
Stationary States of the One-dimensional
Facilitated Asymmetric Exclusion Process

A. Ayyer∗, S. Goldstein†, J. L. Lebowitz∗, ‡ and E. R. Speer∗

December 30, 2021

Keywords: Asymmetric facilitated exclusion processes, one dimensional
conserved lattice gas, facilitated jumps, translation invariant steady states,
asymmetry independence, F-ASEP, F-TASEP

AMS subject classifications: 60K35, 82C22, 82C23, 82C26

Abstract

We describe the translation invariant stationary states (TIS) of
the one-dimensional facilitated asymmetric exclusion process in con-
tinuous time, in which a particle at site i ∈ Z jumps to site i + 1
(respectively i − 1) with rate p (resp. 1 − p), provided that site i − 1
(resp. i+ 1) is occupied and site i+ 1 (resp. i− 1) is empty. All TIS
states with density ρ ≤ 1/2 are supported on trapped configurations
in which no two adjacent sites are occupied; we prove that if in this
case the initial state is i.i.d. Bernoulli then the final state is indepen-
dent of p. This independence also holds for the system on a finite ring.
For ρ > 1/2 there is only one TIS. It is the infinite volume limit of the
probability distribution that gives uniform weight to all configurations
in which no two holes are adjacent, and is isomorphic to the Gibbs
measure for hard core particles with nearest neighbor exclusion.

1 Introduction

The facilitated exclusion process is a model of particles moving on a lattice,
which we take to be Zd. Our primary interest is in the one-dimensional
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version in which particles hop only to nearest neighbor sites, but for com-
pleteness we first describe the general model. A configuration of the model
is an arrangement of particles on Zd, with each site either empty or occupied
by a single particle. If site i is occupied, and one of its neighboring sites is
also, then the particle at site i attempts, at rate 1, to jump to another site j,
succeeding only if the target is unoccupied. The target site j is chosen with
probability π(j − i), where π : Zd → R+ is some probability distribution:
π ≥ 0 and

∑
j∈Zd π(j) = 1.

We will generally consider states of the system—probability measures on
the set of configurations—which have a well-defined density ρ, in the sense
that, with probability one, a fraction ρ of the sites in each configuration are
occupied (see (1.1) for a precise statement). (Here, and throughout unless
stated otherwise, by “measure” we mean “probability measure.”) Since par-
ticles are neither created nor destroyed, the density is a conserved quantity.
If ρ is not too large there will exist frozen configurations in which no two
adjacent sites are occupied and hence no particle can move; the maximum
density of such a frozen configuration is clearly 1/2.

Most studies of the model with d ≥ 2 consider the case in which the tar-
get sites are uniformly distributed over the nearest neighbors of the jumping
particle. For d = 2, simulations [13, 18, 19] suggest a somewhat surprising
property of the model (which presumably holds for d ≥ 2): there is a critical
density ρc < 1/2 such that, if the initial state of the models is the measure
with Bernoulli i.i.d. marginals (which we will refer to simply as Bernoulli
measure) with density ρ, then with probability 1, (i) for ρ < ρc the model
eventually reaches a frozen configuration, while (ii) for ρ > ρc the configura-
tion remains active—that is, particles continue to jump—for all time. Note
that when ρc < ρ ≤ 1/2 there exist frozen configurations with density ρ;
these are traps for the dynamics, but with probability 1 they are avoided.
To obtain such a result rigorously, or indeed any interesting rigorous results,
seems very challenging (but see [20]). Indeed, we are not able to prove what
seems to be self evident: that the configurations eventually freeze for suffi-
ciently small ρ, say ρ < 10−23.

In the remainder of this paper we consider only the case d = 1, with
probabilities p and 1 − p of jumps to the right and left, respectively (that
is, we take π(1) = p, π(−1) = 1 − p, and π(j) = 0 for j 6= ±1). See
Figure 1. This model is the Facilitated Asymmetric Simple Exclusion Process
(F-ASEP), with special cases p = 0, 1 (Totally Asymmetric, the F-TASEP)
[1, 2, 5, 7, 8] and p = 1/2 (Symmetric, the F-SSEP) [3, 6]. A discrete time
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version of the F-TASEP was studied in [10, 11]. We write X = {0, 1}Z for
the configuration space; the condition that configuration η have density ρ is
now

lim
N→∞

1

N

N∑
i=1

ηi = lim
N→∞

1

N

−1∑
i=−N

ηi = ρ, (1.1)

and we let Xρ denote the set of such configurations. We let F ⊂ X denote
the set of frozen configurations.

1− p p p1− p

· · · · · ·

Figure 1: Transitions in the one-dimensional F-TASEP

We will study the translation invariant (TI) measures on X which are
stationary for the dynamics (TIS measures); for this purpose it suffices to
consider extremal TIS measures, that is, the set of measures such that every
TIS measure is a convex combination of these, and none of these is a proper
convex combination of others. As we show below, each extremal measure
will be supported on Xρ for some value of ρ. The stationary measures for
the symmetric case were discussed, for finite volume, in [6]; the results given
there carry over smoothly to infinite volume. The current paper contains
two main results, one each for low density (0 < ρ < 1/2) and high density
(1/2 < ρ < 1), discussed in Sections 3 and 4, respectively.

For 0 < ρ < 1/2, the set of TIS states is simple: all such states are frozen,
that is, are supported on F , and all TI measures on F are TIS measures. In
this case we pose and answer the question: if the initial state is Bernoulli,
what is the final state? Our main result is that this final state is independent
of the asymmetry parameter p. Moreover, it is also the final state arising
from an initial Bernoulli measure for the discrete-time F-TASEP, in which all
particles attempt to jump at the same times [10, 11]. However, the indepen-
dence of the degree of asymmetry does not hold for discrete-time dynamics
[12].

For 1/2 < ρ < 1 we prove that there is a unique TIS state for each
value of ρ. This state may in fact be identified as the Gibbs measure for a
statistical mechanical system in which the only interaction is an exclusion
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rule that forbids two adjacent empty sites. Results identifying stationary
states of particle systems with Gibbs measures have been established earlier
[9, 24], but under the assumption that the transition rates for the particle
system satisfy a detailed balance condition, which those of the F-ASEP do
not (unless p = 1/2).

Our proof of the uniqueness relies on a coupling with the well-studied
Asymmetric Simple Exclusion Model (ASEP). The TIS states of density ρ̂
for the latter are precisely the Bernoulli measures [17] (if p 6= 1/2 there are
also non-TI stationary states, which are not relevant for our discussion here).
Our coupling yields a correspondence between these states and the TIS states
of the F-ASEP with density ρ = 1/(2− ρ̂).

Our coupling, from the ASEP to the F-ASEP, is a bit more complicated
than the simple map, from the F-ASEP to the ASEP, used in [1]. That map
requires that the particles be labeled, and translation invariant measures for
labeled particle configurations can’t be normalized. Thus the map in [1] is
not well suited for our problem of finding the translation invariant stationary
probability measures for the F-ASEP. We therefore use a coupling that does
not require labeling.

2 The model

In this section we give various definitions and simple results which will be
needed later, and first mention several pieces of general notation. For any
sets A and B, function f : A → B, and measure λ on A we let f∗λ be
the measure on B with (f∗λ)(C) = λ(f−1(C)); moreover, if B = R we let
λ(f) =

∫
A
f dλ denote the expected value of f under λ. When C ⊂ B we

let 1C : B → {0, 1} denote the indicator function of the set C; we will omit
mention of the set B when this is clear from the context, as it usually is. If
S is a finite set then |S| denotes the size of S.

We now turn to the models under consideration. As indicated above, the
configuration space of the F-ASEP model is X := {0, 1}Z. (In Section 3.2
we will consider also the same dynamics on a ring of L sites with periodic
boundary conditions; any notation specific to that case will be introduced
as needed). Let F ⊂ X denote the set of frozen configurations in which
no two adjacent sites are occupied, and similarly let G ⊂ X denote the set
of configurations with no two adjacent empty sites. We write η = (η(i))i∈Z
for a typical configuration, and for j, k ∈ Z with j ≤ k we let η(j :k) =
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(η(i))j≤i≤k denote the portion of the configuration lying between sites j and
k (inclusive). We will occasionally use string notation for configurations or
partial configurations, writing for example η(0 :4) = η(0) · · · η(4) = 10100 =
(10)20.

We denote by τ the translation operator: if η ∈ X then (τη)(i) = η(i−1),
if f is any function on X then τf(η) = f(τ−1η), and if µ is a (Borel) measure
on X then τ acts on µ as µ 7→ τ∗µ. We let L(X) denote the space of functions
f : X → R for which f(η) depends on the values η(k) for only finitely many
sites k, C(X) denote the space of real-valued continuous functions on X (for
the topology generated by L(X)), and M = M(X) denote the space of
translation invariant probability measures on X (equipped with the Borel
σ-algebra, i.e., the natural product σ-algebra, on X).

We now turn to a formal specification of the system. The dynamics
is controlled by Site Associated Poisson Processes (SAPPs); two of these,
controlling rightward and leftward jumps, respectively, are associated with
each site i ∈ Z. Specifically, given a TI measure µ ∈ M which specifies the
initial distribution of the system, we consider the probability space (Ω,Pµ

p):

Ω = X × Ω0, with Ω0 =
∏
i∈Z

(
T (i,r) × T (i,l)

)
,

Pµ
p = µ×Pp, with Pp =

∏
i∈Z

(
λ(i,r)p × λ(i,l)p

)
.

(2.1)

Here, for i ∈ Z and # = l or r,

T (i,#) =
{(

(i, t
(i,#)
j )

)
j=1,2,...

∣∣∣ 0 < t
(i,#)
1 < t

(i,#)
2 · · · , lim

j→∞
t
(i,#)
j =∞

}
, (2.2)

and under λ
(i,r)
p (respectively λ

(i,l)
p ) the points of T (i,r) (respectively T (i,l))

are distributed as a Poisson process of rate p (respectively 1− p.)
The configuration now evolves as follows: at each time t = t

(i,r)
j a particle

jumps from site i to site i + 1 if ηt−(i − 1) = ηt−(i) = 1 − ηt−(i + 1) = 1,

and at each time t = t
(i,l)
j a particle jumps from i to i − 1 if ηt−(i + 1) =

ηt−(i) = 1− ηt−(i− 1) = 1. This so-called Harris graphical construction (or
Poisson construction in [23]) leads [23] to a process ηt, well-defined on Ω,
with generator L which acts on L(X) via

Lf(η) =
∑
i∈Z

c(i, η)[f(ηi,i+1)− f(η)]. (2.3)
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Here ηi,j denotes the configuration η with the values of η(i) and η(j) ex-
changed. The rates c(i, η) are given by

c(i, η) =


p, if η(i− 1) = η(i) = 1 and η(i+ 1) = 0,

1− p, if η(i) = 0 and η(i+ 1) = η(i+ 2) = 1,

0, otherwise.

(2.4)

L is the generator of a Markov semigroup S(t) = eLt on C(X), which thus acts
on M(X) via µ→ µt = µS(t), where (µS(t))(f) = µ(S(t)f) or equivalently
(µS(t))(A) =

∫
X
Qt(η, A) dµ, with Qt(η, A) = (S(t)1A)(η) the transition

kernel of the Markov process. We will assume that this process, and others
to be considered later, have right-continuous sample paths.

Remark 2.1. Since the set of all Poisson times for different sites will a.s. be
dense in (0,∞), one cannot perform all the particle jumps in temporal or-
der, and some care is needed to show that the construction is well defined.
Details are given in [23, Sections 4.3 and 4.4]. Later we carry out such a
construction with a different but equivalent definition of the dynamics, in
which the Poisson times at which particles can jump are associated with the
particles rather than with the sites (Particle Associated Point Processes).
See the proof of Theorem 4.3.

If µ is a TI measure on X then, by the ergodic theorem, µ-almost every
configuration η has a density, i.e.,

r(η) = lim
N→∞

1

2N + 1

N∑
i=−N

η(i) (2.5)

exists almost surely. (2.5) defines a map r : X → [0, 1]; we will say that a TI
measure µ has density ρ if r(η) = ρ µ-a.s. Note that if µ has density ρ then
µ(η(i)) = ρ for any i, but that the former is a stronger statement, ruling out,
for example, the possibility that µ is a superposition of measures of different
densities. The next lemma shows that in seeking to describe the set of all
stationary TI measures µ it suffices to consider those for which µ(F ) is 0 or
1 and for which r(η) is µ-a.s. constant.

Lemma 2.2. Every TIS measure µ on X is a convex combination of TIS
measures for which r is a.s. constant and F has measure 0 or 1.
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Proof. Let ν = r∗µ; ν is a measure on [0, 1] which gives the distribution
of the density under µ. Then (see for example [16]) there exists a regular
conditional probability distribution for µ, that is, a family {µρ | ρ ∈ [0, 1]} of
probability measures on X such that µρ has density ρ and for any measurable
A ⊂ X,

µ(A) =

∫
0≤ρ≤1

µρ(A)dν(ρ). (2.6)

Moreover, {µρ} is unique in the sense that for any other such family {µ′ρ},
µρ = µ′ρ ν-a.s. If we further write µρ = µρ

∣∣
F

+ µρ
∣∣
X\F we obtain, after

normalization, the desired representation. It remains to verify that these
normalized measures, µρ

∣∣
F

/(
µρ
∣∣
F

(X)
)

and µρ
∣∣
X\F

/(
µρ
∣∣
X\F (X)

)
, are TIS

measures.

Now

µ(A) = τ∗µ(A) =

∫
0≤ρ≤1

τ∗µρ(A)dν(ρ), (2.7)

and from (2.5) it follows that τ∗µρ has density ρ, so that the uniqueness of the
conditional probability distribution implies that τ∗µρ = µρ ν-a.s. Stationarity
of µρ ν-a.s. follows similarly from the fact that neither dynamics destroys or
creates particles. Finally, translation invariance and stationarity of µρ

∣∣
F

and

µρ
∣∣
X\F follows from the fact that F is translation invariant and invariant

under the dynamics. �

The key idea in the next lemma appears in [6] in the context of a system
on a ring.

Lemma 2.3. If µ is a TIS measure on X then µ(F ∪G) = 1.

Proof. The argument we give requires that p be strictly positive; by the
symmetry of the model under simultaneous spatial reflection and the re-
placement p → 1 − p, we may assume that this condition holds. Suppose
that µ(F ∪ G) < 1. If η /∈ F ∪ G then η contains two adjacent zeros and
two adjacent ones; let 2k be the minimum number of sites by which a double
zero follows a double one—that is, for which the string 11(01)k00 occurs in
a configuration—with nonzero probability. We first note that k ≥ 1 almost
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surely. For from (2.4), the translation invariance of µ, and µ = µt for all t,

d

dt
µ
(
η(0:1) = 11

)
= −p µ

(
η(0:2) = 110

)
− (1− p)µ

(
η(−1:1) = 011

)
+ p µ

(
η(−2:1) = 1101

)
+ (1− p)µ

(
η(0:3) = 1011

)
= −p µ

(
η(0:3) = 1100

)
− (1− p)µ

(
η(−2:1) = 0011

)
.

This quantity must vanish, since µ is stationary, and since p is nonzero the
probability of 1100 occurring is zero.

Now by the choice of k, µ
(
η(0:2k + 3) = 11(01)k00

)
> 0. Then a simple

calculation as above, using repeatedly the fact that for any i and for j < k,
µ
(
η(i:i+ 2j + 3) = 11(01)j00

)
= 0, shows that

d

dt
µ
(
η(2:2k+3) = 11(01)(k−1)00

)
= p µ

(
η(0:2k+3) = 11(01)k00

)
> 0, (2.8)

contradicting stationarity. �

Remark 2.4. Let η∗ ∈ X be the period-two configuration defined by η∗(i) =
i mod 2. η∗ and its translate τη∗ consist of alternating 1’s and 0’s, and the
measure µ∗ = (δη∗ + δτη∗)/2 is a TIS measure with density ρ = 1/2. Note
that µ∗(F ) = µ∗(G) = 1.

Theorem 2.5. Let µ be a TIS measure on X with density ρ. Then:

(a) If ρ < 1/2 then µ(F ) = 1, i.e., µ is supported on F .

(b) If ρ = 1/2 then µ = µ∗ (see Remark 2.4).

(c) If ρ > 1/2 then µ(G) = 1, i.e., µ is supported on G.

Proof. We know that µ is supported on F ∪ G. Suppose that η ∈ suppµ;
then we may assume that η ∈ F ∪ G and r(η) = ρ. If ρ = r(η) < 1/2 then,
by (2.5), η must contain a positive density of double zeros and so lie in F \G,
verifying (a); similarly, if ρ > 1/2 then η ∈ G \ F , verifying (c). If ρ = 1/2
then (2.5) with η ∈ F ∪G implies that η does not have a positive density of
either double ones or double zeros, and hence almost surely has no double
ones or double zeros at all, verifying (b). �

3 The low density region

In this section we consider TIS states on Xρ with 0 < ρ < 1/2; by The-
orem 2.5 these are necessarily supported on F . In fact, any TI measure
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supported on F is clearly a TIS state; in Remark 4.2 we obtain a prescrip-
tion for obtaining all such states from a construction introduced there for the
study of the high density region. Here we address the following question:

Question 3.1. If the system is given an initial measure µ(ρ), the Bernoulli
measure with density 0 < ρ < 1/2, what is the final measure?

3.1 The totally asymmetric model

In this section we address Question 3.1 for the totally asymmetric model
(F-TASEP); we take p = 1 in (2.4) but the discussion for p = 0 would be
similar. The answer is given in [10, 11] for the discrete-time F-TASEP, and
the analysis there applies almost unchanged in the continuous-time case, so
we content ourselves with a brief summary.

First, it is convenient to enlarge the state space of the process from X
to X̂ := X × Z, writing the state of the system at time t as (ηt, Jt). In this
new version of the model, Jt is the signed count of the number of particles
passing between sites 0 and 1 up to time t. The new version is defined on the
same probability space (Ω,Pµ

p) as the original one (see (2.1), (2.2)), with Jt

incremented or decremented by 1 at, and only at, those times t
(0,r)
j or t

(1,l)
j ,

respectively, at which jumps actually occur; it is straightforward to verify,
as in [23], that this leads to a well-defined process. We always assume that
J0 = 0.

The variable Jt allows us to introduce the height profile ht : Z→ Z asso-
ciated with the pair (ηt, Jt) ∈ X̂ (see, e.g., [15]), defined by the requirements
that ht(i) − ht(i − 1) = 1 − 2ηt(i) = (−1)ηt(i) for all i ∈ Z and ht(0) = 2Jt,
or more explicitly by

ht(i) =


2Jt +

i∑
j=1

(−1)ηt(j), if i ≥ 0,

2Jt −
0∑

j=i+1

(−1)ηt(j), if i < 0.

(3.1)

Then, since 0 < ρ < 1/2, limi→±∞ ht(i) = ±∞. Moreover, as a function of
t, ht is monotonically increasing; in particular, ht(i) increases by 2 when a
particle jumps from site i to site i + 1, and such an increase can occur only
if ht(i− 1) > ht(i). See the inset in Figure 2.
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We can now sketch the determination of the fate of an arbitrary initial
configuration η0 ∈ Xρ; full details are given in [11]. Define Q = Q(ηt) ⊂ Z
by Q := {q ∈ Z | ht(q) > supi<q ht(i)}. From the observation above on how
ht can increase it follows that Q(ηt) is in fact independent of t and that for
q ∈ Q, ht(q) is constant. If q and q′ are consecutive elements of Q and i ∈ Z
satisfies q ≤ i < q′, then ht(i) < ht(q

′) = h0(q
′), so that limt→∞ ht(i), and

hence also η∞(i) = limt→∞ ηt(i), exist. Further, since i+ h0(i) is even for all
i and h0(q

′)− h0(q) = 1, q′ − q is odd, and so necessarily

η∞(q + 1:q′) = 1 0 1 0 · · · 1 0 0 = (1 0)(q
′−q−1)/20. (3.2)

See Figure 2. This completes the determination of η∞.

Figure 2: Portion of typical initial (blue, lower) and final (red, upper) height
profiles in the F-TASEP; the profile increases monotonically in time from the
former to the latter. The vertical dotted lines are at sites in Q. The inset
shows the local change in the profile associated with the jump of a single
particle, carrying local configuration 1 1 0 1 to 1 0 1 1.

We now suppose that η0 is distributed according to the Bernoulli distri-
bution µ(ρ), and write P

(ρ)
p rather than Pµ(ρ)

p . We ask for the distribution

µ
(ρ)
∞ = η∞∗P

(ρ)
p of η∞, where here we think of η∞ as a map η∞ : Ω → Xρ.

Let V = {η ∈ X | 0 ∈ Q(η)}; note that (3.2) implies that V coincides,

up to a set of µ
(ρ)
∞ -measure zero, with {η | η(−1:0) = 0 0}, and with
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µ
(ρ)
∞
(
{η | η(−1:0) = 1 1}

)
= 0 this implies that µ

(ρ)
∞ (V ) = 1 − 2ρ. To

obtain µ
(ρ)
∞ we will first describe the conditional measure µ

(ρ)
∞ (· | V ), then

obtain µ
(ρ)
∞ as the (unique) TI measure with this conditional measure. For

η0 ∈ V we may index Q = Q(η0) as Q = {qk}k∈Z, taking q0 = 0 and requiring

that the qk be increasing in k; then we may specify µ
(ρ)
∞ (· | V ) by giving the

joint distribution of the variables nk defined by qk+1 − qk = 2nk + 1.
It is easy to see that the nk are i.i.d. To describe the distribution of a

single nk we recall the Catalan numbers [22]

cn =
1

n+ 1

(
2n

n

)
, n = 0, 1, 2, . . . ; (3.3)

cn counts the number of strings of n 0’s and n 1’s in which the number of 0’s
in any initial segment does not exceed the number of 1’s. If q = qk ∈ Q and
l = q+2n+1 then qk+1 = l if and only if h0(l) = h0(q)+1 and h0(i) ≤ h0(q) for
q < i < l, and there are cn strings η(q + 1: l − 1) satisfying this condition and
hence yielding qk+1 = l. Since each such string has probability ρn(1− ρ)n+1

we have sketched a proof of the next theorem, which is taken from [11].
Recall that τ denotes translation and 1C the indicator function of C.

Theorem 3.2. (a) The random variables nk of the F-TASEP, defined on V

as above, are i.i.d. under µ
(ρ)
∞ (· | V ), with distribution

µ(ρ)
∞ ({nk = n} | V ) = cnρ

n(1− ρ)n+1, n = 0, 1, 2, . . . . (3.4)

(b) The measure µ
(ρ)
∞ is given by

µ(ρ)
∞ =

1

Z

∑
m≥0

2m∑
i=0

τ−i∗
(
1Vmµ

(ρ)
∞ (· | V )

)
=
∑
m≥0

2m∑
i=0

τ−i∗
(
1Vmµ

(ρ)
∞
)
, (3.5)

where Vm = {η0 ∈ V | q1− q0 = 2m+ 1} and Z = µ
(ρ)
∞ (V )−1 is a normalizing

constant.

3.2 The model in finite volume

In this section we address Question 3.1, or rather an appropriately modified
version of it, for the F-ASEP on a periodic ring of L sites. The system
size L will be constant during our analysis and we typically suppress L-
dependence. We first discuss the totally asymmetric model and describe the
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result corresponding to Theorem 3.2, then show that the limiting measure
is in fact independent of the asymmetry parameter p. The ring is denoted
ZL := {0, 1, . . . , L − 1}; we consider a system of N particles on these sites,
governed by the obvious modification of the F-ASEP dynamics defined in
Section 2. For a configuration η ∈ {0, 1}ZL we let |η| :=

∑L
i=1 η(i) denote

the number of particles in η; the configuration space of our model is then
X(N) := {η ∈ {0, 1}ZL | |η| = N}. We will be interested in the fate of an
initial measure µ(N) which is uniform on X(N); the probability space is then
(Ω(N),P

(N)
p ):

Ω(N) = X(N) ×
∏
i∈ZL

(
T (i,r) × T (i,l)

)
,

P(N)
p = µ(N) ×

∏
i∈ZL

(
λ(i,r)p × λ(i,l)p

)
.

(3.6)

Here T and λ are as in (2.1). (In view of our earlier use of µ(ρ) and P
(ρ)
p ,

writing µ(N) and P
(N)
p is admittedly an abuse of notation, but we believe

that this will not give rise to confusion.) The construction of the dynamics
is parallel to the construction in infinite volume, but is technically simpler
because the considerations of Remark 2.1 do not apply; we omit details. The
auxiliary variable Jt is not needed here.

Now consider the F-TASEP, taking p = 1 above. Given an initial con-
figuration η0 ∈ {0, 1}ZL , with |η0| < L/2, we extend η0 to an L-periodic
configuration η∗0 on Z, apply the construction of Section 3.1 to obtain Q(η∗0),
and let Q(η0) := Q(η∗0)∩ {0, 1, . . . , L− 1}; Q(η0) will contain L− 2|η0| sites.
An argument as in infinite volume shows that the limiting configuration η∞
exists and satisfies (3.2) for q, q′ consecutive (in cyclic order) elements of
Q(η0) (with the expression q′ − q − 1 in the exponent of (3.2) interpreted
mod L).

Now fix N < L/2; we will determine the distribution µ
(N)
∞ = η∞∗P

(N)
p of

η∞ when η0 is distributed according to µ(N) (this is the modified version of
Question 3.1 referred to above). Let V (N) := {η ∈ X(N) | 0 ∈ Q(η)} and note
that |V (N)| = (L − 2N)

(
L
N

)
/L, since if one partitions X(N) into equivalence

classes under translation then each class contains a fraction (L − 2N)/L
of elements belonging to V (N). We can determine the conditional measure
µ
(N)
∞ (· | V (N)) by simple counting: given 0 = q0 < q1 < . . . < qL−2N−1 ≤ L−1,

with qi+1 − qi ≡ 2ni + 1 (mod L) for 0 ≤ ni < L/2, there are
∏L−2N−1

i=0 cni
initial configurations η0 ∈ X(N) with Q(η0) = {q0, . . . , qL−2N−1}, all leading
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to η∞ = η(q0,...,qL−2N−1), where

η(q0,...,qL−2N−1) := (10)q1−q00(10)q2−q10 · · · 0(10)q0−qL−2N−1+L0. (3.7)

Thus we have

Theorem 3.3. (a) The possible limiting configurations of the F-TASEP
model on V (N) are the η(q0,...,qL−2N−1), and

µ(N)
∞
(
{η(q0,...,qL−2N−1)} | V (N)) =

L
∏L−2N−1

i=0
cni

(L− 2N)
(
L
N

) . (3.8)

(b) µ
(N)
∞ =

1

L

L−1∑
i=0

τ i∗µ
(N)
∞ (· | V (N)).

We now consider the general F-ASEP model on ZL, with partially asym-
metric dynamics governed by the asymmetry parameter p. Since from any
initial configuration η0 there is a sequence of possible transitions leading to
a frozen configuration, η∞ = limt→∞ ηt exists almost surely, for any η0, and
is frozen. The distribution µ

(N)
∞ = η∞∗P

(N)
p of the limiting configurations is

then well defined; our goal is to show that this distribution is independent of
p (as our notation indicates). The next lemma is simple—it follows immedi-
ately from elementary consideration of the dynamics—but will be useful in
several places.

Lemma 3.4. Suppose that ηt is the state at time t of a process evolving via
the F-ASEP dynamics, for a system either of N particles on L sites or in
infinite volume. If for some site i and time t, ηt(i) = ηt(i+ 1) = 0, then also

ηs(i) = ηs(i+ 1) = 0 for all s < t, respectively P
(N)
p or P

(ρ)
p almost surely.

Lemma 3.4 implies that if two adjacent sites are empty in η∞ then they
must also be empty in all ηt, t ≥ 0. Because of this it is convenient to de-
compose configurations into components—strings of 1’s and 0’s within which
no two adjacent sites are empty but which are separated from each other by
(at least) two adjacent empty sites. See Figure 3. (Formally a component of
a configuration η is the restriction η|I of η to an interval I = {i, i+ 1, . . . , j}
for which η(i) = η(j) = 1, η(i − 2) = η(i − 1) = η(j + 1) = η(j + 2) = 0,
and there is no site k in I such that η(k) = η(k + 1) = 0.) We let c(η) de-

note the number of components in η, and write P
(N,n)
p for the measure P

(N)
p

conditioned on the event c(η0) = n.
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Theorem 3.5. For all L and N , with N < L/2, the measure µ
(N)
∞ is inde-

pendent of p, and so is given by Theorem 3.3(b).

Proof. We will prove by induction on n, n = 1, 2, . . ., that for all L and N
with L/2 > N ≥ n the distribution of η∞ under P

(N,n)
p is independent of

p. The theorem then follows from P
(N)
p (·) =

∑N
n=1 P

(N,n)
p (·)P(N)

p (c(η0) = n),
since the distribution µ(N) of η0 is independent of p. The case n = 1 of
the induction is trivial: if the initial configuration has a single component
then so does the final one, and for any p this component is just 101 · · · 01
(with N 1’s) and its position will be uniformly distributed over the ring, by
translation invariance.

We now assume inductively that n is such that for all k ≤ n and all L,N
with L/2 > N ≥ n, the distribution of η∞ under P

(N,k)
p is independent of

p. We then fix a configuration ζ ∈ X(N) and show that P
(N,n+1)
p (η∞ = ζ) is

independent of p; we may assume that no two consecutive sites are occupied
in ζ, since otherwise this probability is 0. Consider first the case c(ζ) > 1;
then if necessary we may rotate ζ (which does not affect the conclusion) to
an orientation in which there exists a site i, with 3 ≤ i ≤ L − 3, such that
ζ(0) = ζ(1) = 0, ζ(i) = ζ(i+1) = 0, and ζ(j) = 1 for at least one j in the set
{2, . . . , i−1} and at least one j in {i+2, . . . , L−1}. Given i, we define maps
π1, π2 : X(N) →

⋃
0≤N ′≤N X

(N ′) by π1η = η1{2,...,i−1} and π2η = η1{i+2,...,L−1},
i.e.,

(π1η)(j) =

{
η(j), if 2 ≤ j ≤ i− 1,

0, if 0 ≤ j ≤ 1 or i ≤ j ≤ L− 1,
(3.9)

(π2η)(j) =

{
η(j), if i+ 2 ≤ j ≤ L− 1,

0, if 0 ≤ j ≤ i+ 1.
(3.10)

See Figure 3.
For integers k1, k2 with 1 ≤ km ≤ |πmζ|, satisfying k1 + k2 = n+ 1, define

the events

Ek1,k2 := {η0 ∈ X(N) | η0(0) = η0(1) = η0(i) = η0(i+ 1) = 0,

|πmη0| = |πmζ|, and c(πmη0) = km, m = 1, 2},
and for m = 1, 2,

E
(m)
km

:= {η0 ∈ X(|πmζ|) | η0 = πmη0 and c(η0) = km}.
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0 1

i

i+ 1

L− 1

0 1

i

i+ 1

L− 1
0 1

i

i+ 1

L− 1

π2 π1

Figure 3: A typical configuration in E2,2 (see below) of the finite-volume
F-ASEP, with its image under the maps π1 and π2. The four components
are enclosed in dotted loops and are also indicated by color coding.

We will assume in what follows that k1, k2 are chosen so that P
(N,n+1)
p (η∞ =

ζ | Ek1,k2) 6= 0. Since

P(N,n+1)
p (η∞ = ζ) =

∑
k1,k2

P(N,n+1)
p (η∞ = ζ | Ek1,k2)P(N,n+1)

p (Ek1,k2) (3.11)

and Ek1,k2 depends only on the initial configuration η0, it suffices to show

that for all such k1, k2, P
(N,n+1)
p (η∞ = ζ | Ek1,k2) is independent of p.

Now observe that

P(N,n+1)
p (η∞ = ζ | Ek1,k2) =

∏
m=1,2

P(|πmζ|,km)
p (η∞ = πmζ | E(m)

km
). (3.12)

This is because (i) whatever the value of i used to define π1 and π2, π1η0
and π2η0 are independent (and hence remain so after conditioning on Ek1,k2),
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and (ii) since for all histories ηt arriving at η∞ = ζ, Lemma 3.4 implies that
the sites 0, 1, i, and i+ 1 must always be empty, the probability on the left,

given η0, is determined by the SAPP times t
(i′,#)
j for 2 ≤ i′ ≤ i − 1 and

i+ 2 ≤ i′ ≤ L− 1, and these are independent. But also we have

P(|πmζ|,km)
p (η∞ = πmζ | E(m)

km
) =

P
(|πmζ|,km)
p (η∞ = πmζ)

P
(|πmζ|,km)
p (E

(m)
km

)
, (3.13)

since, with probability 1 with respect to P
(|πmζ|,km)
p , η∞ = πmζ is possible

only if E
(m)
km

occurs. Both the numerator and denominator on the right hand
side of (3.13) are independent of p, the numerator by the inductive assump-
tion and the denominator since it involves only the initial condition. Thus
P

(|πmζ|,km)
p (η∞ = πmζ | E(m)

km
) and hence, by (3.12), P

(N,n+1)
p (η∞ = ζ | Ek1,k2),

are independent of p.
This completes the proof of the p-independence of P

(N,n+1)
p (η∞ = ζ) in

the case c(ζ) > 1. From the validity of this result for all such ζ it follows
that

P(N,n+1)
p (c(η∞) = 1) = 1−

N∑
l=2

∑
{ζ|c(ζ)=l}

P(N,n+1)
p (η∞ = ζ) (3.14)

is also independent of p. Then by translation invariance, P
(N,n+1)
p (η∞ = ζ) =

P
(N,n+1)
p (c(η∞) = 1)/L if c(ζ) = 1. This completes the proof. �

3.3 The partially asymmetric model in infinite volume

In this section we return to the (p-dependent) F-ASEP dynamics on Z; we
assume that η0 is distributed as the Bernoulli measure µ(ρ), 0 < ρ < 1/2, and
show that the distribution of the limiting configuration η∞ is independent of
p. As in Section 3.1 we write P

(ρ)
p for the measure Pµ(ρ)

p on the sample space
Ω of (2.1). We begin with two preliminary results; the first is standard.

Lemma 3.6. If f : Ω→ X commutes with translations then f∗P
(ρ)
p is mixing

under translations.

Proof. Note that Ω is in fact a product space, Ω =
∏

i∈Z
(
{0, 1} × T (i,r) ×

T (i,l)
)
, and that P

(ρ)
p is a product measure. Thus P

(ρ)
p is certainly mixing
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under translations. Then for any measurable sets A,B ⊂ X,

lim
n→∞

f∗P
(ρ)
p (A ∩ τnB) = lim

n→∞
P(ρ)
p (f−1(A ∩ τnB))

= lim
n→∞

P(ρ)
p (f−1(A) ∩ τnf−1(B))

= P(ρ)
p (f−1(A))P(ρ)

p (f−1(B))

= f∗P
(ρ)
p (A)f∗P

(ρ)
p (B). �

Lemma 3.7. η∞ := limt→∞ ηt exists, and is frozen, P
(ρ)
p -almost surely.

Proof. The cases p = 1 and p = 0 follow from the discussion of Section 3.1,
so we may suppose that 0 < p < 1. We will show that for any L > 0 there
exist, P

(ρ)
p -almost surely, two pairs of adjacent sites, one on each side of the

interval [−L,L], which are empty for all times. The interval between these
pairs of sites is isolated from any outside influence; it is effectively a finite
system in which any initial configuration can, and therefore almost surely
will, eventually freeze.

We now fill in the details of the argument. For t ∈ Z+ define θt : Ω→ X
by θt(k)

(
= θt(ω)(k)

)
= 1 if ηt(k) = ηt(k + 1) = 0, θt(k) = 0 otherwise.

Lemma 3.4 implies that the sequence (θt)t∈Z+ is pointwise decreasing and

so θ∞ = limt→∞ θt exists; (θ∞)∗P
(ρ)
p is mixing by Lemma 3.6 and moreover,

since P
(ρ)
p

(
θt(k) = 1

)
≥ 1 − 2ρ for all t, P

(ρ)
p (θ∞(k) = 1) ≥ 1 − 2ρ by the

Monotone Convergence Theorem. Thus if for k, l > 0 we define Ωk,l = {ω ∈
Ω | θ∞(−k− 2) = θ∞(l+ 1) = 1} then for any L > 0, P

(ρ)
p -a.e. ω ∈ Ω will lie

in Ωk,l for some k, l > L.

We claim that, P
(ρ)
p -almost surely on Ωk,l, limt→∞ ηt

∣∣
[−k,l] exists and is

frozen; by the previous paragraph this suffices for the result. Now condi-
tioning on Ωk,l simply implies, for the behavior of ηt in [−k, l], that η0

∣∣
[−k,l]

has at most b(k + l + 1)/2c particles and that no transitions occur across
the bonds 〈−k − 1,−k〉 and 〈l, l + 1〉, and with these restrictions there is,
from any initial configuration, a sequence of possible transitions leading to a
frozen configuration. �

Now set µ∞ := η∞∗P
(ρ)
p ; µ∞ is mixing by Lemma 3.6. Our main result,

Theorem 3.8 below, is that µ∞ does not depend on p.

Theorem 3.8. For all ρ, with 0 < ρ < 1/2, the distribution of η∞ is inde-
pendent of p, and so is given by Theorem 3.2(b).
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Proof. Let I ⊂ Z be an interval of integers, let ζ ∈ {0, 1}I be a configuration

on I, and let E be the event that η∞
∣∣
I

= ζ. We will show that P
(ρ)
p (E) is

independent of p, proving the result. We may assume that ζ contains no pair
of adjacent occupied sites, since otherwise P

(ρ)
p (E) = 0.

Choose l ∈ N so large that I ⊂ [−l, l]. Then, since µ∞ is mixing and hence
ergodic, and in µ∞ there is a strictly positive density 1−2ρ of pairs of adjacent
empty sites, there must P

(ρ)
p -almost surely exist sites i and j, with i < −l

and j > l, such that η∞(i− 1) = η∞(i) = η∞(j) = η∞(j + 1) = 0. Focusing
on the maximal such i and minimal such j leads to the representation

E =
⋃

i<−l<l<j

Fi ∩ E ∩ F ′j , (3.15)

where for some m,m′ ≥ 0, Fi := {η∞(i− 1:− l− 1) = 00(10)m or 00(10)m1}
and F ′j := {η∞(l+1:j+1) = (01)m

′
00 or 1(01)m

′
00}. Since (3.15) is a disjoint

union,

P(ρ)
p (E) =

∑
i<−l<l<j

P(ρ)
p (Fi ∩ E ∩ F ′j)

=
∑

i<−l<l<j

α(i, j, l)P(ρ)
p (Gi ∩G′j).

(3.16)

where Gi := {η∞(i) = η∞(i− 1) = 0}, G′j := {η∞(j) = η∞(j + 1) = 0}, and

α(i, j, l) := P
(ρ)
p (Fi ∩ E ∩ F ′j | Gi ∩G′j).

We show below, and assume for the moment, that as the notation in-
dicates, α(i, j, l) is independent of p. Now fix ε > 0; since P

(ρ)
p (Gi) =

P
(ρ)
p (G′j) = 1− 2ρ, Lemma 3.6 implies that there is an l∗p such that

|P(ρ)
p (Gi ∩G′j)− (1− 2ρ)2| < ε for l ≥ l∗p. (3.17)

Now (3.16) and (3.17) imply that if ε < (1− 2ρ)2,∑
i<−l<l<j

α(i, j, l) <
1

(1− 2ρ)2 − ε
. (3.18)

But then for any p, p′ with 0 ≤ p, p′ ≤ 1 we have for l > max(l∗p, l
∗
p′),

|P(ρ)
p (E)−P

(ρ)
p′ (E)| < 2ε

∑
i<−l<l<j

α(i, j, l) ≤ 2ε

(1− 2ρ)2 − ε
. (3.19)
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Since ε is arbitrary, P
(ρ)
p (E) = P

(ρ)
p′ (E).

To show that α(i, j, l) = P
(ρ)
p (Fi ∩ E ∩ F ′j | Gi ∩ G′j) is independent of p

we appeal to Theorem 3.5. Let L = j + 1 − i, let N denote the number of
particles in η0 which lie in the interval [i− 1, j + 1], and let Hn = {N = n}.
If Gi and G′j occur then necessarily N < L/2, and we may write

P(ρ)
p (Fi ∩ E ∩ F ′j | Gi ∩G′j)

=
∑
n<L/2

P(ρ)
p (Fi ∩ E ∩ F ′j | Gi ∩G′j ∩Hn)P(ρ)

p (Hn). (3.20)

Now consider a system with n particles on a ring of L sites, which for conve-
nience we label as i, i+ 1, . . . j; the state space is X(n) ⊂ {0, 1}[i,j] and there
is a natural map χn : Hn → X(n) given by restriction. Further,

P(ρ)
p (Fi∩E∩F ′j | Gi∩G′j∩Hn) = P(n)

p (χn(Fi∩E∩F ′j) | χn(Gi∩G′j)), (3.21)

since, under the conditioning on Gi∩G′j and χn(Gi∩G′j), respectively, if some
initial condition and sequence of particle jumps in the system on Z produces
Gθ ∩E ∩G′σ then the corresponding initial condition and sequence of jumps
in the finite system will produce χn(Gθ ∩E ∩G′σ). Since the right hand side

of (3.21) is independent of p by Theorem 3.5, so is P
(ρ)
p (Fi∩E∩F ′j | Gi∩G′j),

by (3.20). �

4 The high density region

We now turn to consideration of the TIS measures for the F-ASEP with
density ρ > 1/2. By Theorem 2.5 such measures are supported on the set
G ⊂ X of configurations with no two adjacent holes, so in this section we
will regard the F-ASEP as a Markov process on G, and write M(G) for the
space of TI probability measures on G. We will prove:

Theorem 4.1. For each ρ > 1/2 there is a unique TIS measure with density
ρ for the F-ASEP.

This result was established for the symmetric (p = 1/2) model in [4].
Some context for the result arises from a familiar equilibrium statisti-

cal mechanical system of particles on a one-dimensional lattice, sometimes
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referred to as the nearest-neighbor hard core model, in which the only inter-
action is an infinitely strong repulsion between particles on adjacent sites,
so that the possible configurations are those with no two particles adjacent.
When this system is considered on a ring all configurations satisfying this re-
striction are equally likely, and in the thermodynamic limit there is a unique
(for given density ρ) Gibbs measure. If we exchange the roles of particles and
holes we obtain from this a measure µ̄(ρ) supported on G, and this measure
is a TIS state for the F-ASEP, whatever the asymmetry—which must, of
course, be the unique such state identified in Theorem 4.1.

Results identifying all stationary states of particle systems as canonical
Gibbs measures have been established in fairly general contexts in [9] and [24]
(see also [21] for a review of the situation). These results, however, require
that the rates satisfy a detailed balance condition, which ours do not unless
p = 1/2, and even in this symmetric case certain non-degeneracy hypotheses
on the rates exclude the F-SSEP. Rather than attempting to extend or modify
the arguments of these papers we give an independent proof of the theorem
for the F-ASEP, based on a coupling with the Asymmetric Simple Exclusion
Model (ASEP).

Recall [17, Chap. VIII] that the ASEP has configuration space Y (=
X) = {0, 1}Z; we will write a typical configuration in Y as ζ =

(
ζ(i)

)
i∈Z

and write M(Y ) for the space of TI probability measures on Y . The ASEP
dynamics is defined in parallel with that of the F-ASEP (see Section 2), using

the same SAPPs
(
(i, t

(i,r)
j )

)
j=1,2,...

and
(
(i, t

(i,l)
j )

)
j=1,2,...

and requiring that a

particle jump from i to i+1 at t = t
(i,r)
j if ηt−(i) = 1−ηt−(i+1) = 1 and from

i to i− 1 at t = t
(i,l)
j if ηt−(i) = 1− ηt−(i− 1) = 1. See [17] for more details,

including a specification of the generator L̂; we will use below the evolution
operator Ŝ(t) = eL̂t, whose action on measures is defined in parallel to that
of S(t), defined in Section 2 . It is known [17, Theorem VIII.3.9(a)] that for
0 ≤ ρ̂ ≤ 1 the Bernoulli measure is the unique TIS state of density ρ̂ for the
ASEP.

To define the coupling we first introduce the map φ : Y → G defined by
the substitutions 1→ 1, 0→ 10; more specifically, for ζ ∈ Y ,

φ(ζ) = · · ·ψ(ζ(−1))ψ(ζ(0))ψ(ζ(1))ψ(ζ(2)) · · · , (4.1)

where ψ(1) = 1, ψ(0) = 10, and the substitution is made so that ψ(ζ(1))
begins at site 1. Further, we define γζ : Z → Z so that γζ(i) is the initial
site of the string ψ(ζ(i)) which is substituted for ζ(i) under φ: γζ(i) =
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2i −
∑i

j=1 ζ(j) if i ≥ 1, γζ(i) = 2i − 1 +
∑0

j=i ζ(j) if i ≤ 0. For example,
if ζ(−1:4) = 0 1 1 0 0 1 then φ(ζ)(−2:6) = 1 0 1 1 1 0 1 0 1 and γζ(−1) = −2,
γζ(0) = 0, γζ(1) = 1, γζ(2) = 2, γζ(3) = 4, and γζ(4) = 6; see Figure 4. φ is
clearly a bijection of Y with G1, where Gσ denotes the set of configurations
η ∈ G with η(1) = σ; we write φ−1 : G1 → Y for the inverse of this bijection.

−1 0 1 2 3 4

−1 0 1 2 3 4 5 6−2

φ(ζ)

· · · · · ·

· · · · · ·

ζ

φ

Figure 4: Portion of a typical configuration ζ, with ζ(−1:4) = 0 1 1 0 0 1, and
its image under φ. The dashed arrows show how γζ maps the sites for Y :
γζ(−1) = −2, etc.

Suppose now that µ̂ ∈ M(Y ) and that µ̂ has density ρ̂. φ∗µ̂ cannot
be TI, since it is supported on G1. However, φ does give rise to a map
Φ : M(Y ) → M(G), obtained as follows. Write G1 = G10 ∪ G11, where
Gσσ′ := {η ∈ G | η(1) = σ, η(2) = σ′}. G0 = G \ G1 is just the translate
τ−1G10, and for µ̂ ∈ M(Y ), Φ(µ̂) on G0 should be just the translate of
φ∗(1G10µ̂). This leads us to define

Φ(µ̂) := ρ
(
φ∗µ̂+ τ−1∗ φ∗(1G10µ̂)

)
. (4.2)

Φ(µ̂) is then easily seen to be TI. The normalizing constant ρ has value ρ =
1/(2− ρ̂), since µ̂(Y ) = 1 and µ̂(G10) = 1− ρ; ρ is also the density Φ(µ̂)(G1)
of Φ(µ̂), since φ∗µ̂(G1) = 1 and G10 ∩ τG1 = ∅. Φ : M(Y ) → M(G) is a
bijection with inverse Φ−1(µ) = µ(G1)

−1φ−1∗
(
µ
∣∣
G1

)
. Moreover, Φ preserves

convex combinations and this, with the invertibility of Φ, implies that µ̂ is
ergodic (i.e., extremal) if and only if Φ(µ̂) is. Finally, as we shall see in
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Theorem 4.5 below, Φ also commutes with the time evolutions in the two
systems.

Remark 4.2. As noted in Section 3, the TIS states of the F-ASEP at low
density, 0 < ρ < 1/2, are precisely the TI measures supported on F . Such
measures may be obtained by defining a map from X to F via the substitu-
tions 0 → 0, 1 → 01, in parallel with (4.1); then as with (4.2) we obtain a
bijective correspondence between the set of all TI measures on X of density
ρ̄ and the set of TI measures on F of density ρ̄/(1 + ρ̄).

For ζ ∈ Y we let Kζ = ζ−1(1) be the set of particle locations in ζ, and
let (ki)i∈Z be an ordered enumeration of Kζ (ki < ki′ if i < i′). If η ∈ G is
an F-ASEP configuration then we will refer to certain particles in η as true
particles; the true particles are those which are immediately followed by an-
other particle. The mapping γζ , when restricted to Kζ , then gives a bijective
correspondence between the particles in the ASEP configuration ζ and the
true particles in φ(ζ). Note that if η ∈ G is any F-ASEP configuration and
there exists an ordered enumeration (k′i)i∈Z of the sites of the true particles
in η satisfying

k′i+1 − k′i = γζ(ki+1)− γζ(ki)
(
= 2(ki+1 − ki)− 1

)
(4.3)

for all i, then η is a translate of φ(ζ).
The idea behind the coupling is to establish the correspondence between

particles in the ASEP and true particles in the F-ASEP at time 0, through
γζ0 , and then to maintain this correspondence as the configurations evolve.
As a preliminary we introduce a minor modification of the F-ASEP dynam-
ics: we keep the SAPPs

(
(i, t

(i,r)
j )

)
j=1,2,...

and
(
(i, t

(i,l)
j )

)
j=1,2,...

introduced in

Section 2 through (2.2), but replace the exchanges which they trigger by

exchanges corresponding to those in the ASEP. Thus at a time t = t
(i,r)
j an

exchange occurs only if ηt−(i : i+ 2) = 1 1 0, and then the true particle at i
exchanges with the pair 1 0 to its right, yielding ηt(i : i+ 2) = 1 0 1. Similarly

for t = t
(i,l)
j : if ηt−(i− 2: i+ 1) = 1 0 1 1 then the true particle at i exchanges

with the pair to its left, yielding ηt(i− 2: i+ 1) = 1 1 0 1. It is clear that
these are the same exchanges which took place in the earlier formulation of
the dynamics, although triggered by Poisson times associated with different
sites, so that the process defined in this way is the same as the F-ASEP
process defined earlier. A formal proof of this is easily given.
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Theorem 4.3. For any ζ0 ∈ Y there exists a process (ζt, ηt), with state space
Y ×G, such that ζt is the ASEP process with initial configuration ζ0 and ηt
is the F-ASEP process with initial configuration η0 = φ(ζ0). Moreover, for
all t, ηt is a translation of φ(ζt).

Proof. To avoid consideration of irrelevant special cases we will assume that
K := Kζ0 , the set of initial ASEP particle positions, is infinite to both the
left and right of the origin; this case suffices for the application we make of
the theorem in Theorem 4.5 below (and in fact other cases are simpler to
treat). We regard K as a set of labels for the ASEP particles, and keep these
labels as the particles move to different sites. K also labels the true particles
in the F-ASEP through the map γζ0 . We will obtain the coupled dynamics
from a set of Particle Associated Poisson Processes (PAPPs), defined on the

probability space (Ω,P
µ̂

p) (compare (2.1)–(2.2)):

Ω = Y × Ω0, with Ω0 =
∏
k∈K

(
T (k,r) × T (k,l))

,

P
µ̂

p = µ̂×Pp, with Pp =
∏
k∈K

(
λ
(k,r)

p × λ(k,l)p

)
,

T (k,#)
=
{(

(k, t
(k,#)
j )

)
j=1,2,...

∣∣∣ 0 < t
(k,#)
1 < t

(k,#)
2 · · · , lim

j→∞
t
(k,#)
j =∞

}
,

(4.4)

with λ
k,r

p and λ
k,l

p Poisson processes with rates p and 1− p, respectively. We

take the initial measure µ̂ to be δζ0 and write P
(ζ0)

p rather than P
δζ0
p .

Given a specific realization of the PAPPs we define the corresponding
space-time configuration (ζ, η) =

(
(ζt(i), ηt(i))

)
t∈[0,∞),i∈Z as follows (see Re-

mark 2.1). For each N ∈ N we let I(N) := [k
(N)
1 , k

(N)
2 ] be the minimal interval

for which (i) k
(N)
1 , k

(N)
2 ∈ K, (ii) k

(N)
1 ≤ 0 < k

(N)
2 , and (iii) no Poisson events

occur for particles k
(N)
1 and k

(N)
2 during the time interval [0, N ]. Formally,

the particles k
(N)
1 and k

(N)
2 are inactive during the time interval [0, N ] and

thus insulate the sites in I(N) from outside influence during this time interval.
Note that I(N) exists a.s. and that clearly I(N) ⊂ I(N+1) and I(N) ↗ Z a.s.

The next step is to define the space-time configuration (ζ(N), η(N)) on

[0, N ] × I(N): (ζ(N), η(N)) =
(
(ζ

(N)
t (i), η

(N)
t (i))

)
t∈[0,N ],i∈I(N) . The definition

is such that ζ
(N)
0 = ζ0

∣∣
I(N) and that the restriction of (ζ(N+1), η(N+1)) to

[0, N ]× I(N) is ζ(N). Once this is done we define (ζ, η) = limN→∞(ζ(N), η(N)),
where of course the limit exists trivially.
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To define ζ(N) we first specify that particles with labels k
(N)
1 and k

(N)
2 (in

either the ASEP or F-ASEP) stay at their initial position through time N :

ζ
(N)
t (k

(N)
1 ) = ζ

(N)
t (k

(N)
2 ) = 1 and ηt(γζ0(k

(N)
1 )) = ηt(γζ0(k

(N)
2 )) = 1 for 0 ≤ t ≤

N . Next, note that the set of Poisson events (k, t
(k.#)
j ) with k

(N)
1 < k < k

(N)
2 ,

t
(k,#)
j ∈ [0, N ], and # = r or l, is a.s. finite. Taking these events in their time

order, we specify that the particles move as follows:

• for an event (k, t
(k.r)
j ): if at time t

(k.r)
j − the site to the right of the ASEP

particle with label k is empty, then that particle moves to its right,
and the F-ASEP particle with label k exchanges with the 1 0 pair on
its right (as in the modified F-ASEP dynamics above), and

• for an event (k, t
(k.l)
j ): if at time t

(k.l)
j − the site to the left of the ASEP

particle with label k is empty, then that ASEP particle moves to its
left and the F-ASEP particle with label k exchanges with the 1 0 pair
to its left.

It is clear intuitively that the first and second components of this process
are respectively the ASEP and F-ASEP as defined earlier using the SAPPs;
we give a formal proof of this in Appendix A. Moreover, one checks easily
that if Kζt = (ki)i∈Z and the set of true particles in ηt is (k′i)i∈Z then (4.3) is
satisfied, so that ηt is a translate of φ(ζt). �

For the next main result we need a lemma. Let Ŝ(t) and S(t) be the
evolution operators for the ASEP and F-ASEP, defined respectively earlier
in this section and in Section 2.

Lemma 4.4. S(t) and Ŝ(t) preserve ergodicity.

Proof. We prove the lemma for S(t); the proof for Ŝ(t) is the same. The
lemma follows from two elementary observations: (i) a covariant image of
an ergodic measure is ergodic (for our purposes here, a covariant image of
a measure P is a measure f∗P , where f commutes with translations); and
(ii) the product of an ergodic dynamical system with one that is weakly
mixing is ergodic. (i) is trivial; (ii) is a well-known fact that the reader can
easily verify (or find in [14]).

The lemma then follows from the observation that for any measure µ on
X we have that µS(t) = ηt∗P

µ
p (see (2.1)). (Here it is irrelevant whether

ηt is defined on Ω using the original jump rule or the modified one.) Since
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Pµ
p = µ×Pp with the product measure Pp mixing and hence weakly mixing,

(i) and (ii) imply that µS(t) is ergodic if µ is. �

The idea of the proof of the following result is taken from [11]:

Theorem 4.5. (a) For any TI measure µ̂ on Y , Φ(µ̂)S(t) = Φ
(
µ̂Ŝ(t)

)
.

(b) Φ is a bijection of the TIS measures for the ASEP and F-ASEP systems.

Proof. (b) is an immediate consequence of (a) and the remark directly below
(4.2) that Φ is a bijection of TI measures, and clearly it suffices to verify (a)
for µ̂ ergodic. Let us write νt := Φ(µ̂)S(t) and ν̃t := Φ

(
µ̂Ŝ(t)

)
. Since S(t)

and Ŝ(t) preserve ergodicity, as does Φ, νt and ν̃t are ergodic, so that these
two measures are either equal or mutually singular. Hence to prove their
equality it suffices to find a nonzero measure λt with λt ≤ νt and λt ≤ ν̃t,
where for measures α, β we write α ≤ β if α(C) ≤ β(C) for every measurable
set C.

It follows from Theorem 4.3 that there exists a process (ζt, ηt) on Y ×G
such that ζt and ηt are ASEP and F-ASEP processes, respectively, ζ0 is
distributed according to µ̂, η0 = φ(ζ0), and ηt a translate of φ(ζt) for all
t. Let κt be the measure on Y × G giving the distribution of (ζt, ηt); then
πY ∗κt = µ̂Ŝ(t) and πG∗κt = (φ∗µ̂)S(t), where πY and πG are the projections
of Y × G onto its first and second components, respectively. Let m ∈ Z be
such that κt(Bm) > 0, where Bm = {(ζ, η) ∈ Y × G | η = τmφ(ζ)}, and

let λ̃t = ρφ∗πY ∗(1Bmκt) and λt = ρπG∗(1Bmκt), with 1Bm the characteristic
function of Bm. Then we have

λ̃t ≤ ρφ∗πY ∗κt = ρφ∗(µ̂Ŝ(t)) ≤ Φ(µ̂Ŝ(t)) = ν̃t, (4.5)

where we have used (4.2), and

λt ≤ ρπG∗κt = ρ(φ∗µ̂)S(t) ≤ Φ(µ̂)S(t) = νt. (4.6)

But by the definition of Bm, (4.5), and the translation invariance of ν̃t,

λt = τm∗ λ̃t ≤ τm∗ ν̃t = ν̃t. (4.7)

Since λt is clearly not zero, by the choice of m, the result follows. �

Now we can prove our main result:
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Proof of Theorem 4.1. Let ρ̂ = (2ρ−1)/ρ; it is known [17, Theorem VIII.3.9(a)]
that the Bernoulli measure µ(ρ̂) is the unique TIS for the ASEP with density
ρ̂. Theorem 4.5(b) then implies that Φ(µ(ρ̂)) is the unique TIS measure for
the F-TASEP with density ρ = 1/(2− ρ̂). �

Remark 4.6. (a) Explicit formulas for the measure of Theorem 4.1 may be
easily obtained from (4.2). For example, for θ ∈ {0, 1}{1,...,m} with θi+θi+1 ≥
1 for 1 ≤ i ≤ m− 1, we have that (again with ρ̂ = (2ρ− 1)/ρ)

Φ(µ(ρ̂))({η | η(1 :m) = θ})

= (1− ρ)

(
1− ρ
ρ

)m−1−∑i θi
(

2ρ− 1

ρ

)2
∑
i θi+1−m−θ1−θm

.
(4.8)

This formula was previously obtained in [3, 4] in the context of the symmetric
(p = 1/2) facilitated process.

(b) The ASEP system also has non-TI stationary states as long as p 6= 1/2,
that is, as long as there is a true asymmetry [17, Example VIII.2.8]. We
conjecture that this is also true for the F-ASEP, but we do not have a proof.
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comments.

A An equivalence result

The lemma proved in this appendix is essentially a completion of the proof
of Theorem 4.3, and we will adopt the notation of that proof; in particular,
we let ζ0 be the initial ASEP configuration and write K := Kζ0 .

Remark A.1. It will be convenient to use a representation of the sample
points for the SAPP and PAPP which is different from that of (2.1)–(2.2)
and (4.4). If ω ∈ Ω0 then, from (2.2), ω =

(
(ω(i,r), ω(i,l))

)
i∈Z, with ω(i,#)

a sequence
(
(i, t

(i,#)
j )

)
j∈N, and we may identify ω with a set of labeled (by

r or l) Poisson points in Z × R+ × {r, l}: ω ∼ {(i, t(i,#)
j ,#)}. For given

ω we may and do assume that the Poisson times t
(i,#)
j are all different and
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all nonintegral, since this is true Pp-a.s. (this avoids discussion of irrelevant

special cases). A similar representation ω ∼ {(k, t(k,#)
j ,#)}, with k ∈ K,

holds for ω ∈ Ω0. We say that the PAPP point (k, t,#) is located at (i, t) if
particle k is at site i at time t−.

Lemma A.2. The SAPP and PAPP definitions of the ASEP and F-ASEP
processes are equivalent.

Proof. The proofs for the two processes are completely parallel; to be definite
we will consider the ASEP. We let ζt and ζ̄t be respectively the SAPP and
PAPP ASEP processes, each with initial configuration ζ0. The probability
spaces for these processes, (Ω0,Pp) and (Ω0,Pp), are defined in (2.1), (2.2),
and (4.4); see also Remark A.1. We define a map Ψ : Ω0 → Ω0 as follows:
with the point ω ∈ Ω0 is associated a well-defined space-time history ζ(ω) =(
ζt(ω, i)

)
(i,t)∈Z×R+

, and hence, for each particle k ∈ K, a well defined space-

time trajectory. We define Ψ(ω) by the condition that (k, t,#) is a PAPP
point of Ψ(ω) iff (i, t,#) is a SAPP point of ω which lies on the closure of
this trajectory. Then clearly ζt = ζ̄t ◦ Ψ for all t, and the lemma will follow
once we show that Ψ has the correct distribution, that is, that Ψ∗Pp = Pp.

We verify this by defining, for each N ∈ N, a certain approximation Ψ(N)

of Ψ. As a preliminary, let J (N) = [j
(N)
1 , j

(N)
2 ] denote the interval defined in

parallel with the construction of I(N) in the proof of Theorem 4.3, but using
the SAPP rather than the PAPP and ensuring that J (N) ⊃ [−N,N ]: J (N)

is the minimal interval for which j
(N)
1 , j

(N)
2 ∈ K, j

(N)
1 ≤ −N < N ≤ j

(N)
2 ,

and no Poisson events occur in the SAPP process for sites j
(N)
1 and j

(N)
2

during the time interval [0, N ]. Let A(N) be the set of SAPP points (i, t,#)
of ω with (i, t) ∈ J (N) × [0, N ]. A(N) is a.s. finite; we let m(N) denote the
number of points in A(N), and index these points as (in, tn,#n)n=1,...,m(N) with
0 < t1 < · · · < tm(N) < N . By convention we take t0 = 0.

We now construct recursively a sequence
(
ψ(N,n)

)
n=0,1,...

of maps ψ(N,n) :

Ω0 → Ω0; ψ
(N,n)(ω) will be independent of n for n ≥ m(N)(ω) and Ψ(N) will

then be defined by Ψ(N) := ψ(N,m(N)). We first take ψ(N,0)(ω) to be such that,
for each particle k ∈ K, (k, t,#) is a PAPP point of ψ(N,0)(ω) if and only
if it is a SAPP point of ω. Suppose then that we have defined ψ(N,n−1)(ω).
To define ψ(N,n)(ω) we suppose first that n ≤ m(N)(ω), consider the SAPP
point (in, tn,#n), and let i′n denote the target site to which a particle at site
in might jump at time tn: i′n = in + 1 if #n = r and i′n = in − 1 if #n = l. If
(in the SAPP process) either there is no particle at site in at time tn−, or the



28 1/3/2022

target site i′n is occupied at time tn−, then we define ψ(N,n)(ω) = ψ(N,n−1)(ω).
Otherwise, the particle in the SAPP process at site in at tn−, say particle
k, jumps to site i′n in the SAPP process, and ψ(N,n)(ω) is defined to have
the same Poisson points as ψ(N,n−1)(ω), except that we replace the (labeled)
times of the PAPP points for particle k which lie in the future of tn with the
times of the SAPP points for site i′n which lie in the future of tn: for t > tn,
(k, t,#) is a PAPP point of ψ(N,n)(ω) if and only if (i′n, t,#) is a SAPP point

of ω. Continuing in this way we define ψ(N,0)(ω), . . . , ψ(N,m(N))(ω) =: Ψ(N)(ω).

Finally, if n ≥ m(N)(ω) we take ψ(N,n)(ω) = ψ(N,m(N))(ω).
We next show that the ψ(N,n) satisfy (P1)–(P3) below:

(P1) For ω ∈ Ω0, N ∈ N, and 0 ≤ n ≤ m(N), the locations of the set of
PAPP points (k, t,#) of ψ(N,n)(ω) with (k, t) ∈ J (N) × [0, tn] coincide
with the PAPP points of Ψ(ω) satisfying the same restrictions.

(P2) For ω ∈ Ω0, N ∈ N, 0 ≤ n ≤ m(N), and particle k ∈ J (N), if k is located
at site i at time tn then for # = l, r the locations of the set of PAPP
points (k, t,#) of ψ(N,n)(ω) with t > tn coincide with the set of SAPP
points (i, t,#) of ω with t > tn.

(P3) ψ
(N,n)
∗ Pp = Pp for all n.

(P1)–(P3) are trivially satisfied for n = 0; to verify them for general n we
argue recursively.

First, (P1) for ψ(N,n−1) implies that (P1) holds for ψ(N,n), except possibly
for PAPP points in J (N) × (tn−1, tn]. Since there are no SAPP points for ω
in J (N) × (tn−1, tn), and hence no PAPP points for either ψ(N,n)(ω) or Ψ(ω)
located in this region, it remains to show that either (i) no PAPP point
for either ψ(N,n)(ω) or Ψ(ω) is located at (in, tn,#n), or (ii) a PAPP point
(k, tn,#n) for both is located there. It is clear that (i) holds if no particle is
located at (in, tn−). On the other hand, if particle k is located at (in, tn−),
then certainly (k, tn,#n) is a PAPP point of Ψ(ω); moreover, k must also be
located at (in, tn−1), so that (k, tn,#n) is a PAPP point of ψ(N, n− 1)(ω)
from (P2) for ψ(N,n−1)(ω), and so also of ψ(N,n)(ω), since a jump at time tn
only changes the PAPP points in the future of tn.

Second, (P2) for ψ(N,n)(ω) follows from (P2) for ψ(N,n−1)(ω) and the obser-
vation that if particle k jumps at time tn then the change in the PAPP points
of this particle which takes place in passing from ψ(N,n−1)(ω) to ψ(N,n)(ω) is
precisely what is needed to maintain (P2).
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Finally, we verify (P3) for ψ(N,n), assuming (P3) for ψ(N,n−1). We will
consider conditional measures Pp(· | Q), where Q is specified by certain
events and/or values of certain random quantities, and the family of all such
Q’s forms a partition of Ω0. The Q’s which we use will be specified during
the course of the proof. For each Q which arises we will show that

ψ(N,n)
∗ Pp(· | Q) = ψ(N,n−1)

∗ Pp(· | Q). (A.1)

Integrating (A.1) against the marginal Pp(dQ) yields ψ
(N,n)
∗ Pp = ψ

(N,n−1)
∗ Pp,

which with (P3) for ψ(N,n−1) yields (P3) for ψ(N,n). As a first step, let Q0

be the event that m(N) ≥ n. On the complimentary event Qc0, ψ(N,n) =

ψ(N,n−1)(= ψ(N,m(N))
)
, so that (A.1) holds trivially with Q = Qc0.

Next, we let Q1 be defined by specifying, in addition to Q0, values of the
interval J (N), of the time tn (which is well-defined on Q0), and of the entire
past of tn, including in particular the values of all (in′ , tn′ ,#n′) with n′ ≤ n.
For i ∈ Z let Si be the set of Poisson points (i, t,#) at site i in the future of
tn. We can describe the joint distribution of the sets Si under Pp(· | Q1) in

terms of the measure κ
(i)
u defined, for u ≥ 0, to be the translate by u of the

measure λ(i,r) × λ(i,l) (see (2.1)): (i) the Si, i ∈ Z, are independent; (ii) Si
is distributed as κ

(i)
tn if either (ii.a) i /∈ J (N), (ii.b) i ∈ [−N,N ], (ii.c) i /∈ K,

or (ii.d) i = in′ for some (in′ , tn′ ,#n′) with n′ ≤ n; (iii) Si has no points in

(tn, N ] and on (N,∞) is distributed as κ
(i)
N , if i = j

(N)
1 or i = j

(N)
2 ; (iv) Si is

distributed as the conditional distribution of κ
(i)
tn , given that there is at least

one point in (tn, N), otherwise.

Now conditioning on Q1 determines whether or not a jump takes place at
time tn; let Q′1 and Q′′1 be Q1 with the additional restriction that the jump
respectively does or does not take place. Under Q′′1, ψ(N,n) = ψ(N,n−1), so
that (A.1) holds with Q = Q′′1. On the other hand, under Q′1, some particle
k will jump from site in to i′n; let Q2 be obtained by specifying Q′1 together
with values of all the sets Si for i 6= in, i

′
n. Consider then (A.1) with Q = Q2;

the left side of this equation is obtained from the right by the replacement of
the (labeled) times of the PAPP points for particle k which lie in the future
of tn—and, by (P2), these are just the times of Sin—with the times of Si′n
lying in that same future. But Sin and Si′n have distributions κ

(in)
tn and κ

(i′n)
tn

under Pp(· | Q1) and hence, by the independence noted in (i) above, under
Pp(· | Q2); this is because in falls under case (ii.d), and i′n under either case

(ii.c) or case (ii.d), of the previous paragraph. Since κ
(in)
tn and κ

(i′n)
tn agree,
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this verifies (A.1) for Q = Q2 and completes the verification of (P1)–(P3)
for ψ(N,n).

To complete the proof of the lemma, observe that (P1), together with
the fact that there are no SAPP points of ω in J (N) × (tm(N) , N ] and hence

no PAPP points of either Ψ(N)(ω) = ψ(N,m(N))(ω) or Ψ(ω) located there,
implies that the the set of PAPP points (k, t,#) of Ψ(N)(ω) which satisfy
−N ≤ k ≤ N and 0 ≤ t ≤ N coincides with the corresponding set of PAPP
points of Ψ(ω). By (P3), then, the marginal distribution of PAPP points of
Ψ in this region is distributed as the marginal of Pp. Since N is arbitrary,
we can conclude that Ψ∗Pp = Pp. �
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