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1. Introduction

This section sets up notations and tools that will be used throughout this note. Results 
start from Section 2.

1.1. Unitarily invariant kernels

A unitarily invariant kernel on the open Euclidean unit ball

Bd = {z = (z1, . . . zd) ∈ Cd : ‖z‖ def= (|z1|2 + · · · + |zd|2)1/2 < 1}

is a reproducing kernel k of the form

k(z,w) =
∞∑

n=0
an〈z,w〉n (z,w ∈ Bd) (1.1)

for some sequence of strictly positive coefficients {an}n≥0 with a0 = 1. The corresponding 
reproducing kernel Hilbert space, to be denoted by Hk, is called a unitarily invariant 
space. The generalized Bergman kernels

km(z,w) =
(

1
1 − 〈z,w〉

)m

; m = 1, 2, . . . , (1.2)

are examples of unitarily invariant kernels. For m = 1, km is called the Drury-Arveson 
kernel. The Dirichlet kernel

k(z, w) =
∞∑

n=0

1
n + 1z

nwn (z, w ∈ D)

is a unitarily invariant kernel and a motivating example in this note.
Since a0 = 1, there exists a sequence of real numbers {bn}∞n=1 and an ε > 0 such that 

the equality

∞∑
n=1

bn〈z,w〉n = 1 − 1
∞∑

n=0
an〈z,w〉n

(1.3)

holds for all z, w ∈ Bd satisfying ‖z‖ < 1 and ‖w‖ < ε. Moreover, if k is non-vanishing
then this equality holds for all z, w ∈ Bd. For any ε > 0,

span{kw : w ∈ Bd, ‖w‖ < ε}

of the set of kernel functions defined as
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kw(z) = k(z,w) for z,w ∈ Bd

is dense in Hk.
Let Z+ denote the set of all non-negative integers. Given α ∈ Zd

+ and z ∈ Cd, we use 
the usual multi-index notations:

α = (α1, . . . , αd), |α| = α1 + · · · + αd, α! = α1! . . . αd!

and (
|α|
α

)
= |α|!

α1! . . . αd!
, zα = zα1

1 . . . zαd

d .

We set

aα =
{
a|α|

(|α|
α

)
, α ∈ Zd

+

0, α ∈ Zd\Zd
+

for α ∈ Zd, and bα = b|α|

(
|α|
α

)
for α ∈ Zd

+\{0}. (1.4)

With the help of notations in (1.4), a unitarily invariant kernel k, defined in (1.1) can 
be written as

k(z,w) =
∑

α∈Zd
+

aαz
αwα.

It is clear that the monomials {zα}α∈Zd
+

form an orthogonal basis for a unitarily invariant 
space Hk and that

‖zα‖2
Hk

= 1
aα

for all α ∈ Zd
+.

For a Hilbert space E , let O(Bd, E) be the class of all holomorphic E-valued functions 
on Bd. Then the vector valued Hilbert space Hk(E) is defined as

Hk(E) :=
{
f ∈ O(Bd, E) : f(z) =

∑
α∈Zd

+

cαz
α, cα ∈ E

and ‖f‖2 :=
∑

α∈Zd
+

‖cα‖2‖zα‖2 < ∞
}
.

As a Hilbert space, Hk(E) is the same as Hk ⊗ E , the identification being
∑

α∈Zd

cαz
α →

∑
α∈Zd

(zα ⊗ cα).

+ +
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1.2. 1/k-contractions

We shall denote a commuting d-tuple of bounded operators (T1, . . . , Td) by T. For 
α ∈ Zd, we set

Tα =
{
Tα1

1 . . . Tαd

d , α ∈ Zd
+

I, α ∈ Zd\Zd
+
.

The following definition, motivated by (1.3) in the context of a unitarily invariant 
kernel on Bd is from [9] and is of crucial use to us.

Definition 1.1. Let k be a unitarily invariant kernel on Bd and T be a commuting d-tuple 
of bounded operators such that the series

∑
α∈Zd

+\{0}

bαTα(Tα)∗

converges in strong operator topology. The d-tuple T is called a 1/k-contraction if

I −
∑

α∈Zd
+\{0}

bαTα(Tα)∗ ≥ 0.

In this case, we shall denote the unique positive square root of the positive operator 
I −

∑
α∈Zd

+\{0}
bαTα(Tα)∗ by ΔT.

While we shall be content with the definition above, a vast generalization of this 
definition, applicable to other domains, appeared in [6]. A contraction T and a commuting 
contractive tuple (or a d-contraction in Arveson’s terminology, see page 175 of [7] for 
example) T = (T1, . . . , Td) are 1/k-contractions when k is the Szegő kernel (on D) and 
the Drury Arveson kernel (on Bd) respectively.

Definition 1.2. A 1/k-contraction T = (T1, . . . , Td) is called pure if the series
∑

α∈Zd
+

aαTαΔ2
T(Tα)∗

converges strongly to I.

If k is the Drury-Arveson kernel and T is a d-contraction, then the series above 
converges strongly to I if and only if T is pure in the sense of Definition 3.1 of [8]. 
The compression of a pure 1/k-contraction to a co-invariant subspace is a pure 1/k-
contraction. Theorem 2.2 will imply that any pure 1/k-contraction is, in fact, the 
compression to a co-invariant subspace of a special 1/k-contraction.
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1.3. Admissible kernels

Let E and F be two Hilbert spaces. For a reproducing kernel Hilbert space Hk of 
holomorphic functions on Bd, a multiplier from Hk ⊗ E to Hk ⊗ F is a B(E , F)-valued 
function ϕ on Bd with the property that if f is in Hk ⊗ E , then ϕf is in Hk ⊗ F . For 
such a ϕ, we shall let Mϕ denote the operator of multiplication by ϕ. An application of 
the Closed Graph Theorem proves Mϕ to be a bounded operator. The set of all such 
functions is denoted by Mult(Hk ⊗ E , Hk ⊗ F). Since the multiplication operators by 
coordinate functions will serve as the model operators, we need to restrict the class of 
kernels we work with.

Definition 1.3. A unitarily invariant kernel k is called admissible if the operators of 
multiplication by the co-ordinate functions Mzi are bounded operators on Hk for i =
1, . . . , d and the d-tuple Mz = (Mz1 , . . . , Mzd) is a 1/k-contraction.

The Mzi will sometimes be referred to as the shift operators. The name is self-
explanatory. The generalized Bergman kernels km defined in (1.2) are examples of 
admissible kernels, see [15]. In this paper, k will always denote an admissible kernel.

1.4. Complete Nevanlinna-Pick kernels

Complete Nevanlinna-Pick kernels arose out of a question of Quiggin. In [19], he asked 
for a characterization of reproducing kernel Hilbert spaces on which Pick’s theorem 
was true. The answer came a year later when McCullough showed in [13] that there 
is a characterization if one considers Nevanlinna-Pick interpolation problem for matrix-
valued functions, viz., that the inverse of the kernel has only one positive square. Starting 
with [1] by Agler and McCarthy, the complete Nevanlinna-Pick kernels have been of 
constant interest over the last two decades - [3], [4], [10], [12] and [14] are representative 
publications. This list is by no means exhaustive and is growing. We shall see a new 
characterization of irreducible unitarily invariant complete Nevanlinna-Pick kernels on 
the Euclidean unit ball in Section 3.

Definition 1.4. A reproducing kernel s is said to have the Mm×n Nevanlinna-Pick prop-
erty if, whenever λ1, . . . , λN are points in Bd and W1, . . . , WN are m-by-n matrices such 
that

(I −WiW
∗
j )s(λi,λj) ≥ 0,

then there exists a multiplier ϕ in the closed unit ball of

Mult(Hs ⊗Cn, Hs ⊗Cm)
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such that φ(λi) = Wi, i = 1, . . . , N . The kernel s is said to have the complete Nevanlinna-
Pick property (CNPP) if it has the Mm×n Nevanlinna-Pick property for all positive 
integers m and n and the corresponding reproducing kernel Hilbert space Hs is called a 
complete Nevanlinna-Pick space.

Definition 1.5. A reproducing kernel Hilbert space Hs is irreducible if s(z, w) 
= 0 for all 
z, w ∈ Bd, and sw and sv are linearly independent if v 
= w.

One of the main tools for us is the following well-known result. See Lemma 2.3 of [11]
for a proof. For one variable, the result is in Lemma 7.33 of [2].

Lemma 1.6. Let Hs be a unitarily invariant space on Bd with reproducing kernel

s(z,w) =
∞∑

n=0
an〈z,w〉n.

Then the following are equivalent:

(1) Hs is an irreducible complete Nevanlinna-Pick space.
(2) The sequence {bn}∞n=1 defined by (1.3) is a sequence of non-negative real numbers.

Definition 1.7. A reproducing kernel s is called a unitarily invariant complete Nevanlinna-
Pick (CNP) kernel if

(1) it is of the form

s(z,w) =
∞∑

n=0
an〈z,w〉n (z,w ∈ Bd)

for a sequence of strictly positive coefficients {an}n≥0 with a0 = 1, and
(2) Hs is an irreducible complete Nevanlinna-Pick space.

Unitarily invariant CNP kernels are admissible. See, [[9], Lemma 5.2]. In this paper, 
s will always denote a unitarily invariant CNP kernel.

In general, the generalized Bergman kernels km defined in (1.2) are not always unitarily 
invariant CNP. Some basic examples of unitarily invariant CNP kernels are the Drury-
Arveson kernel and the Dirichlet kernel.

Definition 1.8. For any t ≥ 0, we define a weighted Dirichlet space, to be denoted by Dt, 
in the following way

Dt :=
{
f ∈ O(D,C) : f(z) =

∞∑
cnz

n and ‖f‖2
Dt

:=
∞∑

(n + 1)t|cn|2 < ∞
}
.

n=0 n=0
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Note that D1 is the same as the Dirichlet space. The space Dt is a reproducing kernel 
Hilbert space and the corresponding reproducing kernel is unitarily invariant CNP (see, 
[[2], Corollary 7.41]).

There are complete Nevanlinna-Pick kernels on Bd which are not unitarily invariant. 
For example, Dirichlet-type spaces of functions analytic in the unit disc whose derivatives 
are square area integrable with superharmonic weights have complete Nevanlinna–Pick 
reproducing kernels, see [18], but in general, they are not always unitarily invariant.

2. Existence of the characteristic function

The characteristic function introduced by Sz.-Nagy and Foias has a long history of 
generating beautiful mathematics, see [16] and many references therein for the classical 
theory.

It was created in search of a complete unitary invariant for a contraction T and is 
defined as

θT (z) = (−T + zDT∗(IH − zT ∗)−1DT )|DT
,

on D. The defect operators DT = (IH − T ∗T )1/2 and DT∗ = (IH − TT ∗)1/2 satisfy 
TDT = DT∗T . Hence, the defect space DT = RanDT is mapped by the characteristic 
function into the other defect space DT∗ = RanDT∗ . The B(DT , DT∗) valued contractive 
holomorphic function θT is a complete unitary invariant for any completely non-unitary 
(c.n.u.) contraction T , i.e., a c.n.u. contraction T is unitarily equivalent to another c.n.u. 
contraction R if and only if the following diagram commutes for some unitary operators 
σ1 : DT → DR and σ2 : DT∗ → DR∗ and for all z ∈ D:

DT
θT (z)−−−−→ DT∗

σ1

⏐⏐� ⏐⏐�σ2

DR −−−−→
θR(z)

DR∗

.

At this point, it is important to explain the interplay between a contraction T and the 
Szegő kernel S(z, w) = 1

1−zw on D. Clearly, T is a contraction if and only if 1
S (T, T ∗) =

I − TT ∗ is a positive operator. It is a natural question whether a characteristic function 
can always be associated with a 1/k-contraction for an admissible kernel k. Although, 
the answer is yes in case of the Drury-Arveson kernel, we shall see that the answer is no 
for a general admissible k. Hence, this section will culminate in finding a necessary and 
sufficient condition for a 1/k-contraction to have a characteristic function.
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2.1. Factoring a positive operator

The main result of this subsection is Proposition 2.4. Let E0 be the projection onto 
the one dimensional subspace of constant functions in Hk.

Lemma 2.1. For an admissible kernel k, we have ΔMz = E0. Moreover, the operator 
d-tuple Mz = (Mz1 , . . . , Mzd) is pure in the sense of Definition 1.2.

Proof. The fact that ΔMz is E0 can be seen by applying ΔMz on the linear combinations 
of kernel functions which form a dense set. The pureness of Mz follows by observing that 
with respect to the orthonormal basis

e(α) =
√
aαz

α for α ∈ Zd
+,

the operator 
∑

|α|≤N

aαMα
zE0(Mα

z )∗ is the projection onto the finite dimensional space 

spanned by {e(α) : α ∈ Zd
+, |α| ≤ N}. Thus, 

∑
|α|≤N

aαMα
zE0(Mα

z )∗ is an increasing 

sequence of projections converging to I in strong operator topology. �
Our next tool is a construction by Arazy and Englis in [6], the roots of which go back 

to [5]. For a proof of the following theorem, see [[6], Theorem 1.3].

Theorem 2.2. Let T = (T1, . . . , Td) be a pure 1/k contraction acting on a Hilbert space 
H. Then the linear map VT : H → Hk ⊗ RanΔT given by

h 
→
∑

α∈Zd
+

aαz
α ⊗ ΔT(Tα)∗h

is an isometry which satisfies

V ∗
T (p(Mz) ⊗ IRanΔT

) = p(T)V ∗
T

for all polynomials p in d complex variables.

Let

Mz ⊗ IRanΔT

def= (Mz1 ⊗ IRanΔT
, . . . ,Mzd ⊗ IRanΔT

).

We shall suppress the suffix RanΔT when it is obvious. An important consequence of 
this theorem about an admissible kernel is that every pure 1/k-contraction is unitarily 
equivalent to the compression of Mz ⊗ I to a co-invariant subspace, viz., the range of 
the isometry VT.
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Definition 2.3. Let k be an admissible kernel on Bd. Let T = (T1, . . . , Td) be a commuting 
d− tuple of bounded operators acting on a Hilbert space H. A positive operator X in 
B(H) with closed range is called (k, T)-factorable if there is a Hilbert space E and a 
bounded linear transformation Θ : Hk ⊗E → H such that X = ΘΘ∗ and Θ(Mzi ⊗ IE) =
TiΘ for all i.

See [7] for a discussion on factorable operators when k is the Drury-Arveson kernel 
and T = (T1, . . . , Td) is a d-contraction.

Proposition 2.4. Assume the setup of Definition 2.3. Let ci = ‖Mzi‖2. Then, X is (k, T)-
factorable if and only if

(1) ciX − TiXT ∗
i ≥ 0, for all i,

(2) the series PT(X) :=
∑

α∈Zd
+\{0}

bαTαX(Tα)∗ converges strongly such that X−PT(X) ≥

0, and
(3) the series 

∑
α∈Zd

+

aαTα(X − PT(X))(Tα)∗ converges strongly to X.

Proof. Since X is a positive operator with closed range, we have

RanX = RanX1/2

where X1/2 is the unique positive square root of the operator X. If the conditions (1), 
(2) and (3) are satisfied, define for each i, a linear transformation Ai : RanX → RanX
by

AiX
1/2h = X1/2T ∗

i h for all h ∈ H.

Each Ai is a bounded operator as

‖AiX
1/2h‖2 = 〈TiXT ∗

i h, h〉 ≤ ci‖X1/2h‖2.

Let Si = A∗
i . The operator Si : RanX → RanX is a bounded operator which satisfies

TiX
1/2 = X1/2Si.

In fact, the d-tuple S = (S1, . . . , Sd) on RanX is a 1/k-contraction. To see that, we 
observe that for any h ∈ H we have

〈X1/2h,X1/2h〉 ≥
〈 ∑

α∈Zd
+\{0}

bαTαX(Tα)∗h, h
〉

(by condition (2))

=
∑

α∈Zd \{0}

bα〈TαX(Tα)∗h, h〉

+
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=
∑

α∈Zd
+\{0}

bα〈X1/2Sα(Sα)∗X1/2h, h〉

=
〈 ∑

α∈Zd
+\{0}

bαSα(S∗)αX1/2h,X1/2h

〉
.

More is true, viz., S is pure because
〈 ∑

α∈Zd
+

aαSαΔ2
S(S

α)∗X1/2h,X1/2h

〉
=

∑
α∈Zd

+

aα〈SαΔ2
S(S

α)∗X1/2h,X1/2h〉

=
〈 ∑

α∈Zd
+

aαTα(X − PT(X))(Tα)∗h, h
〉

= 〈Xh, h〉 (by condition (3)).

Let E = RanΔS. By Theorem 2.2 we have an isometry

VS : RanX → Hk ⊗ E

such that

V ∗
S (Mzi ⊗ IE) = SiV

∗
S .

Defining Θ : Hk ⊗ E → H by Θ = X1/2V ∗
S , we have

ΘΘ∗ = X1/2V ∗
S VSX

1/2 = X

and

Θ(Mzi ⊗ IE) = X1/2V ∗
S (Mzi ⊗ IE) = X1/2SiV

∗
S = TiX

1/2V ∗
S = TiΘ.

Conversely, if there is a Hilbert space E and a bounded linear transformation

Θ : Hk ⊗ E → H

such that X = ΘΘ∗ and Θ(Mzi ⊗ IE) = TiΘ, then to prove (1), we note that

ciX − TiXT ∗
i = ciΘΘ∗ − TiΘΘ∗T ∗

i

= ciΘΘ∗ − Θ(Mzi ⊗ IE)(M∗
zi ⊗ IE)Θ∗

= Θ(ciI − (Mzi ⊗ IE)(M∗
zi ⊗ IE))Θ∗ ≥ 0.

To prove (2) and (3), we fix an N ∈ N. Then, we note that
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X −
∑

1≤|α|≤N

bαTαX(Tα)∗ = ΘΘ∗ −
∑

1≤|α|≤N

bαTαΘΘ∗(Tα)∗

= Θ

⎛
⎝I −

∑
1≤|α|≤N

bα(Mα
z ⊗ IE)((Mα

z )∗ ⊗ IE)

⎞
⎠Θ∗

and
∑

|α|≤N

aαTα(X − PT(X))(Tα)∗ =
∑

|α|≤N

aαTα(ΘΘ∗ − PT(ΘΘ∗))(Tα)∗

= Θ

⎛
⎝ ∑

|α|≤N

aα(Mα
z ⊗ IE)Δ(Mz⊗IE)((Mα

z )∗ ⊗ IE)

⎞
⎠Θ∗.

Now, letting N go to ∞ completes the proof. �
2.2. An invariant subspace, and an associated tuple

The special case of an operator X which is (k, T)-factorable when the Hilbert space 
H is of the form Hk ⊗ E for the same kernel k and the operators Ti are Mzi ⊗ IE is of 
particular interest because it is straightforward then that the factor Θ is a multiplication
operator.

Definition 2.5. A pure 1/k-contraction T = (T1, . . . , Td) is said to admit a characteristic 
function if there exist a Hilbert space E and a B(E , RanΔT)-valued analytic function θT
on Bd such that MθT is a multiplication operator from Hk ⊗E to Hk ⊗RanΔT satisfying

I − VTV
∗
T = MθTM

∗
θT
.

The following proposition follows from the fact that if an operator Θ : Hk⊗E → Hk⊗F
satisfies Θ(Mzi⊗IE) = (Mzi⊗IF )Θ for all i = 1, . . . , d, then there exists a B(E , F)-valued 
analytic function θ on Bd such that Θ = Mθ.

Proposition 2.6. A pure 1/k-contraction T = (T1, . . . , Td) admits a characteristic func-
tion if and only if the projection I − VTV

∗
T is (k, Mz ⊗ I)− factorable.

By virtue of Theorem 2.2, we observe that the kernel of V ∗
T , i.e., the range of projection 

I − VTV
∗
T is an invariant subspace of the tuple Mz ⊗ I.

Definition 2.7. Let T = (T1, . . . , Td) be a pure 1/k-contraction. The associated d-tuple 
of commuting operators BT is defined on KerV ∗

T as

BT = ((Mz1 ⊗ I)|KerV ∗ , . . . , (Mzd ⊗ I)|KerV ∗).

T T
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We have reached the main theorem of this section which gives a neat equivalent 
condition for existence of a characteristic function. This is a crucial result because the 
proof of the characterization of unitarily invariant CNP kernels obtained in the next 
section requires this result.

Theorem 2.8. A pure 1/k-contraction T = (T1, . . . , Td) acting on a Hilbert space H ad-
mits a characteristic function if and only if the associated tuple BT is a 1/k-contraction.

Proof. It is trivial to note that BT is a 1/k-contraction if and only if the series
∑

α∈Zd
+\{0}

bα(Mα
z ⊗ I)(I − VTV

∗
T )((Mα

z )∗ ⊗ I)

converges strongly such that

(I − VTV
∗
T ) −

∑
α∈Zd

+\{0}

bα(Mα
z ⊗ I)(I − VTV

∗
T )((Mα

z )∗ ⊗ I) ≥ 0.

We prove the easy side first. Let T admit a characteristic function. This means that there 
is a Hilbert space E and a B(E , RanΔT)-valued bounded analytic function θT on Bd such 
that

I − VTV
∗
T = MθTM

∗
θT
.

Thus, for any N ≥ 1, we get

(I − VTV
∗
T ) −

∑
1≤|α|≤N

bα(Mα
z ⊗ I)(I − VTV

∗
T )((Mα

z )∗ ⊗ I)

=MθTM
∗
θT

−
∑

1≤|α|≤N

bα(Mα
z ⊗ I)MθTM

∗
θT

((Mα
z )∗ ⊗ I)

=MθT

⎛
⎝I −

∑
1≤|α|≤N

bα(Mα
z ⊗ I)((Mα

z )∗ ⊗ I)

⎞
⎠M∗

θT

and that completes the proof of this direction.
Conversely, let ci = ‖Mzi‖2. Since VT is an isometry, I − VTV

∗
T is the projection onto 

KerV ∗
T which is invariant under Mzi ⊗ I for each i. Let PKerV ∗

T
be the projection of 

Hk ⊗RanΔT onto KerV ∗
T . Now for each i, define a linear operator Ri : KerV ∗

T → KerV ∗
T

by Ri = (Mzi ⊗ I)|KerV∗
T
. Note that ‖Ri‖2 ≤ ci. So we have

ci(I − VTV
∗
T ) − (Mzi ⊗ I)(I − VTV

∗
T )(M∗

zi ⊗ I)

=ciPKerV ∗
T
− (Mzi ⊗ I)PKerV ∗

T
(M∗

zi ⊗ I)

=ciPKerV ∗ − (Mzi ⊗ I)PKerV ∗(M∗
z ⊗ I)PKerV ∗
T T i T
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≥0 (since ciIKerV ∗
T
−RiR

∗
i ≥ 0).

Since the operator I−VTV
∗
T acts on the Hilbert space Hk⊗RanΔT, we can consider the 

map PMz⊗I as in Proposition 2.4 with T replaced by Mz ⊗ I. For the sake of notational 
brevity, we shall denote it by P for the rest of this proof. Then the given condition is

(I − VTV
∗
T ) − P (I − VTV

∗
T ) ≥ 0.

Next we shall show that the series
∑

α∈Zd
+

aα(Mα
z ⊗ I)((I − VTV

∗
T ) − P (I − VTV

∗
T ))((Mα

z )∗ ⊗ I)

converges strongly to I − VTV
∗
T . Note that if we define

SN =
∑

|α|≤N

aα(Mα
z ⊗ I)((I − VTV

∗
T ) − P (I − VTV

∗
T ))((Mα

z )∗ ⊗ I),

then SN is an increasing sequence of positive operators. So if we can show that {SN} is 
bounded above then it will converge strongly.

Claim. SN ≤ I − VTV
∗
T for every N ∈ N.

Proof of the claim. Fix an ε > 0 so that (1.3) is satisfied and consider the dense subspace

{
l∑

i=1
(kwi ⊗ ξi) : l ≥ 1,w1, . . .wl ∈ Bd, ‖w1‖ < ε, . . . , ‖wl‖ < ε, ξ1, . . . ξl ∈ RanΔT

}

of Hk ⊗ RanΔT. It is enough to verify that

〈
SN

l∑
i=1

(kwi
⊗ ξi),

l∑
i=1

(kwi
⊗ ξi)

〉
≤

〈
(I − VTV

∗
T )

l∑
i=1

(kwi
⊗ ξi),

l∑
i=1

(kwi
⊗ ξi)

〉
.

(2.1)
The left hand side after a simplification is

∑
|α|≤N

aα

l∑
i,j=1

wi
αwα

j

⎛
⎝1 −

∑
β∈Zd

+\{0}

bβwi
βwβ

j

⎞
⎠ 〈(I − VTV

∗
T )(kwi

⊗ ξi), (kwj
⊗ ξj)〉.

This is no bigger than

∑
α∈Zd

aα

l∑
i,j=1

wi
αwα

j

⎛
⎝1 −

∑
β∈Zd \{0}

bβwi
βwβ

j

⎞
⎠ 〈(I − VTV

∗
T )(kwi

⊗ ξi), (kwj
⊗ ξj)〉
+ +
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which is the same as

l∑
i,j=1

〈(I − VTV
∗
T )(kwi

⊗ ξi), (kwj
⊗ ξj)〉

and that is the right hand side of (2.1). This proves the claim.

So SN converges strongly. From the calculations above it is also clear that SN increases 
to I − VTV

∗
T .

By Proposition 2.4, the operator I−VTV
∗
T is (k, Mz⊗I)-factorable. Finally, by Propo-

sition 2.6, the pure 1/k-contraction T admits a characteristic function. �
Remark 2.9. The proof shows that the d-tuple BT is a pure 1/k-contraction whenever it 
is a 1/k-contraction, i.e., whenever T admits a characteristic function.

3. A characterization of unitarily invariant CNP kernels

This section contains the major result Theorem 3.4. The proof crucially uses Theo-
rem 2.8.

Definition 3.1. An admissible kernel k is said to admit a characteristic function if every 
pure 1/k-contraction admits a characteristic function.

3.1. Sufficiency of the complete Nevanlinna-Pick property

Note that (1.3) can also be written as

∑
α∈Zd

+

aαz
αwα = 1 +

⎛
⎝ ∑

α∈Zd
+\{0}

bαz
αwα

⎞
⎠

⎛
⎝ ∑

α∈Zd
+

aαz
αwα

⎞
⎠ .

This leads us to the following relation:

aα =
∑

β∈Zd
+\{0}

bβaα−β (3.1)

for all α ∈ Zd
+\{0}. In the series in (3.1), only finitely many summands are non-zero. 

Also, if the kernel is a unitarily invariant CNP kernel, then all the summands are positive.
Recall from [9] that if s is a unitarily invariant CNP kernel then Mz = (Mz1 , . . . , Mzd)

on Hs is a 1/s-contraction and so is Mz ⊗ IE for any Hilbert space E .

Theorem 3.2. If s is a unitarily invariant CNP kernel, then s admits a characteristic 
function, i.e., every pure 1/s-contraction admits a characteristic function.
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Proof. By Theorem 2.8, it is enough to show that the restriction of Mz ⊗ IE to a closed 
invariant subspace M of Hs⊗E is a 1/s-contraction for any Hilbert space E . Let PM be 
the projection of Hs⊗E onto the subspace M. Let Ti = (Mzi ⊗IE)|M for all i = 1, . . . , d. 
For any N ≥ 1,

∑
1≤|α|≤N

bαTα(Tα)∗ =
∑

1≤|α|≤N

bαPM(Mα
z ⊗ IE)PM((Mα

z )∗ ⊗ IE)|M

≤
∑

1≤|α|≤N

bαPM(Mα
z ⊗ IE)((Mα

z )∗ ⊗ IE)|M (since bα ≥ 0)

≤
∑

α∈Zd
+\{0}

bαPM(Mα
z ⊗ IE)((Mα

z )∗ ⊗ IE)|M (since bα ≥ 0)

≤ IM (since Mz ⊗ IE is a 1/s− contraction).

Since this holds for all N ≥ 1, the d-tuple T = (T1, . . . , Td) is a 1/s-contraction. This 
completes the proof. �

Interestingly, the Bergman kernel does not admit a characteristic function in the sense 
of Definition 3.1 as is shown below.

Proposition 3.3. The generalized Bergman kernels km defined in (1.2) do not admit char-
acteristic functions for m ≥ 2.

Proof. For z, w ∈ Bd, the expression for the generalized Bergman kernel km is 
km(z, w) =

∑
α∈Zd

+

σm(α)zαwα where

σm(α) = (m + |α| − 1)!
α!(m− 1)! (α ∈ Zd

+). (3.2)

We shall denote the Hilbert space corresponding to the kernel km by Hm. Recall that 
{em(α) =

√
σm(α)zα : α ∈ Zd

+} is an orthonormal basis for the Hilbert space Hm.
For N ≥ 0, define the subspace HN = span{zα : |α| ≤ N} and define an operator 

tuple acting on HN by TN = PHN
Mz|HN

, where PHN
is the projection of Hm onto HN . 

It is easy to check that the d-tuple TN is a pure 1/km-contraction, ΔTN
= E0 and

MN
def= KerV ∗

TN
= span{zα : |α| ≥ N + 1}.

Let PMN
be the projection from Hm onto MN . Let n denote the multi-index (n, 0, . . . , 0).

We shall show that the pure 1/km-contraction TN does not admit a characteristic 
function for any N ≥ 0. To that end, we consider the associated operator d-tuple of 
Definition 2.7. Note that
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〈⎛
⎝IMN

−
∑

α∈Zd
+\{0}

bαMα
zPMN

(Mα
z )∗

⎞
⎠ em(N + 2), em(N + 2)

〉

=
〈
(I − b1Mz1PMN

M∗
z1)em(N + 2), em(N + 2)

〉
=1 − σm(1)σm(N + 1)

σm(N + 2) (b1 = σm(1) by (3.1)).

By putting values of the coefficients from (3.2) we get

σm(1)σm(N + 1)
σm(N + 2) = m!

(m− 1)!
(m + |N + 1| − 1)!
(N + 1)!(m− 1)!

(N + 2)!(m− 1)!
(m + |N + 2| − 1)!

= m
(m + N)!
(N + 1)!

(N + 2)!
(m + N + 1)!

= m
N + 2

m + N + 1 > 1 (for m ≥ 2).

So the associated tuple in not a 1/km-contraction. By Theorem 2.8, the d-tuple TN does 
not admit a characteristic function for any N ≥ 0. This completes the proof. �
3.2. Necessity of the complete Nevanlinna-Pick property

The above raises the natural question of characterizing all admissible kernels which 
admit a characteristic function. We shall answer this question completely. Note that 
the d-tuple (0, . . . , 0) of identically zero operators on any Hilbert space H is a pure 
1/k-contraction for any admissible kernel k on Bd.

Theorem 3.4. Let k be an admissible kernel on Bd. Then the following are equivalent.

(1) The d-tuple (0, . . . , 0) of identically zero operators admits a characteristic function.
(2) The kernel k is unitarily invariant CNP.
(3) Any pure 1/k-contraction admits a characteristic function.

Proof. (1) ⇒ (2): Let H be the space of all constant functions in Hk. Let T = (0, . . . , 0)
be the d-tuple of identically zero operators on H. Then ΔT = IH. Recall that E0 is the 
projection of Hk onto the space of constant functions. If VT is the isometry obtained 
in Theorem 2.2, then VTV

∗
T = E0. Let e(α) = √

aαz
α and n = (n, 0, . . . , 0). Since 

T admits a characteristic function, the associated operator tuple in Definition 2.7 is a 
1/k-contraction, see Theorem 2.8. This means that for all n ≥ 1 we have

〈⎛
⎝PH⊥ −

∑
α∈Zd

+\{0}

bαMα
zPH⊥(Mα

z )∗
⎞
⎠ e(n + 1), e(n + 1)

〉
≥ 0.
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In other words,

0 ≤
〈(

PH⊥ −
n∑

i=1
biMi

zPH⊥(Mi
z)∗

)
e(n + 1), e(n + 1)

〉

=
〈(

PH⊥ −
n∑

i=1
biM

i
z1PH⊥(M i

z1)
∗

)
e(n + 1), e(n + 1)

〉

= 1 −
n∑

i=1
bi
an+1−i

an+1

= 1
an+1

n+1∑
i=1

bian+1−i −
1

an+1

n∑
i=1

bian+1−i (by (3.1))

= bn+1

an+1
= bn+1

an+1
(by (1.4)).

This implies bn+1 ≥ 0 for all n ≥ 1. Since b1 = a1, we get bn ≥ 0 for all n ≥ 1. Now by 
Lemma 1.6, k is a unitarily invariant CNP kernel. The implication (2) ⇒ (3) has already 
been proved and for (3) ⇒ (1), there is nothing to prove. �
4. Explicit construction of the characteristic function

Recall that a unitarily invariant CNP kernel s is a reproducing kernel of the form

s(z,w) =
∞∑

n=0
an〈z,w〉n (4.1)

having the following properties:

(1) a0 = 1 and an > 0 for all n ≥ 1, and
(2) Hs is an irreducible complete Nevanlinna-Pick space.

By Lemma 1.6, for a unitarily invariant CNP kernel, (1.3) holds for all z, w ∈ Bd and 
the sequence {bn}∞n=1 defined by (1.3) is a sequence of non-negative real numbers.

4.1. 1/s-contractions

We shall give an explicit construction of the characteristic function for any 1/s-
contraction (not necessarily pure). The next lemma plays an important role in extending 
the notion of characteristic function beyond pure 1/s-contractions and also clarifies the 
motivation for definition of a pure 1/s-contraction.
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Lemma 4.1. If T = (T1, . . . , Td) is a 1/s-contraction, then the series

∑
α∈Zd

+

aαTαΔ2
T(Tα)∗

converges in the strong operator topology and the limiting operator is a positive contrac-
tion.

Proof. The positivity is clear if we can show the convergence. We shall show that the 
partial sums form an increasing sequence of positive operators bounded above by the 
identity operator. Hence the sequence will converge in strong operator topology with the 
limiting operator bounded above by the identity operator. To that end, consider h ∈ H. 
Then for any N ≥ 1,

∑
|α|≤N

aα〈TαΔ2
T(Tα)∗h, h〉 =

∑
|α|≤N

aα

〈
Tα

⎛
⎝I −

∑
β∈Zd

+\{0}

bβTβ(Tβ)∗
⎞
⎠ (Tα)∗h, h

〉

≤
∑

|α|≤N

aα‖(Tα)∗h‖2 −
∑

1≤|α|≤N

∑
β∈Zd

+\{0}

aα−βbβ‖(Tα)∗h‖2

=
∑

|α|≤N

aα‖(Tα)∗h‖2 −
∑

1≤|α|≤N

aα‖(Tα)∗h‖2 (by (3.1)).

The last quantity is ‖h‖2 and that completes the proof. �
As a direct consequence of this Lemma, we get the following Corollary.

Corollary 4.2. Let T = (T1, . . . , Td) be a 1/s-contraction acting on a Hilbert space H. 
Define an operator VT : H → Hs ⊗ RanΔT by

h 
→
∑

α∈Zd
+

aαz
α ⊗ ΔT(Tα)∗h.

Then VT is a contraction which satisfies

V ∗
T (p(Mz) ⊗ IRanΔT

) = p(T)V ∗
T

for all polynomials p in d complex variables.

Note that for a pure 1/s-contraction T, the operator VT defined here is the same as the 
one defined in Theorem 2.2. Here it is defined for a bigger class of operator tuples, albeit 
for a smaller class of kernels. By virtue of Corollary 4.2, we can generalize Definition 3.1
for unitarily invariant CNP kernels.
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Definition 4.3. A 1/s-contraction T = (T1, . . . , Td) is said to admit a characteristic func-
tion if there exists a Hilbert space E and a B(E , RanΔT)-valued analytic function θT on 
Bd such that MθT is a multiplication operator from Hs ⊗ E to Hs ⊗ RanΔT satisfying

I − VTV
∗
T = MθTM

∗
θT
.

4.2. Taylor spectrum

Let rBd be the open ball in Cd centered at origin of radius r. For r = 1, the following 
lemma is due to Hartz. The proof for any r ≥ 1 is similar to the proof of [[11], Lemma 
2.3].

Lemma 4.4. Let s be a unitarily invariant CNP kernel defined in (4.1). If the power series ∑∞
n=0 ant

n has radius of convergence r ≥ 1, then s(z, w) 
= 0 for all z, w ∈ √
rBd.

Corollary 4.5. Let s be a unitarily invariant CNP kernel defined in (4.1). If the power 
series 

∑∞
n=0 ant

n has radius of convergence r ≥ 1, then the power series 
∑∞

n=1 bnt
n has 

radius of convergence greater than or equal to r.

We denote by σ(T) ⊂ Cd the Taylor spectrum of a commuting d-tuple of bounded 
operators T = (T1, . . . , Td) on a Hilbert space. For r = 1, the following lemma can be 
found in [[9], Lemma 5.3]. For any r ≥ 1, it can be proved using the same techniques.

Lemma 4.6. Let s be a unitarily invariant CNP kernel defined in (4.1) and the power se-
ries 

∑∞
n=0 ant

n has radius of convergence r ≥ 1. If T = (T1, . . . , Td) is a 1/s-contraction, 
then σ(T) ⊆ √

rBd.

4.3. Functional calculus

Note that for fixed w ∈ Bd, the series 
∑

α∈Zd
+
aαwαzα defines an analytic func-

tion in a ball centered at origin of radius 
√
r/‖w‖ >

√
r. By Corollary 4.5, the 

series 
∑

α∈Zd
+\{0} bαw

αzα also defines an analytic function in (
√
r/‖w‖)Bd. Now by 

[[20], Theorem III.9.9], we get that the two operator series 
∑

α∈Zd
+
aαwαTα and ∑

α∈Zd
+\{0} bαw

αTα converge in norm operator topology. By virtue of (1.3), we get

⎛
⎝ ∑

α∈Zd
+

aαwαTα

⎞
⎠

⎛
⎝I −

∑
α∈Zd

+\{0}

bαwαTα

⎞
⎠ = I.

For w ∈ Bd, we set the notation:

sw(T) =
∑

α∈Zd

aαwαTα.
+
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Since the map A 
→ A∗ is continuous in norm operator topology, we get

(sz(T))∗ =
∑

α∈Zd
+

aαz
α(Tα)∗

and
⎛
⎝ ∑

α∈Zd
+

aαz
α(Tα)∗

⎞
⎠

⎛
⎝I −

∑
α∈Zd

+\{0}

bαz
α(Tα)∗

⎞
⎠ = I

for all z ∈ Bd. This implies

⎛
⎝I −

∑
α∈Zd

+\{0}

bαz
α(Tα)∗

⎞
⎠

−1

=

⎛
⎝ ∑

α∈Zd
+

aαz
α(Tα)∗

⎞
⎠ = (sz(T))∗ (4.2)

4.4. Construction of the characteristic function

Let T = (T1, . . . , Td) be a 1/s-contraction acting on a Hilbert space H. We denote by

H̃ def= ⊕α∈Zd
+\{0}H,

the infinite direct sum of the Hilbert space H. For each multi-index α ∈ Zd
+\{0}, consider 

the polynomial ψα : Bd → C given by

ψα(z) = (bα)1/2zα

and define the infinite operator tuple

Z = (ψα(z)IH)α∈Zd
+\{0}.

We shall also denote by Z the operator from H̃ to H which maps (hα)α∈Zd
+\{0} to ∑

α∈Zd
+\{0}

(bα)1/2zαhα. The operator Z is a strict contraction because

‖Z‖2 =
∑

α∈Zd
+\{0}

bα|zα|2 = 1 − 1
s(z, z) < 1.

Define by T̃ the infinite operator tuple

T̃ = (ψα(T))α∈Zd \{0},
+
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as well as the operator from H̃ to H which maps (hα)α∈Zd
+\{0} to 

∑
α∈Zd

+\{0}
(bα)1/2Tαhα. 

It is easy to check that T̃ is a contraction if and only if T is a 1/s-contraction. Also,

T̃T̃∗ =
∑

α∈Zd
+\{0}

bαTα(Tα)∗ = IH − Δ2
T

and hence Δ2
T = IH − T̃T̃∗. Let DT̃ be the unique positive square root of the positive 

operator IH̃ − T̃∗T̃, and let DT̃ = RanDT̃. By equation (I.3.4) of [17] we obtain the 
identity

T̃DT̃ = ΔTT̃. (4.3)

Note that the operator ZT̃∗ is a strict contraction. So, IH − ZT̃∗ is invertible.

Definition 4.7. The characteristic function of a 1/s-contraction T = (T1, . . . , Td) is the 
analytic operator valued function θT : Bd → B(DT̃, RanΔT) given by

θT(z) = (−T̃ + ΔT(IH − ZT̃∗)−1ZDT̃)|DT̃
. (4.4)

The characteristic function θT takes values in B(DT̃, RanΔT) by virtue of (4.3). Since

I − ZT̃∗ = I −
∑

α∈Zd
+\{0}

bαz
α(Tα)∗,

we get by (4.2) that

(I − ZT̃∗)−1 = (sz(T))∗.

Lemma 4.8. The identity

I − θT(z)θT(w)∗ = 1
s(z,w)ΔT(sz(T))∗sw(T)ΔT

holds for any z, w ∈ Bd.

We omit the proof because it is a straightforward computation. In what follows, VT
is as in Theorem 2.2.

Lemma 4.9. The identity

V ∗
T (sw ⊗ ξ) = sw(T)ΔTξ

holds for any w ∈ Bd and ξ ∈ RanΔT.
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Proof. Let h be any element of H. Then

〈V ∗
T (sw ⊗ ξ), h〉 = 〈sw ⊗ ξ, VTh〉

= 〈sw ⊗ ξ,
∑

α∈Zd
+

aαz
α ⊗ ΔT(Tα)∗h〉

=
∑

α∈Zd
+

aαwα〈ξ,ΔT(Tα)∗h〉

=
∑

α∈Zd
+

aαwα〈TαΔTξ, h〉

= 〈
∑

α∈Zd
+

aαwαTαΔT ξ, h〉 = 〈sw(T)ΔTξ, h〉.

Since h is arbitrary, we have the desired identity. �
Using Lemma 4.8 and Lemma 4.9, it is straightforward to see the following.

Corollary 4.10. The identity

〈V ∗
T (sw ⊗ ξ), V ∗

T (sz ⊗ η)〉 = s(z,w) 〈(I − θT(z)θT(w)∗)ξ, η〉

holds for any z, w ∈ Bd and ξ, η ∈ RanΔT.

The main result of this section is the next theorem which shows that for a 1/s-
contraction T, the characteristic function θT works as the multiplier required in Defini-
tion 4.3.

Theorem 4.11. Given a 1/s-contraction T = (T1, . . . , Td), its characteristic function θT
(defined in (4.4)) is a multiplier from Hs⊗DT̃ to Hs⊗RanΔT with ‖MθT‖ ≤ 1. Moreover 
the identity

VTV
∗
T + MθTM

∗
θT

= I (4.5)

holds.

Proof. Define a linear map

A : span{sw ⊗ ξ : w ∈ Bd, ξ ∈ RanΔT} → Hs ⊗DT̃

by

A(sw ⊗ ξ) = sw ⊗ θT(w)∗ξ.
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For z, w ∈ Bd and ξ, η ∈ E we get

〈A(sw ⊗ ξ), A(sz ⊗ η)〉 = 〈sw ⊗ θT(w)∗ξ, sz ⊗ θT(z)∗η〉
= s(z,w)〈θT(z)θT(w)∗ξ, η〉
= 〈(I − VTV

∗
T )(sw ⊗ ξ), sz ⊗ η〉 (4.6)

by Corollary 4.10. This implies that

‖Ax‖ ≤ ‖x‖

for all x ∈ span{sw ⊗ ξ : w ∈ Bd, ξ ∈ RanΔT}. Thus, A extends to be a bounded 
linear operator from Hs ⊗ RanΔT to Hs ⊗DT̃. Now we shall prove that A∗ = MθT . For 
f ∈ Hs ⊗DT̃, ξ ∈ RanΔT and z ∈ Bd, we have

〈(A∗f)(z), ξ〉 = 〈A∗f, sz ⊗ ξ〉 = 〈f,A(sz ⊗ ξ)〉 = 〈f, sz ⊗ θT(z)∗ξ〉 = 〈θT(z)f(z), ξ〉.

So we get (A∗f)(z) = θT(z)f(z). This implies that A∗ = MθT . The identity

MθTM
∗
θT

+ VTV
∗
T = IHk⊗E

follows from (4.6). �
Corollary 4.12. Given a 1/s-contraction T, its characteristic function θT is a bounded 
analytic function on Bd with sup

z∈Bd

‖θT(z)‖ ≤ 1.

Epilogue

In this note, we have proved the existence of characteristic function for a certain 
class, but did not show any utility. This will be the theme of a future paper. However, 
the principal utility of the characteristic function in the pure case is a straightforward 
consequence of what we have developed so far.

Definition. Given two 1/s-contractions T and R on Hilbert spaces H and K respectively, 
the characteristic functions of T and R are said to coincide if there exist unitary operators 
τ : DT̃ → DR̃ and τ∗ : RanΔT → RanΔR such that the following diagram commutes for 
all z ∈ Bd:

DT̃
θT(z)−−−−→ RanΔT

τ

⏐⏐� ⏐⏐�τ∗

DR̃ −−−−→ RanΔR

θR(z)
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The characteristic functions of two unitarily equivalent 1/s-contractions clearly co-
incide. It is somewhat of a surprise that the converse is true for at least pure 1/s-
contractions. This is achieved through the construction of a functional model. Using 
the isometry VT as well as the identity (4.5), we get that every pure 1/s-contraction 
T = (T1, . . . , Td) acting on a Hilbert space H is unitarily equivalent to the commuting 
tuple T = (T1, . . . , Td) on the functional space

HT = (Hs ⊗ RanΔT) �MθT(Hs ⊗DT̃)

defined by Ti = PHT(Mzi ⊗ IDT̃∗ )|HT for 1 ≤ i ≤ d. This functional model produces the 
following theorem whose proof is along the lines of the contents of [8].

Theorem. Two pure 1/s-contractions are unitarily equivalent if and only if their charac-
teristic functions coincide.
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