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Highlights
Heterogeneity in host–pathogen interac-
tions introduces incredible diversity in
TB lesions that leads to heterogeneous
drug distribution and selects for Mtb
phenotypes with reduced susceptibility
to drugs.

Immune signaling, ontogeny, and HIV
co-infection dictate Mtb’s survival and
phenotypic antimicrobial resistance
(AMR) in the host.

Intraphagosomal Mtb faces low pH and
nitric oxide and the metabolic adapta-
tions required to survive under these
Successful treatment of tuberculosis (TB) depends on the eradication of its
causative agent Mycobacterium tuberculosis (Mtb) in the host. However, the
emergence of phenotypically drug-resistant Mtb in the host environment tem-
pers the ability of antibiotics to cure disease. Host immunity produces diverse
microenvironmental niches that are exploited byMtb to mobilize adaptation pro-
grams. Such differential interactions amplify pre-existing heterogeneity in the
host–pathogen milieu to influence disease pathology and therapy outcome.
Therefore, comprehending the intricacies of phenotypic heterogeneity can be
an empirical step forward in potentiating drug action. With this goal, we review
the interconnectedness of the lesional, cellular, and bacterial heterogeneity un-
derlying phenotypic drug resistance. Based on this information, we anticipate
the development of new therapeutic strategies targeting host–pathogen hetero-
geneity to cure TB.
conditions lead to phenotypic AMR.

Metabolic adaptations under low pH
generate redox heterogeneity in a repli-
cating Mtb population with drug-
tolerant bacteria exhibiting elevated
mycothiol, Fe-S clusters, and H2S gas.

The link between acidic pH, metabolism,
and phenotypic AMR opens novel
approaches for therapy; for example,
phagosomal de-acidification by chloro-
quine subverts redox heterogeneity and
eradicates drug-tolerantMtb.
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Antimicrobial Resistance (AMR) in Diverse Infection Landscapes
TB remains the number one infectious killer globally. TB treatment is unusually long (minimum of
6–9 months) for an infectious disease and requires the use of a cocktail of antibiotics. A critical
impediment to antimicrobial treatment is that the causative agent,Mtb, becomes phenotypically
resistant once it is inside its human host.

Genetic AMR emerges when bacteria mutate to gain the heritable ability to multiply in the
presence of antibiotics. By comparison, phenotypic AMR is a more fledgling concept,
although it was reported as early as World War II when the wonder drug penicillin failed
against persistent bacterial infections [1,2]. It is defined as a non-heritable, physiological ad-
aptation that allows bacteria to survive under extreme antibiotic exposure and outgrow once
growth-permissive conditions are reinstated. Recent guidelines clarify differences between
genetic AMR and two major phenotypic AMR forms known as ‘persistence’ and ‘tolerance’
[3,4]. Of these, the former is an attribute of a smaller fraction of non-replicating bacteria while
the latter is a feature of the majority of actively dividing bacteria in an isogenic population
[3,4]. ‘Occult’ Mtb fractions that tolerate antibiotic exposure and promote infection relapse
have been reported in rabbit cavity caseum and sputum of TB patients [5,6]. Multiple sto-
chastic and deterministic triggers induce a spectrum of responses from a clonal Mtb popu-
lation during infection, indicating that both host and pathogen drive phenotypic AMR and
heterogeneous outcomes of disease [7,8]. Uncovering the mechanisms underlying the gen-
eration of phenotypic variability can facilitate the development of novel antibiotics or
repurposing of existing molecules to reduce therapy time. This review attempts to delineate
phenotypic variations in granulomatous lesions, host immune cells, and Mtb that dictate the
emergence of phenotypic AMR.
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Lesional Heterogeneity
A History of ‘Vanished’ Mtb
In the late 1950s, Walsh McDermott and his colleagues extensively studied the outcome of
prolonged drug treatment in mice and reported that antibiotics could kill actively growing Mtb
and render the remaining bacilli ‘sterile’ [9,10]. The sterile fraction lacks the capacity to divide
and remains undetectable in tissues. However, a natural relapse of infection was observed in
one-third of the animals after cessation of antibiotic therapy, which could be accelerated by
immune suppression. The resurgence of ‘vanished’Mtbwas not due to geneticmutations.Moreover,
spleens showed higher bacterial load than lungs, indicating a role for the local immune environment
in infection relapse. The isoniazid (Inh)–pyrazinamide (Pza) combination was more efficacious than
Inh–streptomycin, suggesting the importance of a specific mix of antibiotics in eradicating Mtb.
Early Inh activity targets replicating Mtb and the residual non-replicating bacteria are targeted by
Pza to achieve near eradication [11]. Combining Inh andPzawith rifampicin (Rif), which targets house-
keeping transcriptional functions in replicating and non-replicating Mtb, enhances the sterilizing
activity of the drug regimen [12]. Differential activity of drugs against phenotypicMtb variants is a likely
explanation for the underlying antagonism between ethambutol (Emb) and Rif when they are admin-
istered together [11]. In support of this, the early bactericidal activity of antibiotics to decrease theMtb
load per milliliter of human sputum during the first 2 days of treatment is reported to be variable [13].
However, the sterilizing activities of antibiotics to clear persistingMtb over a longer period of exposure
are often similar [13]. These studies underscore the importance of studying the mechanisms under-
lying phenotypic diversity in the Mtb population during infection. In this context, bacilli present in TB
patients’ sputum provide exciting and tractable opportunities to investigate the basis of phenotypic
heterogeneity and disease transmission.

Out and About: Occult Mtb in Sputum
Active TB disease manifests in only a small fraction of the entire diseased population. The
mechanisms of disease transmission via aerosols, however, remain poorly understood. Re-
cently, a cell-wall-associated polyketide (sulfolipid-1) in virulent Mtb strains such as H37Rv
and Erdman, has been reported to serve as a nociceptive stimulant for the host’s cough reflex
and aid in bacterial transmission through aerosols [14]. Interestingly, H37Rv and Erdman are
more resistant to oxidative stress and hypoxia than ancient lineages in animal models of infec-
tion [15,16]. However, the transmissibility of strains can vary even within lineages depending on
the initial host–pathogen interaction, as demonstrated in a household contact study of TB pa-
tients [17].Mtb sampled through bronchoalveolar lavage and sputum from nasopharyngeal air-
ways is, therefore, essential to understanding of the role of phenotypic diversity and AMR
during transmission [18,19].

Sputum bacilli were classically believed to be actively replicating, by virtue of their presence in
aerated cavities [20]. However, transcriptome analysis of Mtb in sputum shows similarity with
stationary-phase axenic cultures, indicating that growth-variable bacterial fractions might be ex-
pectorated by patients [6]. Analysis of sputum from active TB or HIV-TB co-infected patients in-
dicates that not all persistent Mtb can be cultured effectively, indicating the presence of
differentially culturable tubercle bacteria (DCTB) [21]. Resuscitation-promoting factors (RPFs), a
class of cell wall hydrolyzing enzymes secreted by Mtb, have been reported to aid the revival of
non-replicating bacteria and can be harvested from axenic culture filtrate to stimulate the growth
of DCTB [22]. Interestingly, sputum from a single patient can harbor non-DCTB cells and culture
filtrate-independent, RPF-dependent, and RPF-independent DCTB, indicating extensive hetero-
geneity in sputum bacilli. DCTB loads vary greatly in absolute numbers among patients; however,
HIV-TB co-infected patients with low CD4+ T cell counts yield a lower load in general, indicating a
putative link between distinct immune pressures and DCTB generation [21].
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Drug tolerance is a common feature of Mtb retrieved from the cavity caseum of infected rabbits
and DCTB. However, while the former is unresponsive to most antibiotics except rifamycins,
RPF-dependent DCTB show high phenotypic resistance to Rif, Inh, and streptomycin
[5,22,23]. Phenotypic AMR in DCTB can be recapitulated in vitro by prolonged sequential expo-
sure to starvation (>2 weeks) and high concentrations (>10 μM) of Rif [24]. This seems intuitive, as
Rif penetrates the caseous core of lesions and could alter the Mtb transcriptome to induce per-
sistence [25]. Therefore, it is important to examine phenotypic AMR in the context of TB
lesions/granulomas, which are highly dynamic and shaped by both immune signaling and the
pathogen.

In Granulomas, the Host Immune System Trusts
The systemic host immune response to Mtb infection is manifested by the formation of immune
cell aggregates or granulomas in infected tissues such as the lung (Figure 1). Immense variability
in granuloma make-up has been documented across active, latent, and reactivated disease
groups, in humans and cynomolgus macaques [14]. [18F] fluorodeoxyglucose positron emission
tomography coupled with CT reveals the coexistence of a range of TB lesions, often within the
same lung lobe of a single subject, with no significant correlation with disease presentation
[25,26]. Analysis of proteins expressed across multiple granuloma types – cellular, caseous,
and open cavitary – through quantitativemass spectrometry indicates distinct temporal variations
that occur during lesional progression [26]. The influx and egress of phagocytes continue to occur
at a basal level even from latent granulomas, explaining the potential for reactivation of infection in
certain subjects [27]. Laser-guidedmicrodissection of tissue inMtb-infected rabbits and resected
human lungs coupled with mass spectrometry, immunohistochemistry, and imaging demon-
strates that a third level of functional heterogeneity exists within a granuloma in the form of spatial
delineation of inflammatory signals [26]. The core mounts a more proinflammatory response,
including the expression of interferon-gamma (IFNγ), tumor necrosis factor-alpha (TNFα), and
their downstream bactericidal effectors, such as reactive oxygen species (ROS), cathelicidin,
and eicosanoids. More necrosis occurs here than the adjoining areas where tissue damage is
limited by a heightened anti-inflammatory response, such as cyclooxygenase-mediated
prostanoid biosynthesis [26]. In TB lesions of macaques, this signature closely relates to the
cellular arrangement, such that proinflammatory enzymes [nitric oxide (NO) synthases] have
higher expression in epithelioid macrophages and neutrophils of the necrotic core compared
with the peripheral ring and non-infected tissue, in that order [28]. Transcriptomics of Mtb
sampled from peripheral cellular aggregates and caseating necrotic zones of murine granulomas
suggest that fatty acids, iron limitation, hypoxia, and NO prevail in the necrotic core [29] (Figure 1).
Taking these findings together, a high degree of granuloma variability indicates that local immune
responses are likely to shape the pathogen’s physiology, drug permeability, and disease control
in individual lesions.

Mtb-Lesion Variability Foils Drug Action
Arising from a single bacillus, each TB lesion bears a finite bacterial load depending on the bal-
ance between bactericidal and tissue damage-limiting immune responses [25]. Inside a lesion,
Mtb is known to exist at multiple, distinct locations in a mosaic of immune cells and signaling –

intracellularly or extracellularly among macrophages, neutrophils, and mesenchymal stem cells
(MSCs) or in the caseous core (Figure 1). Variations arise in the Mtb transcriptome during the
process of granuloma formation, particularly as a function of bacterial location, and overlap
with more than one stress-responsive regulon ofMtb [30,31]. Through changes in the expression
of virulence factors, Mtb is likely to influence immunopathology for its survival and spread. For
example, the two-component system PhoPR and a redox-sensitive transcription factor,
WhiB3, regulate the production of immunomodulatory lipids and proteins (Esx proteins) to
608 Trends in Microbiology, July 2021, Vol. 29, No. 7
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Figure 1. Lesional Heterogeneity ModulatesMycobacterium tuberculosis (Mtb) Survival, Tissue Homeostasis
and Drug Penetration. (A) Diverse granuloma types – cellular (red), necrotic (yellow), and cavitary (green) – coexist in the
lungs of an infected host. (B) As few as two to five Mtb bacilli in aerosol droplets are adequate to infect a susceptible host
Aggregation of differentially activated macrophages and neutrophils, followed by necroptosis, leads to granuloma
formation. Cellular granulomas can then morph into a closed lesion, infiltrated by epithelioid and foamy macrophages and
mesenchymal stem cells (MSCs) and contained by a peripheral cuff of lymphocytes. Closed granulomas undergo
macrophage necrosis and caseation in their core leading to the release of intracellular Mtb. Matrix metalloproteinases
(MMPs) induce the degradation of connective tissue, which allows the expulsion of the liquefied contents into adjoining
airways to form an aerobically exposed open cavity. By contrast, repopulation with fibroblasts and collagenous materia
may form a fibrotic granuloma primarily containing latent Mtb. Inter- and intralesional diversity arises through differences in
vasculature, oxygen availability (pO2), iron (Fe), and inflammation. These can influence Mtb physiology and drug
distribution in distinct structural regions of a granuloma leading to phenotypic antimicrobial resistance (AMR). Mox
moxifloxacin; Bdq, bedaquiline; Rif, rifampicin.
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coordinate TB pathology in animals and human granuloma formation in vitro [32–34].Mtb also in-
duces host matrix metalloproteinases leading to active caseation to worsen tissue pathology [35].

The bacillary burden of granulomas in an individual nonhuman primate varies from 100 to 1 million
[25]. This variation in bacterial growth, coupled with diversity in granuloma structures, presents dif-
fusion barriers to antibiotics. Matrix-assisted laser desorption/ionization mass spectrometry imag-
ing estimates greater penetration and accumulation of Rif and Pza in the necrotic core, consistent
with their ability to target non-replicating bacteria [36,37]. By contrast, moxifloxacin (Mox) concen-
trates more in the peripheral cellular ring and minimally in the caseum, which possibly explains the
failure of a Mox-containing regimen to shorten therapy duration in clinical trials [31]. Additionally,
Mox accumulation occurs significantly in foamymacrophages, where quiescent, phenotypically re-
sistant Mtb resides [31]. Correlative live, ion, and electron microscopy suggests that lipid droplets
(LDs) in foamy macrophages accumulate varying levels of the newest lipophilic anti-TB drug,
bedaquiline (Bdq) [38,39] (Figure 1). Since Mtb exists in a variety of intracellular compartments,
Bdq accumulates heterogeneously in the Mtb population within foamy macrophages [38]. This,
coupled with the longer half-life of Bdq (6 months), indicates that Bdq stored in LDs might remain
obtainable even after cessation of treatment. Clearly, permeation barriers posed by lesional and
cellular heterogeneity contribute to the differential efficacy of anti-TB drugs during infection.

Cellular Heterogeneity
Immunity through Macrophage Diversity
Macrophage–Mtb interactions can influence infection by having multiple outcomes, such as bac-
terial killing, persistence, and macrophage death [40]. Macrophages possess an unusual capac-
ity to polarize towards a specific phenotype based on microenvironmental cues [41]. The
traditional definitions of classically (M1) and alternatively (M2) activated macrophages, derived
from a commonM0 ground state, present an overly simplistic picture of macrophage polarization
[42]. IFNγ, lipopolysaccharide (LPS), granulocyte-macrophage colony stimulating factor (GM-CSF),
TNFα, or their combinations induce the M1 phenotype, which expresses proinflammatory cy-
tokines [interleukin (IL)-1, IL-12, IL-6, and TNFα], ROS, and reactive nitrogen intermediates
to control Mtb replication. The growth-permissive M2 phenotype appears in response to IL-4
and/or IL-13 and is involved in tissue repair and homeostasis while maintaining an anti-
inflammatory phenotype (IL-10, transforming growth factor β, and IL-1Ra secretion).
Interestingly, studies using Salmonella enterica serovar Typhimurium (STm) reveal that M1
and M2 polarized macrophages harbor non-growing and actively growing STm, respectively,
and yet an intermediate macrophage phenotype retains STm in a non-growing but metaboli-
cally active state [43]. Consistent with this, unconventional stimuli such as high-density
lipoproteins, cyclodextrins, and glucocorticoids induce a spectrum of activation states
between the M1 and M2 extremes [44].

In addition to M1/M2, differences in ontogeny generate distinct alveolar macrophage (AM) and in-
terstitial macrophage (IM) lineages and further contribute to the diversity in host response towards
Mtb infection [45,46]. Lung tissue-resident AMs differentiate from fetal liver-derived monocytes
and are self-renewing, whereas IMs are recruited from circulating blood monocytes in response
to Mtb’s invasion in the lungs. Using fluorescent reporters of Mtb’s replication rate (SSB-GFP)
and stress response (hspX′::GFP), AMs have been determined to be more growth permissive
than the growth-restrictive IMs [47] (Figure 2).

Metabolic Heterogeneity Impacts Cellular Immunity
Enormous metabolic plasticity within macrophage types influences their antimicrobial capacity
and could impact anti-TB drugs’ efficacy. IMs utilize glycolysis to meet their bioenergetic
610 Trends in Microbiology, July 2021, Vol. 29, No. 7
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Figure 2. Tissue-Specific Immune
Cell Lineages Compound
Phenotypic Variations in
Mycobacterium tuberculosis (Mtb)
during Infection. Other than classically
activated macrophages, ontologically
distinct lineages of alveolar macrophages
(AMs) and interstitial macrophages (IMs)
as well as mesenchymal stem cells
(MSCs) are known to be infection
permissive in hosts. Fetal-origin AMs
exhibit an M2-like phenotype with a
growth-permissive environment for
Mtb, whereas bone-marrow-derived
IMs exhibit M1-like behavior and
restrict Mtb growth. Self-renewing
MSCs harbor Mtb in a drug-tolerant
state and accumulate lipid droplets,
which are metabolized by the bacteria
for long-term persistence. FAO, fatty
acid oxidation; PGE2, prostaglandin E
(2); AMR, antimicrobial resistance;
SRC, spare respiratory capacity.
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demands, whereas AMs prefer fatty acid oxidation (FAO) and maintain high spare respiratory ca-
pacity (SRC) during infection [47] (Figure 2).

The link between immunometabolism andMtb is clarified by studies showing enhanced bacterial
survival on inhibition of glycolysis, whereas blocking FAO results in decreased survival in mice.
Mechanistically, inhibition of FAO reverses electron flow at the NADH:ubiquinone oxidoreductase
(respiratory complex I) to generate mitochondrial ROS (mtROS), which suppresses Mtb by
elevating NADPH oxidase activity and xenophagy [48]. In line with these findings, mitochondria
Trends in Microbiology, July 2021, Vol. 29, No. 7 611
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of Mtb-infected macrophages prefer fatty acids as oxidizable substrates rather than glucose to
sustain bioenergetics [49]. Mtb also utilizes host-derived fatty acids for the biosynthesis of cell
wall-associated polyketide lipids [50]. Interestingly, these polyketide lipids affect the cell cycle of
Mtb-infected and bystander macrophages by inhibiting the G1-to-S phase transition, further
linking the fatty acidmetabolism of host and/or pathogen in the promotion of phenotypic plasticity
within macrophages [51]. Last, anti-TB drugs (Inh and Pza) perturb the host metabolism by in-
ducing mtROS, which further contributes to lethality against Mtb during infection [52]. Thus, the
modulation of metabolism, the cell cycle, and mtROS represents an interesting avenue for the
development of host-directed therapeutic (HDT) strategies against TB.

While evidence directly linking immunometabolism to phenotypic AMR is lacking, phagosomal
acidification has recently been shown to induce drug tolerance in Mtb in naïve macrophages in-
fected with Mtb alone or co-infected with HIV-1 [53]. However, in contrast to other bacteria, the
pH-responsive drug-tolerant fraction of Mtb is fully replicative inside naïve macrophages [53].
IFNγ-mediated immune activation of macrophages further limits the antimycobacterial activity
of drugs by inducing a non-growing but metabolically active state in Mtb during infection
[54,55]. Contrary to naïve macrophages, NO stress rather than phagosomal acidification drives
bacterial phenotypic AMR in activated macrophages [55]. These findings go against the dogma
that the primary goal of acidic pH and NO is to suppress Mtb. Here a more sophisticated
model emerges, according to which host-generated stresses facilitate the selection of Mtb phe-
notypes that are difficult to eradicate with anti-TB drugs. Along with IFNγ, GM-CSF signaling pro-
motes nod-like receptor family pyrin domain containing 3-mediated IL-1β upregulation and
phagosomal maturation in a subset of macrophages that harbor dead bacteria [56]. Further,
GM-CSF signaling is suppressed in macrophages harboring live Mtb, and chemical inhibition
of GM-CSF production limits the antimycobacterial capacity of macrophages. Moreover,
dampened GM-CSF signaling accelerates the intraphagosomal growth of Mtb during HIV-TB
co-infection, whereas exogenous GM-CSF supplementation inhibits the same [57]. Since
macrophages co-infected with HIV and Mtb display increased oxidative stress and render Mtb
phenotypically resistant to drugs, the contribution of GM-CSF signaling to these processes is
likely to be important [53,58] (Figure 3).

Besides macrophages, phenotypic AMR has been reported in non-replicating Mtb cells isolated
from MSCs often recruited to granulomas [59,60].Mtb affects several processes in MSCs, such
as the accumulation of LDs, autophagy subversion, elevated drug efflux pumps, and prostaglan-
din E(2) signaling to slow replication and reduce killing by drugs [61] (Figure 2). Perturbation of lipid
metabolism using triacsin C and induction of autophagy by the mTOR inhibitor rapamycin poten-
tiate the activity of Inh and clear non-replicating bacilli in MSCs [61,62]. Together, diverse host
factors such as activation status, NO, acidic pH, immunometabolism, and MSCs are important
determinants of heterogeneity in Mtb’s physiology and, subsequently, therapy outcome.

Bacterial Heterogeneity
Diversity in Axenic Cultures
Host cell heterogeneity and immune pressures have been widely acknowledged to generate
adaptive variations among intracellular pathogens such as Listeria monocytogenes, Brucella
abortus, Salmonella, and Mtb [55,63–65]. A role reversal, where cell-to-cell variations within a
bacterial population drive disparate host immune responses, may yet occur, making phenotypic
variability a dynamic bidirectional process.

Heterogeneity can exist within a bacterial population before the invasion of a host cell (Figure 4).
Members of the genus Mycobacteria are known to generate asymmetry during cell division [66].
612 Trends in Microbiology, July 2021, Vol. 29, No. 7
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Figure 3. Mitochondrial Activity, pH, and Cytokines Influence Survival and Phenotypic Antimicrobial
Resistance (AMR) during HIV–Tuberculosis (TB) Co-infection. Infection of macrophages harboring the latently
integrated genome of HIV-1 with Mycobacterium tuberculosis (Mtb) leads to viral reactivation and bacterial proliferation.
Phagosomal acidification in co-infected macrophages contributes to redox heterogeneity and phenotypic tolerance
towards isoniazid (Inh) in Mtb. Co-infected macrophages experience proton leak from stressed mitochondria and non-
mitochondrial reactive oxygen species (ROS), which lead to the reactivation of HIV. Neutralizing phagosomal pH using
chloroquine (CQ) subverts redox heterogeneity and Inh tolerance in Mtb inside co-infected macrophages. Phagosomal
maturation is controlled heterogeneously within a macrophage population, through active granulocyte-macrophage colony
stimulating factor (GM-CSF) signaling and interleukin-1β (IL-1β) induction, to limit Mtb growth. HIV-TB co-infected
macrophages can suppress GM-CSF signaling to prevent cytokine-mediated control of Mtb and HIV, whereas exogenous
GM-CSF supplementation can reverse this effect.

Trends in Microbiology
Mycobacterium smegmatis (Msm) and Mtb cells display differences in growth rates that create a
wide distribution of cell sizes within microcolonies, as viewed by time-lapse and atomic force mi-
croscopy, and generate potential influences on antibiotic susceptibility [67–69]. Rego et al. identi-
fiedMsm lamA as a ‘divisome’-associated factor involved inmaintaining asymmetric cell length and
differential antibiotic susceptibility [70]. Transcriptional surges of the catalase-peroxidase KatG in
actively dividing Msm can generate bacterial cells with differential susceptibility to Inh, as KatG is
required to activate the Inh prodrug [71]. Similarly, phase variation in the expression of glpK,
which encodes a glycerol kinase, due to transient frameshift mutations in its hypervariable homo-
polymeric region induces heterogeneity in colony size, reduces antibiotic efficacy in mice, and
may contribute to the emergence of multidrug resistance in clinical Mtb isolates [72,73]. Errors in
bacterial translation leading to the generation of multiple ‘flawed’ protein copies and post-
translational modifications are also known to enhance phenotypic AMR inMsm [74,75]. Consistent
with this, the aminoglycoside kasugamycin can counter Rif-induced indirect tRNA aminoacylation
to reduce mistranslation and increase the Rif susceptibility of Mtb in vitro and in mice [76].

Bacterial heterogeneity can be amplified by a prolonged stationary phase and exposure to radical
stresses, acidity, and antibiotics during growth. This primes Mtb to maintain cellular and meta-
bolic homeostasis by evoking adaptive mechanisms, which can be indirect contributors to phe-
notype variation [54,77]. Irreversible oxidation generates misfolded copies of cellular proteins,
Trends in Microbiology, July 2021, Vol. 29, No. 7 613
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Figure 4. Phagosomal Acidification
and Immune Activation Induce
Phenotypic Antimicrobial Resistance
(AMR). Both bacterial phenotypic
variations and host immune pressures can
modulate Mycobacterium tuberculosis
(Mtb) proliferation in macrophages.
Isogenic Mtb populations demonstrate
stochastic heterogeneity in essential
cellular processes such as growth,
gene expression, and the management of
irreversibly oxidized proteins (IOPs).
Aggregation into biofilms alters the
bacterial redox state with respiration driven
by polyketide quinones (PkQs) serving as
alternative electron acceptors in a hypoxic
niche. Inside naïve macrophages, Mtb
faces variable acidification in phagosomes
and recalibrates metabolism and efflux
activity to cope with metal and redox
stress. The consequent generation of
redox heterogeneity selects for an actively
replicating, drug-tolerant Mtb population.
Interferon-gamma (IFNγ) signaling in
activated macrophages allows Mtb to be
trafficked to highly acidic phagolysosomes
with abundant exposure to reactive
oxygen species (ROS) and nitric oxide.
Enhanced adaptive responses to an
increasingly hostile host environment
ultimately confer metabolic quiescence on
Mtb and further strengthen phenotypic
AMR.
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which interfere with physiological processes. The ClpB chaperone enables the sequestration and
partitioning of oxidized protein aggregates between daughter cells ofMtb. Bacterial growth rate is
inversely proportional to the amount of oxidized protein aggregates inherited, and this enhances
existing asymmetry in growth and drug susceptibility within an isogenic Mtb population [78]
(Figure 4). Together these findings point towards a multimorphic existence ofMtb in what should
ideally be a synchronized growth condition in axenic cultures.

Looking for Triggers, One Cell at a Time
The immune pressures thatMtb faces on uptake by macrophages directly influence its growth and
physiology and amplify in vitro variations (Figure 4). The transcriptome of intramacrophage Mtb si-
multaneously overlaps with that of Mtb exposed to oxidative and pH stress in synthetic broth,
confirming the identities of phagosomal cues that reprogram Mtb to adapt in the host [79,80].
Interestingly, the transcriptome of Mtb exposed to acidic pH, hydrogen peroxide, and NO shows
considerable overlap with expression changes in response to frontline anti-TB drugs [55,81]. This
suggests that hostile macrophage environments select for bacterial physiologies that tolerate both
antibiotics and immune pressures. In this context, a major technological leap has emerged from
the development of a genetically encoded biosensor (Mrx1-roGFP2) of the mycobacterial antioxi-
dant buffer mycothiol (MSH). The biosensor reveals marked heterogeneity in the redox potential of
MSH (EMSH), with Mtb fractions displaying EMSH-basal, EMSH-reduced, and EMSH-oxidized inside
macrophages [82]. EMSH-reduced Mtb is generated in response to phagosomal acidity and is
found to be replicative and exceptionally tolerant to anti-TB drugs in macrophages [53,83].
Consequently, alkalization of phagosomal pH by an approved antimalarial drug, chloroquine (CQ),
614 Trends in Microbiology, July 2021, Vol. 29, No. 7
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subverts redox heterogeneity and potentiates the efficacy of Inh to eradicateMtb and reduce post-
therapy relapse in animals [53]. These findings reposition CQ as a HDT molecule to increase the ef-
ficacy of anti-TB drugs and shorten therapy duration. Further application of Mrx1-roGFP2 has led to
the identification of novel inhibitors targeting the redox metabolism of Mtb [84–88].

Until recently, the molecular underpinnings of the link between phagosomal pH, redox physiology,
and drug tolerance had been elusive. Using flow cytometry-coupled RNA-seq, we have identified
the bacterial determinants of redox-mediated drug tolerance in Mtb [53]. The transcriptome of
redox-diverse Mtb indicates that low pH exposes the pathogen to cysteine (CySH) and metal
(Fe/Cu) overload. Elevated levels of CySH and metals can lead to ROS generation through
metal-catalyzed oxidation of CySH to cystine (CyS2). The drug-tolerant EMSH-reducedMtb coun-
teracts these stresses by effectively channelizing the flux of CySH into the reverse transsulfuration
pathway (H2S gas production), Fe-S cluster biogenesis (suf operon), and MSH generation [53].
Genetic disruption of these mechanisms significantly impairs the ability of Mtb to generate the
EMSH-reduced fraction and tolerate antibiotics during infection, suggesting that the management
of CySH flux is an important adaptive strategy to protect Mtb from drugs (Figure 5). Similarly,
TrendsTrends inin MicrobiologyMicrobiology

Figure 5. Redox-Altered Mycobacterium tuberculosis (Mtb) Inside Naïve Macrophages Acquires Drug
Tolerance through Dissipation of Metal and Reductive Stress. Exposure to acidic pH in macrophages leads to
perturbation of redox homeostasis and the appearance of redox-altered populations of Mtb. Acidity in phagosomes
induces the accumulation of soluble forms of metal ions (Fe/Cu) as well as the redox-active amino acid cysteine (CySH)
The former can catalyze the generation of reactive oxygen species (ROS) by either driving the Fenton reaction or oxidizing
CySH to cystine. Transcriptional profiling of intramacrophage Mtb fractions reveals that drug-tolerant EMSH-reduced Mtb
are particularly efficient in dissipating reductive and metal stress during infection. This Mtb fraction channels the flux o
CySH into the reverse transsulfuration pathway leading to H2S generation (MetB), Fe-S cluster biogenesis (SufR), and
mycothiol (MSH) production. Induction of these pathways affords protection from oxidative stress by increased expression
of redox- and acid-sensitive transcription factors (WhiB family and Suf system) that regulate Mtb’s antioxidant response
consume excess CySH and Fe, and induce the activity of metal and drug efflux pumps. Additionally, S-adenosylmethionine
(SAM)-dependent methyltransferases are found to be highly expressed in reduced Mtb, where they can inactivate antibiotics
by N-methylation. Blocking phagosomal acidification with lysosomotropic agents such as chloroquine (CQ) reverses
intramacrophage redox heterogeneity and reduces isoniazid (Inh) or rifampicin (Rif) tolerance in Mtb-infected macrophages
as well as in chronically infected animals. From [53], reprinted with permission from AAAS.
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Outstanding Questions
Despite successful systemic control,
TB disease progresses at individual
foci due to the failure of local immune
responses. How can local immune
responses be mapped to granuloma
diversity in the tissue microenviron-
ment during disease progression and
therapy?

Does Mtb exhibit stochastic
heterogeneous expression of virulence
factors to drive variable responses
within individual infected host immune
cells and granulomas?

How can the distribution and
sequestration of anti-TB drugs at a
subcellular level in the infected tissues
be quantified?

What is the relative contribution of
bacterial heterogeneity that develops
in response to host immune
pressures or is pre-existing within
subpopulations to the emergence of
phenotypic AMR in vivo?

Is it possible to eradicate infection by
developing antimicrobials that target
phenotypic AMR arising from
both growth-independent (e.g., non-
replicating but metabolically active)
and growth-dependent (e.g., efflux
pump activity) mechanisms?

How can differences among
macrophage types (AMs, IMs, M1,
and M2) and within a macrophage
subcategory (AMs/IMs) influence
bacterial heterogeneity and phenotypic
AMR?

Can immunomodulatory therapy be
used to mobilize the more potent
subset of host immune cells to
appropriate locations for the targeting
of drug-tolerant Mtb during infection?

How can the central carbon
metabolism, respiration, and redox
homeostasis of Mtb be perturbed in
the complex environment of immune
cells and tissues to improve antibiotic
efficacy?

Is it possible to image and capture
heterogeneity in the physiology of the
Mtb population present in human
sputum and/or in biofilms in vivo
to understand the requirement for
prolonged chemotherapy?

Trends in Microbiology
H2S gas coordinates antibiotic tolerance in diverse bacteria by sequestering iron, elevating the
activity of antioxidant enzymes, and scavenging ROS [89–91]. Also, altered Fe-S cluster
biogenesis influences respiration to affect antibiotic uptake and killing [92,93] Moreover, over-
whelming of the CySH pools of Mtb using N-acetylcysteine stimulates respiration, increases
ROS, and potentiates the antimycobacterial efficacy of Inh [94]. The enhancing of respiration
and ROS has emerged as a prospective strategy to potentiate the action of antibiotics in
diverse bacteria [94–97]. Although a few studies have disputed this approach [98,99], it
is strongly supported by others demonstrating that bactericidal antibiotics perturb redox
physiology, and tolerance depends on the ability of bacteria to counteract ROS [100–103].

The connection between redox and respiration has also been evident in biofilms wheremycobac-
terial cells sustain respiration by producing alkyl benzoquinones, exhibit redox diversity, and tol-
erate multiple antibiotics [104]. Since environmental cues such as those encountered in vivo
(e.g., thiol reductive stress, hypoxia), and exposure to leukocyte lysates induce biofilm-like growth
ofMtb, potentiating metabolism and respiration in biofilms can aid in the targeting of highly toler-
ant bacteria during infection and the development of effective adjuvants for therapy [104–106].
For example, a TCA cycle metabolite (fumarate) stimulates the central metabolism, respiration,
and proton motive force of highly tolerant biofilms of Pseudomonas aeruginosa. As a
consequence, fumarate increases the uptake of aminoglycosides and killing [107]. However, a
similar approach in the case of Mtb would require a comprehensive understanding of host and
pathogen metabolism during infection. To begin to address this, a recent study has delineated
host–pathogen metabolic heterogeneity using dual RNA-seq of infected AMs and IMs [108]. In
particular, glucose and nitrogen metabolism and Fe uptake appear to be highly induced in Mtb
derived from IMs, driven by elevated NO levels and iron depletion. By contrast, growth-
permissive AMs, known for their dependence on FAO for metabolic needs, induce fatty acid
uptake pathways in resident Mtb. Together, the characterization of bacterial heterogeneity
during infection can help to decipher the effects of nutrient and antibiotic availability in lesional
environments and cellular immune signaling on Mtb physiology. The information derived thereof
will hold immense potential for the characterization of phenotypic tolerance and its consequences
for successful chemotherapy and AMR.

Concluding Remarks and Perspective
The relative contributions of host and pathogen components is still in need of considerable inves-
tigation to identify the source of phenotypic diversity (see Outstanding Questions). Phenotypic
AMR in a replication-competent and metabolically active intramacrophage Mtb population has
only recently been acknowledged. This area requires the active development of tools, such as
noninvasive biosensors, to quantify physiological perturbations and gain insights into mecha-
nisms other than redox metabolism and drug efflux. From the host’s perspective, the impacts
of ontogeny, immunometabolism, and HIV co-infection need to be assessed individually to iden-
tify novel host-directed targets for therapy. Table 1 summarizes the currently available tools to
quantify host and bacterial phenotypic diversity and its consequence for antibiotic therapy design.
Chronic TB infections stem from the dynamic balance maintained between hosts and Mtb. It is
essential to comprehend the mechanistic alterations involved during this interaction for effective
disease management.

Acknowledgments
The work was supported by the following Wellcome Trust/DBT India Alliance Grant: IA/S/16/2/502700 (A.S.), and in part by

Department of Biotechnology (DBT) Grant BT/PR11911/BRB/10/1327/2014, BT/PR5020/MED/29/1454/2012 (A.S.) and

the DBT-IISc Partnership Program (22-0905-0006-05-987-436) and Infosys Foundation. A.S. is a senior fellow of the

Wellcome Trust/DBT India Alliance. R.M., V.Y., and M.G. gratefully acknowledge CSIR-India and IISc for fellowships.
616 Trends in Microbiology, July 2021, Vol. 29, No. 7



Table 1. Tools That Can Be Applied to Study Bacterial, Cellular, and Lesional Heterogeneity and Their
Influence on Phenotypic AMRa

Tool Description Key finding Refs

Reporter strains

hspx′::GFP hspX promoter-driven GFP
expression

Higher NO stress in IMs and
neutrophils

[47]

SSB-GFP Binds single DNA strands and
marks active replisomes

IMs are growth restrictive while
AMs are growth permissive

[47]

Mrx1-roGFP2 Reduction-oxidation-sensitive
GFP linked to
MSH-dependent
oxidoreductase (Mrx1)

Intramacrophage redox
diversification of replicating
Mtb mediates drug tolerance
Acidic pH, NO, and antibiotics
perturb redox homeostasis in
Mtb

[53,82]

[34,83,85,86]

Live–dead reporter Constitutive, long-lived RFP;
Tet-inducible
promoter-coupled GFP to
assess transcriptional activity
in bacteria

Heterogeneous GM-CSF
signaling regulatesMtb survival
in TB and HIV-TB co-infection

[56]

Transcriptomics (coupled
with flow cytometry)

Analyze and sort cell/bacterial
subpopulations to quantify
messenger and noncoding
RNA

Intramacrophage Mtb senses
host cues to exhibit phenotypic
AMR
Simultaneous host and
pathogen profiling to identify
ontogeny-based regulation of
pathogen burden in AMs and
IMs
Regulatory RNA MrsI mediates
iron-sparing response in
iron-limited Mtb
Analysis of cell-to-cell
heterogeneity

[53,55]

[47,108]

[109]

[40,110]

Microscopy (confocal, ion,
electron, atomic force,
microfluidics-coupled time
lapse)

Image and quantify
host–pathogen crosstalk
Analyze inter- and intracellular
changes in real time
Drug permeation and
sequestration

LDs bind Bdq and facilitate
drug trafficking inside Mtb
Neutrophils, AMs, and IMs
have different capacities to limit
Mtb proliferation
HMDMs display heterogeneity
in Mtb control
Asymmetric cell division
promotes phenotypic AMR in
axenic Mtb cultures
Stochastic transcriptional
pulsing generates Mtb variants
Redox-altered Mtb fractions
reside in specific subcellular
compartments

[38]

[47]

[56]

[67,69]

[71–73]

[82,83]

Small-molecule inhibitors
(etomoxir, trimetazidine,
2-deoxyglucose,
glibenclamide,
lysosomotropic agents)

Low-molecular-weight
compounds allow metabolic
manipulations in host and/or
pathogen

FAO and glycolysis regulate
Mtb survival in vivo
GM-CSF signaling controls
Mtb burden in HMDMs
Blocking phagosomal
acidification subverts
redox-related drug
tolerance

[47,48]

[56]

[53,83]

Proteomics Protein quantification during
host–pathogen interaction

Mtb WhiB3 differentially
regulates host cell cycle
Mtb-infected macrophages
transfer host proteins to
reactivate HIV in bystander
cells

[51]

[58]

[111]

(continued on next page)
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Table 1. (continued)

Tool Description Key finding Refs

Antibiotic exposure rewires
Mtb metabolic pathways
Post-translational
modifications occur in host
proteins on Mtb infection

[112]

Metabolomics Metabolite quantification
during host–pathogen
interaction

Elevated intracellular levels of
NAD and glutathione in
infected macrophages
Perturbation in amino acid and
phospholipid metabolism in
infected mouse lungs

[113]

[114]

Seahorse extracellular flux
analysis

Profiling of metabolic activity
of cells in real time

Immunometabolism of AMs
and IMs regulates Mtb growth
Mtb infection induces
quiescence and dependency
on exogenous fatty acids in
macrophages
Screening drug candidates in
Mtb

[108]

[49]

[115]

Laser capture
microdissection

Acquisition of specific cell
types or spatial regions from
complex granulomas

Spatiotemporal differences in
inflammatory signaling within
granulomas
Nutrient and drug penetration
vary in lesions

[26]

[31,37]

aAbbreviations: HMDM, human monocyte-derived macrophage; hspX, heat shock protein X; Mrx1, mycoredoxin-1; roGFP2,
redox-sensitive GFP; SSB, single-strand binding protein.
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