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ABSTRACT

Open-loop control is known to be an effective strategy for controlling self-excited periodic oscillations, known as thermoacoustic instability,
in turbulent combustors. Here, we present experimental observations and a synchronization model for the suppression of thermoacoustic
instability achieved by rotating the otherwise static swirler in a lab-scale turbulent combustor. Starting with the state of thermoacoustic
instability in the combustor, we find that a progressive increase in the swirler rotation rate leads to a transition from the state of limit cycle
oscillations to the low-amplitude aperiodic oscillations through a state of intermittency. To model such a transition while also quantifying the
underlying synchronization characteristics, we extend the model of Dutta et al. [Phys. Rev. E 99, 032215 (2019)] by introducing a feedback
between the ensemble of phase oscillators and the acoustic. The coupling strength in the model is determined by considering the effect of
the acoustic and swirl frequencies. The link between the model and experimental results is quantitatively established by implementing an
optimization algorithm for model parameter estimation. We show that the model is capable of replicating the bifurcation characteristics,
nonlinear features of time series, probability density function, and amplitude spectrum of acoustic pressure and heat release rate fluctuations
at various dynamical states observed during the transition to the state of suppression. Most importantly, we discuss the flame dynamics
and demonstrate that the model without any spatial inputs qualitatively captures the characteristics of the spatiotemporal synchronization
between the local heat release rate fluctuations and the acoustic pressure that underpins a transition to the state of suppression. As a result, the
model emerges as a powerful tool for explaining and controlling instabilities in thermoacoustic and other extended fluid dynamical systems,
where spatiotemporal interactions lead to rich dynamical phenomena.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0136385

The occurrence of undesirable high-amplitude, self-sustained
periodic acoustic oscillations observed in turbulent combustion
systems is referred to as thermoacoustic instability. Thermoa-
coustic instability results from a positive feedback between the
acoustic pressure and the heat release rate fluctuations. Mitigat-
ing such instability remains a challenge, even after decades of
extensive research. Studies on suppressing thermoacoustic insta-
bility in turbulent combustion systems are important for devel-
oping mitigation strategies and control systems. In this paper,
we demonstrate the suppression of self-excited thermoacoustic

instability in a turbulent combustion system using an actuated
swirler. We provide a model of synchronization to explain the
mechanism of control. The model is built by considering the non-
linear response of the flame as an ensemble of phase oscillators,
evolving collectively under the influence of acoustic pressure. In
order to suppress thermoacoustic instability, a positive feedback
between the phase oscillators and the acoustic field is disrupted by
increasing the swirler rotation rate. Therefore, we incorporate the
effect of the acoustics and active swirler in the model, which plays
a significant role in determining the flame response and, hence,
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suppression of thermoacoustic instability. The model not only
captures temporal dynamics but also reproduces the features of
the spatiotemporal synchronization observed in the experiments.
Finally, we show the relationship between the control parame-
ter in the model and the experiments using a simple parameter
estimation technique.

I. INTRODUCTION

Lean combustion systems are prone to thermoacoustic insta-
bility wherein high-amplitude acoustic pressure oscillations occur
due to positive feedback between the unsteady turbulent flame and
the acoustic modes of the combustion chamber.1,2 These oscilla-
tions can result in disastrous consequences, such as severe damage
to the engine components and even mission failures.3 As a result,
it is vital to develop methods to suppress thermoacoustic instabil-
ity. The present paper discusses a novel strategy of controlling limit
cycle oscillations by actuating the swirler used for flame stabiliza-
tion. To explain the method of suppressing limit cycle oscillations,
we provide a synchronization model.

Self-excited nonlinear thermoacoustic oscillations arise when
the heat release rate oscillations are in phase with the acous-
tic pressure oscillations,4 and the amount of energy added to
the acoustic field due to the nonlinear feedback from the flame
exceeds the acoustic damping in the combustor.5 There are a
number of physical mechanisms, which generate heat release rate
fluctuations; these include equivalence ratio fluctuations,6,7 swirl
number fluctuations,8 flame-vortex interactions,9,10 and entropy
fluctuations.11,12 Heat release rate fluctuations generated through
these mechanisms undergo feedback coupling and mutual synchro-
nization with acoustic pressure fluctuations in the confinement,
resulting in the occurrence of thermoacoustic instability.13

To comprehend the physical mechanism for the onset of ther-
moacoustic instability, it is important to investigate the spatiotem-
poral behavior of the thermoacoustic systems. The onset of periodic
oscillations (thermoacoustic instability) occurs via a transition from
the stable operation of the combustor (otherwise known as combus-
tion noise) through intermittency. Intermittency is the dynamical
state where bursts of periodic oscillations appear amidst epochs of
aperiodic oscillations at apparently random intervals.14 Recently,
several studies have performed the spatiotemporal analysis of the
synchronization between the local heat release rate fluctuations from
the flame and the acoustic pressure oscillations.15–18 They reported
that when the control parameter is changed, the coupling between
the acoustic field and the local heat release rate increases, which
leads to the emergence of order from disorder during the transition
to thermoacoustic instability. Consequently, mitigation strategies
aim at interrupting the coupling between the acoustic pressure field
and the unsteady heat release rate fluctuations.

These control strategies are broadly classified as passive
control19,20 and active control.21,22 In passive control, some aspects
of the combustor, such as the acoustic characteristics or the heat
release rate dynamics, is changed independently of the combustor
operation.20 The change in acoustic characteristics can be achieved
by the use of acoustic damping resonators23 and the change in
heat release dynamics by fuel injection strategy24 or fuel staging.25

However, passive control strategies are effective only over a lim-
ited range of frequencies, require expensive and time-consuming
design adjustments, and may be detrimental to engine performance.
An alternate technique is active control, which can be implemented
in two different ways:26 closed-loop and open-loop control. During
closed-loop active control, the state of the combustor is continu-
ously monitored and control measures are adopted based on the
specific state of the system.22 In contrast, open-loop active control
is achieved by forcing the system using actuators, without any feed-
back from controllers or sensors monitoring the dynamics in the
combustor.27 Active control is typically achieved through external
acoustic forcing28,29 or fuel-air modulation30,31 where the suppres-
sion depends on the forced synchronization of the thermoacous-
tic system.29,32,33 However, the implementation of these techniques
remains quite challenging. Specifically, acoustic forcing mechanisms
do not scale up with the amplitude levels of realistic turbulent
combustors, and modulating fuel-air values are unreliable over the
extremely long lifespan of turbulent combustors.32,34

Given these challenges, Gopakumar et al.35 proposed a novel
strategy involving the use of an actuated swirler for altering the cou-
pling between the flame and the acoustic fluctuations. They found
that actuating the static swirler, used for flame stabilization inside
the combustion chamber, even at moderate rotation rates signifi-
cantly altered the flow field and the flame structure.36 This alterna-
tion in the flow field caused by actuating swirler was associated with
the suppression of thermoacoustic instability, where low-amplitude
aperiodic oscillations are observed through an intermittency route,
hinting toward the de-synchronization of the acoustic pressure and
the heat release rate fluctuations during the state of suppression. The
underlying mechanism of suppression was then modeled by Dutta
et al.37 based on the synchronization of flame oscillators through the
Kuramoto model,38 which was able to quantitatively capture the heat
release rate response observed in the experiments.

Despite the usefulness of the heat release rate model, the under-
lying mechanism by which the acoustic pressure is coupled was not
included in the model. Therefore, in this study, we couple the acous-
tic elements with the heat release rate model to capture the dynamics
observed during suppression experiments. We extend the model
introduced by Dutta et al.37 and build upon our recent work on
the mean-field model of thermoacoustic transitions39 to explain
the method of suppression observed in the swirl-controlled exper-
iments. The effect of the actuated swirler is included by accounting
for the time scale of the swirler rotation. This mismatch between
the convective time scale and the acoustic time scale is then shown
to be responsible for weakening the feedback coupling between the
heat release rate and acoustic pressure oscillations, leading to the de-
synchronization between pressure and heat release rate fluctuations
during the suppression of thermoacoustic instability. In this man-
ner, we develop a thermoacoustic mean-field model for studying the
transition to the state of suppression.

Our model demonstrates the transition from thermoacoustic
instability to the state of suppression by taking the amplitude spec-
trum of the heat release rate fluctuations as the only input from
the experiments. After qualitatively confirming that a transition
to the state of suppression produced from the model corresponds
with the experiments, we use an optimization technique to deter-
mine the relationship between the control parameter in the model
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and the experiments. We then investigate the dynamics of the flame
by computing the time average over pressure maxima and min-
ima during the state of thermoacoustic instability, intermittency,
and suppression. Finally, we demonstrate that our model without
any spatial inputs qualitatively captures features of spatiotemporal
synchronization obtained from the experiments.

The rest of the paper is organized as follows. We introduce the
experimental setup and measurements in Sec. II. Further, in Sec. III,
we derive a thermoacoustic mean-field model followed by estimat-
ing model parameters from the experiments. This is followed by
results and discussion in Sec. IV. Finally, in Sec. VI we summarize
the major findings.

II. EXPERIMENTAL SETUP AND MEASUREMENTS

The schematic of the lab-scale premixed turbulent combus-
tor is shown in Fig. 1(a). The combustor was characterized in our
previous work35–37 in a vertical configuration and is used in the
present experiments in a horizontal configuration to facilitate length
variation and imaging. We have achieved mitigation of thermoa-
coustic instability up to ∼20 dB for the horizontal setup under
similar operating conditions as the vertical one, reported in the
earlier works.36,37 This establishes that the overall functioning and
observations from the experimental setup remain unaffected by the
change in orientation. A lean mixture (φ = 0.68) consisting of 6.5
SLPM (standard liter per minute) of methane and 90 SLPM of air
(Reynolds number, Re = 6 × 103 based on swirler diameter, with an
uncertainty of ±0.8%) is supplied into the settling chamber through
four equally spaced inlet ports. The equivalence ratio is calculated as
φ = (ṁf/ṁa)actual/(ṁf/ṁa)stoichiometry, where ṁf and ṁa are the mass

flow rate of the fuel and air, respectively.
The reactant mixture flows into the combustion chamber made

of quartz, having a diameter of 46 mm and a length of 60 mm, where
it is ignited. An aluminum duct of 1.5 m in length is mounted over
the quartz duct, which acts as a resonator to generate self-excited
thermoacoustic instability in the combustor. The flame stabiliza-
tion is achieved using the swirler having a diameter of 30 mm and
consisting of eight straight vanes inclined at δ = 30◦ with the axis
mounted on the central shaft of the motor. The geometric swirl
number is obtained as S = 2/3 tan δ = 0.385.40 The swirler is actu-
ated through a stepper motor to a maximum speed of 2100 rpm for
the suppression experiments.

The airflow rate (ṁa) and the fuel flow rate (ṁf) are controlled
using digital mass flow controllers (Alicat Scientific, MCR series)
with a measurement uncertainty of ±(0.8% of reading + 0.2% of
full-scale). Acoustic signatures from the combustor are acquired
using a Kistler pressure transducer (sensitivity 1.84 V/bar, uncer-
tainty ±0.2%) mounted 20 mm upstream of the dump plane. The
pressure signals are acquired for a duration of 5 s at a sampling
frequency of 10 kHz and digitized using a National Instruments
16-bit PCI 6251 card. A high-speed CMOS camera (Photon SA5)
fitted with LaVision IRO (Intensified Relay Optics) and Tamaron
150–600 mm f/5–6.3 telephoto lens is used to capture the unfil-
tered chemiluminescence images of the flame. The camera recorded
60 × 60 mm2 of the combustion chamber onto 480 × 480 pixels2 of
the sensor at a framing rate of 2 kHz while focused at the r −2 plane
at 5 mm height from the swirler exit. We recorded 104 number of

images at each state of the combustor operation. We simultaneously
perform acoustic pressure and imaging measurements for making
quantitative assessments.

Figure 1(b) illustrates the variation of acoustic pressure ampli-
tude of the first dominant mode as a function of the swirler rotation
rate obtained experimentally. The error bars in the plot show the
variation between the amplitudes across three experimental runs.
Figure 1(c) shows the change in the dominant frequency of the
acoustic pressure during a transition from thermoacoustic instabil-
ity to the state of suppression. The combustor remains at thermoa-
coustic instability for 0 rpm with a first mode amplitude of 153 dB
and frequency of 76.9 Hz. At 1800 rpm, the amplitude reduces to
about 130 dB and frequency of 94.2 Hz as intermittent oscillations
emerge in the combustor. Finally, the system transitions to the state
of suppression at 2100 rpm, where broadband sound replaces the
dominant acoustic mode. Consequently, we observe a suppression
of approximately 30 dB on varying the swirler rotation rate from 0
to 2100 rpm.

III. THEORETICAL MODELING AND PARAMETER

ESTIMATION

A. Acoustic modeling

The governing equations for the acoustic pressure and veloc-
ity with a source term for the heat release rate after neglecting the
temperature gradient and the viscous effects are written as41,42

ρ̃0
∂ ũ′

∂ t̃
+
∂ p̃′

∂ x̃
= 0,

∂ p̃′

∂ t̃
+ γ p̃0

∂ ũ′

∂ x̃
= (γ − 1) ˙̃q′δ(x̃ − x̃f),

(1)

where ũ′ and p̃′ are the acoustic velocity and pressure fluctuations,
ρ̃o is the mean density, p̃o is the mean pressure, γ is the ratio of heat
capacity, x̃ is the axial distance in the duct, and t̃ is the time. The heat
source ˙̃q′ is the unsteady heat release rate fluctuations per unit area
and assumed to be compact, and the Dirac delta function δ indicates
its location at x̃ = x̃f. (̃) refers to dimensional quantities.

For the present experimental configuration, the acoustic field
is assumed to be one-dimensional, and the geometry is approxi-
mated to one end closed and the other end open to the atmosphere.
The appropriate basis functions, which satisfy the boundary con-
ditions for the acoustic field are chosen accordingly and form the
eigenmodes of the self-adjoint part of the linearized equations. Con-
sequently, the acoustic pressure p̃′ and velocity fluctuations ũ′ can
then be expanded as a series of the orthogonal basis functions,
satisfying the boundary conditions as follows:43

p̃′(x̃, t̃) = p̃0

n
∑

j=1

η̇j(t̃)

�̃j

cos(k̃jx̃),

ũ′(x̃, t̃) =
p̃0

ρ̃0c̃0

n
∑

j=1

ηj(t̃) sin(k̃jx̃),

(2)

where the wavenumber is given by k̃j = (2j − 1)π/2L̃ and the natu-

ral frequency by �̃j = c̃0k̃j. Here, L̃ is the length of the duct and c̃0
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FIG. 1. (a) A schematic of the experimental setup along with the diagnostic tools. (b) Variation of the acoustic pressure amplitude of the first dominant mode as a function
of the swirler rotation rate, depicting the suppression of thermoacoustic instability. (c) The frequency corresponding to the acoustic mode as a function of the swirler rotation
rate. The error bar in (b) is associated with the variation of the amplitudes across three experimental runs.

is the average speed of sound. The non-dimensional time-varying
coefficients of the jth mode for the acoustic velocity ũ′ and acoustic
pressure p̃′ are represented by ηj and η̇j, respectively.

B. Flame modeling

The nonlinearity in the thermoacoustic system arises from a
combination of the flame response to the background turbulent
flow, hydrodynamic instabilities, and acoustic fluctuations.44 These
contributions manifest in the overall heat release rate fluctuations.
We assume that the contributions from the nonlinear response of
the flame is encapsulated in an ensemble of non-identical phase
oscillators evolving collectively under the influence of the acoustic
pressure oscillations. We formulate the phase oscillators as non-
identical oscillators by assigning the frequencies to each oscilla-
tor from the frequency distribution. The frequency distribution is
obtained from the experimentally measured heat release rate spec-
trum during the state of suppression. The interaction among the
phase oscillators happens through the phase (8) and normalized
amplitude (Â) of the acoustic pressure fluctuations.

In particular, the interaction function taking into account the
impact of the phase of the acoustics (8) on the phase of each oscil-
lator (θi) is introduced as a simple periodic function: sin(8− θi).
Moreover, the effective strength of the coupling due to the oscillator-
acoustic coupling (K̃) and the amplitude (Â) of acoustic pressure
fluctuations is expressed as K̃Â. This proportionality of the effec-
tive coupling strength on Â sets up a positive feedback loop between
the coupling of the phase oscillators and the amplitude of acoustic
perturbation. As the population becomes more coherent, Â grows
and so the effective coupling K̃Â increases, which tends to include
even more oscillators into the synchronized group. In this manner,
the thermoacoustic feedback is incorporated in the model.

In this paper, we consider the simplest case of the evolution of
coupled phase oscillators, which is expressed as38,45

θ̇i(t̃) = ω̃i + K̃Â(t̃) sin
[

8(t̃)− θi(t̃)
]

, (3)

where θi is the instantaneous phase of the ith oscillator with
i = 1, . . . , N. The frequency distribution (ω̃i) of the oscillators is
centered around the acoustic frequency (�̃0). In the above equation,
the phase of individual oscillators corresponding to the phase of
local heat release rate oscillations is directly coupled to the acous-
tic pressure, whereas the phase oscillators are equally weighted and
indirectly coupled to each other via the acoustic variable. The exact
form considered in Eq. (3) is inspired from the theory of interact-
ing phase oscillators encountered in complex systems theory38,39,45

and is a natural choice, as we intend to study the underlying
synchronization behavior of the thermoacoustic system.

We express the overall heat release rate fluctuations (q̇′) as a
summation of the contribution from all the instantaneous phase
oscillators,

˙̃q′ = q̃0

N
∑

i=1

sin
[

�̃0 t̃ + θi(t̃)
]

, (4)

where the term q̃0 is the amplitude of heat release rate fluctuations
of an individual oscillator.

C. Modeling the coupling strength

In addition to the acoustic feedback, the swirler plays a cru-
cial role in determining the flame response.40 The swirler imparts
a tangential velocity to the incoming flow through its geometry
and actuation. The effect of swirl due to the geometry is quantified
through the angular frequency of the geometric swirl �̃s, while the
actuation is quantified through the frequency of shaft rotation �̃r.
These two effects together make up the characteristic frequency of
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the swirler: �̃c = �̃s + �̃r. Thus, accounting for the competition in
the acoustic (�̃0) and swirler (�̃c) frequencies, the coupling strength
(K̃) can be expressed as37

K̃ = C
[

�̃0 − (�̃s + �̃r)

]

, (5)

where C is a model constant. The angular velocity (�̃s) of a swirling
flow is defined as �̃s = V sin δ/r assuming solid body rotation of the
fluid element.37 For incoming flow velocity V = 3 m/s, swirler radius
r = 11 mm and swirler blade angle δ = 30◦, and the angular velocity
imparted by the static swirler is �̃s = 137 rad/s.

D. Mean-field model of synchronization

To complete the coupled flame-acoustic model, we substitute
Eqs. (4) and (2) into (1) and project over the basis function,41 which
results in the following second-order ordinary differential equation:

η̈(t̃)+ α̃η̇(t̃)+ �̃2
0η(t̃) = β̃�̃0 cos(k̃x̃f)

N
∑

i=1

sin
[

�̃0 t̃ + θi(t̃)
]

, (6)

where β̃ = 2(γ − 1)q̃0/L̃p0. Following Matveev and Culick,46 the
term α̃η̇ in Eq. (6) is introduced to account for the acoustic damping
where α̃ is the damping coefficient. In Eq. (6), we restrict our analy-
sis to a single mode for accurately reproducing the dynamics of the
overall system.47

We non-dimensionalize Eqs. (6) and (3) as follows: x = x̃/L̃;

t = t̃�̃0; k = k̃L̃; α = α̃/�̃0; β = β̃/�̃0; ωi = ω̃i/�̃0; K = K̃/�̃0;
�s = �̃s/�̃0; �r = �̃r/�̃0. Further, to aid comparison between the
model and experiments, we normalize the non-dimensionalized
equations using the expression: ALCO = β cos(kxf)N/α, where ALCO

is the amplitude of acoustic pressure during limit cycle oscilla-
tions (see Appendix A and also refer Ref. 39). Thus, we obtain the
following set of normalized and non-dimensionalized equations,

dη̂j(t)

dt
= ˙̂ηj(t),

d ˙̂ηj(t)

dt
=
α

N

N
∑

i=1

sin [t + θi(t)] − α ˙̂η(t)− η̂(t),

dθi(t)

dt
= ωi + K

[

˙̂η(t) cos (t + θi(t))+ η̂(t) sin (t + θi(t))
]

,

(7)

where η̂(t) = η(t)/ALCO. The terms Â and 8 in Eq. (3) are rewrit-
ten in terms of the normalized acoustic variables (η̂ and ˙̂η) using
Eqs. (A1) and (A3) (see Appendix A).

E. Optimization of model parameters

Estimating model parameters from experiments is quite chal-
lenging. Different techniques, such as system identification and
uncertainty quantification, have been used extensively in the ther-
moacoustic literature.48–52 In our study, we implement an optimiza-
tion algorithm that minimizes the error between the experimentally
obtained dynamics and the modeling results. We choose the initial
phase distribution as θi(0) = θm + ε, where θm is the mean of the

FIG. 2. Oscillator frequency distribution g(ω) as a function of ω obtained from
the heat release rate spectrum during a state of suppression. ω is the normalized
frequency centered around the acoustic frequency.

phase distribution and ε is represented as ε v N (0, σ 2). The fre-
quency distribution g(ω) of the oscillators is obtained by computing
the Fourier transform of the time series of the global heat release
rate fluctuations during the state of suppression shown in Fig. 2. The
numerical procedure for sampling frequency distribution is given in
Appendix of our previous work.39 Here, we are interested in esti-
mating the model parameters and the initial conditions, expressed
as a parameter vector P = [α, K, η(0), η̇(0), θm, σ ]. We optimize P

with the intention of matching the features of the model output with
the experimental observations. We construct a vector for the exper-
imental data as Yexp= [p′

exp, q̇′
exp]T, where p′

exp and q̇′
exp correspond to

the normalized acoustic pressure and heat release rate oscillations,
respectively. We next consider a nonlinear system using Eq. (7),

Ż = f(P , Z), (8)

where Z = [ ˙̂η, η̂, θi]
T
. Considering Z0 as the state of a system at t0,

the state of a system at time t(= t0 + n1t) can be estimated as

Z(P , t) =

∫ t

t0

f(P , Z)dt + Z0. (9)

Integration in time is performed using the fourth-order Runge–Kutta
scheme53 with a time step of 1t. Using Eqs. (2) and (4) after
appropriate normalization, we obtain

p′
model = η̇(t); q̇′

model =
1

N

N
∑

i=1

sin [t + θi(t)] . (10)

Thus, we obtain the output from the model as: Ymodel

=
[

p′
model, q̇

′
model

]

. The mean squared error (MSE) is used to con-
struct the loss function (L) based on Ymodel and Yexp,

L(P) =
1

N

N
∑

n=1

∥

∥Ymodel(P , tn)− Yexp(�r, tn)
∥

∥

2

2
. (11)

The loss function is optimized with respect to the parameter
vector P . The gradient descend method is used to carry out the
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optimization,54

Pi+1 = Pi − αl∇PL, (12)

where αl = 1 × 10−3 and αl is referred to as the learning rate and
is the rate with which parameters are updated per unit gradient of
loss functions. The automatic differentiation approach55 is used to
calculate the gradient of L with respect to P .

IV. RESULTS AND DISCUSSIONS

We use the fourth-order Runge–Kutta method to solve Eq. (7).
The damping coefficient (α) is estimated using the gradient descent
method algorithm for parameter optimization during the state of
suppression and is subsequently fixed for determining other states
during a transition. We fix N ≈ 3 × 103 phase oscillators for which
frequency distribution (see Fig. 2) effectively resolves the heat release
rate spectrum during the state of suppression and where a change
in N has no effect on the simulation results. Using these inputs in
the model, decreasing the coupling strength (K) results in a tran-
sition to the state of suppression. We begin by confirming that a
transition produced by the model is qualitatively similar to a transi-
tion obtained from the experiments. The relationship between the
coupling strength (K) and the swirler rotation rate (�r) used in
experiments is then determined by applying parameter optimiza-
tion to each state observed in the experiments, which are tabulated
in Appendix C.

Let us now compare the results from this model with the
experimental observations.

A. Bifurcation during transition to the state of

suppression

Figure 3 illustrates the variation of the amplitude of the acoustic
pressure (p′

rms) as a function of the non-dimensional swirler rotation
rate (�r). In this figure, we show the comparison between the bifur-
cation diagram obtained from the model (–) with that obtained from
experiments (�). To compare the transition observed in the exper-
iments with that obtained by the model [see Eq. (7)], we normalize

FIG. 3. Comparison of the bifurcation diagrams obtained from the model (–) and
experiments (�). The plot depicts the variation of the normalized p′

rms as a function
of the non-dimensional swirler rotation rate (�r ).

FIG. 4. Comparison of the time trace, probability density function, and amplitude
spectrum of p′ obtained from experiments (lighter shade) and that obtained from
our model (darker shade) during the states of (a) thermoacoustic instability, (b)
intermittency, and (c) suppression. (a)–(c) correspond to the markers shown in
Fig. 3. The envelope of time series from the model is shown in the first column for
clarity.

each state with the amplitude of limit cycle oscillations. Initially,
when the swirler is static (�r = 0), the combustor exhibits ther-
moacoustic instability with limit cycle amplitude p′

rms = 0.62, at a
frequency of f0 = 76.9 Hz as shown in Fig. 4(a). As �r increases,
we notice a continuous decrease in p′

rms. At the highest �r value
(0.455), we observe suppression, as the acoustic pressure fluctua-
tions become low-amplitude aperiodic with a broadband amplitude
spectrum and low p′

rms value [see Fig. 4(c)].
A transition to the state of suppression occurs through the

state of intermittency. This behavior can be observed at �r = 0.39,
where bursts of the periodic pressure oscillations appear randomly
amidst low-amplitude aperiodic pressure fluctuations [see Fig. 4(b)].
In Fig. 3, we notice that the model predicts a transition from ther-
moacoustic instability to the state of suppression as observed in the
experiments. The monotonic decrease in p′

rms with increasing �r

shows that the continuous, sigmoid-type transition observed in the
experiments is well captured by the model.

B. Dynamical states during transition to the state of

suppression

Next, we contrast the dynamics obtained from the model with
the dynamical states observed during experiments at three represen-
tative states. These states correspond to thermoacoustic instability,
intermittency, and suppression state at three swirler rotation rates
marked (a)–(c) in Fig. 3. We plot the time series, probability density
function, and amplitude spectrum of p′ in Fig. 4 and q̇′ in Fig. 5.

Chaos 33, 043104 (2023); doi: 10.1063/5.0136385 33, 043104-6

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0136385/16825559/043104_1_5.0136385.pdf

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 5. Comparison of the time trace, probability density function, and amplitude
spectrum of q̇′ obtained from experiments (lighter shade) and that obtained from
our model (darker shade) during the states of (a) thermoacoustic instability, (b)
intermittency, and (c) suppression. (a)–(c) correspond to the markers shown in
Fig. 3. Only the envelope of the time series from the model is shown.

Figures 4(a) and 5(a) correspond to the state of thermoacoustic
instability with �r = 0. We observe large-amplitude periodic oscil-
lations in p′ and q̇′, and the probability density function of p′ and q̇′

is characterized by a well-defined bimodal distribution. The ampli-
tude spectrum corresponding to the same state indicates a sharp
peak at f0 = 76.9 Hz. Figures 4(b) and 5(b) correspond to�r = 0.39
and depict intermittent oscillations in both p′ and q̇′. These inter-
mittent oscillations lead to a change from a bimodal to a unimodal
distribution in the probability density function of p′ and q̇′. We note
that the model accurately depicts the location of epochs of periodic
and aperiodic oscillations in both the time series (p′ and q̇′) while
also depicting almost identical probability distribution function of
both the time series. We also observe a good agreement between
the amplitude spectrums of p′ and q̇′ obtained from the experiments
and the model, each showing a dominant peak at 94.2 Hz during
the state of intermittency. Finally, during the state of suppression
at �r = 0.455, we observe low-amplitude aperiodic pressure fluc-
tuations with a well-defined unimodal probability density function
[Figs. 4(c) and 5(c)]. The amplitude spectrum of p′ is broadband
with a peak at 91 Hz. Again, the match between the experiments and
the model is quite evident.

Quite notably, the model yields a good match in the char-
acteristics of the time series of the pressure and heat release rate
fluctuations during various dynamical states and only requires the
heat release rate spectrum during the state of suppression as an input
from the experiments for obtaining g(ω). Additionally, the ampli-
tude spectrums and probability density functions of p′ and q̇′ for
the various states of combustor operation are well approximated.
Our findings demonstrate that the model accurately represents the
combustor dynamics, supporting our modeling approach.

FIG. 6. Mapping between the swirler rotation rate (�r ) and coupling strength (K)
during a transition to the state of suppression. The relation between�r and K is:
K = 4.1(0.71 −�r) with the goodness-of-fit as 0.99. The error bars represent
the standard deviation in estimating K by sliding the window of the time series
used during optimization (Appendix B).

C. Relation between coupling strength and swirler

rotation rate

In Fig. 6, we show the mapping between the swirler rotation
rate (�r) and the coupling strength (K), obtained by the gradient
descent method using Eq. (12). The error bars in the figure are deter-
mined from a distribution of K for a window width of twin = 0.7 s
using Eq. (12) and then sliding the window across the time series
of Yexp and Ymod. Please refer Appendix B for a description of the
window width selection process. The correspondence between the
control parameters in the model and experiments will allow us
to explain the experimental observations in terms of the physics
embodied in the model. The estimated values strongly imply a lin-
ear relationship between the control parameter in our experiments
(�r) and the model (K). The coupling strength linearly decreases
according to the relation, K = 4.1(0.71 −�r), thus providing a pos-
teriori justification for assuming a linear relationship between K
and �r in Eq. (5). The linear relation between �r and K implies
that when �r = 0, then coupling strength among the phase oscilla-
tors is maximum, encouraging phase synchronization and leading to
limit cycle oscillations. Increasing the value of�r leads to a decrease
in the coupling strength (K) among the phase oscillators, promot-
ing phase de-synchronization, and, hence, the state of suppression.
Thus, the model is easily interpretable in terms of experimentally
relevant control parameters.

D. Flame dynamics during transition to the state of

suppression

We now demonstrate the flame images obtained from the
experiments to better understand the dynamics of the flames during
a transition to the state of suppression. Figure 7 shows the phase-
averaged unfiltered chemiluminescence images at pressure maxima
(left column) and minima (right column) during the three dynami-
cal states. The maxima and minima locations correspond to 90◦ and
270◦ phase, which are found from the instantaneous phase values of
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FIG. 7. Mean-subtracted phase-averaged flame images at pressuremaxima (left)
and minima (right) during the dynamical states: (a) and (b) thermoacoustic insta-
bility, (c) and (d) periodic epochs of intermittency, and (e) and (f) suppression state.
The flame image depicting a well-defined circular shape with very high intensity
during thermoacoustic instability transitions to non-uniform flame structures with
low intensity during the state of suppression.

p′ data using the Hilbert transform.56 During thermoacoustic insta-
bility, at pressure maxima [Fig. 7(a)], the mean-subtracted flame
image depicts a well-defined circular shape with very high inten-
sity, which reaches a negative value at pressure minima [Fig. 7(b)].
Thus, the flame fluctuations are strongly correlated with the pressure
fluctuations. Moreover, the flame structure shows flame stabiliza-
tion along the central shear layer separating the inner and outer
recirculation zones.36

Next, we consider the flame dynamics during the periodic
part of intermittency [Figs. 7(c) and 7(d)]. The phase-averaged
flame image during maxima and minima still depict high and low-
intensity values, respectively, albeit with lower intensity as compared
to thermoacoustic instability. While the flame structure is similar to
that during thermoacoustic instability, the distribution is diffused
during both maxima and minima. This implies that some parts of
the flame may not be attaining maxima and minima at the instant
of pressure maxima and pressure minima. Thus, the flame fluctua-
tions are weakly correlated with the pressure fluctuations. Finally,
Figs. 7(e) and 7(f) correspond to the state of suppression. The
phase-averaged chemiluminescence images corresponding to the
pressure peaks [Fig. 7(e)] and troughs [Fig. 7(f)] are similar to each

other. We observe incoherent and non-uniform flame structures
with low intensity in comparison to the periodic part of intermit-
tency and thermoacoustic instability. Moreover, the distributions of
intensity between pressure maxima and minima are virtually indis-
tinguishable, implying no correlation between flame fluctuations
and acoustic fluctuations.

We are aware that any fluctuation in the flame results in an
unsteady heat release rate which, in turn, causes acoustic distur-
bances in the combustion chamber and affects the flame when
reflected from an appropriate acoustic boundary. The strength of
the periodic fluctuations in pressure and heat release rate starts
increasing as the feedback between the acoustic field and heat release
rate fluctuations increases. In Fig. 7, we notice the difference in
the flame intensities when the swirler rotation rate is systemati-
cally varied. As a result, by varying the swirler rotation rate, we are
disrupting the strength of a feedback loop to bring the sustained
high-intensity oscillations in the flame at thermoacoustic instability
to the low-intensity flame fluctuations at the state of suppression.

E. Synchronization transition to the state of

suppression

Furthermore, we investigate the spatiotemporal dynamics dur-
ing the transition from thermoacoustic instability to the state of
suppression obtained from the experiments. To that end, we ana-
lyze the characteristics of synchronization in a spatially extended
thermoacoustic system by investigating the coupled behavior of the
acoustic pressure p′(t) and the local heat release rate fluctuations
q̇′(x, y, t). The local heat release rate fluctuations are extracted from
the intensity variation observed at each pixel of the time-resolved
chemiluminescence images. The flame images are coarse-grained
over 6 × 6 pixels to minimize the effect of noisy fluctuations in
them. We install the pressure transducer near to the location of
the flame imaging, to avoid acoustic phase delay effects in our
experimental measurements. Figure 8 (Multimedia view) depicts the
spatial distribution of instantaneous phase (ψi) during a transition
from thermoacoustic instability to the state of suppression through
the state of intermittency when the swirler rotation rate (�r) is
increased. The instantaneous phasor field (ψi) is obtained by sub-
tracting the phase of the acoustic pressure (8) from the phase of the
local heat release rate fluctuations (θi). The instantaneous phase of
the local heat release rate fluctuations is obtained using the Hilbert
transformation.

In Fig. 8(a) (Multimedia view), when the swirler is static
(�r = 0), the acoustic pressure and heat release rate oscillate in
phase, leading to a coherent field of the phasors. In the probability
density function of ψi, we notice that the phase values are mostly
ψi < |π/2| radians, leading to enhanced acoustic driving during
the occurrence of thermoacoustic instability in the combustor and,
hence, satisfying the Rayleigh criterion. We notice that the spatial
synchrony in the phase plot starts reducing with an increase in �r.
For instance, during the state of intermittency at �r = 0.39, the
phase field shows both coherent and incoherent fields of phasors
shown in Fig. 8(b) (Multimedia view). The probability density func-
tion ofψi associated with intermittency is broadening in comparison
with the probability density function ofψi obtained during thermoa-
coustic instability. In this state, there is the coexistence of clusters of
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FIG. 8. Disruption of order on varying the swirler rotation rate (�r ) from 0 to 0.455 in the turbulent combustor. A typical snapshot of the spatially distributed phasors
(ψi ) is obtained by taking the phase difference between the local heat release rate (θi ) and acoustic oscillations (8) during the state of (a) thermoacoustic instability, (b)
intermittency, and (c) suppression. To delineate regions of acoustic power sources and sinks, phasors have been colored blue if |ψi | < π/2 and red otherwise. Multimedia
view: https://doi.org/10.1063/5.0136385.1

both spatial synchrony and asynchrony in the phase field, referred
to as a chimera state.57 Further, increasing �r to 0.48, we observe
that the phase field is randomly oriented and incoherent [Fig. 8(c)
(Multimedia view)]. In this state, the heat release rate fluctuations
are dominated only by the turbulent flow, which results in a de-
synchronized field of the phasors and a broadband distribution of
P(ψi). This asynchronous behavior of the local heat release rate
fluctuations during the state of suppression prevents the pressure
oscillations from increasing in the amplitude, which leads to low-
amplitude aperiodic fluctuations in the temporal dynamics of both
acoustic pressure (p′) and global heat release rate fluctuations (q̇′).

We now quantify the characteristics of synchronization
through a measure called the Kuramoto order parameter.58 The
time-averaged order parameter (r̄) is defined as

r̄ =
1

N

〈
∣

∣

∣

∣

∣

N
∑

i=1

exp (iθi(t))

∣

∣

∣

∣

∣

〉

t

, (13)

where θi is the phase of the ith phase oscillator and 〈·〉t implies time
average. The order parameter is defined as the degree of synchrony
among the oscillators and it varies between [0, 1]. A value of r̄ close
to zero indicates de-synchronized states, whereas a value of r̄ close
to one indicates synchronized states.

Figure 9(a) depicts the variation of the order parameter as
a function of the non-dimensional swirler rotation rate (�r). The
time-averaged order parameter (r̄) from the model is determined
using Eq. (13), while r̄ from the experiments is determined accord-
ing to Eq. (D1) (see Appendix D). The gradual decrease in the order
parameter (r̄) indicates a transition from an ordered state where the
heat release rate oscillators are in synchrony to a disordered state

where the oscillators are in asynchrony. Note that the minor devi-
ation in the order parameter (r̄) from the model and experiment is
due to the effect of background turbulent flow on the flame during
the transition to the suppression state. For instance, Figs. 4 and 5
show the heat release rate spectrums are noisier than the acoustic
pressure spectrums, indicating the phase jitter59,60 due to the turbu-
lence is always stronger in the heat release rate signal than in the
acoustic pressure signal. Furthermore, in Fig. 8(a), during the state
of thermoacoustic instability, the majority of the phasors are aligned
in one direction except for a few randomly distributed pockets in
the center. A mean-field model of synchronization, on the other
hand, does not account for the turbulence, resulting in the minor
disagreement in the value of r̄. These effects can potentially be incor-
porated through stochastic modeling, which will be taken up in the
future.

To compare the synchronization observed in the spatial field
of the experiments (Fig. 8) and from the model [Eq. (7)], we plot the
characteristics of the oscillators in the θ̇i − ψi phase space. Here, θ̇i is
the instantaneous frequency and ψi is the phase difference between
θi and 8. Figures 9(b)–9(d) (Multimedia view) show the instanta-
neous oscillator distribution on the θ̇i − ψi plane during different
dynamical states (first column). These plots also include the distri-
bution of instantaneous frequency P(θ̇i) in the middle column and
the distribution of the instantaneous relative phaseP(ψi) along with
the order parameter (r) in the last column. The distribution of ψi is
shown in polar coordinates (last column), and the frame of reference
of the oscillators is co-rotating with the frequency of the acous-
tic pressure (�0). The oscillators obtained from the spatiotemporal
measurements are shown in lighter shades of marker, while those
obtained from the model are shown in darker shades of marker.
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FIG. 9. (a) The synchronization bifurcation diagram depicts the variation of time-averaged order parameter (r̄) as a function of non-dimensional swirler rotation rate (�r ).
The typical instantaneous oscillator distribution in the θ̇i − ψi plane, as well as the distribution of P(θ̇i) and P(ψi) during the state of (b) thermoacoustic instability, (c)
intermittency, and (d) suppression for experimental (lighter marker) and modeling (darker marker) dataset. The Kuramoto order parameter (r) from the experiments and
model (–) is shown in the last column. Multimedia views: https://doi.org/10.1063/5.0136385.2; https://doi.org/10.1063/5.0136385.3; https://doi.org/10.1063/5.0136385.4

Since the heat release rate fluctuations from the experiments are spa-
tially distributed, comparing the characteristics of oscillators in the
θ̇i − ψi plane allows us to evaluate how well the low-dimensional
mean-field synchronization model captures the characteristics of the
spatiotemporal synchronization.

In Fig. 9(b) (Multimedia view), when the swirler is static
(�r = 0) corresponding to thermoacoustic instability [see Fig. 4(a)],
we observe that the oscillators are entrained at the acoustic fre-
quency and are phase-locked with the distribution of ψi mostly
between −π/2 and π/2 radians (first column). In the last two
columns, we notice a sharp peak, narrowband distribution of fre-
quency P(θ̇i) and relative phase P(ψi). The value of order parame-
ter r̄ is 0.8, implying global phase synchronization among the phase
oscillators. In Fig. 9(c) (Multimedia view), when the swirler rotation
rate is �r = 0.39 corresponding to the state of intermittency [see
Fig. 4(b)], we notice the larger regions of phase-synchronized clus-
ters where ψi < |π/2| at some spatial locations and ψi > |π/2| at
other locations and comparatively less narrowband distribution of
P(θ̇i) and P(ψi). The order parameter is r̄ = 0.13 during the state

of intermittency. Finally, in Fig. 9(d) (Multimedia view), when the
swirler rotation rate is�r = 0.455 corresponding to the state of sup-
pression [see Fig. 4(c)], the oscillators are distributed in ψi > |π/2|,
implying the phase de-synchronized among the oscillators. We also
observe a broadband distribution in the distribution of P(θ̇i) and
P(ψi) and a value of r̄ close to zero. Thus, the gradual disappear-
ance of the order among the oscillators, which is associated with the
continuous shrinking of the size of the cluster of oscillators, leads to
a continuous de-synchronized transition.

V. CHARACTERIZATION OF THE NONLINEAR TIME

SERIES

In order to further demonstrate the ability of the model, we
compare the dynamical features of the acoustic pressure fluctuations
obtained from the experiments and the model.

We compute the permutation entropy (Hp), which is an
invariant measure of the complexity of dynamics.61 Permu-
tation entropy is often used to quantify the complexity of
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combustion62 and flame front dynamics.63 Following Kobayashi
et al.,64 we first consider all D! possible permutations of succes-
sive data points in a time series consisting of p(t) = {p′(t), p′(t
+ τ), p′(t + 2τ), . . . , p′(t + (D − 1)τ )}, where p′(t) are the pressure
fluctuations which is partitioned into subsets of length D (embed-
ding dimension), with its elements being separated by a delay τ .
After obtaining the probability distribution of each permutation
pattern p(πi) where i = 1, 2, . . . , D!, we estimate the permutation
entropy Hp normalized by the maximum permutation entropy
log2 D! as

Hp = −

∑D!
i=1 p(πi) log2 p(πi)

log2 D!
, (14)

where the lower bound of Hp = 0 corresponds to a deterministic
process, while the upper bound Hp = 1 corresponds to an entirely
random process.

Figure 10(a) shows the variation of permutation entropy (Hp)
as a function of the swirler rotation rate (�r) obtained from the
model (–) and experiments (�). We under-sampled the data to
2 kHz and took into account the embedding dimension D = 3 with
its elements separated by a delay τ = 1 s. The under-sampling is
used to reduce the computational cost involved in obtaining Hp.
During the state of thermoacoustic instability, we obtain the value
of Hp from the experiments and model around 0.3. The value of Hp

begins to rise during the intermittency state and reaches 0.65 dur-
ing the suppression state. We can see that Hp from the model closely
approximates Hp from the experiments.

The recurrence rate (RR) is another nonlinear measure calcu-
lated following Nair et al.14 from the acoustic pressure time series.
The recurrence rate (RR) is one of the statistical measures con-
structed through a recurrence quantification analysis and is a useful
quantifier for measuring randomness in the signal. Recurrences
in the phase space can be expressed as a matrix Rij = 2(ε − ||Xi

− Xj||), where i, j = 1, 2, . . . , n and Xi, Xj represent the state vectors
of the system at time ti and tj, respectively. Here,2 is the Heaviside
step function and ε is the size of the small neighborhood area con-
sidered around each point in the phase space. When the trajectory
returns to the area within the threshold, Rij is marked as 1 and 0 in
the recurrence matrix to represent the white and black points in the
recurrence plot, respectively. The density of black points in a recur-
rence plot represents the recurrence rate (RR) in the dynamics of the
system and can be obtained as

RR =
1

(N0 − T)2

N0−T
∑

i,j=1

Rij, (15)

where T = d0τoptFs having value for d0 = 10, τopt = 0.5 ms,
Fs = 2 kHz. The threshold for the recurrence plot was chosen to
be ε = 0.2 and signal was sampled at Fs of 2 kHz for 5 s to get
N0 = 10 000. We obtained τopt (optimum time delay) and d0 (min-
imum embedding dimension) using average mutual information
(AMI) and averaged false nearest neighbor (AFNN) in Ref. 65.

Figure 10(b) demonstrates the variation of the recurrence rate
(RR) of the dynamical state as a function of �r. On approaching

FIG. 10. Comparison of the (a) permutation entropy (Hp) and (b) recurrence rate
(RR) of dynamics as a function of swirler rotation rate (�r ) obtained from the
model (–) and experiments (�) during the transition to suppression state in the
swirl-controlled combustor.

of thermoacoustic instability, the density of points in the recur-
rence plot decreases. This is expected because the number of black
points in the recurrence plot would come down as the thermoacous-
tic instability is reached because the pairwise distances now exceed
the threshold more often. We can notice the value of RR is around
0 during the state of thermoacoustic instability, 0.7 during intermit-
tency, and 1 during the suppression state both from the model and
experiments. This measure obtained from the experiments is also
very well approximated by the model.

The close match of the measures (Hp and RR) for the exper-
iments and the model indicates that the nonlinear features of
experiments are very well captured by the synchronization model
presented here.

Although the model does well in capturing the bifurcation
characteristics and aspects of synchronization, it does not capture
the higher modes of the spectrum (see Figs. 4 and 5). This is by
the construction of the model as we did not consider higher modes
in Eq. (2) to keep the analysis simple. Additionally, the predic-
tion of dynamical states on further increase in swirler rotation rate
beyond the state of suppression from the model is left for future
studies.
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VI. CONCLUSION

In this paper, we report experiments and modeling of open-
loop control of thermoacoustic instability in the turbulent combus-
tion system using an actuated swirler. A systematic increase in the
rotation rate of the swirler leads to the suppression of limit cycle
oscillations as the dynamics of the combustor transitions to low-
amplitude aperiodic oscillations through an intermediate state of
intermittency. We propose a mean-field synchronization model for
the flame response comprising an ensemble of non-identical phase
oscillators evolving collectively under the effect of acoustic pressure.
The effect of the active swirler is incorporated naturally into the
model in terms of the relative time scales of swirler rotation and
acoustic frequency. We further implement a parameter identifica-
tion technique to obtain exact correspondence between the model
parameter values and experimental observations. We find that the
mapping between the swirler rotation rate in the experiments and
the coupling strength in the model manifests as a linear relationship
between them.

Through a comparison of the bifurcation diagram, time series,
probability density functions, and amplitude spectrums, we show
that the model replicates the experimentally observed p′ and q̇′

fluctuations very well. Further, we show that the model captures
the characteristics of spatiotemporal synchronization underlying a
transition to the state of suppression while depicting states such
as synchronization, chimera, and de-synchronization. In particular,
we find that the phase oscillators are synchronized during ther-
moacoustic instability, partially synchronized during intermittency,
and undergo progressive de-synchronization during the suppres-
sion. Therefore, we notice a sigmoid-type transition to the suppres-
sion state happens through the underlying synchronization. As a
consequence, using the mean-field thermoacoustic model, we estab-
lish that the active swirler suppresses thermoacoustic oscillations
through a de-synchronization transition.

ACKNOWLEDGMENTS

S. Singh, A. K. Dutta, and J. M. Dhadphale gratefully acknowl-
edge the Ministry of Human Resource Development (MHRD)
for Ph.D. funding through the Half-Time Research Assistantship
(HTRA). S. Singh acknowledges the International Immersion
experience travel award by IIT Madras for providing support
to work at the University of Toronto as Visiting student. R.
I. Sujith is grateful for the funding from the IoE initiative of
IIT Madras (SB/2021/0845/AE/MHRD/002696) and the Office of
Naval Research (ONR) Global (contractor monitor: Dr. R. Kolar;
Grant No. N62909-18-1). A. Roy acknowledges the Post Doctoral
Researcher Fellowship under the same IoE grant. S. Chaudhuri
acknowledges support from Ontario Research Fund and from the
Natural Sciences and Engineering Research Council of Canada
through the Discovery Grant (RGPIN-2021-02676). S. Chaudhuri
also acknowledges support from IoE program as a Visiting Faculty
Fellow in the Department of Aerospace Engineering, IIT Madras.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

S.S. and A.K.D. contributed equally to this work.

Samarjeet Singh: Conceptualization (equal); Formal analysis
(equal); Investigation (equal); Methodology (equal); Writing –
original draft (equal); Writing – review & editing (equal). Ankit
Kumar Dutta: Investigation (equal); Methodology (equal);
Writing – original draft (equal); Writing – review & editing (equal).
Jayesh M. Dhadphale: Writing – original draft (equal); Writing –
review & editing (equal). Amitesh Roy: Writing – original draft
(equal); Writing – review & editing (equal). R. I. Sujith: Supervision
(equal); Writing – original draft (equal); Writing – review & editing
(equal). Swetaprovo Chaudhuri: Conceptualization (equal); Super-
vision (equal); Writing – original draft (equal); Writing – review &
editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

APPENDIX A: CALCULATING ALCO USING THE

METHOD OF AVERAGING

To perform the comparison between the experimental and
modeling results, we need to normalize the amplitude of acous-
tic pressure during various states using the amplitude of acoustic
pressure at the limit cycle oscillations (LCO). We use the method
of averaging66 in the model to determine the amplitude of acous-
tic pressure during LCO (ALCO). Using the method of averaging,
Eq. (6) in the time-domain describes the evolution of pressure
fluctuations that can be mapped onto a pair of coupled ordinary
differential equations by introducing two slow flow variables: ampli-
tude A and phase 8. This decomposition is commonly known
as Kryloff–Bogolyubov decomposition.67 We start by decomposing
η(t) as

η(t) = −A(t) cos (t +8(t)) , (A1)

where the amplitude A(t) represents the envelope of the acoustic
pressure and the phase 8(t) represents the time-dependent phase
shift. Both A(t) and 8(t) are slowly varying quantities because they
change on a longer timescale than the period of oscillations of the
thermoacoustic mode of interest. Next, we differentiate η(t) with
respect to t,

η̇(t) = −Ȧ(t) cos (t +8(t))+ A(t) sin (t +8(t))

+ A(t)8̇(t) sin (t +8(t)) . (A2)

On expressing η(t) as a function of A(t) and 8(t) in Eq. (A1),
we introduced additional ambiguity in the equation, which can
be removed by prescribing an arbitrary relationship between these
quantities as: −Ȧ(t) cos (t +8(t))+ A(t)8̇(t) sin (t +8(t)) = 0,
which in turn leads to a simple expression for η̇(t) of the form

η̇(t) = A(t) sin (t +8(t)) . (A3)
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Next, we use Euler’s formula to represent trigonometric functions
present in η and η̇, which leads to

η(t) = −
1

2

(

A(t) ei8(t) eit + A(t) e−i8(t) e−it
)

= −
1

2

(

a eit + a∗ e−it
)

(A4)

and

η̇(t) = A(t)
ei(t+8(t)) − e−i(t+8(t))

2i
= −

i

2

(

a eit − a∗ e−it
)

. (A5)

Here, a is a complex function of time, such that a = A(t) ei8(t) and
a∗ = A(t) e−i8(t), where the asterisk denotes the complex conjugate.
We also calculate η̈(t) by differentiating η̇(t)with respect to t and we
get

η̈(t) = −
i

2

(

ȧ eit − ȧ∗ e−it
)

+
1

2

(

a eit + a∗ e−it
)

. (A6)

We then substitute η(t), η̇(t), and η̈(t) [Eqs. (A4), (A5), and (A6),
respectively] into Eq. (6) and obtain

− i
(

ȧ eit − ȧ∗ e−it
)

+
(

a eit + a∗ e−it
)

− iα
(

a eit − a∗ e−it
)

−
(

a eit + a∗ e−it
)

= −iβ cos(kzf)

N
∑

i=1

(

ei(t+θi(t)) − e−i(t+θi(t))
)

.

(A7)
By canceling the second and fourth terms in the above equation and
then multiplying the whole equation by e−it, we obtain

(

ȧ − ȧ∗ e−2it
)

+ α
(

a − a∗ e−2it
)

= β cos(kzf)

N
∑

i=1

(

eiθi(t) − e−2it e−iθi(t))
)

. (A8)

Note that a, ȧ, and their complex conjugate are slow functions of
time as compared to the functions e±nit, where n is an integer. This
means that the slow flow variables do not change much during one
period of fast oscillations. If we average the whole equation over one
period of fast oscillations, i.e., T = 2π , we can get rid of the terms
corresponding to the fast time scale, and only the terms related to
the slow time scale will remain in the equation. The time average
f̄ of a smooth function f(t) over the time interval T is defined as

f̄ = 1
T

∫ 2π
0 f(t) dt. It is easy to see that all the terms containing e−2it

would integrate to zero over the time oscillation period T. Thus, on
applying time averaging on Eq. (A8), we obtain

ȧ + αa = β cos(kzf)

N
∑

i=1

eiθi(t). (A9)

Recalling that a = A(t) ei8(t) and substituting it in the above
equation, we get

Ȧ(t) ei8(t) + iA(t)8̇(t) ei8(t) + αA(t) ei8(t) = β cos(kzf)

N
∑

i=1

eiθi(t).

(A10)

On multiplying Eq. (A10) by e−i8(t) followed by rewriting the expo-
nential term back in the trigonometric quantities and finally, split-
ting the equation into real and imaginary parts yields the following
equations:

Ȧ(t) = β cos(kzf)

N
∑

i=1

cos(θi(t)−8(t))− αA(t), (A11a)

8̇(t) =
β

A(t)
cos(kzf)

N
∑

i=1

sin(θi(t)−8(t)). (A11b)

During limit cycle oscillations, we consider Ȧ(t) = 0 and the
phase difference between the acoustic pressure and heat release rate
is almost zero. Therefore, considering θi(t)−8(t) ≈ 0 in Eq. (A11a)
turns out as

ALCO = β cos(kzf)N/α. (A12)

This expression of the amplitude of acoustic pressure during ther-
moacoustic instability is then used for normalizing Eq. (6).

APPENDIX B: PARAMETER SENSITIVITY ANALYSIS

In order to estimate the model parameters and the initial con-
dition, expressed as P , we minimize the error between Ymodel and
Yexp. We take the portion of the time series of both Ymodel and Yexp

for estimating P . We first find out what portion of the time series of
Ymodel and Yexp is enough for convergence of the model parameters.
The window width of the time series twin is varied from 0.05 to 1 s
for obtaining P over 500 iterations. In Fig. 11(a), we show only the
convergence of the coupling strength (K) as a function of twin dur-
ing the suppression state. We observe that the value of K remains
constant after twin = 0.6 s. Thus, we use twin = 0.7 s for estimating
parameters across all the datasets.

The width of the time window is then fixed, and the window is
moved across the entire time series of Ymodel and Yexp to determine
the range of K variation at each dynamical state. Figure 11(b) shows
the realization of a minimization scheme used to obtain optimized
K. The plot shows the reduction of the difference inLi+1 andLi with
change in iterations started with an initial guess of K = 1.2. Hence,
the estimated parameter used in our paper are properly optimized
and verified using the above technique.

APPENDIX C: ESTIMATED PARAMETER VALUES

DURING THE TRANSITION

The estimated model parameters during thermoacoustic insta-
bility, intermittency, and suppression state are shown in Table I. The
damping coefficient (α) is obtained by the gradient descent method
using Eq. (12) during the state of suppression and has a value of 0.27.

APPENDIX D: ORDER PARAMETER DETERMINED

FROM EXPERIMENTS

The order parameter is calculated from the experimental data
by assuming that the heat release rate fluctuations measured at each
coarse-grained location comprise a set of limit cycle oscillators.68,69

To minimize the effect of noisy fluctuations in the experimental
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FIG. 11. Panel (a) depicts the convergence of the coupling strength (K) as a func-
tion of the time window width (twin) of the time series of Ymodel and Yexp over 500
iterations using the parameter optimization algorithm. The initial value of K used
is 1.2 and twin is varied from 0.05 to 1 s. Panel (b) shows the optimization of K
by minimizing the loss function (Li ) over 500 iterations by taking the difference
between Li+1 and Li . The sensitivity analysis on parameter estimation shown
here is carried out during the state of suppression.

measurements, we coarse-grain the unfiltered chemiluminescence
images over 6 × 6 pixels at each state. We extract the time series
at each state of combustor operation and then normalize the states
by the amplitude q̇′ during the limit cycle oscillations. When the
swirler rotation rate is progressively varied, the normalized time
series at each coarse-grained location depicts a transition from
high-amplitude limit cycle oscillations to low-amplitude chaotic
oscillations.

TABLE I. Estimated parameter values for the different dynamical states marked as

a–c in Fig. 3.

K η(0) η̇(0) θm σ L

2.88 0.36 −0.18 0.54 0.11 1.15
1.14 0.05 −0.01 0.49 0.10 0.05
0.95 0.02 −0.03 0.49 0.10 0.01

In each image, we assume that each mth pixel consists of nk

number of limit cycle oscillators. We then assume that nm = n for
all the pixels to make our calculations easier. So, the phase for jth
oscillator at mth pixel in the image be ϕmj, where j varies as 1, . . . , n.
Now that we can express the complex order parameter for mth pixel
as follows: rm eiθm = 1/n

∑n
m=1 eiϕmj .58 We then calculate the abso-

lute value and argument of the Hilbert transform of q̇′
m(t), which

is used for determining rm(t) and ψm(t). Consequently, the expres-
sion for the order parameter obtained from experiments can be
defined as

r̄ ei〈θ〉 =

〈

1

Np

Np
∑

m=1

rm eiψm

〉

t

, (D1)

where consecutive averaging operations were executed over Np pix-
els in each image and the total number of images across the time
series. The determined value of r̄ is then used in Fig. 9(a).
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