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Double-Auction Mechanisms for
Resource Trading Markets

K. P. Naveen , Member, IEEE, and Rajesh Sundaresan , Senior Member, IEEE

Abstract— We consider a double-auction mechanism, which
was recently proposed in the context of rate allocation in mobile
data-offloading markets; our mechanism is also applicable to
the problem of bandwidth allocation in network slicing markets.
Network operators (users) derive benefit from offloading their
traffic to third party WiFi or femtocell networks (link-suppliers).
Link-suppliers experience costs for the additional capacity that
they provide. Users and link-suppliers (collectively referred to
as agents) have their pay-offs and cost functions as private
knowledge. A network-manager decomposes the problem into a
network problem (with surrogate pay-offs and surrogate cost
functions) and agent problems (one per agent). The surrogate
pay-offs and cost functions are modulated by the agents’ bids.
Agents’ payoffs and costs are then determined by the allocations
and prices set by the network-manager. Under this design, so long
as the agents do not anticipate the effect of their actions on
the prices set by the network-manager (i.e., price-taking agents),
a competitive equilibrium exists as a solution to the network
and agent problems, and this equilibrium optimizes the sum
utility of all agents. However, this design fails when the agents
(including the link-supplier) are all strategic (price-anticipating).
Specifically, the presence of a strategic link-supplier drives the
system to an undesirable equilibrium with zero participation
resulting in an efficiency loss of 100%. This is in stark contrast
to an earlier setting where the users alone are strategic but
the link-supplier is not − the efficiency loss is known to be
at most 34%. The paper then proposes the following Stackelberg
game modification with asymmetric information structures for
link-supplier and users in order to alleviate the efficiency-loss
problem: the network-manager first announces the allocation and
payment functions; he then invites the link-supplier to announce
its bid, following which the users are invited to respond with
their bids. The resulting Stackelberg games’ efficiency losses can
be characterized in terms of the link-supplier’s cost function
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when the users’ pay-off functions are linear. Specifically, when the
link-supplier’s cost function is quadratic, the worst case efficiency
loss is 25%. Further, the loss in efficiency improves for polynomial
cost functions of higher degree. For non-linear utility functions
(e.g., α-fair and log utilities), we demonstrate the efficacy of the
proposed mechanism via. a detailed numerical study.

Index Terms— Network utility maximization, double-auction,
KKT conditions, Nash equilibrium, Stackelberg equilibrium.

I. INTRODUCTION

WE CONSIDER double auction mechanisms motivated
by two recent proposals – mobile data offloading and

network slicing-based virtualization. Mobile data offloading
is an effective way to manage growth in mobile-data traffic.
Traffic meant for the macrocellular network can be offloaded
to already installed third-party Wi-Fi or femtocell networks.
This provides an alternative means of network expansion.
Wi-Fi access-point operators and femtocell network operators
will however expect compensation for allowing macrocellular
network traffic through their access points. Technological,
security, and preliminary economic studies for secure and
seamless offloading have been discussed in [2]–[5]. Network
slicing [6] on the other hand is a virtualization technique that
allows many logical networks to run atop shared physical net-
works. It allows physical mobile network operators to partition
their network resources and offer them to different users or
tenants (IoT streams, mobile broadband streams, etc.) in return
for suitable compensation. It enables network operators to
focus on their core strength of delivering high-quality network
experiences while the tenants or virtual network operators can
focus more on business, billing, and branding relations.

Although the above two proposals are technologically differ-
ent, the underlaying resource allocation problems are similar.
Both examples comprise buyers or users (mobile operators
in data-offloading scenario and logical-network operators in
network-slicing) who intend to purchase a portion of the
resource (rate or bandwidth) available with a supplier (femto-
cell and physical-network operator, respectively). In this work,
using the framework of Network Utility Maximization (NUM),
we propose double-auction mechanisms for trading resources
in such markets. In the remainder of the paper, for the ease
of exposition, we discuss our work in the context of mobile
data offloading; the mapping to the context of network slicing
will be obvious. We proceed by discussing related literature
and then present our main technical contributions.

A. Related Work

The traditional model of network utility maximization
(NUM) proposed by Kelly in his seminal work [7] comprises
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a collection of users and a network-manager (but not a
supplier like in our case). The network-manager’s objective
is to allocate rates to users (over a link1) in a distributed
fashion so as to maximize the sum-utility of the users. Over
the years several interesting variants of the traditional model
has been proposed. For instance, the problem of distributed
implementation was studied by Kelly et al. [8], while Yang
and Hajek [9] and Johari and Tsitsiklis in [10], [11] consider
the problem of characterizing the loss in efficiency that is
incurred when the users are strategic. For further literature
on the topic, see [12] and references therein.

In the traditional setup, although the allocated rate is
supplied to the users over a link, the link itself is however
considered to be a passive element. This is in contrast to
our model where the link is assumed to be maintained by a
strategic link-supplier. In the context of mobile data offloading,
the femtocell operator can be regarded as the link-supplier
while the cellular operators (seeking to offload some of their
subscribers onto the femtocell) constitute the users. Similarly,
in network slicing the physical-network operator (owning the
bandwidth) is the link-supplier, while the logical-network
operators (who intend to rent a portion of the link-supplier’s
bandwidth) are the users. A neutral network-manager such as a
regulatory authority facilitates the exchange of resources (rates
or bandwidth) between the link-supplier and the users.

For the above setup, Iosifidis et al. [13] in their recent
work propose a double auction mechanism which achieves
the system objective of sum-utility maximization. Specifi-
cally, the mechanism works as follows. The network-manager
collects information about how much each user is will-
ing to pay for the link-supplier’s resource. Simultaneously,
the link-supplier provides bids (to the network-manager) that
contains information about the amount of resource that the
link-supplier is willing to share with the individual users.
Using these scalar signals, the network-manager then allocates
resources (rates) to the users, along with determining the pay-
ments that each user has to make to the link-supplier. The users
and the link-supplier then comply. Following Kelly et al. [8],
Iosifidis et al. [13] showed that a tâtonnement procedure con-
verges to the system optimal operating point.

The work in [13] is however limited to scenarios
where the agents are only price-taking.2 In the current
work, we extend their double-auction mechanism to incor-
porate price-anticipating agents.3 Specifically, we propose
a Stackelberg-game based double-auction mechanism, and
prove a lower bound on the loss in efficiency (incurred
because of the price-anticipating nature of the agents).
Finally, from the context of double-auctions, Iosifidis et al.
[13, p.1635] point out that designing incentive compatible
mechanisms for double-auctions which are weakly budget
balanced (i.e., the broker should not end up subsidizing
the mechanism) is ‘notoriously hard’ and has been done
only in certain simplified settings (McAfee auction [14]) or
can be computationally intensive. So [13] took a network

1In general, it can be a network of links; we adhere to the single link case
so that we can draw a comparison with our model.

2Price-taking agents simply accept the prices communicated by the
network-manager without investigating the process via. which the prices may
have been set (details are available in Section III).

3Price-anticipating agents take actions by anticipating the effect of their
actions on the prices set by the network-manager (see Section IV for details).

utility maximization approach and left the analysis of the
price-anticipating scenario open [13, Sec VII, p.1646]. In this
work we address the above gap in literature.

B. Our Contributions

Our contributions in this article are as follows.
1) We first re-derive the result on efficient allocation when

the agents are price-taking [13], mainly to set up the
notation for the subsequent results (Section III). The
solution is characterized in terms of a competitive
equilibrium whose optimality (in terms of maximizing
the sum-utility) is already known from [13]. However,
the proof of optimality in [13] is based on learning
dynamics; we instead provide an alternate proof that is
based on Lagrangian techniques.

2) We then analyze the price-anticipating scenario along the
lines of Johari et al. [15] in Section IV. The solution
is characterized in terms of a Nash equilibrium. The
situation in Johari et al. [15], when mapped to the
current offloading setting, would be one where the users
alone are strategic, while the link is simply a passive
entity; the efficiency loss due to price-anticipating users
is then known to be at most 34% [15]. However, as in our
case, when the link-supplier is also strategic and price-
anticipating, we find that the efficiency loss is aggravated
to 100%. Thus, the double-auction mechanism of [13]
(designed for price-taking agents) fails in the more prac-
tical scenario where the agents are price-anticipating.

3) Motivated by the above result, we propose a novel
Stackelberg-game based double-auction mechanism
where the link-supplier bids first, following which the
users respond with their bids (Section V). The solution
is characterized in terms of a Stackelberg equilibrium.
To show that the situation is now improved, we charac-
terize the new efficiency loss in terms of the supplier’s
cost function, when the user pay-off functions are lin-
ear. For instance, for the quadratic link-cost function,
the worst-case efficiency loss (with the worst-case taken
over linear user pay-off functions) is at most 25%.

4) We finally conduct a detailed numerical study to demon-
strate the efficacy of the proposed Stackelberg-game
based mechanism for a combination of link-cost func-
tions (polynomial and exponential functions) and user
utilities (α-fair and log utilities)

5) We extend all of the above theoretical results to a setting
with multiple links (see supplementary material).

Our key contribution summarized in the third point above
indicates that the situation, with the enforced timing of bids,
is much improved. The neutral network-manager enforces the
timing and enables the coordination that serves to protect the
interests of system as a whole.

C. An Implementation Theory Perspective

From an implementation theory perspective, the
Iosifidis et al. [13] mechanism in the price-taking scenario
implements the social welfare maximization rule under
the competitive equilibrium solution concept with the
minimal message dimension of 1 (scalar signals). The above
implementation ignores strategic behavior of individual
agents. It is not possible to enforce such mechanisms in
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general because individual preferences may diverge from
social welfare maximization. This is the price-anticipating
scenario. It is anticipated that if we do not enlarge the signal
space dimension there may be no mechanism, let alone the
Iosifidis et al. mechanism, that can implement the social
welfare maximization rule, under now the Nash equilibrium
solution concept. This is why the price-anticipating scenario
with non-strategic link suppliers suffered from an efficiency
loss. What is surprising in our current setting is the
dramatic increase in efficiency loss from at most 34%
(Johari et al. [15]) to 100% (contribution (2) of this article).
What is promising from our study is that this efficiency loss
can be mitigated by structuring the interaction, by making the
link player lead the interaction (contribution (3) of this article).
The solution concept is that of a Stackelberg equilibrium.
Efficiency loss drops down to a value that depends on the
supplier’s cost function and is at most 25% for quadratic
costs and linear user pay-offs. This of course raises the
question of what is the minimal signalling dimension in the
price-anticipating scenario that implements the social welfare
maximization rule in the Nash equilibrium solution concept.
This is a very interesting question that is beyond the scope
of this work. Our proposed scheme, which structures the
interactions by asking the supplier to lead, reduces efficiency
loss. It would be of utmost interest if this structuring also
reduces the minimum signalling dimension for social welfare
maximization in the Stackelberg equilibrium solution concept.
We refer the reader to [16] for an excellent discussion on the
implementation theory perspective.

D. Paper Outline

The paper is organized as follows. In Section II, we propose
our system model, and discuss the problem formulation. The
scenario with price-taking agents is discussed in Section III,
while the price-anticipating agents’ scenario is addressed in
Section IV. In Section V, we present our Stackelberg-game
based mechanism, and characterize the worst-case efficiency
loss for linear user pay-offs in terms of the link-supplier’s cost
function. Results from our numerical study are presented in
Section VI. To focus on the flow of key ideas, we have moved
all the proofs to the Appendix. The paper concludes with some
remarks in Section VII. Generalization of the above results to
a setting with multiple link-suppliers is made available in the
supplementary material.

II. SYSTEM MODEL

We consider a model comprising M users who intend to
share the bandwidth available at a (single) link of capac-
ity C > 0 owned by a link-supplier. In the context of
mobile-data offloading [13], the mobile-network operators and
an access-point (e.g., Wi-Fi, femtocell) operator constitute
users and link-supplier, respectively, while the offloading
capacity of the access-point can be regarded as the link. The
mobile-network operators intend to buy a share of the limited
bandwidth resource available at the access point to offload
their macrocellular traffic, while the access point operator
is interested in maximizing his profit. In the double auction
terminology [14], users are synonymous to buyers bidding for
a share of a resource while the link-supplier is the seller.

We refer to the users and the link-supplier collectively as
agents. The social planner, the entity that designs the mecha-
nism (i.e., sets up the rules for information transfer, allocation,
and payments) is referred to as the network-manager.

Let xm denote the rate requested by user m = 1, 2, · · · , M ,
and let ym be the rate the link-supplier is willing to
allocate to user m. Thus, x = (x1, x2, · · · , xM ) and
y = (y1, y2, · · · , yM ) represent the rate-request and rate-
allocation vectors, respectively. Let y =

�
m ym denote the

aggregate-rate allocated by the link-supplier to all users. For
user m, the benefit of acquiring a rate of xm is represented
by a pay-off function Um(xm); we assume that Um, m =
1, 2, · · · , M , are concave, strictly increasing and continuously
differentiable with finite U �

m(0). Similarly, the cost incurred
by the link-supplier for accepting to serve an aggregate rate
of y is given by V (y), where V is strictly convex, strictly
increasing and continuously differentiable. Thus, the system
optimal solution is the solution to the optimization problem:

SYSTEM

Maximize:
�
m

Um(xm) − V

��
m

ym

�
(1a)

Subject to:
�
m

ym ≤ C (1b)

xm ≤ ym ∀m (1c)

xm ≥ 0, ym ≥ 0 ∀m. (1d)

Continuity of the objective function and compactness of
the constraint set imply that an optimal solution xs =
(xs

1, x
s
2, · · · , xs

M ) and ys = (ys
1, y

s
2, · · · , ys

M ) exists. Further,
if Um are strictly concave then (since V is strictly convex)
the solution is unique. Since Um are strictly increasing in xm,
an optimal solution must satisfy xs = ys. Thus, at optimality,
the rate-requests (demand) and the rate-allocations (supply) are
matched although the capacity C may not be fully utilized.

A network-manager, however, cannot solve the formulation
in (1) without the knowledge of user pay-offs and the link-cost
function. Hence, we consider the following mechanism pro-
posed by Iosifidis et al. in [13] for rate allocation. Each user
m submits a bid pm ≥ 0 that denotes the amount he is willing
to pay, while the link-supplier communicates signals βm

(m = 1, 2, · · · , M) that implicitly indicate the amounts of
bandwidth that he is willing to provide; we refer to p :=
(p1, p2, · · · , pM ) and β := (β1, β2, · · · , βM ) as the bids
submitted by the users and the link-supplier, respectively.

The network-manager is responsible for fixing the prices μm

(m = 1, 2, · · · , M) and λ that determines the rate allocation.
The prices μ := (μ1, μ2, · · · , μM ) and λ are dual optimal
of the following network problem proposed by Iosifidis et al.
in [13]:

NETWORK

Maximize:
�
m

pm log(xm) −
�
m

y2
m

2βm
(2a)

Subject to:
�
m

ym ≤ C (2b)

xm ≤ ym ∀m (2c)

xm ≥ 0, ym ≥ 0 ∀m. (2d)
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Fig. 1. Direction of information exchange: solid lines represent the exchange
of bids between the agents and the network-manager, while the dashed lines
indicate the prices announced by the network-manager.

The above NETWORK problem is identical to the SYSTEM
problem but with the true pay-off and cost functions replaced
by surrogate pay-off and cost functions. See Fig. 1 for an
illustration of the direction of information exchange between
the various entities of the model.

Remark: In the NETWORK problem above we choose to
use β instead of a related α that was used in the original
formulation by Iosifidis et al. in [13]. The quantities α and
β are related by βm = 1/αm ∀m. Thus, βm are R+-valued,
while each αm is in general R+ ∪ {+∞}-valued. Moreover,
the signals in β are directly proportional to the amount of
bandwidth the link-supplier is willing to share. For instance,
a lower value of βm implies that the bandwidth shared by the
link-supplier with user m is low, and vice versa. In particular,
βm = 0 implies that the link-supplier is unwilling to share
any bandwidth with user m. This will be useful later while
interpreting the Nash equilibrium bid-vectors (Theorem 2).

In Section III we first review the case when the users and
the link-supplier are price-taking whereby the prices set by the
network-manager are simply accepted by all the agents without
anticipating the effect that their bids have on the set prices.
We then proceed to study the more-involved price-anticipating
scenario (Section IV). Here the agents recognize that the
network-manager’s prices are based on their bids. The agents
hence anticipate the resulting allocation, payment, and eventu-
ally their pay-offs, and thus act accordingly. Our methodology
in Sections III and IV is similar to Johari et al. [15], but
the outcome in the price-anticipating scenario is dramatically
negative due to the presence of the strategic link-supplier,
as we will soon see. We then propose a remedy via a
Stackelberg framework (Section V) where the link-supplier is
a lead player and the users are followers.

III. PRICE-TAKING SCENARIO

The sequence of exchange of bids and prices (between
the network-manager and the agents) that occur during the
implementation of the price-taking mechanism (PTM) is as
shown in the following table.

Given the prices (μ, λ) of the network-manager, the pay-off
to user m, as a function of its bid pm, is given by

Pm

�
pm; μm

�
= Um

�
pm

μm

	
− pm. (3)

Naturally, user-m will choose a pm that optimizes the above
payoff function. Similarly, the pay-off to the link-supplier is
given by

PL

�
β; (μ, λ)

�
= −V

��
m

βm

�
μm − λ

��
+

�
m

βm

�
μm − λ

�2

. (4)

Thus, the bid β announced by the link-supplier is derived by
optimizing the above payoff function.

From the above expressions we see that the bids (p, β) that
the agents announce explicitly depends on the prices (μ, λ)
set by the network-manager. Thus, the network-manager has
the authority to decide the operating point (p, β, μ, λ) of
the system. Being a neutral entity, the objective of the
network-manager is naturally to achieve social optimality
(i.e., solution to the SYSTEM problem in (1)). In the follow-
ing (Theorem 1) we prove that there exists prices (μ, λ) that
will drive the system to a social optimal solution. Towards this
end, we first introduce the notion of a competitive equilibrium
that encompasses the conditions necessary for optimality.
In the following, unless mentioned otherwise, we assume that
the agents’ bids and the link-supplier’s prices are non-negative,
i.e., pm, βm, μm, λ ≥ 0 ∀m; also, we use 0 to denote the vector
of all-zeros of appropriate length.

Definition 1 (Competitive Equilibrium [11], [15]): We say
that (p, β, λ, μ) constitutes a competitive equilibrium if the
following conditions hold:
(C1) Pm(pm; μm) ≥ Pm(pm; μm) ∀pm ≥ 0, ∀m

(C2) PL

�
β; (μ, λ)

�
≥ PL

�
β; (μ, λ)

�
∀β ≥ 0

(C3) Define M =


m : μm �= λ

�
and

�C =

�����
m

pm

�� �
m∈M

βm

�
. (5)

Then, the following should hold:
(C3-a) For all m,

pm

μm
= βm

�
μm − λ

�
; (6)
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(C3-b) For all m ∈ M, the equality μm = μ holds, where

μ =
�

i

pi

�
min



C, �C�

; (7)

(C3-c) Furthermore,

λ = min

⎧⎪⎨⎪⎩0,

�
1 −

�
C�C
	2

� �
i

pi

C

⎫⎪⎬⎪⎭ . (8)

Condition (C1) above implies that the users do not ben-
efit by deviating from their equilibrium bids pm, when the
prices (λ, μ) set by the network-manager are fixed. Similarly,
(C2) implies that the link-supplier has no incentive to deviate
from the equilibrium bid-vector β. Although (C1) and (C2)
result in the optimality of the users’ and the link-supplier’s
problem of maximizing their respective pay-offs, these con-
ditions by themselves do not guarantee system-optimal per-
formance. The conditions in (C3) (essentially derived from
the optimality conditions for NETWORK) are crucial to
guarantee that the prices (λ, μ) set by the network-manager
are dual optimal for SYSTEM. Condition (C3) along with
(C1) and (C2) can then be used to show the optimality of
a competitive equilibrium. We summarize this result in the
following theorem; in particular, we first prove the existence
of a competitive equilibrium, and then derive its optimality
property. This theorem is essentially an extension of the result
due to Kelly [7] and Kelly et al. [8] (see also [15] and [11]).
The main difference that warrants an extension is the presence
of the link-supplier as a strategic agent.

Theorem 1: When the agents are price-taking, there exists
a competitive equilibrium, i.e., there exist vectors (p, β, λ, μ)
satisfying (C1), (C2) and (C3). Moreover, given a competitive
equilibrium (p, β, λ, μ), the rate vectors x and y defined as
xm = pm/μm and ym = βm(μm − λ) (∀m) are optimal for
the problem SYSTEM in (1).

Proof: The proof of the above theorem can be gleaned
from the results in [13] (although it is not explicitly stated
in [13]) where learning dynamics are used to show the con-
vergence of the system to social optimality. For completeness,
we however provide an alternative proof that is based on the
direct approach of using Lagrangian techniques. Details are
available in the supplementary material.

Discussion on Practical Implementation

Although the result in Theorem 1 suggests the existence of
a competitive equilibrium, it is not immediately clear as to
how the network-manager can determine such an equilibrium.
Here we discuss an iterative algorithm that can enable the
network-manager to drive the system to an equilibrium. The
algorithm is motivated by the best response dynamic and is
an extension of PTM. The details are as follows.

The network-manager begins by fixing an initial price
(μ(0), λ(0)). The agents simply accept the prices and
respond with their bids (p(0), β(0)) (obtained by opti-
mizing the respective pay-offs in (3) and (4)). Given the
bids (p(0), β(0)), the network-manager sets new prices
(μ(1), λ(1)) by solving the NETWORK problem in (2). The
process continues until the values of prices and bids converge4;

4Although convergence of such iterative algorithms is well known in the
literature, a formal proof is beyond the scope of this work.

essentially, steps 1 and 2 of PTM are iterated until the
values converge. After convergence, step 3 is finally evoked to
determine the rate allocation and the payments. In the above
process, note that there is no direct exchange of information
between the agents. All bids are collected by the network-
manager, which then communicates only the required prices
to the respective agents (i.e., only (μm, λ) is communicated to
user-m, while the entire (μ, λ) is given to the link-supplier).

IV. PRICE-ANTICIPATING SCENARIO – NASH

FORMULATION

In the price-anticipating scenarios agents initiate the bid-
ding process, which is in contrast to that in the price-taking
scenario. Further, in the Nash formulation the agents simul-
taneously announce their bids. Specifically, the sequence of
exchanges that take place in the price-anticipating mechanism
of the Nash formulation (PAM-N) is as given below.

Given the agents’ bids (p, β), it is natural for the
network-manager to go ahead and solve the NETWORK
problem in (2). The dual optimal variables, denoted
(μ(p, β), λ(p, β)), are then used by the network-manager to
determine the amount of rate and incentives to be exchanged.
An explicit expression for the above prices is presented in the
following lemma.

Lemma 1: Given any vector (p, β) of users’ and link-
supplier’s bids, the prices (λ(p, β), μ(p, β)) set by the
network-manager are given by

λ(p, β) =

⎧⎪⎨⎪⎩
0 if

�
i

�
piβi ≤ C

f−1
p,β(C) otherwise,

(9)

where f−1
p,β is the inverse of fp,β defined as

fp,β(t) =
�

i

⎛⎝ 2pi

t +
�

t2 + 4 pi

βi

⎞⎠ , (10)

and for m = 1, 2, · · · , M

μm(p, β) =
λ(p, β) +

�
λ(p, β)2 + 4 pm

βm

2
. (11)

Proof: See Appendix A.
Using the above results in (3), the pay-off that user-m

(m = 1, 2, · · · , M ) would achieve can be expressed as follows
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(where, for simplicity, we have used λ for λ(p, β)):

Qm(pm,p−m, β) = Um

�
pm

μm(p, β)

	
− pm

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Um

��
pmβm

�
− pm if

�
i

�
piβi ≤ C

Um

⎛⎝ 2pm

λ +
�

λ2 + 4 pm

βm

⎞⎠− pm otherwise,
(12)

where p−m = (p1, · · · , pm−1, pm+1, · · · , pM ) denotes the
bids of all users other than user-m. Similarly, for the
link-supplier we have

QL(β,p)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−V

��
m

�
pmβm

�
+

�
m

pm if
�

i

�
piβi ≤ C

−V (C) +
�
m

1
βm

⎛⎝ 2pm

λ +
�

λ2 + 4 pm

βm

⎞⎠2

otherwise.

(13)

The quantity V (C) in the above expression is due to comple-
mentary slackness conditions which imply�

m

pm

μm(p, β)
=

�
m

ym = C whenever λ > 0.

The users and the link-supplier recognize that their bids
affect the prices and the allocation. Acting as rational and
strategic agents, they now anticipate these prices. The appro-
priate notion of an equilibrium in this context is the following.

Definition 2 (Nash Equilibrium): A bid vector (p, β) is a
Nash equilibrium if, for all m = 1, 2, · · · , M , we have

Qm(pm,p−m, β) ≥ Qm(pm,p−m, β) ∀pm ≥ 0
QL(β,p) ≥ QL(β,p) ∀β ≥ 0.

When
�

i

√
piβi < C, the link is not fully utilized. In this

case the Lagrange multiplier λ = λ(p, β) = 0. Examination
of (12) and (13) indicates that the payments made by the users
are all passed on to the link-supplier. This may be interpreted
as follows: for a given set of payments, the link-supplier bids
are such that the link is viewed as a costly resource and the
network-manager passes on all his revenue to the link-supplier.
The link-supplier is thus assured of this revenue even if his link
is not fully utilized. If, on the other hand, the link-supplier’s
bids are such that

�
i

√
piβi > C, then λ > 0, and it is clear

from (13) that not all the collected revenue is passed on to the
link-supplier. Indeed, since λ > 0, we have

�
m

1
βm

⎛⎝ 2pm

λ +
�

λ2 + 4 pm

βm

⎞⎠2

<
�
m

pm

where the right-hand side is obtained when λ = 0. The actions
of the link-supplier as a strategic agent creates a situation of
conflict and results in the following undesirable equilibrium.

Theorem 2: When the users and the link-supplier are price-
anticipating, the only Nash equilibrium is (po, βo) where
po

m = 0 and βo
m = 0 for all m = 1, 2, · · · , M .

Proof: See Appendix B.

Thus, in the price-anticipating setting, efficiency loss is
100%, which we interpret as a market break-down. Indeed,
at βo = 0, the link-supplier is assured an income of�

m pm. Given this guaranteed income, he minimizes his cost
by supplying zero capacity. The resulting equilibrium is one
with the lowest efficiency, and the situation is vastly different
from the setting when the link-supplier is not viewed as an
agent [15].

Discussion on Practical Implementation

Although it is completely not favorable to operate at the
Nash equilibrium (po, βo), for completeness we still present
an iterative algorithm (like in the price-taking scenario) that
would converge to (po, βo). This discussion will also enable
us to reinforce the differences between the price-taking and
the price-anticipating scenarios. Further, knowing the subtle
variations between the Nash-equilibrium and the upcoming
Stackelberg-equilibrium convergent algorithms will enable one
to be cautious while implementation. The details of the algo-
rithm are as follows.

As in the price-taking scenario, the algorithm that we
present is essentially an iterative version of PAM-N mecha-
nism. For simplicity, we assume C = ∞ so that the results
in Lemma 1 reduces to λ := λ(p, β) = 0 and μm :=
μm(p, β) =

�
pm/βm; the finite C case can be similarly

handled. Now, the algorithm begins with the agents submitting
their initial bids, denoted (p(0), β(0)). The network-manager
computes the prices μ(0) = (μ1(0), · · · , μM (0)), and com-
municates the appropriate prices to the agents. Receiving
μm(0), user-m computes βm(0) = pm(0)/μm(0)2, using
which in (12) user-m determines pm(1) that optimizes its
pay-off. Simultaneously, given μ(0), link-supplier computes
pm(0) = μm(0)2βm(0) (for m = 1, 2, · · · , M ), and then
determines β(1) that optimizes the pay-off in (13). The
agents (separately but simultaneously) submit the new bids
(p(1), β(1)), and the process continues until the values of the
bids and the prices converge (i.e., steps 1 and 2 of PAM-N
are iterated until convergence). After convergence, the rate
allocation and payments are processed as per step 3.

V. PRICE-ANTICIPATING SCENARIO – STACKELBERG

FORMULATION

In view of the break-down of the market when both the users
and the link-supplier are simultaneously price-anticipating,

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 22,2023 at 10:33:45 UTC from IEEE Xplore.  Restrictions apply. 



1216 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 3, JUNE 2021

we design an alternative scheme that is based on a Stackelberg
game formulation. The sequence of exchanges in our new
mechanism is as given in the table above.

Thus, in the Stackelberg-game modification to the
price-anticipating scenario, the network-manager collects bids
from the agents in stages – the link-supplier leads and the
users follow. The analysis of this mechanism proceeds as
follows. Given a (β, p), the expression for the prices set
by the network-manager are as in Lemma 1. As a result,
the expressions for the users’ and the link-supplier’s pay-off
functions are exactly as in (12) and (13), respectively, but with
p replaced by pβ. Using these pay-off functions, we charac-
terize the solution in terms of Stackelberg equilibrium:

Definition 3 (Stackelberg Equilibrium): A bid vector
(β, pβ) is a Stackelberg equilibrium if, for all m = 1, 2, · · · ,
M , we have

Qm(pβ
m,pβ

−m, β) ≥ Qm(pm,pβ
−m, β) ∀pm ≥ 0

QL(β,pβ) ≥ QL(β,pβ) ∀β ≥ 0.

Observe that the bid-vector β announced by the link-supplier
in step-1 anticipates the user bids pβ of step-2. For a given β,
the bids submitted by the users is in anticipation of the prices
the network-manager announces in step-3.

For the ease of exposition, we assume that C = ∞ so that
the capacity constraint is not binding (the case where C is
finite can be similarly handled). Thus, recalling (9) and (11),
we have λ(p, β) = 0 and μm(p, β) =

�
pm

βm
. As a result the

pay-off functions in (12) and (13) can be simply expressed as

Qm(pm,p−m, β) = Um

��
pmβm

�
− pm (14)

QL(β,p) = −V

��
m

�
pmβm

�
+

�
m

pm. (15)

This simplification will enable us to focus on the key ideas
rather than dwell on the technicalities arising from a finite C
(which can although be handled but is cumbersome and not
very enlightening).

From (14) we see that the user pay-offs are independent of
the bids submitted by the other users. As a result, for a given β,
the unique equilibrium strategy for user-m is given by

pβ
m = argmax

pm≥0

�
Um

��
pmβm

�
− pm

�
. (16)

In Lemma 2 we report the expression for pβ
m that is obtained

by solving (16).
Lemma 2: For a given β we have

pβ
m =

⎧⎨⎩
r2
βm

βm
if βm > 0

0 otherwise
(17)

where rβm is the fixed point of U �
m(r) = 2r/βm.

Proof: See Appendix C.
We extend the definition of rβm in the above lemma by

defining rβm = 0 if βm = 0. It is then easy to see that

rβm =
�

pβ
mβm is the allocation to user m. Plugging the

above result into (15), we compute the optimal β that the

link-supplier should announce in step-1 as

β∗ ∈ B∗ = argmax
β≥0

�
−V

��
m

rβm

�
+

�
m

r2
βm

βm

�
, (18)

where β ≥ 0 means component-wise inequality.
For any β∗ ∈ B∗ it is clear that (β∗, pβ∗

) constitutes a
Stackelberg equilibrium, where the rate allocated to user-m is

given by xβ∗
m = yβ∗

m =
�

pβ∗
m β∗

m = rβ∗
m

. However, we first
need to assert the existence of a solution β∗, i.e., that the set
B∗ is nonempty.

Theorem 3: Suppose Um(·) and V (·) satisfy the following:
xU �

m(x) → ∞ and V (x)/x → ∞ as x → ∞. Then the set
B∗ is nonempty. Hence, under the above assumptions on the
pay-offs and cost function, a Stackelberg equilibrium exists.

Proof: See Appendix D.
Remark: We would like to emphasize that the above

assumptions on utility and cost functions are not very restric-
tive. Specifically, the condition imposed on the utility function
is satisfied by α-fair utility functions Um(x) = x1−α/(1−α)
for the range of α ∈ (0, 1). Although the popular utility
function log(1 + x) is ruled out, the functions log(1 + xq)
for q ∈ (0, 1) are allowed. Similarly, the condition on the
link-cost function is satisfied by a wide range of convex
functions including polynomials, exponentials etc.; only those
that are asymptotically linear are ruled out. Finally, we also
note that it is not possible to assert the uniqueness of β∗. The
main challenge that limits us from proving (or disproving) this
result lies in the intricate form of the function rβm/βm whose
concavity (or non-concavity) property is not easy to establish
(although it can be shown that rβm is increasing in βm).

Discussion on Practical Implementation

The algorithm begins with the link-manager first announc-
ing its initial bid β(0) to the network-manager. The
network-manager communicates βm(0) to user-m (m =
1, 2, · · · , M ) All users announce their respective prices
pm(0) = p

β(0)
m by solving (17). The network-manager com-

putes prices μm(0) =
�

pm(0)/βm(0), and communicates
the price vector μ(0) to the link-supplier. The link-supplier,
extracting p(0) from the received price information, will eval-
uate its pay-off using (15). Now, unlike the Nash-equilibrium
algorithm which determines β(1) by simply optimizing (15),
here the link-supplier’s objective is instead to find a β(1) that
is in the direction of solving the problem in (18). However,
since rβm as a function of βm is unknown to the link-supplier,
the problem of optimizing (18) falls within the realm of
blackbox optimization. The link-supplier is hence expected to
use a stochastic search algorithm such as simulated annealing,
hill climbing, etc., to iteratively approach a Stackelberg equi-
librium β∗ in (18). Once the link-supplier’s search algorithm
converges, the network-manager announces the final rates and
payments.

A. Stackelberg Equilibrium for Linear User Pay-Offs

In the remainder of this section, we restrict our attention to
linear user pay-offs. In this case an explicit expression for the
Stackelberg equilibrium can be derived. Specifically, suppose
that the user pay-offs are of the form Um(xm) = cmxm

where cm > 0 (m = 1, 2, · · · , M ). Without loss of generality,
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assume that c1 = maxm{cm}. The Stackelberg equilibrium
can then be computed as follows.

First, fix a β. Recalling Lemma 2, we have

rβm =
βmU �

m(rβm)
2

=
βmcm

2
so that the equilibrium bid of user-m can be written as

pβ
m =

r2
βm

βm
=

βmc2
m

4
. (19)

Substituting for rβm in (18), we obtain

β∗ ∈ arg max
β≥0

�
−V

��
m

βmcm

2

�
+

�
m

βmc2
m

4

�
. (20)

Since the link-cost function V (·) is strictly convex, it follows
that there is a unique β∗ that solves the above problem. The
explicit expression of β∗ is reported in the following lemma.

Lemma 3: Suppose that v(x) := V �(x) satisfies v(0) = 0.
Then, the solution to the problem in (20) is given by
β∗ = (β∗

1 , β∗
2 , · · · , β∗

M ) where

β∗
m =

⎧⎨⎩
2
c1

v−1(
c1

2
) if m = 1

0 otherwise
(21)

Proof: Available in Appendix E
Remark: The condition v(0) = 0 imposed on the derivative

of the cost function V (·) is necessary to ensure that β∗
1

in (21) is positive. Thus, the market is guaranteed to be active
for any set of linear user utilities. The above condition is
not very restrictive as it is satisfied by the polynomial cost
functions (i.e., V (x) = axn). The following modification of
the exponential cost function also satisfies the above property:
V (x) = eax − (ax + 1) for a ≥ 1.

The equilibrium bids of users in response to this optimized
β∗ is then given by

pβ∗
m =

� c1

2
v−1

�c1

2

�
if m = 1

0 otherwise.
(22)

Thus, when the user pay-offs are linear, the link-supplier
allocates all the bandwidth to the “best” user (i.e., the one
with the maximum slope cm); in return, the best user alone
makes a positive payment to the link-supplier.

The rate allocated to user m at equilibrium is

xβ∗
m = rβ∗

m

=
�

pβ∗
m β∗

m

=

�
v−1

�c1

2

�
if m = 1

0 otherwise.
(23)

The total rate served by the link-supplier at equilibrium is
given by

�
m yβ∗

m =
�

m xβ∗
m = v−1

 
c1
2

!
.

B. Lower Bound on Efficiency

Given a Stackelberg equilibrium (β∗, pβ∗
) the efficiency is

defined as the ratio of the utility at equilibrium (Stackelberg
utility) to the system optimum (social utility):

E({Um}; V ) =
�

m Um

 
xβ∗

m

!− V
 �

m xβ∗
m

!�
m Um (xs

m) − V (
�

m xs
m)

(24)

where xs
m denotes the social optimum allocation to user m

(obtained by solving SYSTEM in (1)). Note that we have
emphasized the dependency of efficiency on ({Um}; V ) by
incorporating these into the notation for efficiency.

When the link-supplier is non-strategic, from
Johari et al. [15] it is known that the bound on efficiency is
(4
√

2 − 5), i.e., E({Um}, V ) ≥ (4
√

2 − 5) for any general
collection of user pay-off functions {Um} (the loss in
efficiency is thus no more than 34%). The above bound is
obtained in [15] by doing the following.
(a) Show that the users’ equilibrium bids in the original

game (with general user pay-off functions) constitutes
an equilibrium in an alternate game with appropriately
chosen linear pay-off functions.

(b) Use this to show that the efficiency in the original game is
bounded below by the efficiency achieved in the alternate
game.

(c) Finally, minimize the efficiency over the set of all linear
pay-offs; this can be explicitly computed and is (4

√
2−5).

In our case, although (a) holds5 for any given β, there is a
subtle issue.6 Since the link-supplier is also strategic, the orig-
inal game and the alternate game (with linear user pay-offs)
may not have identical Stackelberg equilibria. In particular,
the β∗ that optimizes the objective in (18) may not necessarily
optimize

max
β≥0

�
−V

��
m

βmam

2

�
+

�
m

βma2
m

4

�
, (25)

which is the objective corresponding to the game with linear
pay-offs: Um(xm) = amxm with am = U �

m(rβ∗
m

). Thus,
(a) and (b) may not hold for general user pay-offs. However,
an analog of (c) continues to hold if we restrict our attention
to the ensemble of all linear user pay-offs. The lower bound
on efficiency will however depend on the link-suppliers cost
function V (x). This result is detailed in the following theorem.

Theorem 4: Fix a link-cost function V (·) that satisfies
v(0) = 0 where v(·) := V �(·). Then, for any collection of
linear user pay-offs {Um}, we have

E({Um}; V ) ≥ inf
c>0

cv−1( c
2 ) − V (v−1( c

2 ))
cv−1(c) − V (v−1(c))

(26)

Proof: See Appendix F.

C. Efficiency Bound for Example Link-Cost Functions

1) Polynomial Link-Cost Functions: We apply the above
theorem to derive explicit expressions for the lower bound
on the efficiency when the link-cost function is polynomial,
i.e., V (x) = axn where a > 0. We start with the case of
quadratic link-cost V (x) = ax2. We then have v(x) = 2ax so

5Formally, we can show that for any given β, the equilibrium strategy pβ
m

for the users in the original game with pay-off functions {Um} is also an
equilibrium strategy for the users in an alternate game with linear pay-offs
{Um}, where Um(xm) = cmxm with cm = U �

m(rβ∗
m

).
6Our conference version [1] missed this subtle point and incorrectly made

a more general claim that the lower bound held for a larger class of user
pay-offs.
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Fig. 2. (a) Geometric interpretation of the efficiency bound; (b) Construction of a sequence of degenerate link-cost functions whose efficiency decreases
to 0.

that v−1(y) = y
2a . Thus, using (26), we obtain

E({Um}; V ) ≥ inf
c>0

c c
4a − V ( c

4a )
c c

2a − V ( c
2a )

= inf
c>0

c c
4a − a( c

4a )2

c c
2a − a( c

2a )2

= inf
c>0

c2

4a (1 − 1
4 )

c2

2a (1 − 1
2 )

=
3
4
.

Thus, when the link-cost is quadratic, the worst-case efficiency
loss for any linear user pay-off is no more that 25%.

Similarly, suppose V (x) = ax3. Then, using the bound (26)
and a similar calculation, we obtain

E({Um}; V ) ≥ 5
4
√

2
≥ 0.88.

Thus, the worst-case efficiency loss improves to 12% when
the link-cost is cubic. In general, suppose the link-cost is
polynomial of degree n ≥ 2, i.e., V (x) = axn, then the bound
on efficiency is given by

E({Um}; V ) ≥
�

1
2

	 n
n−1 2n − 1

n − 1
. (27)

The aforementioned lower bound is increasing as a function
of n and converges to 1 as n → ∞. Thus, if the link-cost can
be modeled as axn, the efficiency loss reduces as n increases.

2) Exponential Link-Cost Functions: We next consider
exponential link-cost functions of the form V (x) = eax−(ax+
1) where a ≥ 1. For these functions we have v(x) = a(eax−1)
so that v−1(y) = 1

a ln
 

y
a + 1

!
. Applying Theorem 4 and

simplifying, we obtain the following bound on efficiency:

E({Um}; V ) ≥ inf
c>0

 
c
a + 1

!
ln

 
c
2a + 1

!−  
c
2a + 1

! 1
a + 1 

c
a + 1

!
ln

 
c
a + 1

!−  
c
a + 1

! 1
a + 1

.

We numerically solve the above expression and (interestingly)
find that

E({Um}; V ) ≥
�

3/4 for a = 1
1/2 for a > 1.

(28)

Thus, exponential link-cost functions also yield favorable
bound on efficiency.

In summary, the above observations provide strong support
for our proposed PAM-S mechanism when compared with the
PAM-N mechanism of Section IV where the efficiency loss
(for any {Um} and any V ) is always 100%.

D. Worst-Case Bound on Efficiency

Although the class of polynomial link-cost functions yield
favorable lower bounds on efficiency, we now show that there
exists a family of link-cost functions Vn, n ≥ 1, such that
the corresponding sequence of efficiency-bound converges to
0 as n → ∞. Thus, the worst-case efficiency bound, over all
possible linear {Um} and over all possible V , is 0.

To see this, let us first rewrite (26) by expressing V in the
integral form V (x) =

" x

0 v(τ)dτ to get

E({Um}; V ) ≥ inf
c>0

cv−1( c
2 ) − " v−1( c

2 )

0 v(τ)dτ

cv−1(c) − " v−1(c)

0
v(τ)dτ

=: inf
c>0

H(c, v).

For a given c and a marginal cost function for the link-supplier
v(·), H(c, v) can be geometrically interpreted with the aid of
the illustration in Fig.2(a) as follows: the numerator in the
formula for efficiency is the area of the region A1 (light shaded
region) while the denominator is total area of A1 and A2

(shaded dark). We then have

H(c, v) =
A1

A1 + A2
=

A1/A2

1 + A1/A2

where Ai denotes the area of region Ai (i = 1, 2). In Fig. 2(a)
we have used e1 to denote v−1( c

2 ); also, f1 = v−1(d1) where
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Fig. 3. Efficiency of the proposed Stackelberg-game based mechanism (of Section V), evaluated for different combinations of user-utilities and link-cost
functions. (a) and (b): polynomial link-cost and α-fair user utilities; (c) and (d): polynomial link-cost and log user utilities; (e) exponential link-cost and
α-fair user utilities; and (f) exponential link-cost and log user utilities.

d1 is arbitrarily chosen in
 

c
2 , c

!
. Since V is strictly convex

and increasing, it follows that v is strictly increasing.
Now, it is possible to construct a sequence of v(·) functions,

say {vn}, such that en ↓ 0, dn ↓ c
2 while fn ↑ v−1(c); an

illustration of such a construction is depicted in Fig. 2(b).
Observe that along such a sequence we have A1 ↓ 0 and
A2 ↑ c

2v−1(c) > 0. As a result we have H(c, vn) → 0
as n → ∞. Thus, for any given c it is possible to produce
pathological link-cost functions whose efficiency-bounds are
arbitrarily close to 0. Therefore, it is not possible to guarantee a
less-than-100% efficiency loss (i.e., a positive efficiency) when
the class of all possible link-cost functions are considered.
Nevertheless, bounding the efficiency for a fixed link-cost
function is reassuring.

VI. NUMERICAL RESULTS

Our theoretical result on efficiency of the proposed
Stackelberg-game based mechanism presented in Theorem 4 is
limited to linear utility functions. In this section we conduct a
detailed numerical study to characterize efficiency for general
utility functions. We specifically focus on the class of α-fair
and log utility functions described earlier (recall the remark
following Theorem 3). For link-costs we use the polynomial
and the exponential link-cost functions of Section V-C so
that the obtained results can be compared with the respective
linear-utility bounds.

We first consider the polynomial link-cost function
V (x) = axn. Since the corresponding linear-utility bound
in (27) is not dependent on a, we simply fix a = 1. We assume
there are M = 5 users in the system. We use α-fair utility
functions Um(x) = x1−αm/(1 − αm) to model user utilities
(where αm ∈ (0, 1) for m = 1, 2, · · · , M ). We consider two
approaches for studying the effect of {αm} on efficiency.
In the first approach we fix αm = α for all m (identical
user-utility scenario), and compute efficiency by varying α.
In the second approach, αm are assigned values in an i.i.d.
fashion randomly from the interval (0, 1) (random user-utility
scenario). In the latter case we are interested in evaluating the
min, max and the average values of the achieved efficiency.

In Fig. 3(a) we show the results obtained for the identical
user-utility scenario. Exponent n of the polynomial link-cost
function is varied along the x-axis while the achieved effi-
ciency is depicted along the y-axis. For each n, we vary α
from 0.1 to 0.9 in steps of 0.2. For the purpose of comparison,
in Fig. 3(a) we also present the linear-utility bound computed
in (27). For n = 2 the linear-utility bound of 3/4 seems to
apply to the case of α-fair utilities as well for every value of
α. For other values of n, the bound appears to be applicable
when α is larger. Although smaller values of α yield a lower
efficiency, it is interesting to note that the efficiency values
remain very close to the value of the bound derived for the
linear utility functions.
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In practice the user utilities need not be identical. We model
this scenario by assigning values to αm randomly from the
interval (0, 1) in an i.i.d fashion. For a given assignment
of {αm} we compute the achieved efficiency which can be
regarded as a random variable. We repeat the experiment
for 100 iterations of random assignment, computing effi-
ciency in each iteration. In Fig. 3(b) we depict the statistics
of the obtained results in terms of the minimum, maxi-
mum, and the average efficiency achieved by the Stackel-
berg mechanism. Of particular interest is the max-statistics
whose efficiency value is close to 1, implying that for some
configuration of {αm} our Stackelberg-based rate-allocation
yields a sum-utility which is as good as that achieved by the
optimal allocation.

We continue our experiments with the polynomial link-cost
function by replacing the α-fair utility function with the log-
utility function Um(x) = log(1 + xqm) where qm ∈ (0, 1).
The corresponding results are reported in Fig. 3(c) and 3(d).
Fig. 3(c) corresponds to the identical user-utility scenario
where we fix qm = q for all m. The results are similar to
that in Fig. 3(a) except that here the efficiency decreases with
the exponent q. Results of the random user-utility scenario,
where qm are drawn i.i.d. randomly from (0, 1), are depicted
in Fig. 3(d). Although the results are comparable with the
case of α-fair utility (in Fig. 3(b)), we observe that the
max-statistics is not as promising as the results in Fig. 3(b).

We finally conduct experiments with the exponential
link-cost functions V (x) = eax − (ax + 1). For brevity,
we present results only for the random user-utility scenario
(however we note that the results of the identical user-utility
case are similar to that obtained with polynomial link-cost
function). In Fig. 3(e) and 3(f) we present the statistics of
efficiency (as a function of the exponent a) for α-fair utility
and log-utility, respectively. Also shown in these plots are
the corresponding linear-utility bound on efficiency from (28).
From both plots we observe that the efficiency of the pro-
posed mechanism is insensitive to the parameter a. Further,
the linear-utility bound appears to hold for the class of
α-fair and log utility functions. As in the case of polynomial
link-cost function, comparing the results in Fig. 3(e) and 3(f)
we find that the max-statistics is more favorable when the
utility functions are α-fair.

Finally, we would like a make a note regarding fairness of
allocation, since from (22) we know that linear utilities yield
unfair allocation in the sense that, at equilibrium, except for
one all users are allocated zero rate. Unlike the case with linear
utilities, from our numerical work we find that the class of
α-fair and log utility functions achieve a fairer rate allocation
whereby non-zero rate is allocated to all users at equilibrium.

To summarize, we find that the proposed Stackelberg-game
based resource-allocation mechanism performs consistently
across the range of parameterized link-cost functions (polyno-
mial and exponentials) and user utilities (α-fair and log) con-
sidered in our numerical study. In some cases the linear-utility
bound is respected (e.g., n = 2 in Fig. 3(a) to 3(d), and for
all values of a in Fig 3(e) and 3(f)). In scenarios where the
linear-utility bound is not met, we observe that the values of
the achieved efficiency are close to the respective bounds. The
linear-utility bound can thus serve as a good estimate for the
system designer to take into consideration while designing
a resource allocation network. Finally, summarizing results

across all the plots in Fig. 3 we conclude that the efficiency
of the proposed mechanism is at least 3/4 (75%) under any
(link-cost and user-utility) scenario considered in our study.

VII. CONCLUSION

This article was about double auction mechanisms and a
proposal for a structured interaction to increase efficiency
in the presence of strategic agents. The mechanism has
application in data off-loading and network slicing markets.
Data offloading is a good low-cost strategy that leverages
existing auxiliary technology for handling the growth of
mobile data. Technologies to enable such offloading are now
available [2], [3]. Network slicing is expected to open up new
business opportunities for mobile operators who can slice their
physical resources and lease them to tenants or virtual network
operators. Since in both examples the resulting markets are
resource trading markets, suitable compensation mechanisms
have to be put in place to encourage trading of the physical
resources. It is natural that the agents involved are strate-
gic. This article demonstrates that mechanisms for trading
resources should be designed with some care. An earlier work
proposed a data offloading mechanism (collect bids, allocate
offloading amounts, and distribute payments) and designed
an iterative procedure to get the system to a competitive
equilibrium where all agents benefited, if all agents were price-
taking. We showed that if the agents are price-anticipating, this
benefit completely disappears and the efficiency loss is 100%.
New mechanisms are thus needed when all agents are price-
anticipating. We proposed a simple Stackelberg formulation
with the supplying agent as a lead player. The resulting mech-
anism structures the interactions and alleviates the problem to
some extent. The efficiency is lower bounded in terms of the
true link cost function. The efficiency loss is 25% for quadratic
link costs (efficiency = 0.75). While there are link cost
functions for which the efficiency loss, even in the Stackelberg
formulation, is close to 100%, these appear to be pathological
cases. The proposed mechanism with link suppliers as lead
players will likely have tolerable efficiency loss for most
real link cost functions and arbitrary but linear user pay-
offs. This is to be contrasted with 100% efficiency loss for
the price-anticipating mechanism. Going beyond our scalar
bid per resource, our proposal also suggests an interesting
open problem for implementation theorists. Does the minimum
signaling dimension for social welfare maximization (in the
Stackelberg equilibrium solution concept) strictly decrease?

APPENDIX A
PROOF OF LEMMA 1

The Lagrangian for the problem NETWORK in (2) is given
by

L(x,y, λ, μ) =
�
m

pm log(xm) −
�
m

y2
m

2βm

−λ
��

m

ym − C
�
−

�
m

μm

�
xm − ym

�
where λ and μ = (μ1, · · · , μm) are the Lagrange multipliers
associated with the constraints in (2b) and (2c), respectively.
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The optimality (KKT) conditions include

∂L

∂xm
=

pm

xm
− μm = 0 ∀m (29)

∂L

∂ym
= − ym

βm
− λ + μm = 0 ∀m (30)

along with primal feasibility ((2b), (2c) and (2d)), dual feasi-
blity (λ ≥ 0 and μ ≥ 0), and the following complementary
slackness conditions:

λ
��

m

ym − C
�

= 0 (31)

μm

�
xm − ym

�
= 0 ∀m. (32)

Note that the objective in (2a) is strictly increasing with
xm; hence, at optimality it should be that xm = ym for all m.
As in the proof of Theorem 1 (see Step-4), this observation can
also be argued formally using the KKT conditions. Suppose at
optimality we have xm < ym for some m. Then, the slackness
condition in (32) implies μm = 0, using which in (30) we
obtain ym = −βmλ. However, non-negativity constraint on
all the variables forces βmλ = 0, yielding 0 ≤ xm = ym = 0,
which is a contradiction. Thus, at optimality we must have
xm = ym ∀m. Now, using (29) and (30) in the above
expression we have

xm =
pm

μm
= βm

�
μm − λ

�
= ym ∀m. (33)

Solving this for μm we obtain (as required; recall (11))

μm =
λ +

�
λ2 + 4 pm

βm

2
∀m. (34)

We next proceed to obtain λ. For this, using the above
expression in (33) and summing over all m, we obtain�

m

xm = fp,β(λ) =
�
m

ym ≤ C, (35)

where the function fp,β is as in (10), and the inequality is sim-
ply due to the capacity constraint in (2b). Note that, fp,β(λ) as
a function of λ is strictly decreasing with fp,β(0) =

�
i

√
piβi

(see Fig. 4 for an illustration). Also, limλ→∞ fp,β(λ) = 0.
Two cases are possible (recall (9)) as follows.

Case-1 (fp,β(0) ≤ C): In this case λ = 0 alone satisfies (35)
while ensuring the slackness condition in (31).

Case-2 (fp,β(0) > C): In this case we require λ > 0,
since λ = 0 cannot satisfy (35). However, λ > 0 immediately
implies

�
m

ym = C (see (31)). Hence, we set λ = f−1
p,β(C).

See Fig. 4 for an illustration of the above two cases. �

APPENDIX B
PROOF OF THEOREM 2

We will first show that (po, βo) is a Nash equilibrium. For
this, note that once the link-supplier fixes his bids to βo = 0,
then for any vector of user bids p ≥ 0 the system operates
in the regime

�
i

�
piβo

i ≤ C. Thus, using the first expression

in (12), for any pm > 0, we have

Qm(pm,po
−m, βo) = Um(0) − pm

< Um(0)
= Qm(po

m,po
−m, βo).

Fig. 4. Illustration of the two cases that are possible depending on whether
fp,β (0) =

�

m

√
pmβm ≤ C (Case-1) or otherwise (Case-2). In the above

depiction (p(1), β(1)) and (p(2), β(2)) are such that they satisfy case-1
and case-2, respectively, so that λ(1) := λ(p(1), β(1)) = 0 and λ(2) :=
λ(p(2), β(2)) = f−1

p(2),β(2) (C).

Thus, unilateral deviation from po
m is not beneficial for user

m (∀m). Similarly, for any β such that βm > 0 for some m,
we have

QL(β,po) = −V (0) +
�
m

po
m = QL(βo,po)

To obtain the above, note that since the users’ payments are
zero, from (13), the first expression applies. Any other value of
βm does not strictly increase the pay-off of the link-supplier.
Thus, (po, βo) is a Nash equilibrium.

We now prove the uniqueness of the Nash equilibrium. Let
(p∗, β∗) be a Nash equilibrium. Suppose p∗m > 0 for some
m. Then, if β∗

m = 0 (recalling (12)) the pay-off to user m is

Qm(p∗m,p∗
−m, β∗) = Um(0) − p∗m < Um(0)

= Qm(0,p∗
−m, β∗)

which contradicts the assumption that (p∗, β∗) is a Nash
equilibrium. On the other hand, if β∗

m > 0, then the
link-supplier can benefit by deviating to the bid βo. This is
because, the rate-cost incurred by deviating to βo is always
strictly lower (since he now provides zero bandwidth). Also,
the payment

�
m p∗m accrued under β∗

m > 0 may be better if
the system was not already in the regime

�
i

�
p∗i β

∗
i ≤ C;

if already in that regime the payment remains unchanged.
Formally,

QL(β∗, p∗) < −V (0) +
�
m

p∗m = QL(βo, p∗)

which is again a contradiction. Thus, p∗m = 0 ∀m, i.e., p∗ = 0.
Now, suppose β∗

m > 0 for some m. User m can benefit by
making a small payment pm. Indeed choose a pm satisfying

0 < pm ≤ min


C2/β∗

m, qm

�
(36)

where qm is the maximizer of the function

h(pm) = Um

��
pmβ∗

m

�
− pm (37)
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over pm ≥ 0. Note that h(pm) is strictly concave in pm.
Hence, qm is the unique solution to the optimality condition

U �
m

��
qmβ∗

m

�
= 2

�
qm/β∗

m.

Since U �(·) is strictly decreasing with U �(0) > 0, we have
qm > 0, thus enabling us to choose a pm satisfying (36). The
min term in (36) involving C2/β∗

m is required to ensure that
the first expression of (12) is applicable. Thus, we have

Qm(p∗m,p∗
−m, β∗) = Um(0) (since p∗m = 0)

< Um

��
pmβ∗

m

�
− pm

= Qm(pm,p∗
−m, β∗)

where the inequality is because the function h(·), being
strictly concave, is strictly increasing until qm. The above
contradiction implies that β∗

m = 0 ∀m, i.e., β∗ = 0. Hence,
(po, βo) is the only Nash equilibrium. �

APPENDIX C
PROOF OF LEMMA 2

Since the objective function in (16) is continuously differen-
tiable and strictly concave (both are easy to check), it suffices
to show that pβ

m of (17) solves the following optimality
equation:

U �
m

��
pmβm

� √
βm

2
√

pm
− 1 = 0.

Indeed, with pm = pβ
m of (17) plugged into the above

expression we have

U �
m(rβm)

βm

2rβm

− 1 = 0

and so rβm satisfies U �
m(rβm) = 2rβm/βm. The case when

βm = 0 is straightforward. �
APPENDIX D

PROOF OF THEOREM 3

We first show that the objective function of the problem
in (18) is continuous in βm for each m. We next argue that it
is sufficient to consider argmax in (18) over a compact set of
β values. Then the proof is completed by invoking Weierstrass
theorem. The details are as follows.

A. Proof of Continuity

To show the continuity of the objective in (18) it suffices
to prove that rβm is continuous in βm (for all m). For
simplicity we omit the subscript m hereafter. Let us first prove
right-continuity of rβ at β = 0. Clearly, since rβ is the solution
to U �

m(r) = 2r/β, we see that rβ ≥ 0 and, moreover, since
U �

m is strictly decreasing we have rβ = U �
m(rβ)

2 β ≤ U �
m(0)
2 β

from which it follows that r0 = 0 so that rβ is continuous at
β = 0. To prove continuity at any β > 0, we show that rβ

is Lipschitz continuous, i.e., |rβ1 − rβ2 | ≤ U �
m(0)
2 |β1 − β2|.

Without loss of generality assume β2 > β1 so that rβ2 > rβ1 .
Then we have (again since U �

m(·) is decreasing)
rβ2 − rβ1 = U �

m(rβ2)β2/2 − U �
m(rβ1)β1/2

≤ U �
m(rβ2)β2/2 − U �

m(rβ2)β1/2
= (U �

m(rβ2)/2)(β2 − β1)
≤ (U �

m(0)/2)(β2 − β1).

This establishes Lipschitz continuity.

B. Proof That It Suffices to Search for βm in a Bounded Set

First note that, using the definition of rβm and pβ
m, we may

write the objective function as

−V

��
m

pβ
m

rβm/βm

�
+

�
m

pβ
m

= −V

��
m

pβ
m

U �
m(rβm)/2

�
+

�
m

pβ
m

≤ −V

��
m

pβ
m

U �
m(0)/2

�
+

�
m

pβ
m

since V (·) is strictly increasing. From the assumption that
V (x)/x → ∞ as x → ∞, we see that the last term in the
right-hand side above is less than 0 for all (pβ

m, 1 ≤ m ≤ M)
with

�
m pβ

m > P for some bounded P . Since each pβ
m ≥ 0,

we trivially have that 0 ≤ pβ
m ≤ P .

From the formula for rβm and pβ
m, we have pβ

m =
rβmU �

m(rβm)/2, and hence 0 ≤ rβmU �
m(rβm)/2 ≤ P . Under

the assumption rU �
m(r) → ∞ as r → ∞, we must then have

0 ≤ rβm ≤ R for some bounded R, and since U �
m is strictly

decreasing and strictly positive, we must have U �
m(rβm) ≥

U �
m(R) > 0. Using this, we then have

βm = pβ
m/(U �

m(rβm)/2)2 ≤ 4P/(U �
m(R))2 < ∞.

This completes the proof. �

APPENDIX E
PROOF OF LEMMA 3

For simplicity, let f(β) denote the objective function
in (20). Then, for any β ≥ 0 we have

f(β) = −V

��
m

βmcm

2

�
+

�
m

βmc2
m

4

≤ −V

��
m

βmcm

2

�
+

�
m

βmcmc1

4

= −V

�
β̃1c1

2

�
+

β̃1c
2
1

4
= f(β̃)

where β̃ = (β̃1, β̃2, · · · , β̃M ) is such that β̃1 =
�

m
βmcm

c1

while β̃m = 0 for m = 2, 3, · · · , M . Thus, for any β ≥ 0
there exists a bid β̃ ≥ 0 (as constructed above) using which the
link-supplier can accrue a higher pay-off. As a consequence,
the optimization framework in (20) can be reduced to the
following equivalent problem:

max
β=(β1,0,··· ,0)≥0

#
−V

�
β1 c1

2

	
+

β1 c2
1

4

$
.

Solving for β1 in the above expression (by taking derivative
and equating to 0) yields the result in (21). �

APPENDIX F
PROOF OF THEOREM 4

Consider linear pay-offs of the form Um(xm) = cmxm

where cm > 0 (m = 1, 2, · · · , M ). Without loss of generality,
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assume that c1 = maxm{cm}. Then, recalling (23), the utility
at Stackelberg equilibrium can be written as

Stackelberg utility

=
�
m

Um

�
xβ∗

m

�
− V

��
m

xβ∗
m

�
= U1

�
v−1

�c1

2

��
− V

�
v−1

�c1

2

��
= c1v

−1
�c1

2

�
− V

�
v−1

�c1

2

��
. (38)

Next, the social optimal utility is obtained by solving

max
x≥0

��
m

Um (xm) − V

��
m

xm

��
.

Substituting for the linear pay-off functions and rearranging,
the above problem can be alternatively expressed as

max
x≥0

��
m

cmxm − V

��
m

xm

��
.

Thus, the optimal rate allocation xs
m is given by

xs
m =

�
v−1(c1) if m = 1
0 otherwise.

Thus, the social optimal utility is given by

Social utility = c1v
−1(c1) − V

 
v−1(c1)

!
. (39)

From (38) and (39) we have (replacing c1 by c)

E({Um}; V ) =
cv−1( c

2 ) − V (v−1( c
2 ))

cv−1(c) − V (v−1(c))
.

The worst case bound on efficiency can be obtained by taking
infimum over all c > 0. �
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