus increasing the probability of finding new beneficial muta-
tions. After a period of evolving with a new spectrum, a change 
in the fitness landscape (e.g., due to epistasis or environmental 
change) may again render a spectral shift advantageous. We reit-
erate that larger magnitude shifts are more strongly favored. 
Importantly, such large magnitude reversals of the existing bias 
that “overshoot” the unbiased state (i.e., Tv bias = 0.67 and 
GC→AT bias = 0.5) would allow even greater access to beneficial 
mutations than simply reducing the existing bias (Fig. 4 B and 
D). Such large shifts can occur easily via a few mutations that lead 
to the gain or loss of DNA repair function (17). Together, these 
results suggest that evolutionary shifts in mutation spectra may 
be common and should be enriched for bias reductions and 

reversals (i.e., bias shifts that improve the sampling of previously 
undersampled mutational classes). We tested this prediction using 
a broad phylogenetic analysis of bacterial taxa.

Evolutionary Transitions in DNA Repair Enzymes Are Consistent 
with Mutation Bias Reversals or Reductions in Most Bacterial 
Lineages. As noted earlier, altering DNA repair function is a simple 
and instantaneous mechanism to generate spectral shifts. Hence, we 
asked whether long-term patterns of gain and loss of DNA repair 
genes in bacterial lineages support our prediction that a reduction 
or reversal in mutation bias is advantageous and should therefore 
occur more frequently than bias reinforcements. A direct test 
would require knowledge of the mutation bias of many extant taxa. 
Given the paucity of such data, we tested for qualitative patterns of 
evolutionary change. If successive evolutionary transitions in repair 
genes (i.e., gains or losses) typically lead to bias changes in opposite 
directions, this would be consistent with our prediction. For 
example, if an initial loss of a repair gene increases Tv mutations, 
we predicted that a subsequent evolutionary transition should lead 
to reduced Tv rather than a further increase in Tv (see Fig. 5A for 
possible phylogenetic outcomes and implications). We focused 
on 11 bacterial DNA repair enzymes whose deletion has known 
impacts on the E. coli mutation spectrum (SI Appendix, Table S12). 
Assuming that the qualitative effects of deleting a specific enzyme 
are consistent across species (supported by available experimental 
data, SI Appendix, Table S13), we inferred the direction of change 
in mutation bias following each gain or loss event in a lineage (e.g., 
the loss of mutY should increase Tv, and a subsequent loss of mutT 
will further increase Tv, so these successive events change bias in 
the same direction).

We first identified orthologs for each repair gene in 1,093 extant 
bacterial genomes, and then used ancestral reconstruction to infer 
enzyme gains and losses on a phylogeny of these bacteria (follow-
ing ref. 55) (Fig. 5B). We found frequent evolutionary transitions 
in most repair enzymes, including those with known effects on 
mutation bias (Fig. 5B) and 33 other genes with unknown effects 
on mutation bias (SI Appendix, Fig. S13). For genes with known 
effects, we traced successive enzyme gains and losses for each lin-
eage in the tree and inferred the resulting fluctuations in the direc-
tion of bias change (Fig. 5A). Consistent with our prediction, in 
most lineages (>80%), successive enzyme gain or loss events would 
change mutation bias in opposite directions, and we observed only 
a few cases where successive events would lead to bias shifts in the 
same direction (Fig. 5C). Successive bias shifts in opposite direc-
tions were observed more frequently than expected by chance 
(one-sample t tests, Tv bias: t = −72.38, P < 2 × 10−16; GC→AT 
bias: t = −59.42, P < 2 × 10−16), while bias shifts in the same 
direction were less frequent than expected (Tv bias: t = −72.38, 
P < 2 × 10−16; GC→AT bias: t = −59.42, P < 2 × 10−16) 
(SI Appendix, Fig. S14 B and C). Hence, our results cannot be 
attributed to peculiarities of the enzyme set, tree topology, or 
number of evolutionary transitions. The rarity of lineages showing 
either no change or a single change in mutation bias (~5% of total, 
Fig. 5C) further suggests that bias shifts occur very frequently, 
consistent with prior phylogenetic analyses of DNA repair genes 
in bacteria as well as fungi (56–58). Presently, it is unclear whether 
these shifts are driven by selection, and whether such selection 
acts on mutation rate or bias (or both). Nonetheless, our analysis 
suggests that successive evolutionary transitions in DNA repair 
genes typically change the bias in opposite directions, consistent 
with our broader prediction that such shifts should be selectively 
advantageous.

We note here a few limitations of this analysis. First, recon-
struction of ancestral character states in phylogenetic datasets does D
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not account for uncertainty in the underlying phylogeny (59). 
Second, the estimated direction of bias change does not account 
for other repair enzymes whose effects on the mutation spectrum 
are unknown, or for variation in the impact of enzyme loss or gain 
across species. Third, our analyses cannot detect short-term shifts 

in mutation bias caused by transient gain and loss of repair 
enzymes. Finally, we likely underestimate the actual number of 
bias shifts because we could not include cases where repair func-
tion may be altered without gene deletion (e.g., due to loss-of- 
function point mutations). Nonetheless, our results are consistent 

Fig. 5. Phylogenetic analysis shows frequent evolutionary transitions in DNA repair genes and mutation bias. (A) Schematic showing the steps involved in the 
inference of changes in the direction of mutation bias in bacterial lineages. Different DNA repair enzymes are indicated by distinct colors; the qualitative effect 
of the loss of each gene on the mutation bias (based on experimental data from E. coli, SI Appendix, Table S12) is shown in the color key. Separately, the gain and 
loss of each enzyme (indicated by open or closed circles) is inferred using ancestral reconstruction. Combining the two pieces of information, for each lineage, 
we classify the number and type of changes as shown. Cases of multiple changes allow us to test our prediction that successive events should change mutation 
bias in opposite directions. (B) Repair gene presence/absence in extant taxa, used to map evolutionary transitions in DNA repair genes on the bacterial phylogeny 
(the total number of events is shown in the key; see SI Appendix, Materials and Methods for further details). (C) Observed number of lineages that show distinct 
types of evolutionary transitions in the direction of mutation bias (% values show fraction across all lineages; blue = observed; black = expected).
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with our broad predictions and indicate that the long-term  
causes and impacts of shifts in mutation bias deserve further 
investigation.

Conclusions

We show that shifts in the strength and direction of bias offer 
access to previously undersampled beneficial mutations. Thus, a 
species’ evolutionary history may be critical in explaining the evo-
lution of genomic bias (e.g., in base composition), without invok-
ing particular underlying mechanisms or selection favoring specific 
mutational classes. Previous work showed that the transversion-bi-
ased mutators ∆mutT and ∆mutY have distinct DFEs for antibi-
otic resistance compared to WT, but the effect was attributed to 
transversions being more beneficial for the specific antibiotic target 
(13). By recasting the puzzle of mutational biases as a problem of 
searching a vast and dynamic mutational space, our model allows 
broad generalization across mutation spectra. In addition, con-
straints imposed by biochemical or biophysical processes may also 
shape mutation biases and could help explain the observed per-
vasive transition bias across taxa. However, from an evolutionary 
standpoint, we suggest that the diversity of biases observed in 
nature is not surprising, since large magnitude shifts (or a series 
of successive, small shifts) are selectively favored and may occur 
easily and frequently via changes in DNA repair function. The 
relative frequency of large vs. small shifts in mutation bias in 
natural populations remains, however, an important topic for 
future investigation.

While it is well established that access to more mutations 
(through an increased mutation rate) is advantageous (18), here 
we demonstrate that accessing different mutations can likewise be 
beneficial. Our results have important implications for the evolu-
tion of mutator genotypes, in which shifts in mutation spectra 
and mutation rates are often (though not always) entangled. 
Mutator dynamics are governed by the genetic load and supply 
of beneficial mutations (18, 33, 60). In a new environment (away 
from fitness optima), these parameters are primarily driven by 
mutators’ high mutation rate (61)—particularly under strong 
selection (62)—allowing them to hitchhike with beneficial muta-
tions (63). We show here that the genome-wide beneficial supply 
rate is strongly influenced by the mutation spectrum across envi-
ronments, and this effect is strongest in well-adapted populations. 
Further, we predict that the advantage of a high mutation rate 
should be enhanced if accompanied by a reduction or reversal of 
the ancestral bias, but diminished otherwise (64). A recent simu-
lation study also predicts that differences in the mutation spectrum 
of mutators can change the magnitude of deleterious mutations; 
such differences can facilitate the loss of mutators under selection 
(65). Thus, mutation rate and spectrum may jointly govern the 
observed rise, persistence, and fall of mutators under selection (13, 
33, 66). Such effects may explain why mutators with relatively 
small increases in mutation rate are also abundant in natural bac-
terial populations (67) and deserve further attention (13, 65) with 
theoretical and experimental analyses to dissect the role of muta-
tion rate vs. spectrum.

Together with studies showing that mutation biases are per-
vasive and influence the genetic basis of adaptation under 
diverse conditions (see Introduction), our results demonstrate 
that mutation spectra may be important drivers of adaptation 
and innovation under myriad scenarios. When the beneficial 
mutation supply is limited by the existing spectrum, an antipar-
allel (opposite direction on the same axis) or orthogonal shift 
(on a different axis of the spectrum) could enhance sampling 
of new beneficial mutations, facilitating rapid adaptation. Our 

phylogenetic analysis likely underestimated such evolutionary 
shifts in mutation spectra, which may occur even more fre-
quently on shorter timescales via horizontal transfer and recom-
bination (68) and drive polymorphism in spectra across natural 
bacterial isolates (67, 69). As a result, genomes may often be 
out of compositional equilibrium, with interesting implications 
for subsequent bias shifts and for evolutionary inferences that 
assume such equilibrium. Hence, further work is necessary to 
more robustly quantify the frequency of spectrum shifts. Finally, 
we predict multiple cascading effects of shifts in mutation spec-
tra, including a reduction in the waiting time for beneficial 
mutations, decreased likelihood of mutational meltdown under 
genetic drift, and distinct genetic pathways of adaptation. We 
hope that future work will test these predictions.

Methods Summary

Here, we provide a summary of the methods important to understand our study. 
Details are given in SI Appendix, Materials and Methods.

Bacterial Strains and MA Experiments. We obtained the wild-type (WT)  
E. coli K-12 MG1655 strain and mutator strains (∆mutY, Δung, and ΔmutM in 
E. coli K-12 BW25113) from the Coli Genetic Stock Centre (Yale University). We 
moved the ∆mutY, Δung, and ΔmutM loci into the WT strain using P1-phage 
transduction and confirmed the knockout using PCR and whole-genome sequenc-
ing. To test whether genetic background alters the fitness effects of single muta-
tions observed during MA, we deleted the mutY locus from 19 evolved WT MA 
lines using P1-phage transduction.

We established WT, ∆mutY, ∆ung, and ∆mutM MA lines from single colonies 
and propagated them through daily single-colony bottlenecks on LB agar for 
8,250, 330, 4,400, and 5,775 generations, respectively. The MA protocol mini-
mizes the effect of selection, allowing us to sample a wide range of mutations 
largely independent of their fitness consequences.

Whole-Genome Sequencing to Identify Single Mutations and Determining 
Mutation Spectra. We sequenced individual colonies from MA experiments to 
identify all clones carrying only a single mutation relative to the WT or ΔmutY 
ancestor, using the Illumina HiSeq 2500 platform. For each sample, we aligned 
quality-filtered reads to the NCBI reference E. coli K-12 MG1655 genome (RefSeq 
accession ID GCA_000005845.2) and generated a list of base-pair substitutions 
and short indels (<10 bp). We calculated mutational biases as the fraction of 
each class of mutations observed in our evolved strains (SI Appendix, Table S3).

Constructing Single-Mutation DFEs. We measured growth rates of all evolved 
MA isolates with single mutations and their respective ancestors in 16 different 
environments and estimated maximum growth rate as a proxy of fitness. For each 
isolate, we used the average growth rate of three technical replicates to calculate 
the fitness effect (s) as (growth rate of evolved isolate/growth rate of ancestor) – 1. 
We used s values of mutations to construct strain- and environment-specific DFEs. 
Although selection is minimized in MA experiments, it is not entirely avoided. We 
corrected both WT and mutator DFEs for the effect of such selection as described 
recently (32), for each environment. Calculations are shown in Datasets S1–S12.

Estimating Genetic Load, Beneficial Mutation Supply, and Pleiotropy. 
We used the mutation rate and fb (estimated via the DFE) of WT and mutator 
in each environment to estimate the deleterious load and supply of beneficial 
mutations, as described earlier (33) (SI Appendix, Tables S4 and S5). To predict 
the impact of the strain-specific DFEs on adaptation in new habitats, we estimated 
the incidence of antagonistic and synergistic pleiotropy among new mutations 
sampled by each strain. Results for WT E. coli in some environments were previ-
ously reported (30). We similarly estimated pleiotropy of the 79 single mutations 
that arose in the mutator (ΔmutY) background and compared the incidence of 
pleiotropy across strains.

Simulations to Test the Effect of Mutation Spectrum Changes. We used 
an established evolutionary model to test whether and to what extent changes 
in mutation spectra are generally expected to affect the DFE. Following Stoltzfus 
(70), we simulated adaptive walks on the NK fitness landscape (51), modeling D
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sequences composed of strings of four bases (A, C, G, T), allowing mutations 
to be classified as transitions or transversions, GC→AT or AT→GC, and so on. 
In an NK fitness landscape, each locus in the sequence is randomly assigned K 
neighbors from among all loci in the model. The fitness contribution of locus i 
(ωi) then depends on the state of that locus and the state of its neighbors. For 
computational efficiency, we initially simulated adaptive walks (strong-selection 
weak-mutation regime). At various times during the adaptive walk, we generated 
a DFE by randomly sampling new mutations from the set of available single-step 
mutations and estimated key parameters such as fb.

Next, we relaxed a number of assumptions to test the generality of the simula-
tion results. We investigated higher degrees of epistasis by varying both N and K. 
We also simulated full populations, in which large numbers of mutations simulta-
neously segregate, and deleterious mutations can fix. Finally, we implemented a 
codon-based model in which nucleotide sequences evolved as described above, 
but fitness was defined by an NK fitness landscape based on amino acid sequence.

Inferring Past Evolutionary Changes in Mutation Spectra. To determine 
the evolutionary history of each DNA repair gene, we detected orthologs and 
mapped predicted gain and loss events for each gene on a pruned version of a 
published phylogeny constructed using >400 proteins, as described previously 
(55). We determined the enzyme state at each node using a posterior probability 
threshold of 0.7. We used the predicted evolutionary transitions to count the total 
number of gains and losses of each enzyme in the phylogeny. For all lineages in 
the tree, we used gene loss data from E. c oli to infer the direction of bias change 
(e.g., increase or decrease in Tv mutations) after each gain or loss event and used 
these to calculate the observed number and direction of changes in bias in each 
lineage. For lineages with multiple evolutionary transitions, we asked whether 
successive gain or loss events changed a given mutation bias in the same or 
opposite direction and counted the number of occurrences of each type of event 
(Fig. 5A). To derive the number of changes in bias expected by chance alone, we 
ran 10,000 phylogenetic stochastic forward simulations on the transition rate 
matrices (describing inferred rates of enzyme state transitions) and used the 

number and direction of mutation bias changes in each simulation to calculate 
the average proportion of lineages showing a given number and type of change 
(SI Appendix, Fig. S14A).

Data, Materials, and Software Availability. Code for simulations and phyloge-
netic analysis data have been deposited in Github (https://github.com/lmwahl/
MutationSpectrum and https://github.com/gauravdiwan89/dfe_ms_phylo_analysis). 
All study data are included in the article and/or SI Appendix. Previously published data 
were used for this work (30).
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