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Abstract

A set of vertices in a hypergraph is called an independent set if no hyperedge is completely contained
inside the set. Given a hypergraph, computing its largest size independent set is an NP-hard problem.

In this work, we study the independent set problem on hypergraphs in a natural semi-random family of
instances. Our semi-random model is inspired by the Feige-Kilian model [FK01]. This popular model has
also been studied in the works of [FK01, Ste17, MMT20] etc. McKenzie, Mehta, and Trevisan [MMT20]
gave algorithms for computing independent sets in such a semi-random family of graphs. The algorithms
by McKenzie et al. [MMT20] are based on rounding a “crude-SDP”. We generalize their results and
techniques to hypergraphs for an analogous family of hypergraph instances. Our algorithms are based on
rounding the “crude-SDP” of McKenzie et al. [MMT20], augmented with “Lasserre/SoS like” hierarchy
of constraints. Analogous to the results of McKenzie et al. [MMT20], we study the ranges of input
parameters where we can recover the planted independent set or a large independent set.

1 Introduction

An independent set of a hypergraph H = (V,E) is a subset of vertices such that no hyperedge is completely
contained inside the subset. Computing a maximum independent set is a fundamental problem in the study of
algorithms. The problem has applications in areas such as resource allocation in wireless networks [ZSHZ18],
data clustering [Yan14], computational biology [KHT09], etc.

The problem of computing a maximum size independent set in graphs is well known to be NP-hard
[Kar72]. H̊astad [H̊as97] showed that it is hard to approximate the maximum independent set in graphs to
better than a factor of n1−ε for any ε > 0 unless NP = ZPP . Zuckerman [Zuc07] showed that there is no
possible approximation ratio better than n1−ε unless P = NP . This hardness of approximation holds for the
independent set problem on hypergraphs as well, since it generalizes the independent set problem on graphs.

There has been a lot of work studying approximation algorithms of independent sets in graphs and
hypergraphs, see Section 1.2 for a brief survey. Another direction of research related to intractable problems is
to study families of “easier” instances of the problem. This includes studying various random and semi-random
models of instances, instances satisfying certain properties, etc. We give a brief survey of the special class of
graphs for which the independent set problem has been studied in Section 1.2.

The starting point in the study of random instances for the independent set problem in graphs were
the G(n, p) instances (Erdős–Rényi random graphs). Analysis of G(n, p) [Mat76] showed that a random
graph don’t have an independent set of size more than (2 + o(1)) log1/(1−p) n, w.h.p., for a large range of p.
A simple algorithm can be used to compute an independent set of size log1/(1−p) n, w.h.p., but computing
an independent set larger than this seems to be hard. Another popular model, the planted solution model
considers the problem of recovering a hidden planted structure of size k in a graph with n vertices. For
the planted clique (or independent set) model, Alon, Krivelevich and Sudakov [AKS98] showed that we
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can recover the planted clique as long as k = Ω(
√
n) (for a constant p). Blum and Spencer [BS95] studied

semi-random models of k-colorable graphs; such models allow an adversary to modify the instance without
changing the planted structure. The model is defined by the set of actions allowed to the adversary. For the
planted clique problem, in a rich adversarial semi-random model introduced by Feige and Kilian [FK01], the
algorithm of [MMT20] can recover the clique for k = Ωp(n

2/3) (see Section 1.2 for precise statement). We
note that algorithms for independent set in graphs mentioned above hold more generally; the results here are
stated assuming a constant value of p for the purpose of illustration.

The above is a broad classifications of the models and there are many other probabilistic generative
models that fit at some intermediate hierarchy in this classification. A key advantage of studying random
and semi-random instances is that it gives us insights into which aspects of the problem makes it hard. Often
algorithms for stronger models and stronger regimes of parameters may require using more advanced tools and
techniques. For example, in the case of planted cliques/independent sets, for the regimes of k > Ω

(√
n log n

)
we can recover the planted graph using combinatorial techniques which essentially returns the vertices with
top k degrees. However in regimes of k = Ω (

√
n) this approach no longer works, and the best known

algorithms [AKS98] use spectral techniques. In the regime of semi-random instances of the problem, the best
known algorithms [MMT20] are based on semidefinite programming.

1.1 Our Models and Results

Definition 1.1. Given parameters n, k, r, and p, a hypergraph H is constructed as follows.

1. Let V be a set of n vertices. Fix an arbitrary subset S ⊂ V of size k.

2. Add a hyperedge independently with probability p for each r−tuple of vertices {i1, i2, . . . , ir}, such
that {i1, i2, . . . , ir} ∩ S 6= ∅ and {i1, i2, . . . , ir} ∩ (V \ S) 6= ∅. We denote the hypergraph induced by
collection of such r-tuples as H[S, V \ S].

3. Arbitrarily add r-hyperedges to the set V \ S.

4. Allow a monotone adversary to add r-hyperedges arbitrarily to H[S, V \ S] and hypergraph induced on
V \ S denoted by H[V \ S].

The model discussed above was introduced by Feige and Kilian [FK01] in the context of studying various
graph partitioning problems. The work [MMT20] studied an analogous model in the context of independent
sets in graphs.

We study the ranges of parameters k, r, p (for a fixed n) in this model for which we can recover S efficiently.
Our main results are informally stated below.

Theorem 1.2 (Informal version of Theorem 4.6). There exists a deterministic algorithm which takes as
input an instance of Definition 1.1 satisfying

k = Ω

(
n(r−1)/(r−0.5)

p3/(2r−1)

)
,

has running time nO(r), and outputs a list of atmost n independent sets, one of which is S, with high probability
(over the randomness of the input).

Theorem 1.3 (Informal version of Theorem 3.6). There exists a deterministic algorithm which takes as
input ε ∈ (0, 1) and an instance of Definition 1.1 satisfying

k = Ω

(
n(r−1)/(r−0.5)

ε1/(r−0.5)p1/(2r−1)

)
,

has running time nO(r), and outputs an independent set of size at least (1− ε)k, with high probability (over
the randomness of the input).
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Theorem 1.2 and Theorem 1.3 generalize to hypergraphs the analogous results for graphs by [MMT20].
We state and prove formal version of these results in Theorem 4.6 and Theorem 3.6 respectively. Our
proofs of Theorem 4.6 and Theorem 3.6 are based on rounding McKenzie et al. [MMT20] “crude-SDP”,
augmented with “Lasserre/SoS like” hierarchy of constraints. The Lasserre/SoS hierarchy has been used in
designing approximation algorithms for independent sets in hypergraphs in the works by Chlamtac [Chl07]
and Chlamtac and Singh [CS08], but the power of the Lasserre/SoS hierarchy for designing approximation
algorithm for independent set problem is yet to be fully understood.

1.2 Related Work

Independent set problem in hypergraphs. The independent set problem in hypergraphs cannot be
approximated to a factor better than n1−ε for any ε > 0 unless P=NP [Zuc07]. The work [HL98] gives a

combinatorial algorithm to obtain an approximation ratio of O
(
n/
(

log(r−1) n
)2
)

for a r-uniform hypergraph

where log(r) n denotes a r-fold repeated application of logarithm as log . . . log n. This has been improved
by Halldórsson in the work [Hal00] where they study the problem on arbitrary weighted hypergraphs and
give a O (n/ log n) approximation algorithm that runs in poly (n,m) time where m denotes the number of
hyperedges. From here onwards a lot of work has been done in studying the problem in special class of graphs.
In this section we do a brief survey of these results.

The problem has been extensively studied for 3-uniform hypergraphs which contain an independent set of
size γn. Krivelevich, Nathaniel and Sudakov [KNS01] give an SDP based algorithm that finds an independent
set of size Ω̃

(
min

(
n, n6γ−3

))
for γ > 1/2. The work Chlamtac [Chl07] uses a SDP relaxation with the third

level of the Lasserre/SoS hierarchy and returns an independent set of size Ω
(
n1/2−γ). Chlamtac and Singh

[CS08] gave an algorithm which computes an independent set of size nΩ(γ2) (where γ > 0 is a constant) using
Θ(1/γ2) levels of a mixed hierarchy which they called the intermediate hierarchy. The Lasserre hierarchy has
been used in designing approximation algorithms for various problems [BRS11, GS11, AGT19], etc.

Halldórsson and Losievskaja [HL09] study the problem on bounded degree hypergraphs. For hypergraphs
with degree bounded by ∆, they show that the classical greedy set cover algorithm can be analyzed to give
(∆ + 1) /2 approximation. The work [AKS11] shows that the bounded degree case is Unique Games-hard to
approximate within a factor of O

(
∆/ log2 ∆

)
. In a recent work [BK19], they exhibit how to convert this

inapproximability factor of O
(
∆/ log2 ∆

)
under UG-hardness to NP-hardness.

Random models for Independent set problem. The model studied in this work is a generalization (to
hypergraphs) of the planted independent set model on graphs studied in [MMT20]. Their algorithm is based
on rounding a SDP solution. However, instead of using a relaxation of the independent set problem, they
used a crude-SDP (this idea was introduced in [KMM11] and also used in many subsequent works [MMV12])
which helps reveal the planted solution S. The main idea is to show that the expected `22 distance between
vectors of S (the planted independent set) is “small”. In other words the SDP solution “clusters” the vectors
of S. Their algorithm outputs an independent set of size (1− ε)k for k = Ω

(
n2/3/p1/3

)
and for a larger value

of k, i.e. when k = Ω
(
n2/3/p

)
, it outputs atmost n independent sets, one of which is the planted one w.h.p.

In this parameter range, they also consider a list decoding version, where when given a random vertex of S
correctly picks S from this list. The proofs of Theorem 1.3 and Theorem 1.2 generalize the proofs of the
corresponding results in [MMT20].

The problem has also been studied in graphs in a weaker semi-random model [FK00] by Feige and
Krauthgamer which they call as the sandwich model. They propose an algorithm based on Lovász theta
function for the same which returns the planted clique for k > Ω(

√
n) (for p = 1/2). Feige and Kilian [FK01]

studied the problem in their semi-random model and they give an algorithm to recover an independent set
of size αn for regimes of p > (1 + ε) lnn/αn and any ε > 0, where α is a constant. They also give efficient
algorithms to recover a planted bisection and planted k-colorable graphs in semi-random models.

A closely related problem is about recovering planted clusters in random graphs known as the Stochastic
Block Model (SBM) given by [HLL83]. In [CZ20] they study the hypergraph version of the problem where
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they partition a r-uniform random hypergraph H(n, r, p, q) into k equally sized clusters with p as edge
probability within a cluster and q as edge probability amongst clusters. They give a spectral algorithm which
guarantees exact recovery when number of clusters k = Θ(

√
n). The work [GD17] studies this problem in

more general models like the planted partition model for non-uniform hypergraphs. The work [KBG18] gives
an SDP based algorithm for the community detection problem in k-uniform hypergraphs.

Other problems in semi-random models. In [MMV12] they develop a general framework to study
graph partition problems in a semi-random model similar (in strength) to the one by Feige and Kilian [FK01].
They give bi-criteria approximation algorithms for Sparsest cut, Uncut, Multi cut, Balanced Cut and Small
set expansion problems. In [MMV14] they propose another semi-random model which they call as PIE
(permutation invariant edges model) for the balanced cut problem. The works by Khanna, Louis, and Venkat
[LV18, LV19, KL20] study the problems of graph expansion (vertex and edge), and the densest k-subgraph
problem in semi-random models. The work by Khanna [Kha20] studies the semi-random model with a planted
clique while the rest of graph is composed of small sized bounded degree graphs, expanders etc. stitched
together by a random graph. These works also heavily rely on showing that the vectors corresponding to the
planted structure are “clustered” together and hence using some basic geometric ideas, we can recover a large
part of the planted portion.

1.3 Preliminaries and Notation

Our algorithms are based on the following “crude SDP”.

SDP 1.4.
max

∑
{i1,i2,...,ir}∈(V

r )

‖xi1,i2,...,ir‖
2

subject to

‖xi‖2 = 1 ∀i ∈ V (1)

‖xe‖2 = 0 ∀e ∈ E (2)

〈xI , xJ〉 = ‖xI∪J‖2 ∀I, J(6= ∅) ⊆ V, s.t |I ∪ J | 6 r + 1 (3)

〈xu, xI〉 > 〈xu, xJ〉 ∀u ∈ V,∀I ⊆ J ⊆ V, |J | 6 r + 1 (4)

1− ‖xu,v1,...,vr‖
2 6

∑
i∈[r]

(
1− ‖xu,vi‖

2
)

∀ {u, v1, . . . , vr} ∈
(

V

r + 1

)
. (5)

The constraints in SDP 1.4 are inspired from the Lasserre/SoS hierarchy of constraints. The Lasserre/SoS
hierarchy is a strengthened SDP relaxation for nonlinear 0 − 1 programs attributed to the works of Shor
[Sho87], Nesterov [Nes00], Jean B. Lasserre [Las01] and Parrilo [Par03]. We refer the reader to the survey by
Thomas Rothvoß [Rot13] for a detailed discussion.

We also introduce some basic notation that we will be using throughout this paper.

• Let ∂(S) or the boundary of S denote
(
V
r

)
\
((
S
r

)
∪
(
V \S
r

))
.

• Let the optimal solution of the above SDP be denoted by {x∗I}I⊂V,16|I|6r+1.

• Let d(v)|T be the degree of any vertex v ∈ V , when restricted to only count hyperedges in the set
{v} ∪ T .

• Throughout the paper, we will assume that k 6 n/2, and r > 2.
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1.4 Proof Overview

In [MMT20] they study a crude-SDP with the constraint 〈xi, xj〉 = 0,∀ {i, j} ∈ E. Their crude SDP tries
to cluster the vertices together, while the constraint 〈xi, xj〉 = 0, {i, j} ∈ E tries to ensure that no edges
are contained in a cluster. Constraint (2) is a natural extension of this to hypergraphs. We add vectors
for all subsets of vertices of size at most r + 1, and add consistency constraints (3) among them, as in the
Lasserre/SoS hierarchy. However, we note that SDP 1.4 is different from a Lasserre/SoS relaxation since
there is no natural interpretation of solution to this crude-SDP as a low-degree pseudo-distribution over
independent sets in the hypergraph. However, we add the constraints in equation (3),(4) and (5) since our
intended feasible solution x′ constructed as,

x′i1,i2,...,il =


ê if {i1, i2, ..., il} ∈

(
S
l

)
x∗i1,i2,...,il if {i1, i2, ..., il} ∈

(
V \S
l

)
∀l ∈ [r + 1]

0 otherwise

(6)

where ê denote a unit vector orthogonal to x∗I , ∀I ⊆ V \ S, |I| 6 r. satisfies these constraints (Appendix B).
The constraints in equations (4) and (5) are inspired from the locally consistent probability distributions
viewpoint of a r-level Lasserre/SoS hierarchy [Rot13]. A t-level vector in a Lasserre/SoS hierarchy can be
interpreted as the probability of the joint event corresponding to indices of the vector. The constraint (4)
corresponds to the fact that the probability of a sub event can only be larger than the probability of an
event and the constraint (5) corresponds to a union bound on the complement of joint event (represented by
xu,v1,...,vr ) given by sum of complement of pairwise joint events 1− xu,vi ∀i ∈ [r].

In Section 2, we prove a lower bound on the contribution of the SDP mass in the optimal solution from
the r-level vectors of S, i.e. {x∗I}I⊂S,|I|=r (Corollary 2.2). The high-level idea of our proof is the same as

that of [MMT20]. However, we need some new ideas to extend them to hypergraphs. Using the approach
of [MMT20], we first lower bound the SDP mass from S and S × (V \ S) (Lemma 2.3). Therefore, upper
bounding the contribution from S × (V \ S), will give us a lower bound on the contribution from S. In
[MMT20], S × (V \ S) is a random bipartite graph; they use the Grothendieck’s inequality and concentration
bounds to upper bound the contribution from this part. In our setting, S × (V \ S) is a random hypergraph,
and [MMT20]’s techniques do not seem to be directly applicable here. Our main idea is to construct a random
bipartite graph G′ = (U1, U2, E

′) based on this random bipartite hypergraph as follows (Construction 2.4).
One side of the graph consists of vertices corresponding to subsets of S of cardinality at most r− 1, and other
side side consists of vertices corresponding to subsets of V \ S of cardinality at most r − 1. We add an edge
between two vertices if the union of the sets corresponding to them forms a hyperedge in our hypergraph. By
our construction,

∑
{a,b}∈E′ 〈xa, xb〉 is equal to the SDP mass from S × (V \ S) in our hypergraph. Moreover,

since S× (V \S) forms a random bipartite hypergraph, our construction gives us that G′ is a random bipartite
graph. Therefore, we can now proceed to bounding the contribution from G′ using [MMT20]’s approach
(Proposition 2.1).

Our proof of Theorem 1.3 (in Section 3) is a generalization of the proof of Theorem 1.1 of [MMT20] to
the case of hypergraphs and our higher order SDP (SDP 1.4). Corollary 2.2 shows that the `22 lengths of the
r-level vectors completely inside S is large. This in turn (by the SDP constraints) implies that there is a
vertex u ∈ S such that most of the (r − 1)-level vectors in S have a large projection on x∗u (Lemma 3.1). In
[MMT20] they use the SDP constraint 〈xu, xv〉 = 0,∀ {u, v} ∈ E to show that the set of vectors which have a
large projection on x∗u is an independent set. Therefore they proceed to bound the parameter regimes to
obtain a small value of p and a (1− ε)k lower bound guarantee on the size of this set. However in our setting,
for r > 3, we are unable to guarantee that this set of (r − 1) level vectors is an independent set. Therefore,
we proceed by using Lemma 3.1 to show that there exists a vertex u such that a large fraction of the 1-level
vectors in {x∗v : v ∈ S} have a large projection (> R′) on x∗u, along the lines of [MMT20]. Let us consider
the set of 1-level vectors that have a projection > R′ on x∗u (Definition 3.2). Showing that the r-level vectors
consisting of vertices from this set have non-zero norm will suffice to guarantee that there are no hyperedges
in this set. We use our “union-bound” SDP constraint (5) in our crude-SDP to establish this (Lemma 3.4).
Choosing R′ to be large enough (R′ = 1− 1/2r) and using the SDP constraint (5), we establish a non-zero
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lower bound on
〈
x∗u, x

∗
v1,v2,...,vr

〉
for every r-tuple (v1, . . . , vr) consisting of vertices from the set. Now using

SDP constraints (2) and (4), we can establish that the vertices inside the set do not form a hyperedge. For
our choice of parameters in this theorem, the set of vertices corresponding to this set will contain at least
(1− ε) fraction of the vertices in S.

Our proof of Theorem 1.2 (in Section 4) is a generalization of the proof of Theorem 1.2 of [MMT20] to
the case of hypergraphs and our higher order SDP (SDP 1.4). In Lemma 3.1 we show that there exists a
vertex u ∈ S such that most of the (r − 1)-level vectors in S have a large projection on x∗u. Let us consider
the set of (r − 1)-level vectors which have a large projection (> R) on x∗u (Definition 3.2). The choice of p
ensures that each vertex in V \ S forms a hyperedge with at least one of the tuples corresponding to (r − 1)
level vectors in the set w.h.p. (Lemma 4.3). Moreover, the choice of R ensures that the set can not contain
two orthogonal vectors (Lemma 4.1). Therefore, this ensures that the tuples in set contains vertices only from
S (Lemma 4.5). Therefore, the union of the sets of vertices contained in the (r − 1)-tuples corresponding to
such (r − 1)-level vectors would be a subset of S. A greedy algorithm can be used to recover the remaining
vertices of S. Since we don’t know this special vertex u, we perform this procedure on each vertex and return
the set of independent sets obtained; one of these independent sets would be the planted one w.h.p. The
whole procedure is presented in Algorithm 1. The range of p in this theorem is however smaller than the
range of p for which Theorem 1.3 is guaranteed to hold.

2 Bounding the contribution from the random hypergraph

In this section, we bound the contribution of the SDP (SDP 1.4) mass from the random portion of the
hypergraph. As a result, we find a lower bound on the contribution of the vectors from our planted independent
set S. The two key technical results (Proposition 2.1 and Corollary 2.2) which we prove in this section which
generalize ([MMT20], Lemma 2.1) to r-uniform hypergraphs are the following.

Proposition 2.1. For k >
r22r+2er

3p
,

∑
{i1,i2,...,ir}∈∂(S)

∥∥x∗i1,i2,...,ir∥∥2
6

(
23r−2e3r/2−2

√
3rr−5/2

)(√
k

p

)
nr−1 .

with high probability (over the randomness of the input).

Corollary 2.2. For k >
r22r+2er

3p
,

∑
{i1,i2,...,ir}∈(S

r)

∥∥x∗i1,i2,...,ir∥∥2
>

(
k

r

)
−
(

23r−2e3r/2−2

√
3rr−5/2

)(√
k

p

)
nr−1 .

with high probability (over the randomness of the input).

The main lemma which connects the above two results is as follows.

Lemma 2.3. ∑
{i1i2...ir}∈(S

r)

∥∥x∗i1,i2,...,ir∥∥2
+

∑
{i1,i2,...,ir}∈∂(S)

∥∥x∗i1,i2,...,ir∥∥2
>

(
k

r

)
.

Proof. We start by inspecting our intended feasible solution x′ as defined in equation (6). A straightforward
calculation shows that x′ is indeed a feasible solution of the SDP1, thus we defer these details to Appendix B.

1Our definition of x′ depends on existence of x∗, we can show x∗ does exist by exhibiting a solution x′′ that satisfies all the
constraints as x′′ = ei,∀i ∈ V , where {ei}ni=1 are orthonormal and x′′ = 0 otherwise, and gives a SDP value of 0.

6



Note that by splitting the sum into three disjoint parts, we have∑
{i1,i2,...,ir}∈(V

r )

∥∥x∗i1,i2,...,ir∥∥2
=

∑
{i1,i2,...,ir}∈(S

r)

∥∥x∗i1,i2,...,ir∥∥2
+

∑
{i1,i2,...,ir}∈∂(S)

∥∥x∗i1,i2,...,ir∥∥2

+
∑

{i1,i2,...,ir}∈(V \S
r )

∥∥x∗i1,i2,...,ir∥∥2
(7)

and similarly, ∑
{i1,i2,...,ir}∈(V

r )

∥∥x′i1,i2,...,ir∥∥2
=

∑
{i1,i2,...,ir}∈(S

r)

∥∥x′i1,i2,...,ir∥∥2
+

∑
{i1,i2,...,ir}∈∂(S)

∥∥x′i1,i2,...,ir∥∥2

+
∑

{i1,i2,...,ir}∈(V \S
r )

∥∥x′i1,i2,...,ir∥∥2

=

(
k

r

)
+

∑
{i1,i2,...,ir}∈(V \S

r )

∥∥x∗i1,i2,...,ir∥∥2
(from eqn (6)) . (8)

Since x∗ is optimal we have that, ∑
{i1,i2,...,ir}∈(V

r )

∥∥x∗i1,i2,...,ir∥∥2
>

∑
{i1,i2,...,ir}∈(V

r )

∥∥x′i1,i2,...,ir∥∥2

=⇒
∑

{i1,i2,...,ir}∈(S
r)

∥∥x∗i1,i2,...,ir∥∥2
+

∑
{i1,i2,...,ir}∈∂(S)

∥∥x∗i1,i2,...,ir∥∥2
>

(
k

r

)
(from eqns (7) & (8)) .

Note that the above lemma which is similar to ([MMT20], Lemma 2.2) helps us remove the dependence
of the contribution of the vectors from V \ S, is the key lemma which allows us to work with an arbitrary
subhypergraph H[V \ S]. Also, it makes our arguments invariant to any extra hyperedges added by an
adversary.

Next, we proceed to prove Proposition 2.1. We begin by constructing a bipartite graph to simplify our
calculations, as follows.

Construction 2.4. We construct a bipartite graph G′
def
= (U1, U2, E

′) from the given input hypergraph H
as follows.

Here U1
def
= (S) ∪

(
S

2

)
∪ . . . ∪

(
S

r − 1

)
and U2

def
= (V \ S) ∪

(
V \ S

2

)
∪ . . . ∪

(
V \ S
r − 1

)
.

Now for each hyperedge e in our original hypergraph H (before the action of the monotone adversary on

H[S, V \ S]) such that e ∈ E ∩ ∂(S), let Ie
def
= e ∩ S and Je

def
= e ∩ (V \ S). We add an edge in the graph G′

between the vertices Ie ∈ U1 and Je ∈ U2. It is easy to see that there is a bijection between the random part
of the hypergraph and G′.

Let A denote the adjacency matrix of G′ (of dimension |U1| + |U2|) and let m′ denote the maximum
number of number of edges in the random hypergraph.

In the next few lemmas, we setup some groundwork to use this construction in establishing our claims.
We prove the following bounds on |U1|, |U2| and m′. The proof uses some standard results on binomial
coefficients. For completeness, we state them in Fact A.1.

Fact 2.5. For all k 6 n/2, r > 2 we have,

7



1. 1 + |U1| 6 r

(
2ek

r

)r−1

.

2. 1 + |U2| 6 r

(
2en

r

)r−1

.

3. m′ 6
(4e)r−2knr−1

rr−2
.

4. m′ > k
( n

2r

)r−1

.

Proof. By using Fact A.1,

1.

1 + |U1| =
(
k

0

)
+

(
k

1

)
+

(
k

2

)
+ . . .+

(
k

r − 1

)
6 r

(
k

r − 1

)
6 r

(
ek

r − 1

)r−1

6 r

(
2ek

r

)r−1

.

where we use the fact that r − 1 > r/2 ⇐⇒ r > 2 in the last step.

2. Similarly,

1 + |U2| =
(
n− k

0

)
+

(
n− k

1

)
+

(
n− k

2

)
+ . . .+

(
n− k
r − 1

)
6 r

(
n− k
r − 1

)
6 r

(
e(n− k)

r − 1

)r−1

6 r

(
2en

r

)r−1

.

3. Since only possible edges are between subsets of size i in U1 and size r − i in U2, we can write m′ as

m′ =

r−1∑
i=1

(
k

i

)(
n− k
r − i

)
6

(
k

1

)(
n− k

1

)(
n− 2

r − 2

)
6 k(n− k)

(
e(n− 2)

r − 2

)r−2

6
(4e)r−2knr−1

rr−2
.

The first inequality follows from the fact that every possible hyperedge in ∂(S) can be upper bounded
by picking r-tuples where at least one vertex is chosen from S and V \ S each and rest r − 2 vertices
are chosen arbitrarily. The last inequality follows form the fact that r > 3 and n > n− 2 & n− k. The
inequality is not applicable for r = 2 but we can show the bound on m′ still holds by computing m′

exactly.

4.

m′ =

r−1∑
i=1

(
k

i

)(
n− k
r − i

)
>

(
k

1

)(
n− k
r − 1

)
> k

(
n− k
r − 1

)r−1

> k
( n

2r

)r−1

.

where we use the fact that k 6 n/2 and r > r − 1 in the last step.

Definition 2.6. We define a centered matrix B ∈ R(|U1|+|U2|)×(|U1|+|U2|),

BI,J
def
=

{
p−AI,J ∀i ∈ [r − 1], I ∈

(
S
i

)
, J ∈

(
V \S
r−i
)
;∀j ∈ [r − 1], I ∈

(
V \S
j

)
, J ∈

(
S
r−j
)

0 otherwise .

where A denotes the adjacency matrix of G′ in Construction 2.4. Note that by construction, E[B] = 0. We
rewrite the contribution of the random hypergraph towards the SDP mass in terms of the matrix B using the
next lemma.

Lemma 2.7.

∑
{i1,i2,...,ir}∈∂(S)

∥∥x∗i1,i2,...,ir∥∥2
=

1

2p

 ∑
u1,u2∈U1∪U2

Bu1,u2

〈
x∗u1

, x∗u2

〉 .

8



Proof.∑
{i1,i2,...,ir}∈∂(S)

∥∥x∗i1,i2,...,ir∥∥2
=

∑
{i1,i2,...,ir}∈∂(S)

∥∥x∗i1,i2,...,ir∥∥2 − 1

p

∑
e∈∂(S)∩E

‖x∗e‖
2

(
∵ ‖x∗e‖

2
= 0,∀e ∈ E

)

=
1

p

 ∑
{i1,i2,...,ir}∈∂(S)

(
p− 1{i1,i2,...,ir}∈E

) ∥∥x∗i1,i2,...,ir∥∥2

 (Combining the sum)

=
1

p

r−1∑
i=1

∑
u1∈(S

i),u2∈(V \S
r−i)

(p−Au1,u2
)
〈
x∗u1

, x∗u2

〉 (by SDP constraint (3))

=
1

p

r−1∑
i=1

∑
u1∈(S

i),u2∈(V \S
r−i)

Bu1,u2

〈
x∗u1

, x∗u2

〉 (by Definition 2.6)

=
1

p

 ∑
u1∈U1,u2∈U2

Bu1,u2

〈
x∗u1

, x∗u2

〉 =
1

2p

 ∑
u1,u2∈U1∪U2

Bu1,u2

〈
x∗u1

, x∗u2

〉 .

It is important to note that the above lemma rewrites the mass of the SDP by vectors in the boundary of
S (the random part) using the matrix B. The entries of B only depend on the initial set of random edges,
thus any extra edges added by a monotone adversary can be ignored w.l.o.g.

We are now ready to prove Proposition 2.1. The proof uses some commonly used concentration inequalitites.
The exact variants of these are stated in Fact A.3 and Fact A.4.

Proof of Proposition 2.1. We start by bounding the term
∑
u1,u2∈U1∪U2

Bu1,u2

〈
x∗u1

, x∗u2

〉
. Since ‖x∗I‖

2 6
1, ∀I ⊂ V, |I| 6 r we can use Grothendieck’s inequality (Fact A.4) to bound it. We restate it here.

max
xu1

,xu2
:u1,u2∈U1∪U2

‖xu1‖,‖xu2‖61

∣∣∣∣∣∣
∑

u1,u2∈U1∪U2

Bu1,u2
〈xu1

, xu2
〉

∣∣∣∣∣∣ 6 2 max
yu1

,yu2
:u1,u2∈U1∪U2

yu1
,yu2
∈{±1}

∣∣∣∣∣∣
∑

u1,u2∈U1∪U2

Bu1,u2
yu1

yu2

∣∣∣∣∣∣
6 4 max

yu1 ,yu2 :u1,u2∈U1∪U2

yu1 ,yu2∈{±1}

∣∣∣∣∣∣
∑

u1∈U1,u2∈U2

Bu1,u2yu1yu2

∣∣∣∣∣∣ . (9)

For a fixed set of variables, yu1
, yu2

and a parameter δ ∈ (0, 1] to be fixed later, we use Bernstein’s
inequality (Fact A.3) on m′ independent random variables Bu1,u2

yu1
yu2

(each of which has mean 0, is bounded
by 1, and has a variance atmost p). Then for t = δpm′ and for all δ ∈ (0, 1], and using an upper bound on m′

from Fact 2.5 we have that,

P

∣∣∣∣∣∣
∑

u1∈U1,u2∈U2

Bu1,u2
yu1

yu2

∣∣∣∣∣∣ > δp
(4e)r−2knr−1

rr−2

 6 P

∣∣∣∣∣∣
∑

u1∈U1,u2∈U2

Bu1,u2
yu1

yu2

∣∣∣∣∣∣ > δpm′


6 2 exp

(
− δ2p2m′

2p+ 2δp/3

)
6 2 exp

(
−3δ2pm′

8

)
(∵ δ 6 1) .

9



By a union bound over all possible values of yu1 , yu2 ,

P

 max
yu1 ,yu2 :u1,u2∈U1∪U2

yu1 ,yu2∈{±1}

∣∣∣∣∣∣
∑

u1∈U1,u2∈U2

Bu1,u2yu1yu2

∣∣∣∣∣∣ > δp
(4e)r−2knr−1

rr−2


6 21+2(|U1|+|U2|) exp

(
−3δ2pm′

8

)
6 exp

(
2 (1 + |U1|) + 2 (1 + |U2|)−

3δ2pm′

8

)
6 exp

(
2r

(
2ek

r

)r−1

+ 2r

(
2en

r

)r−1

− 3δ2pk

8

( n
2r

)r−1
)

(from Fact 2.5)

6 exp

(
4r

(
2en

r

)r−1

− 3δ2pk

8

( n
2r

)r−1
)

(since k < n)

= exp

(
−
(

3δ2pk

r2r+2
− 4(2e)r−1

)
nr−1

rr−2

)
= exp

(
−n

r−1(2e)r−12(e− 2)

rr−2

) (
we set δ2 =

r22r+2er

3pk

)
6 exp (−n)

(
∵
nr−1

rr−2
> n

(n
r

)r−2

where n/r > 1 and 2(e− 2)(2e)r−1 > 1

)
.

Note that this holds when δ2 6 1 ⇐⇒ r22r+2er

3pk
6 1 ⇐⇒ k >

r22r+2er

3p
. Therefore using the union

bound above and equation (9), we have that with high probability (for enough large n and when δ2 6 1),

∑
u1,u2∈U1∪U2

Bu1,u2

〈
x∗u1

, x∗u2

〉
6 4δp

(4e)r−2knr−1

rr−2
.

Using Lemma 2.7 we have that,

∑
{i1,i2,...,ir}∈∂(S)

∥∥x∗i1,i2,...,ir∥∥2
6 2δ

(4e)r−2knr−1

rr−2
=

(
23r−2e3r/2−2

√
3rr−5/2

)(√
k

p

)
nr−1

where we substitute the value of δ to complete the proof.

We define the following function for notational convenience.

Definition 2.8. Let f(r)
def
=

r5/223r−2e3r/2−2

√
3

.

Proof of Corollary 2.2. The proof follows almost immediately from Proposition 2.1 and Lemma 2.3,

∑
{i1i2...ir}∈(S

r)

∥∥x∗i1i2...ir∥∥2
>

(
k

r

)
−

∑
{i1,i2,...,ir}∈∂(S)

∥∥x∗i1,i2,...,ir∥∥2
>

(
k

r

)
−
(

23r−2e3r/2−2

√
3rr−5/2

)(√
k

p

)
nr−1

=

(
k

r

)
− f(r)nr−1

√
k

rr
√
p

.
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3 Algorithm for computing a large independent set

In this section, we will prove a formal version of Theorem 1.3 which is a generalization of Theorem 1.1 of
[MMT20] to r-uniform hypergraphs (Lemma 3.1, Lemma 3.3 and proof of Theorem 1.3). We will crucially
use the lower bound on the SDP mass from the vectors in S, i.e., Corollary 2.2.

As a first step towards this, in Lemma 3.1, we show that there exists a vertex u ∈ S for which the 1 level
vectors x∗v (corresponding to vertices in S) in the optimal solution have a large projection on x∗u.

Lemma 3.1. For k >
r22r+2er

3p
, there exists a vertex u ∈ S such that, with high probability (over the

randomness of the input).

Ev∈S\{u} 〈x∗u, x∗v〉 > E{i1,i2,...,ir−1}∼(S\{u}
r−1 )

〈
x∗u, x

∗
i1,i2,...,ir−1

〉
> 1− f(r)nr−1

kr−0.5√p
.

Proof. From Corollary 2.2 we have that for k >
r22r+3er

3p
,

∑
{i1,i2,...,ir}∈(S

r)

∥∥x∗i1,i2,...,ir∥∥2
>

(
k

r

)
− f(r)nr−1

√
k

rr
√
p

.

From the SDP constraint (3), we split the above sum as follows,

∑
u∈S,{i1,i2,...,ir−1}∈(S\{u}

r−1 )

〈
x∗u, x

∗
i1,i2,...,ir−1

〉
> r

((
k

r

)
− f(r)nr−1

√
k

rr
√
p

)
. (10)

Therefore there exists a vertex u ∈ S such that,

∑
{i1,i2,...,ir−1}∈(S\{u}

r−1 )

〈
x∗u, x

∗
i1,i2,...,ir−1

〉
>
r

k

((
k

r

)
− f(r)nr−1

√
k

rr
√
p

)
.

Since number of terms in expression in the above sum is
(
k−1
r−1

)
. We rewrite the above expression as an

expectation over the uniform distribution on such tuples as,

E{i1,i2,...,ir−1}∼(S\{u}
r−1 )

〈
x∗u, x

∗
i1,i2,...,ir−1

〉
>

r

k
(
k−1
r−1

) ((k
r

)
− f(r)nr−1

√
k

rr
√
p

)
= 1− rf(r)nr−1

√
k

k
(
k−1
r−1

)
rr
√
p

> 1− rf(r)nr−1
√
k

k

(
k − 1

r − 1

)r−1

rr
√
p

> 1− rf(r)nr−1
√
k

k

(
k

r

)r−1

rr
√
p

= 1− f(r)nr−1

kr−0.5√p
.

where we used Fact A.1 and the fact that, (k − 1)/(r − 1) > k/r ⇐⇒ k > r.
Using our SDP constraint (4) we can rewrite the summation in (10) as,

∑
u∈S,{i1,i2,...,ir−1}∈(S\{u}

r−1 )

〈
x∗u, x

∗
i1,i2,...,ir−1

〉
6

1

(r − 1)

∑
u∈S,{i1,i2,...,ir−1}∈(S\{u}

r−1 )

r−1∑
l=1

〈
x∗u, x

∗
il

〉

=

(
k−2
r−2

)
(r − 1)

∑
u∈S,v∈S\{u}

〈x∗u, x∗v〉 (11)

11



where the equality above can be argued by fixing a vertex u ∈ S, v ∈ S \ {u} and observing that there are(
k−2
r−2

)
terms in the double summation containing such (u, v). We divide the equation (11) by k

(
k−1
r−1

)
(the

number of terms in the summation on the left side) to rewrite the inequality in form of expectation as,

E{i1,i2,...,ir−1}∼(S\{u}
r−1 )

〈
x∗u, x

∗
i1,i2,...,ir−1

〉
6

(
k−2
r−2

)
(r − 1)k

(
k−1
r−1

) ∑
u∈S,v∈S\{u}

〈x∗u, x∗v〉

=
1

k(k − 1)

∑
u∈S,v∈S\{u}

〈x∗u, x∗v〉 = Ev∈S\{u} 〈x∗u, x∗v〉

where we have used the fact that
(
k−1
r−1

)
= k−1

r−1

(
k−2
r−2

)
. It then follows that there exists a vertex u ∈ S such that

Ev∈S\{u} 〈x∗u, x∗v〉 > 1− f(r)nr−1

√
pkr−0.5

Lemma 3.1 shows that a large fraction of the 1-level vectors in S have a large projection on x∗u. We start
with the following definition,

Definition 3.2. We denote the set of all l-tuples containing vertices from a set T ⊆ V (where l 6 |T |) whose
corresponding vectors have a projection at least R with the vector x∗u by

Bu(l,R, T )
def
=

{
{v1, v2, . . . , vl} : {v1, v2, . . . , vl} ∈

(
T

l

)
and

〈
x∗u, x

∗
v1,v2,...,vl

〉
> R

}
.

Note that the typical values of l of interest will be 1 in Theorem 1.3 and r − 1 in Theorem 1.2.

Lemma 3.3. For k >
r22r+2er

3p
, there exists a vertex u ∈ S such that

∣∣∣∣Bu(1, 1− 1

2r
, S

)∣∣∣∣ > (k − 1)

(
1− 2rf(r)nr−1

√
pkr−0.5

)
with high probability (over the randomness of the input).

Proof. We note that 1− 〈x∗u, x∗v〉 > 0 and for R ∈ (0, 1) and for k >
r22r+3er

3p
, by applying Markov’s

inequality on (1− 〈x∗u, x∗v〉), where u is the vertex guaranteed in Lemma 3.1 and v ∈ V \ S we have that,

Pv∈S\{u} [1− 〈x∗u, x∗v〉 > 1−R] <

f(r)nr−1

√
pkr−0.5

1−R
. (using Lemma 3.1)

We can rewrite the above expression as the fraction of vertices which satisfy (〈x∗u, x∗v〉 < R), since the
underlying distribution is the uniform distribution over all such v and by setting R = 1− 1/2r,∣∣∣∣v ∈ S \ {u} : 〈x∗u, x∗v〉 < 1− 1

2r

∣∣∣∣ < (k − 1)

(
2rf(r)nr−1

√
pkr−0.5

)
.

∴

∣∣∣∣Bu(1, 1− 1

2r
, S

)∣∣∣∣ =

∣∣∣∣v ∈ S \ {u} : 〈x∗u, x∗v〉 > 1− 1

2r

∣∣∣∣ > (k − 1)

(
1− 2rf(r)nr−1

√
pkr−0.5

)
.

12



In [MMT20] they use the SDP constraint 〈xu, xv〉 = 0,∀ {u, v} ∈ E to show that the set of vectors which
have a large projection on x∗u is an independent set. Therefore they directly analyze the bound on the size of
the set to obtain an independent set, in a range of p such that it covers atleast (1− ε) fraction of vertices in
S. However in our setting, we are unable to guarantee directly that this set of vectors is an independent set.
We crucially use the Lasserre/SoS like SDP constraints (3) and (5) and an appropriately large value of R
(R > 1− 1

2r ) to show that the set guaranteed in Lemma 3.3 is an independent set.

Lemma 3.4. For k >
r22r+2er

3p
, there exists a vertex u ∈ S such that Bu

(
1, 1− 1

2r
, V

)
is an independent

set with high probability (over the randomness of the input).

Proof. We consider the SDP constraint (5) and apply it to our optimal solution x∗ . By using consistency
constraints (〈xI , xJ〉 = 〈xI′ .xJ′〉 ,∀I ∪ J = I ′ ∪ J ′) (equation (3)) we can rewrite the constraint in (5) as,

1−
∥∥x∗u,i1,...,ir∥∥2

6
∑
l∈[r]

(
1−

〈
x∗u, x

∗
il

〉)
. (12)

For k >
r22r+3er

3p
, if we pick any set of r vertices {i1, . . . , ir} ∈

(
V
r

)
in Bu

(
1, 1− 1

2r
, V

)
(where u is the

vertex guaranteed in Lemma 3.3) we know that
〈
x∗u, x

∗
il

〉
> 1− 1

2r
,∀l ∈ [r]. By using equation (12) we have

that, ∥∥x∗u,i1,...,ir∥∥2
> 1−

∑
l∈[r]

(
1−

〈
x∗u, x

∗
il

〉)
> 1−

∑
l∈[r]

1

2r
>

1

2
> 0 . (13)

Now we examine the term
∥∥x∗i1,i2,...,ir∥∥2

for these {i!, . . . , ir} and we have that,∥∥x∗i1,i2,...,ir∥∥2
=
〈
x∗i1 , x

∗
i2...,ir

〉
>
〈
x∗i1 , x

∗
u,i2...,ir

〉
=
∥∥x∗u,i1,...,ir∥∥2

> 0

where the equality holds by consistency constraints, the first inequality above holds by constraint (4) and the

last inequality holds by equation (13). Hence for any r-tuple {i1, i2, . . . , ir} ⊆ Bu
(

1, 1− 1

2r
, V

)
, we have∥∥x∗i1,i2,...,ir∥∥2

> 0. Therefore by SDP constraint (2), it cannot form a hyperedge. Hence, the set of vertices in

Bu
(

1, 1− 1

2r
, V

)
is an independent set.

Definition 3.5. Let Su denote the set of vertices formed by the union of all vertices by reading off the
indices from the tuples of the set, Bu(l, r, V ).

Now, we have all the ingredients to prove our main result. We present the complete algorithm below and
the proof of Theorem 1.3.

Algorithm 1:

Input: H = (V,E), l ∈ [r], and R ∈ (0, 1).
Output: A list of independent sets in H.

1: Solve SDP 1.4.
2: for all u ∈ V do
3: Initialize Su denote the union of set of vertices from the tuples in Bu(l,R, V ).
4: S ′u = {u} ∪ Su. If S ′u is not an independent set,

Set S ′u = ∅ and skip this iteration.
5: for all v ∈ V \ Su do
6: Add vertex v to S ′u if S ′u ∪ {v} is an independent set.
7: end for
8: end for
9: Return {S ′u}u∈V .
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We set our parameters (n, p, k, ε) appropriately and show that the number of vertices in Bu along with
the vertex u (denoted by S ′u) cover 1− ε fraction of vertices in S.

Theorem 3.6 (Formal version of Theorem 1.3). There exists a deterministic algorithm which takes as input
ε ∈ (0, 1) and an instance of Definition 1.1 satisfying

k > max

{
r22r+2er

3p
,

(2rf(r))1/(r−0.5)n(r−1)/(r−0.5)

ε1/(r−0.5)p1/(2r−1)

}
,

has running time nO(r), and outputs an independent set of size at least (1− ε)k, with high probability (over
the randomness of the input).

Proof. We run the Algorithm 1 with the inputs, H, l = 1 and R = 1− 1

2r
to get {S ′u}u∈V . In Lemma 3.3 we

show that ∣∣∣∣Bu(1, 1− 1

2r
, S

)∣∣∣∣ > (k − 1)

(
1− 2rf(r)nr−1

√
pkr−0.5

)
.

For a suitable choice of parameters we wish to have,∣∣∣∣Bu(1, 1− 1

2r
, S

)∣∣∣∣ > (k − 1)(1− ε) . (14)

We can then include the vertex u to our independent set and we get

|S ′u| > |Su|+ 1 =

∣∣∣∣Bu(1, 1− 1

2r
, V

)∣∣∣∣+ 1 >

∣∣∣∣Bu(1, 1− 1

2r
, S

)∣∣∣∣+ 1

> (k − 1)(1− ε) + 1 > k(1− ε) .

We note that by setting k >
(2rf(r))1/(r−0.5)n(r−1)/(r−0.5)

ε1/(r−0.5)p1/(2r−1)
, equation (14) is satisfied and hence we can

recover an independent set of size (1− ε)k for all ε ∈ (0, 1).

4 Algorithm for Exact Recovery of S

In this section, we will prove a formal version of Theorem 1.2 which is a generalization of Theorem 1.2 of
[MMT20] to r-uniform hypergraphs. We start by rewriting the lower bound on the SDP mass from the
vectors in S, i.e., Corollary 2.2 into a form which is easier to work with.

Note that the Lemma 3.1, tells us the that the projection of (r − 1)th level vectors from S have a large
projection (close to 1), onto some vertex u ∈ S. This naturally suggests that we iterate over all vertices
and consider the (r − 1)th level vectors which have a large projection with the vertex. To ensure that union
of such projected sets remain independent, we generalize the ideas in proof of Theorem 1.1 and Theorem
1.2 of [MMT20] to higher level vectors and hyperedges (Lemma 4.1, Lemma 4.2, Lemma 4.3 and proof of
Theorem 1.2). We start by the following simple yet important lemma, where we show that there exists a
constant value of R such that no two orthogonal vectors can belong to Bu(r − 1,R, T ) for any u ∈ V, T ⊆ V .

Lemma 4.1. Let w be a fixed unit vector. Then for all R > 1/
√

2 and for any vector y which satisfies
‖y‖ 6 1 and 〈w, y〉 > R, every vector z such that ‖z‖ 6 1 and 〈y, z〉 = 0 must have 〈w, z〉 < R.

Proof. Let us suppose there is a vector z which on the contrary does satisfy 〈w, z〉 > R. First we decompose
y and z as follows,

y = 〈w, y〉w + y⊥ and z = 〈w, z〉w + z⊥

where 〈w, y⊥〉 = 〈w, z⊥〉 = 0. Since ‖y‖ , ‖z‖ 6 1 and ‖w‖ = 1, we have

‖y⊥‖ 6
√

1− 〈w, y〉2 6
√

1−R2 and ‖z⊥‖ 6
√

1− 〈w, z〉2 6
√

1−R2 .
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Using 0 = 〈y, z〉 = 〈w, y〉 〈w, z〉+ 〈y⊥, z⊥〉,

〈w, z〉 =
−〈y⊥, z⊥〉
〈w, y〉

6
‖y⊥‖ ‖z⊥‖
〈w, y〉

6
1−R2

R
.

But note that for any R ∈ (1/
√

2, 1),
1−R2

R
< R .

This is a contradiction to the fact that 〈w, z〉 > R.

For the rest of our discussion we pick R = 3/4. We note that the value the R = 3/4 is an arbitrary choice
for the constant and is used for the purposes of presentation only and has no particular significance.

Thus Lemma 4.1 ensures that no two orthogonal vectors can lie in Bu(r − 1, 3/4, T ) for any u ∈ S, T ⊆ V .
Next, we give a lower bound on the size of Bu(r − 1, 3/4, S), which will tell us that a large number of the
tuples lie within this set.

Lemma 4.2. For k >
r22r+2er

3p
, there exists a vertex u ∈ S such that,

|Bu(r − 1, 3/4, S)| >
(
k − 1

r − 1

)(
1− 4f(r)nr−1

kr−0.5√p

)
.

Proof. By Markov’s inequality for all R ∈ (0, 1) and where k >
r22r+3er

3p
, by Lemma 3.1 there exists a vertex

u ∈ S such that,

P{i1,i2,...,ir−1}∼(S\{u}
r−1 )

[
1−

〈
x∗u, x

∗
i1,i2,...,ir−1

〉
> 1−R

]
<

1−E{i1,i2,...,ir−1}∼S\{u}

〈
x∗u, x

∗
i1,i2,...,ir−1

〉
1−R

<
f(r)nr−1

(1−R) kr−0.5√p
.

We can rewrite the above expression as the fraction of r− 1 tuples which satisfy
〈
x∗u, x

∗
i1,i2,...,ir−1

〉
< R, since

the underlying distribution is the uniform distribution over all such tuples,∣∣∣∣{i1, i2, . . . , ir−1} ∈
(
S \ {u}
r − 1

)
:
〈
x∗u, x

∗
i1,i2,...,ir−1

〉
< R

∣∣∣∣ < (k − 1

r − 1

)(
f(r)nr−1

(1−R) kr−0.5√p

)
.

∴

∣∣∣∣{i1, i2, . . . , ir−1} ∈
(
S \ {u}
r − 1

)
:
〈
x∗u, x

∗
i1,i2,...,ir−1

〉
> R

∣∣∣∣ > (k − 1

r − 1

)(
1− f(r)nr−1

(1−R) kr−0.5√p

)
.

Using R = 3/4 finishes the proof of this claim.

Recall that in Theorem 1.2, we are aiming to recover S and not just any independent set. For this, we
also need that every vertex v ∈ V \ S, has at least one hyperedge forming with Bu(r − 1, 3/4, S). This will

ensure that the set Bu(r − 1, 3/4, V ) has tuples only from
(
S\{u}
r−1

)
; we did show that this has a large size in

Lemma 4.2. We concretize these ideas in the next few lemmas.

Lemma 4.3. For k > max

{
r22r+2er

3p
,

(8f(r))
1/(r−0.5)

n(r−1)/(r−0.5)

p3/(2r−1)
, (r − 1)

(
16 log n

p

)1/(r−1)
}

there ex-

ists a vertex u ∈ S where ∀v ∈ V \ S, ∃ e = ({v1, v2, . . . , vr−1} ∪ {v}) ∈ E such that {v1, v2, . . . , vr−1} ∈
Bu(r − 1, 3/4, S) with high probability (over the randomness of the input).
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Proof. As stated above, we are interested in the event that for each vertex in v ∈ V \ S, we have at least one
hyperedge with Bu(r − 1, 3/4, S); where u is the vertex guaranteed by Lemma 4.2. This is implied by the
event that every such v participates in strictly more than

(
k−1
r−1

)
− |Bu (r − 1, 3/4, S)| hyperedges in

(
S
r−1

)
.

We want that,

dmin
def
= min

v∈V \S
d(v)|( S

r−1)
>

(
k − 1

r − 1

)
− |Bu (r − 1, 3/4, S)| .

which for k >
r22r+3er

3p
, using Lemma 4.2 is implied by the event that

dmin >

(
k − 1

r − 1

)
−
(
k − 1

r − 1

)(
1− 4f(r)nr−1

kr−0.5√p

)
=

(
k − 1

r − 1

)(
4f(r)nr−1

kr−0.5√p

)
. (15)

Note that for v ∈ V \ S, E[d(v)|( S
r−1)

] = p
(
k−1
r−1

)
, and since expectation is always larger than the minimum, we

must have that,

p

(
k − 1

r − 1

)
> dmin >

(
k − 1

r − 1

)(
4f(r)nr−1

kr−0.5√p

)
⇐⇒ p >

4f(r)nr−1

kr−0.5√p
. (16)

which is true since k >
(8f(r))

1/(r−0.5)
n(r−1)/(r−0.5)

p3/(2r−1)
. To show that this event happens with high probability,

we use the Chernoff bound (Fact A.2) followed by a union bound over all v ∈ V \ S to get,

P
[
∃v ∈ V \ S : d(v)|( S

r−1)
6 (1− ε)p

(
k − 1

r − 1

)]
6 (n− k) exp

(
−ε2(1/(r − 1))r−1pkr−1

2

)
6 n exp

(
−ε2(1/(r − 1))r−1pkr−1

2

)
(17)

where we used Fact A.1 and the fact that r > 2. The bound in equation (17) holds with high probability for

ε = 1/2 and k > (r − 1)

(
16 log n

p

)1/(r−1)

.

Therefore, for k > max

{
r22r+2er

3p
,

(8f(r))
1/(r−0.5)

n(r−1)/(r−0.5)

p3/(2r−1)
, (r − 1)

(
16 log n

p

)1/(r−1)
}

and ε = 1/2,

each vertex in v ∈ V \ S has at least one hyperedge with some tuple in Bu(r − 1, 3/4, S), with high
probability.

We note that these results hold true even if allow a monotone adversary to add hyperedges in ∂(S) since
it can only increase d(v).

Claim 4.4. Let I, J, I ′, J ′ be any non-empty subsets of V which satisfy |I ∪ J | , |I ′ ∪ J ′| 6 r+ 1, and I ∪J =
I ′ ∪ J ′, then,

〈x∗I , x∗J〉 = 〈x∗I′ , x∗J′〉 .

Proof. By SDP constraint 3,

〈x∗I , x∗J〉 = ‖x∗I∪J‖
2

= ‖x∗I′∪J′‖
2

= 〈x∗I′ , x∗J′〉 .

Lemma 4.5. For k > max

{
r22r+2er

3p
,

(8f(r))
1/(r−0.5)

n(r−1)/(r−0.5)

p3/(2r−1)
, (r − 1)

(
16 log n

p

)1/(r−1)
}

, there ex-

ists a vertex u ∈ S (the vertex guaranteed by Lemma 4.3) such that Su ⊆ S and Bu(r − 1, 3/4, V ) =
Bu(r − 1, 3/4, S) with high probability (over the randomness of the input).
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Proof. Let u be the vertex guaranteed by Lemma 4.3. We show that for any (r − 1)-tuple of vertices in
Bu(r−1, 3/4, V ), each of these vertices lie in S. Suppose there is a (r−1)-tuple I = {i1, i2, . . . , ir−1} 6⊂ S such
that i1 ∈ V \ S and I ∈ Bu(r− 1, 3/4, V ). Now from Lemma 4.3, we know that with high probability for this
vertex u ∈ S there exists a hyperedge e = {i1, j2, j3, . . . , jr} such that J = {j2, j3, . . . , jr} ∈ Bu(r− 1, 3/4, S).
By Lemma 4.4 we have that,

〈x∗I , x∗J〉 =
〈
x∗I\{i1}, x

∗
J∪{i1}

〉
=
〈
x∗I\{i1}, x

∗
e

〉
.

We know that ‖x∗e‖ = 0 and thus x∗I is orthogonal to x∗J . Thus by Lemma 4.1 and our choice of R (= 3/4),
the set I cannot lie inside Bu(r − 1, 3/4, V ). Thus the only tuples that can lie inside Bu(r − 1, 3/4, V )
are the tuples of Bu(r − 1, 3/4, S). Hence with high probability (over the randomness of the input),
Bu(r− 1, 3/4, V ) = Bu(r− 1, 3/4, S). Since the vertices in Su are formed by taking the union over vertices in
the tuples inside Bu(r− 1, 3/4, V ) we only have vertices from S. Therefore, Su ⊆ S is an independent set.

Theorem 4.6 (Formal version of Theorem 1.2). There exists a deterministic algorithm which takes as input
an instance of Definition 1.1 satisfying

k > max

{
r22r+2er

3p
,

(8f(r))
1/(r−0.5)

n(r−1)/(r−0.5)

p3/(2r−1)
, (r − 1)

(
16 log n

p

)1/(r−1)
}
,

has running time nO(r), and outputs a list of atmost n independent sets, one of which is S, with high probability
(over the randomness of the input).

Proof. We run the Algorithm 1 with the inputs, H, l = r − 1, and R = 3/4 to get {S ′u}u∈V . Lemma 4.5
guarantees that there exists a vertex u such that Su is a subset of our planted independent set S with high
probability (over the randomness of the input). The greedy step (step 6) in Algorithm 1, which tries to add
each vertex from V \ Su to S ′u, helps us to recover the remaining vertices of our planted independent set S.
Note that by Lemma 4.3, no vertex of V \ S can be added to S ′u since for any vertex v ∈ V \ S, there exists a
hyperedge containing v and a subset of vertices from Su. Hence, at the end of greedy step we will completely
recover S. Since the time to solve the SDP is nO(r), the running time is nO(r).
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A Some standard inequalities

Fact A.1 (Bounds on Binomial Coefficient, Appendix C - [CLRS09]). For 1 6 k 6 n,(n
k

)k
6

(
n

k

)
6
(en
k

)k
.

Fact A.2 (Chernoff bound (Multiplicative); Theorem 4.5 (Part 2) - [MU17]). Let X1, X2, . . . , Xn be i.i.d.
bernoulli variables such that µ = E[Xi], for all i. Then for any δ ∈ (0, 1),

P

[
n∑
i=1

Xi < (1− δ)µ

]
6 exp

(
−µδ

2

2

)
.

Fact A.3 (Bernstein inequality; Equation (1.29) - [Was06]). Let X1, X2, . . . , Xn be independent, zero mean
random variables such that |Xi| 6 c, for all i. Then for all t > 0,

P

[∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > t

]
6 2 exp

(
− t2

2v + 2ct/3

)
where v >

∑n
i=1 Var [Xi].

Fact A.4 (Grothendieck’s inequality; Equation (3.1) and (3.2) - [GV16]). Consider an n× n real matrix M
then,

max
{xi}ni=1,{yj}

n
j=1⊆B

n
2

∣∣∣∣∣∣
n∑

i,j=1

Mij 〈xi, yj〉

∣∣∣∣∣∣ 6 2 max
{αi}ni=1,{βj}nj=1∈{−1,1}

∣∣∣∣∣∣
n∑

i,j=1

Mijαiβj

∣∣∣∣∣∣
where Bn2 = {x ∈ Rn : ‖x‖2 6 1}.

20

https://sites.math.washington.edu/~rothvoss/lecturenotes/lasserresurvey.pdf
https://sites.math.washington.edu/~rothvoss/lecturenotes/lasserresurvey.pdf


B Proof of feasibility of x′

Here we prove that the solution x′ is feasible for SDP 1.4 as stated in equation (6).

1. First we verify that ‖x′i‖
2

= 1, ∀i ∈ V

‖x′i‖
2

= ‖ê‖2 = 1, ∀i ∈ S (as defined)

‖x′i‖
2

= ‖x∗‖2 = 1, ∀i ∈ V \ S (x∗ is also feasible)

2. The constraint ‖x′e‖
2

= 0 holds by construction since for any edge e = {i1, i2, . . . , ir} such that
{i1, i2, . . . , ir} ∩ S 6= ∅ 6= {i1, i2, . . . , ir} ∩ (V \ S) the feasible solution x′ sets x′i1,i2,...,ir = 0. Similarly
for any edge e completely inside V \ S, x′e = x∗e = 0.

3. Next, we verify the constraint 〈x′I , x′J〉 = ‖x′I∪J‖
2
.

For I, J ∈ S,

x′I = x′J = x′I∪J = ê =⇒ 〈x′I , x′J〉 = ‖x′I∪J‖
2
.

For I, J ∈ V \ S,

x′ = x∗ =⇒ 〈x′I , x′J〉 = ‖x′I∪J‖
2

since x∗ is feasible.

If I ∈ ∂S (resp. J ∈ ∂S) then I ∪ J ∈ ∂S. Moreover, by construction, x′I = 0 (resp. x′J = 0) and
‖x′I∪J‖ = 0 = 〈x′I , x′J〉. If I, J /∈ ∂S but I ∪ J ∈ ∂S, then w.l.o.g. assuming I ∈ S and J ∈ V \ S,

〈x′I , x′J〉 = 〈ê, x∗I〉 = 0 = ‖x′I∪J‖
2
.

4. To verify constraint (4), we consider x′I , x
′
J such that I ⊆ J . We note that for J ⊆ S or J ⊆ V \ S

the constraint holds by our definition of x′. Also for I ∩ S 6= φ 6= I ∩ (V \ S), the term on both
sides are 0 and the constraint holds with an equality. The only case that remains to consider is when
J ∩ S 6= φ 6= J ∩ (V \ S) but either I ⊆ S or I ⊆ V \ S. For this case, 〈x′u, x′J〉 = 0 and by the SDP
constraint 〈xu, xI〉 > 0, this holds true as well.

5. To verify constraint (5), consider x′u, x
′
v1 , . . . , x

′
vr for any {u, v1, . . . , vr}. If {u, v1, . . . , vr} ⊆ S, the

constraint holds with equality (Both sides are 0). For {u, v1, . . . , vr} ⊆ V \ S, the constraint holds by
definition of x′. If u ∈ S and ∀i, vi ∈ V \ S or u ∈ V \ S and ∀i, vi ∈ S, the term on left is 1 since
x′u,v1,...,vr = 0 and the expression on right is r. If u ∈ S and {v1, . . . , vr}∩S 6= φ 6= V \S ∩{v1, . . . , vr},
then the term on left is 0 and ∃vi : 〈xu, xvi〉 = 0 and hence the expression on right is > 1 and constraint
is satisfied. If u ∈ V \S and {v1, . . . , vr}∩S 6= φ 6= V \S ∩{v1, . . . , vr}, then the term on left evaluates
to 1 since x′u,v1,...,vr = 0 but by same argument as in previous case the expression on right is > 1. So
the constraint holds in all cases.

This completes the proof.
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