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Abstract
Motivated by the spin–momentum locking of electrons at the boundaries of certain topological
insulators, we study a one-dimensional system of spin–orbit coupled massless Dirac electrons
with s-wave superconducting pairing. As a result of the spin–orbit coupling, our model has
only two kinds of linearly dispersing modes, and we take these to be right-moving spin-up and
left-moving spin-down. Both lattice and continuum models are studied. In the lattice model,
we find that a single Majorana zero energy mode appears at each end of a finite system
provided that the s-wave pairing has an extended form, with the nearest-neighbor pairing being
larger than the on-site pairing. We confirm this both numerically and analytically by
calculating the winding number. We find that the continuum model also has zero energy end
modes. Next we study a lattice version of a model with both Schrödinger and Dirac-like terms
and find that the model hosts a topological transition between topologically trivial and
non-trivial phases depending on the relative strength of the Schrödinger and Dirac terms. We
then study a continuum system consisting of two s-wave superconductors with different phases
of the pairing, with a δ-function potential barrier lying at the junction of the two
superconductors. Remarkably, we find that the system has a single Andreev bound state (ABS)
which is localized at the junction. When the pairing phase difference crosses a multiple of 2π,
an ABS touches the top of the superconducting gap and disappears, and a different state
appears from the bottom of the gap. We also study the AC Josephson effect in such a junction
with a voltage bias that has both a constant V0 and a term which oscillates with a frequency ω.
We find that, in contrast to standard Josephson junctions, Shapiro plateaus appear when the
Josephson frequency ωJ = 2eV0/� is a rational fraction of ω. We discuss experiments which
can realize such junctions.
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1. Introduction

Topological superconductors have been studied extensively in
recent years, largely because they have unusual states local-
ized near the boundary of finite-sized systems. In particular,
the Kitaev model which is a prototypical example of a one-
dimensional topological superconductorwhich, in the topolog-
ically non-trivial phase, hosts a zero energy Majorana mode
localized at each end of a long but finite system [1]. This is
a lattice model in which electrons have nearest-neighbor hop-
pings and p-wave superconducting pairing; the p-wave pairing
implies that we can work in a sector where all the electrons are
spin polarized, and we can therefore ignore the spin degree of
freedom. The bulk spectrum of this system is gapped, but in
the topologically non-trivial phase, each end hosts a localized
mode whose energy lies in the middle of the gap with zero
expectation value of the charge; these are the Majorana modes
demonstrating fermion number fractionalization. (In contrast
to this, a model with on-site s-wave superconducting pairing
is known not to have such end modes). These modes have
attracted a lot of attention since an ability to braid such modes
may eventually allow one to build logic gates and then topo-
logical quantum computers which are highly robust to local
noise [2, 3].

The Kitaev model and its variants have been theoretically
studied in a number of papers [4–42], and several experimental
realizations have looked for the Majorana end modes [43–47].
In addition, analytical solutions of the modes localized near
the ends of finite-sized Kitaev chains and its generalizations
have been studied earlier [48–52]. Some common ingredients
in many of the theoretical proposals and experimental realiza-
tions are spin–orbit coupling, an externally applied magnetic
field, and proximity to a superconductor.

It is known that three-dimensional topological insulators
such as Bi2Se3 and Bi2Te3 have surface states which are gov-
erned by a massless Dirac Hamiltonian [53, 54]. Typically,
the Hamiltonian is given by a spin–orbit coupling term of
the form H2D = v(σx py − σy px), where (px , py) is the momen-
tum of the electrons on the surface (assumed to be the x–y
plane here), v is the velocity, and σx,y denote Pauli matrices.
If we now constrict the surface to a narrow and long strip run-
ning along the x-direction, the motion of the electrons in the
y-direction would form bands; in the lowest band, the Hamil-
tonian would be given, up to a constant, by H1D = −vσy px .
Such a model hosts a spin-dependent chirality; electrons in
eigenstates of σy with eigenvalue −1(1) and v > 0 can move
only to the right (left). (Since σy is a good quantum number,
if we restrict ourselves in the lowest band, we can replace the
two-component wave functions (1, i) and (1,−i) for σy = +1
and −1 by one-component wave functions). It would then be
interesting to know what happens to this system when it is
placed in proximity to a superconductor, in particular, whether
this system can host Majorana end modes. (A similar situation
would arise if we consider a two-dimensional spin Hall insu-
lator and look at only one of its edges. The states at such an
edge again have a spin-dependent chirality, with the directions
of the spin and the momentum being locked to each other.)
∗ Author to whom any correspondence should be addressed.

We emphasize here that we are proposing to study a purely
Dirac Hamiltonian with a spin–orbit coupled form, in contrast
to the earlier models which generally begin with a Schrödinger
Hamiltonian and add a spin–orbit term to that; it is known that
the latter kind of models with combinations of p-wave and s-
wave pairings [55] or extended s-wave pairing [56–64] can
host Majorana end modes. These models studied earlier are
known as time-reversal-invariant topological superconductors
(TRITOPS), and they have four branches of electrons near the
Fermi energy: spin-up and spin-down (or two channels) each
of which has both right-moving and left-moving branches (see
reference [63] for a review). In contrast to these, our model
only has a right-moving spin-up and a left-moving spin-down
branch although it is still time-reversal invariant; we therefore
have half the number of modes of a conventional TRITOPS.
We will see that this leads to a number of unusual features,
such as only one zero energy Majorana mode at each end
of a finite system (instead of a Kramers pair of zero energy
modes) and, remarkably, only one Andreev bound state (ABS)
at a junction between two systems with different supercon-
ducting pairing phases (instead of two ABSs with opposite
energies).

Our study is particularly relevant in the context of recent
experimental evidence that indicates the possibility of realiz-
ing one-dimensional Dirac-like modes at the sidewall surfaces
and crystalline edge defects of topological insulators [65, 66].
Combined with recent encouraging developments in fabrica-
tion of topological insulator-superconductor heterojunctions
[67–69], it is pertinent to understand whether superconduc-
tivity induced into such states could produce p-wave ordering
and Majorana zero modes, potentially with larger topological
gaps, at higher sample temperatures and without an external
magnetic field.

We also study the behavior of a one-dimensional Dirac
mode in response to a superconducting phase difference
induced by two s-wave superconductors in a Josephson
junction configuration. Josephson junctions of s-wave super-
conductors in proximity with one-dimensional and two-
dimensional semiconductors with Rashba spin–orbit coupling
[70–74], and topological insulators [75, 76], have been exten-
sively studied in the context of manipulation of Majorana
zero modes for topological quantum computing, and are of
immense contemporary interest. Although Josephson junc-
tions between a variety of quasi-one-dimensional supercon-
ductors have been studied before [77–79], such junctions com-
posed of a single one-dimensional Dirac channel have not been
studied before. A particularly interesting Josephson effect is
the phenomenon of Shapiro steps/plateaus. These typically
appear when we consider a resistively and capacitively shunted
Josephson junction in which a resistance R and a capacitance C
are placed in parallel with a Josephson junction [80–84]. When
such a device is exposed to an external radio-frequency (rf)
excitation, the rf drive can phase-lock with the internal dynam-
ics of the Josephson junction and manifest as steps in the cur-
rent versus voltage (I − V) characteristics. With microwave
excitation at a frequencyω, Shapiro plateaus appear as discrete
plateaus in the voltage with quantized values Vn = n�ω/(2e),
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where n is an integer. In the context of topological supercon-
ductivity, the observation of missing plateaus at odd-integer
values of n has been interpreted as the fractional AC Josephson
effect. The absence of odd-integer plateaus is consistent with
a 4π-periodic supercurrent carried by topologically protected
zero energy Majorana states [45, 76, 83]. Since the Joseph-
son junctions considered in our model carry half the number
of modes compared to the previously considered topologi-
cal Josephson junctions, it would be interesting to understand
whether the topological properties of our system can manifest
in the AC Josephson effect.

Keeping the above considerations in mind, we have planned
our paper as follows. In section 2, we consider a lattice
model of a system of spin-up right-moving and spin-down left-
moving Dirac electrons with s-wave superconducting pairing.
We find numerically that the model has a topologically non-
trivial phase in which there is a single zero energy Majorana
mode at each end of a finite system, provided that the pair-
ing is taken to have an extended form, and the magnitude of
the nearest-neighbor pairing is larger than that of the on-site
pairing. To confirm the numerical results, we present an ana-
lytical expression for the wave function of the end mode for
a particular choice of parameters. The different phases of the
system are distinguished by a winding number; this is zero in
the topologically trivial phase and non-zero in the topolog-
ically non-trivial phase. We then discuss the symmetries of
the model. In section 3, we study a continuum version of this
model. This allows us to analytically derive the phase relation
between the two components (spin-up electron and spin-down
hole) of the wave functions for the zero energy modes at the
two ends, and this is found to be in agreement with the phase
observed numerically in the lattice model. In section 4, we
examine a more general model in which the Hamiltonian has
both Schrödinger and spin–orbit coupled Dirac-like terms. We
do this since it is known that a purely Schrödinger Hamilto-
nian has no end modes while the spin–orbit coupled Dirac
Hamiltonian (discussed in section 2) can have such modes;
we would therefore like to see if there is a phase transition
between the two situations. We indeed find that a lattice version
of the general model has a topological transition between topo-
logically trivial and non-trivial phases which can be realized
by tuning the relative strengths of the Schrödinger and Dirac
terms. In section 5, we return to the spin–orbit coupled Dirac
model with s-wave superconductivity and study a junction of
two such systems with pairing phases φ1 and φ2. We find that
there is only one ABS localized at the junction whose energy
depends on the phase difference Δφ = φ2 − φ1. Remarkably,
the ABS changes abruptly when Δφ crosses an integer mul-
tiple of 2π, namely, one ABS disappears after touching the
top of the superconducting gap while another ABS appears
from the bottom of the gap. The Josephson current through
the junction is however a continuous function of Δφ. (This
is quite different from a standard junction of two p-wave or
two s-wave superconductors, where there are two ABS with
opposite energies for each value of Δφ [79]). We then study
the AC Josephson effect in which a voltage bias V(t) = V0 +
V1 cos (ωt) is applied. We find multiple Shapiro plateaus at
ω/ωJ = m/n, where m, n are integers and ωJ = 2eV0/� is the

Josephson frequency. The fact that the Josephson junction here
exhibits Shapiro plateaus when ω/ωJ is any rational fraction
is in sharp contrast to the plateaus found in generic junctions
only when ω/ωJ is an integer [80–82]. Thus such plateaus
distinguish these junctions from their standard s-wave coun-
terparts. We conclude in section 6 by summarizing our main
results and discussing possible experimental realizations of our
model.

Our main results can be summarized as follows. We show
that a system of spin–orbit coupled Dirac electrons with s-
wave superconductivity can have a topologically non-trivial
phase where there is only one zero energy Majorana mode at
each end. A winding number distinguishes between the topo-
logically trivial and non-trivial phases. A more general model
whose Hamiltonian has both Schrödinger and spin–orbit cou-
pled Dirac terms has a phase transition between topologically
trivial and non-trivial phases depending on the relative strength
of the Schrödinger and Dirac terms. A junction between two
spin–orbit coupled Dirac systems with different s-wave super-
conducting phases with a phase difference Δφ hosts a single
ABS. The application of a voltage bias which has both a con-
stant term V0 and a term which oscillates with frequency ω
shows Shapiro plateaus whenever the ratio between ω and the
Josephson frequency 2eV0/� is a rational number.

2. Lattice model

2.1. Hamiltonian and energy spectrum

We consider a one-dimensional lattice system in which
the electrons have a massless spin–orbit coupled Dirac-like
Hamiltonian and are in proximity to an s-wave superconductor.
(We will set the lattice spacing a = 1; hence the wave number k
introduced below will actually denote the dimensionless quan-
tity ka. We will also set � = 1 unless mentioned otherwise).
The proximity-induced superconducting pairing will be taken
to have a spin-singlet form with strength Δ0 for two electrons
on the same site and Δ1 for two electrons on nearest-neighbor
sites (we will see below that the Δ1 term is essential to have
Majorana end modes). In terms of creation and annihilation
operators, the Hamiltonian of this lattice system has the form

Hl =
∑

n

[
− iγ

2
(c†n↑cn+1↑ − c†n+1↑cn↑)+

iγ
2

× (c†n↓cn+1↓ − c†n+1↓cn↓) − μ(c†n↑cn↑ + c†n↓cn↓)

+ Δ0(c†n↑c
†
n↓ + cn↓cn↑) +

Δ1

2
(c†n↑c

†
n+1↓ − c†n↓c

†
n+1↑)

+
Δ1

2
(cn+1↓cn↑ − cn+1↑cn↓)

]
. (1)

The first two terms have the spin–orbit coupled Dirac form;
in these terms, the signs of the hoppings (taken to be real)
is opposite for spin-up and spin-down electrons. Next, μ
denotes the chemical potential, whileΔ0 andΔ1 denote on-site
and nearest-neighbor s-wave superconducting pairings respec-
tively. (We have assumed both Δ0 and Δ1 to be real. While Δ0

can be taken to be real without loss of generality, we have taken
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Δ1 also to be real for simplicity). It is convenient to replace the
spin-down electron creation (annihilation) operators with spin-
up hole annihilation (creation) operators. We will now define
cn = cn↑ and dn = c†n↓. We then have

Hl =
∑

n

[
− iγ

2
(c†ncn+1 − c†n+1cn)+

iγ
2

(d†
ndn+1 − d†

n+1dn)

− μ (c†ncn − d†
ndn) + Δ0 (c†ndn + d†

ncn)

+
Δ1

2
(c†ndn+1 + c†n+1dn) +

Δ1

2
(d†

n+1cn + d†
ncn+1)

]
.

(2)

To find the energy spectrum of this system, we consider the
equations of motion. These are given by

i�
dcn

dt
= [cn, Hl]

= − iγ
2

(cn+1 − cn−1) − μ cn

+Δ0 dn +
Δ1

2
(dn+1 + dn−1),

i�
ddn

dt
= [dn, H]

=
iγ
2

(dn+1 − dn−1) + μ dn

+Δ0 cn +
Δ1

2
(cn+1 + cn−1). (3)

Taking the second-quantized operators to be of the form

ck,n ∼ αei(kn−Et/�) fk and dk,n ∼ βei(kn−Et/�) fk, (4)

where α, β are numbers and fk is the quasiparticle annihilation
operator for the quasiparticle with momentum k, we obtain the
Dirac-like eigenvalue equation

hk

(
α
β

)
= E

(
α
β

)
,

hk = (γ sin k − μ)τ z + (Δ0 +Δ1 cos k)τ x , (5)

where τ x,z are Pauli matrices. This gives the energy spectrum

E = ±
√

(γ sin k − μ)2 + (Δ0 +Δ1 cos k)2. (6)

We see that the gap between the positive and negative energy
bands vanishes if sin k = μ/γ and cos k = −Δ0/Δ1. Hence
the condition for the gap to close is given by(

μ

γ

)2

+

(
Δ0

Δ1

)2

= 1. (7)

The regions (μ/γ)2 + (Δ0/Δ1)2 < 1 and > 1 correspond
to topologically non-trivial and trivial phases respectively.
Clearly, it is necessary for the ratios |μ/γ| and |Δ0/Δ1| to be
less than 1 in order to be in the topologically non-trivial phase.

We note here that for Δ0 = Δ1 = μ = 0, the energy dis-
persion of the quasiparticles given by equation (6) mimics the

spectrum of the continuum Hamiltonian H1D = −vσy px with
the identification v → γ and −σy → τ z. Thus one has spin-
dependent chiral electrons in the model. However, electrons
of both chiralities are actually present in our model as must be
the case with any lattice model; namely, electrons with k = 0
and k = π have opposite chiralities for a fixed τ z and v. How-
ever, as discussed at the end of section 2.2, we can choose the
parametersΔ0 andΔ1 in such a way that the modes near k = π
do not play a significant role.

Before ending this section, we would like to show some
mappings between the momentum space Hamiltonians of our
model and that of the Kitaev model [1]. The Hamiltonian
of the Kitaev model of spin-polarized electrons with p-wave
superconducting pairing is given by

HK =
∑

n

[
−g1

2
(c†ncn+1 + c†n+1cn) − g0 c†ncn

+
g2

2
(c†nc†n+1 + cn+1cn)

]
. (8)

If we go to momentum space and use the basis (ck, c†−k)
T

(where 0 < k < π), we obtain

hk = −(g1 cos k + g0) τ z − g2 sin k τ y. (9)

(The ratio |g0/g1| must be less than 1 to be in the topologically
non-trivial phase). It is clear that the two systems are quite
different; our model involves both spin-up and spin-down elec-
trons with s-wave superconducting pairing, while the Kitaev
model has only a single spin (say, spin-up, and the spin label
can therefore be ignored) and p-wave pairing. The two Hamil-
tonians look quite different in real space; further, our model
has four independent parameters while the Kitaev model has
three. Nevertheless, we find that if we set one of our parameters
equal to zero, there are unitary transformations which relate hk

in equation (5) to the one in equation (9) as follows.
(i) If μ = 0, hk in equation (5) can be unitarily transformed

to (9) if we change γ → g2, Δ0 → g0 and Δ1 → g1.
(ii) If Δ0 = 0, equation (5) can be transformed to (9) if we

shift the momentum k → k − π/2 and change γ → g1, μ→ g0

and Δ1 → g2.
These unitary transformations imply that our model should

have features similar to those of the Kitaev model. In particu-
lar, we will see that both models have only one zero energy
Majorana mode at each end of a system and both have a
winding number as a topological invariant.

2.2. Numerical results, end modes and winding number

We now present numerical results for the case μ = 0.
Equation (6) then shows that the gap occurs when k = 0 or
π, and its magnitude is given by 2|Δ1 +Δ0| and 2|Δ1 −Δ0|
respectively.

Numerically solving for the energy spectrum for a lattice
model with a finite number of sites and parameters Δ0 and
Δ1, we find that the energy dispersion is strikingly different in
the two cases, |Δ0| > |Δ1| and |Δ0| < |Δ1|. We find that for
|Δ1| < |Δ0|, there are no states with energies lying within the
superconducting gap. But for |Δ1| > |Δ0|, we find two states
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Figure 1. Energy eigenvalues for a 500-site system with μ = 0,
Δ0 = −2, and (a) Δ1 = 2.5 and (b) Δ1 = 1.5. All energies are in
units of γ. Figure (a) shows that there are two zero energy states
when |Δ1| > |Δ0|, while figure (b) shows that there are no zero
energy states when |Δ1| < |Δ0|.

with zero energy which lie at the opposite ends of the system.
This is shown in figure 1 for a 500-site system with μ = 0,
Δ0 = −2, and Δ1 = 2.5 and 1.5 (all in units of γ) in figures
(a) and (b) respectively. The x-axis of the figures go from 1 to
1000 since each site n of the lattice has two variables cn and
dn; hence there are 1000 states and 1000 energy levels. The
energy eigenvalue number on the x-axis labels the energies in
increasing order. (We have chosen a large enough number of
sites so that if there are end modes, the hybridization between
them is completely negligible and their energies will therefore
be at zero energy exactly).

To distinguish between localized and extended states, we
calculate the inverse participation ratio (IPR) calculated for all
the eigenstates of the Hamiltonian. For the j-eigenstate ψ j, let

Figure 2. IPRs for a 500-site system with μ = 0, Δ0 = −2, and (a)
Δ1 = 2.5 and (b) Δ1 = 1.5. All energies are in units of γ. In figure
(a) where |Δ1| > |Δ0|, we see that two of the states have a much
higher IPR (about 0.14) than all the other states (which are bulk
states); the high IPR states correspond to the end modes. In figure
(b) where |Δ1| < |Δ0|, all states have approximately the same IPR
(about 0.0015), and they are all bulk states. (The two kinks visible in
the figure have no physical significance).

ψ j,n denote its nth component, where n goes from 1 to 2N (here
N is the number of lattice sites, and the factor of 2 arises as
each site has two variables, cn and dn). The IPR for ψ j is then
defined as

I j =
∑

n

|ψ j,n|4. (10)

An extended state will generally have a value of the IPR which
decreases as the system size increases, whereas a localized
state will have a finite IPR whose value does not change with
the system size. Hence a plot of the IPR I j versus j for a large
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system size enables us to find the localized states easily. This is
shown in figure 2 where the parameter values have been taken
to be the same as in figure 1.

The system is said to be in a topologically non-trivial
(trivial phase) if there are end modes (no end modes) respec-
tively. The two phases can be distinguished from each other
by a bulk topological invariant called the winding number.
Since the Hamiltonian in equation (5) has a form given by
H(k) = a(k)τ z + b(k)τ x , where a(k) = γ sin k − μ and
b(k) = Δ0 +Δ1 cos k, we can consider a curve formed by
points given by (a(k), b(k)). This forms a closed curve in two
dimensions as k goes from 0 to 2π. The winding number of
this curve around the origin is defined as

W =
1

2π

∫ 2π

0
dk

a∂b/∂k − b∂a/∂k
a2 + b2

. (11)

This can be evaluated numerically for various values of Δ0

and Δ1. We find numerically that for |Δ1| < |Δ0|, the winding
number W = 0 and we are in a topologically trivial phase. For
|Δ1| > |Δ0|, W = ±1 and we are in a topologically non-trivial
phase.

It is instructive to look at the Fourier transforms of the wave
functions of the end modes. Given the wave function (cn, dn)
of an end mode, we calculate the Fourier transforms (c̃k, d̃k),
and plot |c̃k|2 + |d̃k|2 versus k. This is shown in figure 3 for a
500-site system with Δ0 = −0.26 and Δ1 = 0.3 in units of γ;
we have taken μ = 0 in figure 3(a) and μ = 0.3 in figure 3(b).
The locations and widths of the peaks in the two figures can
be understood as follows. Since the end mode has zero energy,
equation (6) implies that the momentum k should satisfy

(γ sin k − μ)2 + (Δ0 +Δ1 cos k)2 = 0. (12)

For μ,Δ0,Δ1 � γ, the solution of equation (12) is given by

k � μ± i|Δ0 +Δ1|
γ

. (13)

For the mode at the left end, the wave function cn, dn ∼
eikn should have the imaginary part of k positive so that the
wave function goes to zero as n →+∞. Hence we must take
k = (μ+ i|Δ0 +Δ1|)/γ, implying that the wave function
goes as ein(μ+i|Δ0+Δ1|)/γ . The Fourier transform of this has a
peak at k = μ/γ and a width equal to 2|Δ0 +Δ1|/γ. This
agrees with the locations and widths of the peaks that we see in
figure 3.

We would like to emphasize here that our model has only
one zero energy mode at each end of a long system, in contrast
to conventional TRITOPS which have a Kramers pair of zero
energy modes at each end [56–64]. While we have shown this
numerically above, we can also show this analytically for the
special case corresponding to μ = Δ0 = 0. We will look for
zero energy modes localized near the left end of a semi-infinite
system where the sites go as n = 0, 1, 2, . . . . For zero energy,
the left hand sides of equation (3) vanish; we then obtain the
recursion relation(

cn+2

dn+2

)
=

1

γ2 −Δ2
1

(
γ2 +Δ2

1 −i2γΔ1

i2γΔ1 γ2 +Δ2
1

) (
cn

dn

)
(14)

Figure 3. Absolute value squared of the Fourier transform,
|c̃k|2 + |d̃k|2, of the wave function of the mode at the left end of a
500-site system with Δ0 = −0.26 and Δ1 = 0.3. All energies are in
units of γ. In (a), μ = 0 and the Fourier transform has a peak at
k = 0. In (b), μ = 0.3 and the Fourier transform has a peak at
k = 0.3. In both cases, the peak width at half maximum is about
0.08.

for n � 1, and

−iγc1 +Δ1d1 = 0,

iγd1 +Δ1c1 = 0. (15)

If Δ1 
= ±γ, equation (15) gives c1 = d1 = 0; equation (14)
then implies that cn = dn = 0 for all odd values of n. Next,
the eigenvalues of the matrix appearing on the right-hand
side of equation (14) are given by (γ +Δ1)/(γ −Δ1) and
(γ −Δ1)/(γ +Δ1). If γ and Δ1 have the same sign the first
eigenvalue is larger than 1 while the second eigenvalue is
smaller than 1. To get a normalizable state, we must choose
(cn, dn)T to be the eigenstate corresponding to the second

6
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eigenvalue. This implies the unique solution

(
cn

dn

)
=

(
γ −Δ1

γ +Δ1

)n/2 (
1
−i

)
, (16)

up to an overall normalization, where n = 0, 2, 4, . . . . We have
confirmed that this matches the numerical results for the zero
energy mode at the left end of the system. (We note that our
analytical solution for the end mode of a semi-infinite system
has some similarities with the solutions discussed earlier for
the end modes of a finite-sized Kitaev chain and some of its
generalizations [48–52]).

Before ending this section, we would like to comment on
the fermion doubling problem which generally plagues lat-
tice models with a massless Dirac Hamiltonian [85] and which
does not appear in continuum models such as the one discussed
in the next section. For instance, if we set μ = Δ0 = Δ1 = 0
in equation (5), the energy given by ±γ sin k vanishes at both
k = 0 (which has a smooth continuum limit) and k = π (which
does not have a smooth continuum limit). We may therefore
worry that the end modes that we have found numerically
may be artefacts of the lattice model and more specifically of
fermion doubling. However, we find numerically that this is
not so. If we choose Δ0 and Δ1 to have opposite signs and
close to each other in magnitude, and μ = 0, we see from
equation (6) that the superconducting gap vanishes at k = 0
and not k = π. We then find that the absolute value squared of
the Fourier transform, |c̃k|2 + |d̃k|2, of the wave function of the
end modes is much larger around k = 0 than around k = π (see
figure 3). Thus the doubled modes appearing near k = π do not
contribute significantly to the end modes. Further, we will see
in section 3 that the continuum model also has end modes, con-
firming that the modes near k = 0 of the lattice model have a
smooth continuum limit.

2.3. Symmetries of the model

We would now like to discuss some of the symmetries of our
model. It is convenient to separately discuss symmetries of the
Schrödinger equations in equation (3) which act on wave func-
tions and symmetries of the Hamiltonian in equation (1) which
act on second-quantized operators.

We find that equation (3) have the following two
symmetries.

(i) Combination of t →−t and particle–hole symmetry:
equation (3) remain the same if we change t →−t, cn → dn

and dn →−cn. (Note that we do not do complex conjugation).
Hence, if there is a solution with wave function (cn, dn) and
energy E, there will also be a solution with wave function
(dn,−cn) and the opposite energy −E (since e−iEt/� → eiEt/�

under t →−t). The combination of these two symmetries,
called chiral symmetry [86], explains why we have a winding
number as a topological invariant.

(ii) Combination of complex conjugation, t →−t and par-
ity: equation (3) remain the same if we complex conjugate
them, change t →−t, and invert n →−n. This implies that
if there is a solution with wave function (cn, dn) and energy
E, there will also be a solution with wave function (c∗−n, d∗

−n)

and the same energy E (since e−iEt/� remains the same under
complex conjugation and t →−t).

These symmetries imply that if we take a finite-sized system
and there is only one mode localized at, say, the left end, then
its energy must be equal to zero (due to symmetry (i)), and
there must also be a zero energy mode localized at the right
end (due to symmetry (ii)). These agree with the numerical
results presented in section 2.2.

Symmetry (i) also implies that if there is a zero energy mode
at one end of a system, the expectation value of the charge in
that mode, given by

Q = −e
∑

n

(|cn|2 − |dn|2), (17)

(where −e is the electron charge), must be invariant under
cn → dn and dn →−cn, and must therefore be equal to zero.

We now discuss the symmetries of the Hamiltonian in
equation (1). We find that there are two antiunitary symmetries.

(i) Time-reversal, i.e., spin-reversal and complex conjuga-
tion: equation (1) remains the same if we transform cn↑ → cn↓,
cn↓ → −cn↑, and do complex conjugation. We note that the
square of this transformation is equal to −1. The existence of
this symmetry implies that the symmetry class of this system
is DIII [86–88].

(ii) Combination of complex conjugation and parity:
equation (1) remains the same if we transform cn↑ → c−n↑,
cn↓ → c−n↓, and do complex conjugation. The square of this
transformation is +1.

The symmetries discussed above can be broken in a vari-
ety of ways. A simple example is given by the case where
the on-site superconducting pairing Δ0 is complex, so that the
corresponding terms in equation (1) are given by Δ0c†n↑c

†
n↓ +

Δ∗
0cn↓cn↑). We then find that both the symmetries given above

are broken, although the combination of the two is still a
symmetry (i.e., complex conjugate equation (3) and change
cn → d∗

−n and dn →−c∗−n), implying that if there is a mode
at the left end with energy E, there will be a mode at the
right end with energy −E. Numerically, we indeed find that if
Δ0 is complex, the modes at the right and left ends generally
have energies E and −E respectively, where E 
= 0. Further,
equation (5) has an additional term given by Im(Δ0)τ y. Hence
the Hamiltonian now has a combination of three Pauli matri-
ces, i.e., Hamiltonian H(k) = a(k)τ z + b(k)τ x + e(k)τ y. As a
function of k, (a(k), b(k), e(k)) defines a closed curve in three
dimensions, instead of two dimensions. Hence it is no longer
possible to define a winding number.

We can analytically find the energies of the end modes when
Δ0 is complex as follows. We first take Δ0 to be real. We then
know that equation (3), which we can re-write as

− iγ
2

(cn+1−cn−1) − μcn +Δ0dn +
Δ1

2
(dn+1 + dn−1) = Ecn,

iγ
2

(dn+1 − dn−1) + μdn +Δ0cn +
Δ1

2
(cn+1 + cn−1) = Edn,

(18)

has solutions at the ends with E = 0. Further, we will see in

7
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Figure 4. Enlarged view of energy eigenvalues close to zero for a
500-site system with μ = 0, and Δ1 = 0.3. In (a), Δ0 = −0.26 is
real and each end has a zero energy mode. The superconducting gap
is 0.081. In (b), Δ0 = −0.26eiπ/50 is complex, and the left (right)
end has a mode with energy −0.0163 (+0.0163) respectively. The
superconducting gap is 0.088. All energies are in units of γ.

section 3 that if γ > 0, the mode at the left end has dn = −icn

while the mode at the right end has dn = icn. This implies that
for E = 0, the two equations in (18) reduce to the equations

− iγ
2

(cn+1−cn−1) − μcn ∓ iΔ0cn ∓ i
Δ1

2
(cn+1 + cn−1) = 0,

iγ
2

(dn+1 − dn−1) + μdn ± iΔ0dn ± i
Δ1

2
(cn+1 + cn−1) = 0,

(19)

where the upper (lower) signs in both the equations hold for
the left (right) end modes respectively. Now, suppose that Δ0

is complex; let us denote it by Δ̃0 to distinguish it from the
real Δ0 in equation (19). Since the modes at the left (right)

ends satisfy dn = ∓icn respectively, we obtain the equations

− iγ
2

(cn+1−cn−1) − μcn ∓ iΔ̃0cn ∓ i
Δ1

2
(cn+1 + cn−1) = Ecn

iγ
2

(dn+1 − dn−1) + μdn ± iΔ̃∗
0dn ± i

Δ1

2
(cn+1 + cn−1) = Edn.

(20)

We now observe that equation (20) can be mapped to
equation (19) if we replace Re(Δ̃0) →Δ0 and E →±Im(Δ̃0),
where the ± hold for the left (right) end modes respectively.
We thus conclude that when the on-site pairing Δ0 becomes
complex, the wave functions (cn, dn) of the end modes do not
change (if we do not change the value of Re(Δ0)), but their
energies change from zero to ±Im(Δ0) at the left (right) ends
respectively. Interestingly, the fact that the wave functions of
the end modes do not change when Δ0 becomes complex
implies that the expectation values of the charge (defined in
equation (17)) remain equal to zero even though their energies
become non-zero.

Figures 4(a) and (b) show the effect of symmetry break-
ing on the end mode energies of a 500-site system with μ = 0
and Δ1 = 0.3. In figure 4(a), Δ0 = −0.26 is real and each end
has a zero energy mode. In figure 4(b), Δ0 = −0.26eiπ/50 is
complex, and the end modes have energies −0.0163 (left end)
and 0.0163 (right end). We note that these values agree with
±Im(Δ0) respectively. (All energies are in units of γ).

3. Continuum model

We now consider a continuum model for a system with
spin–orbit coupled Dirac Hamiltonian and an s-wave super-
conducting pairing which is a complex number. The contin-
uum Hamiltonian is given by

Hc =

∫
dx [− iγ(c†∂xc − d†∂xd) +Δ eiφc†d +Δ e−iφd†c ] ,

(21)

where γ denotes the velocity. (We have assumed μ = 0 for
simplicity). Note that the unlike the lattice model which has
two different pairing parameters Δ0 and Δ1, a continuum
model can only have one parameter Δ. We saw in section 2
that if Δ0 and Δ1 have opposite signs and are close to each
other in magnitude, the long-distance properties of the lattice
model are dominated by modes with momenta close to k = 0.
The form of the Hamiltonian in equation (5) then implies that
the pairing Δ in the continuum model is related to the pairings
Δ0,Δ1 in the lattice model as

Δ = Δ0 +Δ1. (22)

Assuming the form in equation (4), equation (21) leads to
the equation

(
−iγ∂x Δeiφ

Δe−iφ iγ∂x

) (
α
β

)
= E

(
α
β

)
. (23)

8
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Figure 5. Schematic picture of a semi-infinite system terminated on
the left at x = 0. The s-wave pairing Δeiφ is indicated.

This gives the energy spectrum

E = ±
√
Δ2 + γ2k2. (24)

This has a gap from −Δ to +Δ. In the rest of this section,
we will set φ = 0 and Δ > 0. This can be done without
loss of generality since we can absorb the phase eiφ in d in
equation (21).

This system has the same symmetries as discussed in
section 2.3. Namely, the equations of motion remain invari-
ant under (i) t →−t, c(x) → d(x), and d(x) →−c(x)), and (ii)
t →−t, c(x) → c∗(−x), and d(x) → d∗(−x)).

To study a localized mode which can appear at one end of
the system, we now consider a semi-infinite system which is
terminated at the left end, at x = 0. The system goes from
x = 0 to ∞ as indicated in figure 5. To obtain a localized
state whose energy lies within the superconducting gap,−Δ <
E < Δ, we require a wave function which decays as x
increases. Hence the wave number k appearing in equation (24)

must have the form k = (i/|γ|)
√
Δ2 − E2.

Next, we impose the condition that the probability current
J must be zero at x = 0. We can derive an expression for J by
defining the probability density ρ = c†c + d†d and demanding
that the equations of motion must lead to the equation of con-
tinuity, ∂tρ+ ∂xJ = 0. This gives J = γ(c†c − d†d). We must
therefore have c†c − d†d = 0 at x = 0. The general solution
to this is d = eiθc, where θ can be an arbitrary real parame-
ter. However, the symmetry (i) mentioned above implies that
we must have eiθ = ±i, i.e., θ = ±π/2. Substituting this in the
equations of motion, we obtain

E − i sgn (γ)
√
Δ2 − E2

Δ
= eiθ, (25)

where θ is−π/2 if γ > 0 and π/2 if γ < 0, and sgn(γ) denotes
the sign of γ. In either case, we have E = 0.

Similarly, for a system terminated at the right end, with x
decreasing as we go away from the end and into the system,

we find that we must choose k = −(i/|γ|)
√
Δ2 − E2. We now

find that the allowed values of θ are π/2 if γ > 0 and −π/2 if
γ < 0.

These conditions on θ give the relation between the two
components of the wave function as β = ∓iα at the left (right)
ends respectively, if γ > 0. We find numerically that the end
modes of the lattice model indeed have E = 0 and their wave
functions satisfy the relations given above. We note here that
the phase relation between the two components holds for
all values of x, not just at the two ends. Namely, the mode
localized at the left (right) end has β(x) = ∓iα(x) for all x.

4. General model with both Dirac and Schrödinger
terms

In this section we will consider a more general model in which
the Hamiltonian is a combination of a spin–orbit coupled
Dirac Hamiltonian, a Schrödinger Hamiltonian, and an s-wave
superconducting pairing. The motivation for this study is as
follows. We know that in the presence of s-wave supercon-
ducting pairing, a purely Schrödinger Hamiltonian without a
spin–orbit coupling term has no zero energy end modes, while
a purely Dirac Hamiltonian with a spin–orbit coupled form
does have such modes. We therefore want to know how a tran-
sition between the two phases occurs when going from one
limit to the other.

We will take the total continuum Hamiltonian to be

Hc =

∫
dx

[
−iγ(c†∂xc − d†∂xd)− ε�2

2m
(c†∂2

x c − d†∂2
x d)

− εμ(c†c − d†d) +Δc†d +Δd†c
]

, (26)

where we have chosen the pairing Δ to be real. In
equation (26), ε is a tuning parameter: for ε = 0, we recover
the Dirac Hamiltonian studied earlier, while for ε = 1, we
obtain a Schrödinger Hamiltonian along with a spin–orbit
interaction with strength γ. (In momentum space, the non-
superconducting part of the Hamiltonian in equation (26)
is given, in terms of spin-up and spin-down fields c and
d†, as ε(�2k2/(2m) − μ)I + γkσz, where I is the identity
matrix).

Given the probability density ρ = c†c + d†d, the equations
of motion and continuity imply that the current is

J = − iε�
2m

(c†∂xc − ∂xc†c − d†∂xd + ∂xd†d) + γ(c†c − d†d).

(27)

For a semi-infinite system which goes from x = 0 to ∞,
we have to impose the condition J = 0 at x = 0 for all the
modes. For ε = 0, we saw above that the general condi-
tion which gives zero current at x = 0 is c = eiθd. However,
for ε = 1 and γ = 0, we know that the usual condition at
a hard wall is given by c = 0 and d = 0. This is not the
most general possible condition which gives zero current for
the Schrödinger Hamiltonian [89, 90]. However we always
require two conditions unlike the case of the Dirac Hamil-
tonian where we need only one condition (c = eiθd). When
both ε and γ are non-zero, it is therefore not obvious what
condition should be imposed on c, d and their derivatives at
x = 0.

We therefore turn to a lattice version of this model. The
Hamiltonian for such a model is obtained by adding the
following

δHl = −g
2

∑
n

[c†n↑cn+1↑ + c†n↓cn+1↓ + H.c.] (28)

to the Hamiltonian given in equation (1). The eigenvalue
equation therefore changes from equation (5) to

9
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[(γ sin k − g cos k − μ)τ z + (Δ0 +Δ1 cos k)τ x]

(
α
β

)

= E

(
α
β

)
, (29)

which gives

E = ±
√

(γ sin k − g cos k − μ)2 + (Δ0 +Δ1 cos k)2.
(30)

We now consider what happens if the parameters γ, μ,Δ0

and Δ1 are held fixed and g is varied. Equation (30) implies
that the energy gap will be zero if there is a value of k
where γ sin k − g cos k − μ = 0 (which requires

√
γ2 + g2 >

|μ|) and Δ0 +Δ1 cos k = 0. The second condition requires
|Δ0/Δ1| � 1. Using this in the first condition then implies that
the energy gap will be zero at g = g± where

g± =
μΔ1

Δ0
± γ

√(
Δ1

Δ0

)2

− 1. (31)

Numerically, we find that if (Δ0/Δ1)2 < 1 and g lies
between the values g± given in equation (31), the system
lies in a topologically non-trivial phase and there is a zero
energy mode at each end of a finite-sized system. But if g
lies outside this range, there are no end modes. We find that
this also agrees with a winding number calculation. Defining
a(k) = γ sin k − g cos k − μ and b(k) = Δ0 +Δ1 cos k, we
find that the winding number defined in equation (11) is ±1
if g− < g < g+ (consistent with a topologically non-trivial
phase) and is zero outside this range (giving a topologically
trivial phase). The model therefore hosts two topological tran-
sitions between these phases at g = g±.

Finally, we note that the equations of motion for the model
defined above have the same two symmetries that we discussed
in section 2.3. This explains why the end modes have zero
energy.

5. Josephson effects for two superconducting
systems with different phases

5.1. Andreev bound states at a Josephson junction

In this section, we will study the ABS and the Josephson
current between two superconducting systems in which the
s-wave pairings have different phases. We first consider a con-
tinuum model. We will take the magnitudes of the two pairings
(and hence the superconducting gaps) to be equal, and their
phases to be φ1 and φ2. Further, the two systems will be taken
to be separated by a δ-function potential barrier with strength
λ located at x = 0. A schematic picture of the system is shown
in figure 6. The continuum Hamiltonians on the two sides of
x = 0 are given by

Hc1 =

∫ 0

−∞
dx

[
−iγ(c†∂xc − d†∂xd)

+Δ eiφ1c†d +Δ e−iφ1 d†c
]

,

Figure 6. Schematic picture of a junction between two s-wave
superconductors with pairings Δeiφ1 (Δeiφ2 ) for x < 0 (> 0)
respectively. The junction at x = 0 has a δ-function barrier with
strength λ.

Hc2 =

∫ ∞

0
dx

[
−iγ(c†∂xc − d†∂xd)

+Δ eiφ2c†d +Δ e−iφ2 d†c
]

, (32)

where Hc1 (Hc2) is the Hamiltonian on the left (right) of the
δ-function barrier respectively.

The equations of motion following from equation (32),
along with a time-dependence of c and d of the form e−iEt/�,
take the form

−iγ∂xc +Δeiφi d = Ec,

iγ∂xd +Δe−iφi c = Ed, (33)

where φi = φ1(φ2) for x < 0(> 0) respectively. Complex con-
jugating the above equations implies that there is a symmetry
under

φi → π − φi and E →−E. (34)

Equation (33) imply the energy dispersion
E = ±

√
Δ2 + γ2k2, and the second-quantized operators

have the form

ck(x) = ei(kx−Et) fk,

dk(x) =
E − γk

Δ
ei(kx−Et)−iφ fk. (35)

To find the ABS, the wave number k has to be chosen in such a
way that the wave functions decay away from the δ-potential,
towards x →±∞ on the two sides. From this condition we
obtain

k1 = − i
γ

√
Δ2 − E2 on the left,

and k2 =
i
γ

√
Δ2 − E2 on the right. (36)

The boundary condition at x = 0 takes the form

c(x = 0+) = e−iλ/γc(x = 0−),

d(x = 0+) = e−iλ/γd(x = 0−). (37)

(We recall that for a Hamiltonian of the Dirac form, a δ-
function potential leads to a discontinuity in the wave func-
tion. This is unlike a Hamiltonian of the Schrödinger form
where a δ-function gives a discontinuity in the first deriva-
tive of the wave function). Since the phase jumps across x = 0
are equal for c and d, we will see that the δ-potential has no
effect on expressions for quantities like the energy spectrum

10
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Figure 7. Plots of the Andreev bound state energy (red solid curve)
in units of Δ and the Josephson current in units of eΔ/� (blue
dashed curve) versus φ2 − φ1, taking φ1 = 0 and γ > 0.

and hence the Josephson current. Using the boundary condi-
tion in equation (37), we can find the value of the ABS energy.
We find that the energy depends only on the phase difference
φ2 − φ1 and has the form

E = −Δ sgn (γ) cos

(
[φ2 − φ1]

2

)
, (38)

where we define the function [φ2 − φ1] = φ2 − φ1 modulo 2π.
Namely, it is a periodic function of φ2 − φ1 with period 2π,
and it lies in the range 0 < [φ2 − φ1] < 2π. (If φ2 − φ1 is
exactly equal to a multiple of 2π, there is, strictly speaking,
no ABS since such the energy of such a state must satisfy
−Δ < E < Δ). According to equation (38), when φ2 − φ1

approaches a multiple of 2π, the energy of the ABS approaches
±Δ. Equation (36) then implies that the decay length of the

ABS diverges as γ/
√
Δ2 − E2; hence the ABS becomes indis-

tinguishable from the bulk states. Figure 7 shows the ABS
energy E in units of Δ (red solid curve) as a function of φ2 −
φ1, taking γ > 0. We see that as φ2 − φ1 crosses a multiple of
2π, an ABS disappears after touching the top of the supercon-
ducting gap and a different ABS appears from the bottom of
the gap.

We thus find the peculiar result that there is only one ABS
for each value ofφ2 − φ1. One way of understanding why there
is only one ABS instead of two is to note that in our model,
there are only right-moving spin-up and left-moving spin-
down electrons. The ABS is formed by a right-moving spin-up
electron which moves from the left superconductor towards the
junction and gets reflected as a left-moving spin-down hole;
alternatively, a left-moving spin-down electron moves from the
right superconductor towards the junction and gets reflected as
a right-moving spin-up hole.

The appearance of a single ABS with the energy given in
equation (38) is consistent with a particle–hole transformation
in which we transform c → d and d →−c. This transforms
our system to a different one in which the phases φ1 and φ2

have the opposite signs and whose Hamiltonian also has the

opposite sign. Hence all the energy levels (including the ABS)
of the second system should be negative of the energy levels
of the original system. Indeed we see from equation (38) that
the sign of the ABS energy flips when φi →−φi.

We also note that if our sample has a large but finite width,
the states at the opposite edges would have opposite signs of
the velocity γ in equation (32); this is a property of Dirac elec-
trons at the boundaries of a topological insulator. If both edges
are in proximity to the same superconductors so that φ1 and
φ2 have the same values at the two edges, the energies of the
ABSs at the two edges will have opposite signs. We can see
this from equation (38) where the expression for the energy
has a factor of sgn (γ).

Next, we consider the AC Josephson effect. We will con-
sider zero temperature for simplicity and take γ > 0. If a small
constant voltage bias V0 is applied to the superconductor lying
in the region x > 0, the pairing phase there will change slowly
in time as

φ2 =
2eV0t

�
. (39)

Then the Josephson current will be given by

IJ =
2e
�

∂E
∂(φ2 − φ1)

=
eΔ
�

| sin

(
φ2 − φ1

2

)
|, (40)

where φ2 changes in time according to equation (39), and IJ

is a function of φ2 − φ1 with a periodicity of 2π as discussed
after equation (38). Figure 7 shows the Josephson current IJ

(blue dashed curve) in units of eΔ/� as a function of φ2 − φ1.
Note that IJ has no discontinuity at any value of φ2 − φ1.

Interestingly, we see that IJ is always non-negative, and
therefore its average value (which is also equal to its time-
averaged value since φ2 varies linearly with time) is positive.
This is unlike the AC Josephson effect found in most sys-
tems where the average value of IJ is zero; hence IJ does
not have a DC part in those systems. Note also that at cer-
tain times, φ2 − φ1 will cross odd-integer multiples of π; then
the ABS bound state will cross zero energy giving rise to a
fermion-parity switch [91].

We also note as φ2 − φ1 changes in time from zero to 2π, a
quasiparticle appears from the bottom of the superconducting
gap and moves up in energy to reach the top of the gap. Since
this quasiparticle carries spin-up (we recall that both c† = c†↑
and d† = c↓ increase the spin component Sz by �/2), we have
a process of spin pumping from the left superconductor to
the right superconductor; an amount of Sz = �/2 is pumped
in a time period 2π/ωJ, where ωJ = 2eV0/� is the Josephson
frequency.

We have confirmed the dispersion given in equation (38)
by doing numerical calculations for a lattice model. We con-
sider a 500-site system with pairing φ1 = 0 in the left half and
φ2 = π/2 in the right half of the system. We take Δ0 = −0.26
and Δ1 = 0.3, so that the pairing of the corresponding con-
tinuum model (given by the modes near k = 0 of the lat-
tice model) is given by Δ = Δ0 +Δ1 = 0.04. We find that
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Figure 8. Probability |cn|2 + |dn|2 versus n of the Andreev bound
state wave function which appears in the middle of a 500-site system
with pairing φ1 = 0 in the left half and φ2 = π/2 in the right half of
the system. We have taken μ = 0, Δ0 = −0.26, Δ1 = 0.3. The
energy of the ABS is −0.028, and the superconducting gap is 0.084.
All energies are in units of γ.

there is only one ABS which lies in the middle of the sys-
tem; its energy is −0.028 which agrees well with the value
of −Δ cos ((φ2 − φ1/2)/2) given by equation (38). (All ener-
gies are in units of γ). Figure 8 shows the wave function of this
ABS. We have checked numerically that the Fourier transform
of the wave function is sharply peaked around k = 0 (similar
to figure 3(a)), showing once again that the lattice modes near
k = π do not contribute to the ABS. Interestingly, we find that
the expectation value of the charge (equation (17)) is zero in
the ABS for any value of its energy.

5.2. Shapiro plateaus

In this section, we will study the phenomenon of Shapiro
plateaus in a resistively and capacitively shunted Josephson
junction. In this system, a resistance R and a capacitance C are
placed in parallel with a Josephson junction [80–84].

Denoting φ = φ2 − φ1 as the phase difference across the
Josephson junction, the current across the junction is given by
equation (40). The voltage bias across the Josephson junction
is given by

V =
�

2e
dφ
dt

. (41)

The current across the resistance and capacitor are then given
by V/R and CdV/dt respectively. The total current is given by
the sum of these three currents. We now impose the condition
that the total current has a constant term I and a term which
oscillates with time as A sin(ωt). We thus have the equation

C
dV
dt

+
V
R
+

eΔ
�

| sin

(
φ

2

)
| = I + A sin(ωt). (42)

Using equation (41) and introducing the dimensionless time
variable τ = ωt, we can rewrite equation (42) as

α1
d2φ

dτ 2
+ α2

dφ
dτ

+
2Δ
�ω

| sin

(
φ

2

)
| = 2

eω
[I + A sin τ ],

where

α1 =
�ωC

e2
and α2 =

�

e2R
. (43)

We will solve equation (43) numerically from τ = 0 to τ = τ 0

where τ 0 is a large number (say, 200π corresponding to 100
driving cycles of the current) and find the average value of the
voltage bias

〈V〉 = �ω

2e
〈dφ

dτ
〉

=
�ω

2e
φ(τ0) − φ(0)

τ0
. (44)

For large values of τ 0, we find numerically that 〈V〉 given by
equation (44) does not depend on the initial values of φ and
dφ/dτ at τ = 0.

We will now provide a qualitative understanding of why
Shapiro plateaus should appear in a plot of 〈V〉 versus I. Let
us first set Δ = 0. Equation (43) then has the solution

φ = χ1τ + χ2 sin (τ + χ3) + φ0,

where χ1 =
2I

eωα2
,

χ2 = − 2A

eω
√
α2

1 + α2
2

,

χ3 = tan−1

(
χ2

χ1

)
, (45)

where φ0 is a constant of integration. The first term in
equation (45) along with equation (41) means that the voltage
bias will have an average value given by

〈V〉 = �ωχ1

2e
. (46)

We now substitute equation (45) in the third term of the right-
hand side of equation (43). (This procedure can be justified
perturbatively if Δ is a small parameter). At this point it is
useful to do a Fourier transform of the function |sin (π/2)|.
The Fourier components are given by

Fm =

∫ 2π

0

dφ
2π

e−imφ| sin(φ/2)|

=
2
π

1
1 − 4m2

. (47)

Note that Fm = F−m is real. The third term in equation (43)
then takes the form

2Δ
�ω

∞∑
m=−∞

Fm eim(χ1τ+χ2 sin (τ+χ3)+φ0)

=
2Δ
�ω

∞∑
m=−∞

Fm eim(χ1τ+φ0)
∞∑

n=−∞
Jn(mχ2) ein(τ+χ3),

(48)
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where we have used equation (45) to substitute for φ in the
first line, and the Bessel functions in the second line sat-
isfy J−n(z) = Jn(−z) = (−1)nJn(z) [92]. We now see that the
expression in equation (48) will have a DC part which does not
vary with τ whenever

χ1 = − n
m

, (49)

where m, n are integers, and we assume that m 
= 0. The corre-
sponding DC part in equation (48) is equivalent to shifting the
constant I on the right-hand side of equation (43) by

eΔ
�

[FmJn(mχ2)eimφ0 + F−mJ−n(−mχ2)e−imφ0 ]

=
2eΔ

�
FmJn(mχ2) cos (mφ0). (50)

Since equation (50) can have a range of values depending
on φ0 (since cos (mφ0) can vary from −1 to +1), we see that I
can have a range of values given by

4eΔ
�

FmJn(mχ2). (51)

For all these values of I, we see from equations (46) and (49)
that 〈V〉 will have a fixed value given by

〈V〉 = −�ω

2e
n
m
. (52)

This explains why there should be a plateau in 〈V〉 for a
range of values of I, whenever equation (52) is satisfied.
The width of the Shapiro plateau will be proportional to
(4eΔ/�)FmJn(mχ2). Hence the plateau widths go to zero
rapidly as either m or n increases since Fm goes to zero as
1/m2 as m →∞ and Jn(z) goes to zero as (ez/2n)n as n →∞
keeping z fixed.

We would like to mention here that the series of plateaus
corresponding to m = 1, 2, 3, . . . in equation (52) has no ana-
log in standard Josephson junctions where IJ ∝ sinφ, and the
Fourier transform of IJ is non-zero only for m = ±1. We note
that the appearance of such plateaus for rational fractional val-
ues of ωJ/ω has been noted in a different context in reference
[93].

We now present our numerical results. For our calcula-
tions, we choose the parameters in equation (43) as follows:
�ω = 100 μeV which implies ω � 152 GHz, α1 = 1 imply-
ing C � 1.6 × 10−3 pF, α2 = 1 implying R � 4.11 kΩ, and
Δ = 100 μeV. (This value of the induced superconducting
gap Δ is appropriate for a NbSe2/Bi2Se3 superconductor-
topological insulator heterostructure [94]). Equation (43) then
takes the form

d2 φ

dτ 2
+

dφ
dτ

+ 2

∣∣∣∣ sin

(
φ

2

)∣∣∣∣ = 2
eω

[I + A sin τ ]. (53)

In figure 9, we show a plot of 〈V〉 versus I for A = 2. We note
that I and A are given in units of eω = 24 nA, and 〈V〉 is in units
of �ω/e = 100μV. Figure 9 shows several plateaus in 〈V〉. The
most prominent plateaus occur for 〈V〉 equal to multiples of
�ω/(2e) corresponding to the denominator m in equation (52)

Figure 9. Plot of 〈V〉 versus I. We have chosen α1 = α2 = 1,
Δ = 100 μeV, A = 2, and �ω = 100 μeV. I and A are in units of
eω = 24 nA, and V is in units of �ω/e = 100 μV. We see that 〈V〉
has several plateaus of different widths at fractional multiples of
�ω/(2e). The midpoint of the plateau at 〈V〉 = 0 lies at about
I = 2/π. See text for details.

being equal to 1. But some small plateaus are also visible at
multiples of �ω/(4e), �ω/(3e), and �ω/(6e) corresponding to
m = 2 and n odd, m = 3 and n even, and m = 3 and n odd in
equation (52).

Figure 9 shows that the plateau at 〈V〉 = 0 occurs at non-
zero values of I. This happens because the time-averaged
value of the left-hand side of equation (53) is given by the
average of 2| sin (φ/2)| over one cycle of φ from 0 to 2π
which is equal to 4/π. This means that the time-averaged
value of the right-hand side of equation (53) is also 4/π. This
explains why the midpoint of the plateau at 〈V〉 = 0 lies at
about I/(eω) = 2/π � 0.637 in figure 9. (This is in contrast
to other Josephson junctions where the current is proportional
to sinφ or sin (φ/2) whose average over one cycle is equal to
zero).

Finally, the comment made earlier that a change of φ by
2π pumps an amount of spin angular momentum equal to �/2
across the junction means that the rate of transfer of angular
momentum is given by �/2 times dφ/dt/(2π). Equation (41)
then implies that plateaus in 〈V〉 are equivalent to plateaus in
the average rate of transfer of angular momentum; the two are
related as

�

2
〈dφ/dt〉

2π
=

e〈V〉
2π

. (54)

6. Discussion

In this paper we have presented a minimal model of a TRI-
TOPS using the chirality of Dirac electrons on a thin, effec-
tively one-dimensional, strip of a topological insulator surface.
Our model is time-reversal invariant but it possesses half the
number of modes of the more well-studied TRITOPS due to
the chirality of the underlying Dirac electrons. This property
leads to several unconventional features which we have charted
out.
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We first consider a lattice model of a spin–orbit cou-
pled massless Dirac electron in one dimension with s-wave
superconducting pairing. We analytically find the bulk energy
spectrum, and use a topological invariant called the winding
number to identify the regimes of parameter values where the
system is in topologically trivial and non-trivial phases. In the
topologically non-trivial phase, a finite-sized system has a sin-
gle zero energy Majorana mode at each end; we find that this
requires the s-wave pairing to have an extended form with the
magnitude of the nearest-neighbor pairing being larger than
that of the on-site pairing. For a particular choice of parame-
ters, we present an analytical expression for the wave function
of an end mode. Although a lattice model of massless Dirac
electrons may suffer from a fermion doubling problem, we find
that this can be avoided in our model if we take the on-site and
nearest-neighbor s-wave pairings to have opposite signs and
close to each other in magnitude. Then the wave functions of
both the bulk states lying near the gap and the end modes have
momentum components close to k = 0 rather than k = π. The
modes near k = 0 have a smooth continuum limit.

We study the symmetries of the lattice model if both the s-
wave pairings are real. These symmetries imply that if there is
only one mode at each end, it must have zero energy and the
expectation value of the charge in such mode will be zero; this
is in agreement with our numerical results. We then consider
the effect of making the on-site pairing complex. We find that
this shifts the energies of the end modes away from zero, but
the expectation value of the charge remains zero.

We then consider a continuum version of the model with
a completely local s-wave pairing. If the pairing is real, this
model always turns out to have zero energy modes at the ends
of a long system. The ratio of the phases of the spin-up electron
and spin-down hole wave functions is either +i or −i for the
end modes, and this is found to be in agreement with the lattice
results.

Next, we study a lattice system whose Hamiltonian is a
combination of a Schrödinger Hamiltonian and a spin–orbit
coupled Dirac Hamiltonian, along with a local s-wave pairing.
We find that this system is necessarily topologically trivial if
the Dirac part is absent and can be topologically non-trivial if
the Schrödinger part is absent. We analytically find the param-
eter values at which a topological transition occurs from one
phase to the other. It is worth noting that an external mag-
netic field is not required to generate end modes in any of our
models, either on the lattice or in the continuum.

We then study a Josephson junction of two continuum sys-
tems which have different phases of the s-wave pairing, called
φ1 and φ2. In contrast to the earlier models of TRITOPS, we
find that there is a single ABS which is localized near the junc-
tion; its energy depends on the phase differenceΔφ = φ2 − φ1

with a period 2π, but it does not depend on the strength of
a potential barrier which may be present at the junction (this
is related to the Dirac nature of the electrons which imposes
matching conditions on the electron and hole wave functions
but not on their derivatives). As Δφ varies from 0 to 2π, the
ABS energy goes smoothly from the bottom of the supercon-
ducting gap to the top. We then study some Josephson effects
at zero temperature. First, we examine the AC Josephson effect

where a time-independent voltage bias V0 is applied across
the junction. Since this makes Δφ change linearly in time,
an ABS which initially has negative energy (and is therefore
filled) moves smoothly to positive energy values; this process
repeats periodically in time. We therefore find that the Joseph-
son current, which is given by the derivative of the ABS energy
with respect toΔφ, varies periodically in time with a frequency
given by ωJ = 2eV0/�. The Josephson current turns out be a
continuous function of Δφ. However, its sign does not change
with Δφ which implies that the current has a non-zero DC
component; this is in contrast to the AC Josephson effect stud-
ied earlier in other systems. Second, we consider a resistively
and capacitively shunted Josephson junction and study what
happens when the voltage bias has both a constant term V0 as
a term V1 cos (ωt) which oscillates sinusoidally with an ampli-
tude V1 and a frequency ω. We find that the Josephson current
can then exhibit Shapiro plateaus whenever ωJ is a rational
multiple ofω, i.e.,ωJ = (n/m)ω, where m, n are integers. How-
ever the plateau widths rapidly go to zero as m or n increases;
in particular, if eV1/(�ω) is small, only the plateaus with n = 1
and different values of m would be observable. The presence
of such Shapiro plateaus when ωJ/ω is a rational fraction dis-
tinguishes these Josephson junctions from their standard s- or
p-wave counterparts.

We discuss a few platforms on which our model
may be experimentally realized. A bulk insulating three-
dimensional topological insulator where one of the surfaces
has strong finite-size quantization, allows the formation of
one-dimensionalDirac-like bands that propagate along the sur-
face. Inducing superconducting by proximity effect on one
such surface with a conventional s-wave superconductor may
realize our model and allow the formation of Majorana bound
states at the sample edges as we discuss here. One-dimensional
Dirac-like states may also be trapped on one-dimensional crys-
talline defects that naturally occur on van der Waals bonded
three-dimensional topological insulators such as Bi2Se3 [65,
66]. Edges between two facets of a bulk crystal of such a mate-
rial may also host such one-dimensional modes. The proximity
of such a state to an s-wave superconductor will realize our
model. In the context of two-dimensional topological insula-
tors, our model may be realized by inducing superconductivity
using proximity effect on one of the edges of the sample, leav-
ing the other edge non-proximitized. In a Josephson junction
configuration, the existence of one ABS, rather than a pair of
ABSs as conventionally observed, is a striking manifestation
of our model. Various experimental methods including tun-
neling spectroscopy [95, 96], Josephson spectroscopy [97, 98]
and circuit quantum electrodynamics schemes [99, 100] may
be used to detect the presence of a ‘single’ Andreev bound
state. We further predict that the Josephson supercurrent in
such a geometry is always positive, which can be detected by
DC electrical transport. We envisage that such experiments
are already possible on various two-dimensional and three-
dimensional topological insulator materials that are currently
known. Such platforms provide an alternate route towards real-
ization of Majorana bound states that could potentially display
large topological gaps, and exist at zero magnetic field and at
higher temperatures than currently possible.
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Rev. B 99 085431
[62] Aligia A A and Camjayi A 2019 Phys. Rev. B 100 115413

15

https://orcid.org/0000-0001-9679-3380
https://orcid.org/0000-0001-9679-3380
https://orcid.org/0000-0002-6926-9230
https://orcid.org/0000-0002-6926-9230
https://doi.org/10.1070/1063-7869/44/10s/s29
https://doi.org/10.1070/1063-7869/44/10s/s29
https://doi.org/10.1103/revmodphys.80.1083
https://doi.org/10.1103/revmodphys.80.1083
https://doi.org/10.1038/nphys1915
https://doi.org/10.1038/nphys1915
https://doi.org/10.1103/physrevlett.105.077001
https://doi.org/10.1103/physrevlett.105.077001
https://doi.org/10.1103/physrevlett.105.177002
https://doi.org/10.1103/physrevlett.105.177002
https://doi.org/10.1103/physrevlett.105.227003
https://doi.org/10.1103/physrevlett.105.227003
https://doi.org/10.1103/physrevb.82.041405
https://doi.org/10.1103/physrevb.82.041405
https://doi.org/10.1103/physrevb.83.155429
https://doi.org/10.1103/physrevb.83.155429
https://doi.org/10.1103/physrevb.84.060510
https://doi.org/10.1103/physrevb.84.060510
https://doi.org/10.1103/physrevb.84.085114
https://doi.org/10.1103/physrevb.84.085114
https://doi.org/10.1103/physrevb.84.144522
https://doi.org/10.1103/physrevb.84.144522
https://doi.org/10.1103/physrevb.84.214528
https://doi.org/10.1103/physrevb.84.214528
https://doi.org/10.1103/physrevlett.107.036801
https://doi.org/10.1103/physrevlett.107.036801
https://doi.org/10.1103/physrevlett.106.057001
https://doi.org/10.1103/physrevlett.106.057001
https://doi.org/10.1103/physrevb.85.035110
https://doi.org/10.1103/physrevb.85.035110
https://doi.org/10.1103/physrevb.84.144526
https://doi.org/10.1103/physrevb.84.144526
https://doi.org/10.1103/physrevlett.107.196804
https://doi.org/10.1103/physrevlett.107.196804
https://doi.org/10.1103/physrevb.85.144525
https://doi.org/10.1103/physrevb.85.144525
https://doi.org/10.1103/physrevb.85.235462
https://doi.org/10.1103/physrevb.85.235462
https://doi.org/10.1103/physrevb.85.140508
https://doi.org/10.1103/physrevb.85.140508
https://doi.org/10.1103/physrevlett.108.096802
https://doi.org/10.1103/physrevlett.108.096802
https://doi.org/10.1103/physrevb.85.235307
https://doi.org/10.1103/physrevb.85.235307
https://doi.org/10.1103/physrevb.85.245121
https://doi.org/10.1103/physrevb.85.245121
https://doi.org/10.1103/physrevb.86.085408
https://doi.org/10.1103/physrevb.86.085408
https://doi.org/10.1103/physrevb.86.121103
https://doi.org/10.1103/physrevb.86.121103
https://doi.org/10.1103/physrevb.86.155431
https://doi.org/10.1103/physrevb.86.155431
https://doi.org/10.1103/physrevb.86.205412
https://doi.org/10.1103/physrevb.86.205412
https://doi.org/10.1103/physrevlett.109.146403
https://doi.org/10.1103/physrevlett.109.146403
https://doi.org/10.1103/physrevlett.109.150408
https://doi.org/10.1103/physrevlett.109.150408
https://doi.org/10.1103/physrevlett.108.257001
https://doi.org/10.1103/physrevlett.108.257001
https://doi.org/10.1103/physrevb.86.180503
https://doi.org/10.1103/physrevb.86.180503
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1038/ncomms1966
https://doi.org/10.1038/ncomms1966
https://doi.org/10.1103/physrevlett.108.067001
https://doi.org/10.1103/physrevlett.108.067001
https://doi.org/10.1103/physrevb.86.205135
https://doi.org/10.1103/physrevb.86.205135
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1088/0953-8984/25/23/233201
https://doi.org/10.1088/0953-8984/25/23/233201
https://doi.org/10.1103/physrevb.87.104513
https://doi.org/10.1103/physrevb.87.104513
https://doi.org/10.1103/physrevlett.110.026402
https://doi.org/10.1103/physrevlett.110.026402
https://doi.org/10.1103/physrevb.88.165111
https://doi.org/10.1103/physrevb.88.165111
https://doi.org/10.1103/physrevlett.110.176403
https://doi.org/10.1103/physrevlett.110.176403
https://doi.org/10.1103/physrevb.89.144506
https://doi.org/10.1103/physrevb.89.144506
https://doi.org/10.1038/srep30569
https://doi.org/10.1038/srep30569
https://doi.org/10.1103/physrevb.102.155416
https://doi.org/10.1103/physrevb.102.155416
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1103/physrevlett.110.126406
https://doi.org/10.1103/physrevlett.110.126406
https://doi.org/10.1103/physrevlett.110.217207
https://doi.org/10.1103/physrevlett.110.217207
https://doi.org/10.1063/1.4928919
https://doi.org/10.1063/1.4928919
https://doi.org/10.1103/physrevb.90.245435
https://doi.org/10.1103/physrevb.90.245435
https://doi.org/10.1088/1367-2630/17/5/053036
https://doi.org/10.1088/1367-2630/17/5/053036
https://doi.org/10.1088/1361-648x/ab8bf9
https://doi.org/10.1088/1361-648x/ab8bf9
https://doi.org/10.1103/physrevb.95.195140
https://doi.org/10.1103/physrevb.95.195140
https://doi.org/10.1103/revmodphys.82.3045
https://doi.org/10.1103/revmodphys.82.3045
https://doi.org/10.1103/revmodphys.83.1057
https://doi.org/10.1103/revmodphys.83.1057
https://arxiv.org/abs/2003.08299
https://doi.org/10.1103/physrevlett.111.056403
https://doi.org/10.1103/physrevlett.111.056403
https://doi.org/10.1103/physrevlett.111.056403
https://doi.org/10.1103/physrevlett.111.056403
https://doi.org/10.1103/physrevlett.112.126402
https://doi.org/10.1103/physrevlett.112.126402
https://doi.org/10.1103/physrevlett.119.046801
https://doi.org/10.1103/physrevlett.119.046801
https://doi.org/10.1103/PhysRevB.98.174507
https://doi.org/10.1103/PhysRevB.98.174507
https://doi.org/10.1103/physrevb.99.085431
https://doi.org/10.1103/physrevb.99.085431
https://doi.org/10.1103/physrevb.100.115413
https://doi.org/10.1103/physrevb.100.115413


J. Phys.: Condens. Matter 33 (2021) 145301 A Udupa et al

[63] Haim A and Oreg Y 2019 Phys. Rep. 825 1–48
[64] Aksenov S V, Zlotnikov A O and Shustin M S 2020 Phys. Rev.

B 101 125431
[65] Alpichshev Z, Analytis J G, Chu J-H, Fisher I R and

Kapitulnik A 2011 Phys. Rev. B 84 041104
[66] Kandala A, Richardella A, Zhang D, Flanagan T C and

Samarth N 2013 Nano Lett. 13 2471
[67] Wang M-X et al 2012 Science 336 52
[68] Xu S-Y et al 2014 Nat. Phys. 10 943
[69] Flötotto D et al 2018 Sci. Adv. 4 7214
[70] Szombati D B, Nadj-Perge S, Car D, Plissard S R,

Bakkers E P A M and Kouwenhoven L P 2016 Nat. Phys.
12 568

[71] Pientka F, Keselman A, Berg E, Yacoby A, Stern A and
Halperin B I 2017 Phys. Rev. X 7 021032

[72] Fornieri A et al 2019 Nature 569 89
[73] Ren H et al 2019 Nature 569 93
[74] Stern A and Berg E 2019 Phys. Rev. Lett. 122 107701
[75] Hart S, Ren H, Wagner T, Leubner P, Mühlbauer M,

Brüne C, Buhmann H, Molenkamp L W and Yacoby A 2014
Nat. Phys. 10 638

[76] Wiedenmann J et al 2016 Nat. Commun. 7 10303
[77] Tanaka Y, Hirai T, Kusakabe K and Kashiwaya S 1999 Phys.

Rev. B 60 6308
[78] Vaccarella C D, Duncan R D and Sá de Melo C A R 2003

Physica* 391 89
[79] Kwon H-J, Sengupta K and Yakovenko V M 2004 Eur. Phys.

J. B 37 349
[80] Ketterson J B and Song S N 1999 Superconductivity

(Cambridge: Cambridge University Press)
[81] Shukrinov Y M, Medvedeva S Y, Botha A E, Kolahchi M R

and Irie A 2013 Phys. Rev. B 88 214515
[82] Maiti M, Kulikov K V, Sengupta K and Shukrinov Y M 2015

Phys. Rev. B 92 224501

[83] Bocquillon E, Deacon R S, Wiedenmann J, Leubner P,
Klapwijk T M, Brüne C, Ishibashi K, Buhmann H and
Molenkamp L W 2017 Nat. Nanotechnol. 12 137

[84] Deb O, Sengupta K and Sen D 2018 Phys. Rev. B 97
174518

[85] Nielsen H B and Ninomiya M 1981 Nucl. Phys. B 193 173
Nielsen H B and Ninomiya M 1981 Phys. Lett. B 105 219

[86] Schnyder A P, Ryu S, Furusaki A and Ludwig A W W 2008
Phys. Rev. B 78 195125

[87] Teo J C Y and Kane C L 2010 Phys. Rev. B 82 115120
[88] Fidkowski L and Kitaev A 2011 Phys. Rev. B 83 075103
[89] Carreau M 1993 J. Phys. A: Math. Gen. 26 427
[90] Harrison W A 2000 Applied Quantum Mechanics (Singapore:

World Scientific) pp 119–20
[91] Tarasinski B, Chevallier D, Hutasoit J A, Baxevanis B and

Beenakker C W J 2015 Phys. Rev. B 92 144306
[92] Abramowitz M and Stegun I A 1972 Handbook of Mathemat-

ical Functions (New York: Dover)
[93] Ghosh R, Maiti M, Shukrinov Y M and Sengupta K 2017 Phys.

Rev. B 96 174517
[94] Dai W et al 2017 Sci. Rep. 7 7631
[95] Lee E J H, Jiang X, Aguado R, Katsaros G, Lieber C M and

DeFranceschi S 2012 Phys. Rev. Lett. 109 186802
[96] Pillet J-D, Quay C H L, Morfin P, Bena C, Yeyati A L and

Joyez P 2010 Nat. Phys. 6 965
[97] Bretheau L, Girit C O, Pothier H, Esteve D and Urbina C 2013

Nature 499 3125
[98] Woerkom D J V et al 2017 Nat. Phys. 13 876
[99] Hays M, de Lange G, Serniak K, van Woerkom D J,

Bouman D, Krogstrup P, Nygard J, Geresdi A and Devoret
M H 2018 Phys. Rev. Lett. 121 047001

[100] Tosi L, Metzger C, Goffman M F, Urbina C, Pothier H, Park S,
Levy Yeyati A, Nygard J and Krogstrup P 2019 Phys. Rev.
X 9 011010

16

https://doi.org/10.1016/j.physrep.2019.08.002
https://doi.org/10.1016/j.physrep.2019.08.002
https://doi.org/10.1016/j.physrep.2019.08.002
https://doi.org/10.1016/j.physrep.2019.08.002
https://doi.org/10.1103/physrevb.101.125431
https://doi.org/10.1103/physrevb.101.125431
https://doi.org/10.1103/physrevb.84.041104
https://doi.org/10.1103/physrevb.84.041104
https://doi.org/10.1021/nl4012358
https://doi.org/10.1021/nl4012358
https://doi.org/10.1126/science.1216466
https://doi.org/10.1126/science.1216466
https://doi.org/10.1038/nphys3139
https://doi.org/10.1038/nphys3139
https://doi.org/10.1126/sciadv.aar7214
https://doi.org/10.1126/sciadv.aar7214
https://doi.org/10.1038/nphys3742
https://doi.org/10.1038/nphys3742
https://doi.org/10.1103/physrevx.7.021032
https://doi.org/10.1103/physrevx.7.021032
https://doi.org/10.1038/s41586-019-1068-8
https://doi.org/10.1038/s41586-019-1068-8
https://doi.org/10.1038/s41586-019-1148-9
https://doi.org/10.1038/s41586-019-1148-9
https://doi.org/10.1103/physrevlett.122.107701
https://doi.org/10.1103/physrevlett.122.107701
https://doi.org/10.1038/nphys3036
https://doi.org/10.1038/nphys3036
https://doi.org/10.1038/ncomms10303
https://doi.org/10.1038/ncomms10303
https://doi.org/10.1103/physrevb.60.6308
https://doi.org/10.1103/physrevb.60.6308
https://doi.org/10.1016/s0921-4534(03)00872-4
https://doi.org/10.1016/s0921-4534(03)00872-4
https://doi.org/10.1140/epjb/e2004-00066-4
https://doi.org/10.1140/epjb/e2004-00066-4
https://doi.org/10.1103/physrevb.88.214515
https://doi.org/10.1103/physrevb.88.214515
https://doi.org/10.1103/physrevb.92.224501
https://doi.org/10.1103/physrevb.92.224501
https://doi.org/10.1038/nnano.2016.159
https://doi.org/10.1038/nnano.2016.159
https://doi.org/10.1103/physrevb.97.174518
https://doi.org/10.1103/physrevb.97.174518
https://doi.org/10.1016/0550-3213(81)90524-1
https://doi.org/10.1016/0550-3213(81)90524-1
https://doi.org/10.1016/0370-2693(81)91026-1
https://doi.org/10.1016/0370-2693(81)91026-1
https://doi.org/10.1103/physrevb.78.195125
https://doi.org/10.1103/physrevb.78.195125
https://doi.org/10.1103/physrevb.82.115120
https://doi.org/10.1103/physrevb.82.115120
https://doi.org/10.1103/physrevb.83.075103
https://doi.org/10.1103/physrevb.83.075103
https://doi.org/10.1088/0305-4470/26/2/025
https://doi.org/10.1088/0305-4470/26/2/025
https://doi.org/10.1103/physrevb.92.144306
https://doi.org/10.1103/physrevb.92.144306
https://doi.org/10.1103/physrevb.96.174517
https://doi.org/10.1103/physrevb.96.174517
https://doi.org/10.1038/s41598-017-07990-3
https://doi.org/10.1038/s41598-017-07990-3
https://doi.org/10.1103/physrevlett.109.186802
https://doi.org/10.1103/physrevlett.109.186802
https://doi.org/10.1038/nphys1811
https://doi.org/10.1038/nphys1811
https://doi.org/10.1038/nature12315
https://doi.org/10.1038/nature12315
https://doi.org/10.1038/nphys4150
https://doi.org/10.1038/nphys4150
https://doi.org/10.1103/physrevlett.121.047001
https://doi.org/10.1103/physrevlett.121.047001
https://doi.org/10.1103/physrevx.9.011010
https://doi.org/10.1103/physrevx.9.011010

	One-dimensional spin–orbit coupled Dirac system with extended s-wave superconductivity: Majorana modes and Josephson effects
	1.  Introduction
	2.  Lattice model
	2.1.  Hamiltonian and energy spectrum
	2.2.  Numerical results, end modes and winding number
	2.3.  Symmetries of the model

	3.  Continuum model
	4.  General model with both Dirac and Schrödinger terms
	5.  Josephson effects for two superconducting systems with different phases
	5.1.  Andreev bound states at a Josephson junction
	5.2.  Shapiro plateaus

	6.  Discussion
	Data availability statement
	Acknowledgments
	ORCID iDs
	References


