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1. Introduction

Borcherds algebras were introduced by R. Borcherds in [5] which are a natural gen-
eralization of Kac-Moody Lie algebras. Our definition of Borcherds algebras follows the 
approach of [10], in particular, the simple roots αi, i ∈ I are linearly independent. We are 
interested in the denominator identity of Borcherds algebras. The denominator identity 
of Lie algebras is appearing in many places in combinatorics. In the celebrated paper 
of Macdonald [15], the denominator identities of various Lie algebras are shown to have 
many interesting connections with important identities in combinatorics. For example, 
in the case sln(C), denominator identity is the same as the Vandermonde’s determinant 
identity. In the case of affine Lie algebras, these are the Macdonald identities. See also 
[14,12].

In this paper, we prove that the denominator identities are related to the chromatic 
symmetric functions of graphs. Let G be a simple connected graph with vertex set I and 
edge set E. In [16], Stanley introduced the chromatic symmetric function XG of G as 
a symmetric function generalization of the chromatic polynomial of G: Let P(S) be the 
power set of a set S. For a tuple of non-negative integers k = (ki : i ∈ I), we define 
supp(k) = {i ∈ I : ki �= 0}. The k-multicoloring of the graph G is a generalization of 
the well-known graph coloring which is defined as follows: Let k = (ki : i ∈ I) a tuple of 
non–negative integers such that |supp(k)| < ∞. We call a map τ : I → P

(
N
)

a proper 
vertex k-multicoloring of G if the following conditions are satisfied:

(i) For all i ∈ I we have |τ(i)| = ki,
(ii) For all i, j ∈ I such that (i, j) ∈ E(G) we have τ(i) ∩ τ(j) = ∅.

In other words, no two adjacent vertices share the same color. Note that ki = 1 for 
i ∈ I corresponds to the classical graph coloring of the graph G. The number of k-
multicoloring of G using q colors is counted by the number of k-multicolorings τ such 
that τ(i) ⊂ {1, 2, . . . , q} ∀ i ∈ I. It is well-known that this number is a polynomial in 
q, called the generalized chromatic polynomial πG

k (q) [4]. When k := 1 = (1, 1, . . . , 1)
πG
k (q) represents the classical chromatic polynomial of G.

Remark. There is a close relationship between the ordinary chromatic polynomials and 
the generalized chromatic polynomials. We have

πG
k (q) = 1

k!π
G(k)
1 (q) (1.1)

where πG(k)
1 (q) is the chromatic polynomial of the graph G(k) and k! =

∏
i∈I ki!. The 

graph G(k) is the join of G with respect to k which is constructed as follows: For each 
j ∈ supp(k), take a clique (complete graph) of size kj with vertex set {j1, . . . , jkj} and 
join all vertices of the r–th and s–th cliques if (r, s) ∈ E(G). For more details about the 
multicoloring of a graph, we refer to [4,8].
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Given this notion of vertex multicoloring we have the following definition of k-
chromatic symmetric functions.

Definition 1. [16,17] Let X1, X2, . . . be a collection of commuting indeterminates. Let τ
be a k-multicoloring of G, we define X(τ) =

∏
i∈ I

(∏
m∈ τ(i) Xm

)
. The k-chromatic 

symmetric function, denoted by Xk
G, is defined as follows:

Xk
G =

∑
τ

k−proper
coloring

X(τ) =
∑
τ

k−proper
coloring

∏
i∈ I

( ∏
m∈ τ(i)

Xm

)
(1.2)

Remark. We observe that

Xk
G(1, . . . , 1︸ ︷︷ ︸

q-times

, 0, 0, . . . ) = πG
k (q).

Also, when k = 1 = (1, 1, . . . , 1) the k-chromatic symmetric function of G reduces 
to the chromatic symmetric function introduced in [16]. In this case, the k-chromatic 
symmetric function Xk

G is simply denoted by XG.

We explore the relation between chromatic symmetric functions and the root multi-
plicities of Borcherds algebras. This way the existing combinatorial results concerning 
denominator identity and the root multiplicities of Borcherds algebras might shed light 
on the problems in the theory of chromatic symmetric functions.

Let A = (aij)i,j∈I be a Borcherds-Cartan matrix indexed by a finite or countably 
infinite set I (Section 2.1). Let g be the Borcherds algebra associated with A (Section 2.2). 
In [20, Section 2.1], the following notion of quasi-Dynkin diagram G of the Borcherds 
algebra g is defined. The graph G has vertex set I, with an edge between two vertices i
and j if, and only if, aij �= 0 for i, j ∈ I, i �= j. Note that G is a simple (finite or infinite) 
graph which we call simply the graph of g. In the sequence, whenever we talk about a 
graph G the ambient Borcherds algebra is understood. A finite subset S ⊆ I is said to be 
connected if the corresponding subgraph generated by S is connected. A subset S of the 
vertex set I is said to be stable or independent if there exists no edge between any two 
elements of S. A maximum independent set is an independent set of largest possible size 
for G. The size of the maximum independent set in G is called the independence number 
of G and denoted by α(G).

In [4], the relation between the k-chromatic polynomial of G and the root multiplicities 
of g has been studied [cf. Section 3.1]. In particular, the following theorem from [4, 
Theorem 1] expresses the chromatic polynomial πG

1 (q) of G in terms of certain root 
multiplicities of g.
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Theorem 1. Let G be the graph of a Borcherds algebra g. Then

πG
1 (q) = (−1)ht(η(1))

∑
J∈LG

(−1)|J|(mult(J)) q|π|, (1.3)

where LG is the bond lattice of G [cf. Definition 3] and ht(k) :=
∑

i∈I ki if k = (ki : i ∈
I).

The main tool used in the proof of Theorem 1 is the following Weyl denominator 
identity of g from [5] and [10, Theorem 3.16].

U :=
∑
w∈W

(−1)�(w)
∑
γ∈Ω

(−1)ht(γ)ew(ρ−γ)−ρ =
∏

α∈Δ+

(1 − e−α)dim gα (1.4)

where Ω is the set of all γ ∈ Q+ such that γ is a finite sum of mutually orthogonal 
distinct imaginary simple roots. Note that 0 ∈ Ω and α ∈ Ω, if α is an imaginary simple 
root.

Since the chromatic symmetric functions are a natural generalization of chromatic 
polynomials it is natural to ask for a connection between chromatic symmetric functions 
and Borcherds algebras. In this paper, we are interested in exploring this connection. 
For this reason, we generalize the above given denominator identity as follows. For an 
indeterminate X, we have

U(X) :=
∑
w∈W

(−1)�(w)
∑
γ∈Ω

(−1)ht(γ)X− ht(w(ρ−γ)−ρ)ew(ρ−γ)−ρ

=
∏

α∈Δ+

(1 −X− ht(α)e−α)dim gα (1.5)

The proof of this identity is given in Proposition 3. We call this identity, the modified 
Weyl denominator identity and U(X) the modified Weyl denominator. We show that the 
chromatic symmetric function can be recovered from the modified Weyl denominator. 
We will prove the following expression for the chromatic symmetric function in terms of 
root multiplicities of the Borcherds algebra g which is an extension of Theorem 1 to the 
case of chromatic symmetric functions.

Theorem 2. Let G be the graph of a Borcherds algebra g. Then

XG = (−1)ht(η(1))
∑

J∈LG

(−1)|J|(mult(J)) ptype(J), (1.6)

where LG is the bond lattice of G.

In Example 7, we have explained how the above result can be used to distinguish 
the graphs of order 4 by their chromatic symmetric functions. This example shows that 
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calculating certain root multiplicities might sufficient to show the given graphs are dis-
tinguished by their chromatic symmetric functions. The proof of this theorem and many 
motivating examples for this proof are given in Section 4. As a corollary, using [18, 
Proposition 1.4], we get a Lie theoretic proof of the following theorem of Stanley [16, 
Theorem 2.6].

Theorem 3.

XG =
∑

J∈LG

μ(0̂,J) ptype(J),

where LG is the bond lattice of G.

In [4], Theorem 1 is proved for the more general k-chromatic polynomials of G. Using 
the modified Weyl denominator identity, we will prove the following expression for the 
k-chromatic symmetric functions in terms of root multiplicities of the Borcherds algebra 
g which is an extension of [4, Theorem 1] to the case of chromatic symmetric functions.

Theorem 4. Let G be the graph of a Borcherds algebra g. For a fixed tuple of non-negative 
integers k = (ki : i ∈ I) such that ki ≤ 1 for i ∈ Ire and 1 < |supp(k)| < ∞ we have

Xk
G = (−1)ht(η(k))

∑
J∈LG(k)

J̄={J1,...,Jk}

(−1)|J̄|
( ∏

J∈J̄

(
mult(β(J))
D(J,J)

))
ptype(J), (1.7)

where J̄ is the underlying set of the multiset J.

The proof of Theorem 4 is also given in Section 4.
The bond lattice LG consists of partitions of the vertex set I in which each part induces 

a connected subgraph of G. We have assumed that G is connected and so the vertex set 
I itself is an element of LG and has partition type (n) if G has n vertices. The absolute 
value of the linear coefficient of the chromatic polynomial of G is known as the chromatic 
discriminant of G [13,2]. Equation (1.3) implies that the chromatic discriminant of G
is equal to the dimension of the root space gβ, where β is the sum of all simple roots. 
Theorem 2 has the following corollary which gives the following interesting connection 
between the chromatic discriminant and the chromatic symmetric function of G.

Proposition 1. The coefficient of p(n) in the chromatic symmetric function XG is equal 
to the chromatic discriminant of G. i.e.,

XG[p(n)] = Chromatic discriminant of G
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We note that chromatic discriminant plays an important role in Example 7. In Sec-
tion 5, we explore the connection between the denominator identity and the G-symmetric 
functions. The G-symmetric functions are introduced by Stanley in [17].

Definition 2. The G-analogue of the ith elementary symmetry function is defined as 
follows.

eGi =
∑
S

(∏
α∈S

e−α

)
,

where S ranges over all i-element stable subsets of the vertex set I of G. Given a partition 
λ = λ1 ≥ λ2 ≥ · · · ≥ λk, k ∈ N, we define eGλ =

∏k
i=1 e

G
λi

.

Given this definition, we have the following result [17, Proposition 2.1] of Stanley which 
explains a connection between the chromatic symmetric functions and the G-elementary 
symmetric functions.

Proposition 2. Let

T (x, v) =
∑
λ

stable

mλ(x)eGλ (v).

Then

T (x, v)[e−η(k)] = Xk
G.

We prove that the function T (x, v) can be recovered from the modified Weyl denomi-
nator. This gives a different proof of the statement that the chromatic symmetric function 
can be recovered from the modified Weyl denominator. Let X1, X2, . . . be a commuting 
family of indeterminates and consider the modified Weyl denominators U(Xi) associ-
ated with these indeterminates. We prove that the function T (x, v) can be recovered 
from 

∏∞
i=1 U(Xi) using Lie theoretic ideas which gives an alternate proof to the above 

proposition. This is done in Section 5.
As an application, we give a Lie theoretic proof of the following theorem which talks 

about the non-negativity of the coefficients in the G-power sum symmetric functions. 
The following theorem is proved in [17, Theorem 2.3].

Theorem 5. The G-power sum symmetric function pGλ is a polynomial with non-negative 
integral coefficients.

Acknowledgments. The author sincerely thanks the referees for their comments and sug-
gestions, which greatly helped in improving the article. The author is grateful to Krishanu 
Roy, Sankaran Viswanath, Souvik Pal, Tanusree Khandai and R. Venkatesh for their 
support.
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2. Borcherds algebras and the modified denominator identity

In this section, we give some definitions and results from the theory of Borcherds alge-
bras (also called generalized Kac–Moody algebras) and prove the modified denominator 
identity (Proposition 3). Further details about the Borcherds algebras can be seen in 
[5,10,11] and the references therein.

2.1. Borcherds-Cartan matrix

A real matrix A = (aij)i,j∈I indexed by a finite or countably infinite set, which we 
identify with I = {1, . . . , n} or Z+ respectively, is said to be a Borcherds–Cartan matrix
if the following conditions are satisfied for all i, j ∈ I:

(1) A is symmetrizable
(2) aii = 2 or aii ≤ 0
(3) aij ≤ 0 if i �= j and aij ∈ Z if aii = 2
(4) aij = 0 if and only if aji = 0.

Recall that a matrix A is called symmetrizable if there exists a diagonal matrix D =
diag(εi, i ∈ I) with positive entries such that DA is symmetric. Set Ire = {i ∈ I : aii = 2}
and I im = I\Ire. For example, the generalized Cartan matrix (aii = 2 for all i ∈ I

and |I| < ∞) defined in [11, Chapter 1] is a Borcherds-Cartan matrix. If A is the 
adjacency matrix of a graph G, then −A is a Borcherds-Cartan matrix. For graph-
theoretic terminologies, we follow [7].

2.2. Borcherds algebra

The Borcherds algebra g = g(A) associated with a Borcherds–Cartan matrix A is the 
Lie algebra generated by ei, fi, hi, i ∈ I with the following defining relations:

(R1) [hi, hj ] = 0 for i, j ∈ I

(R2) [hi, ek] = aikei, [hi, fk] = −aikfi for i, k ∈ I

(R3) [ei, fj ] = δijhi for i, j ∈ I

(R4) (ad ei)1−aijej = 0, (ad fi)1−aijfj = 0 if i ∈ Ire and i �= j

(R5) [ei, ej ] = 0 and [fi, fj ] = 0 if i, j ∈ I im and aij = 0.

If I = Ire and |I| < ∞ then g(A) is a Kac-Moody Lie algebra. In this case, for i ∈ I, 
the subalgebra spanned by the elements hi, ei, fi is isomorphic to sl2 (possibly after 
rescaling ei and hi). In case of Borcherds algebras, if aii = 0, the subalgebra spanned 
by the elements hi, ei, fi is a Heisenberg algebra. This is one of the main structural 
difference between these algebras. See [10, Proposition 1.5] for more details.
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2.3. The graph of a Borcherds algebra

For a given Borcherds algebra g(A) we associate a graph G as follows: G has vertex 
set I, with an edge between two vertices i and j iff aij �= 0 for i, j ∈ I, i �= j. The 
edge set of G is denoted by E(G) and (i, j) denotes the edge between the nodes i and j. 
Note that G is a simple (finite or countably infinite) graph which we call the graph of g. 
Conversely, given a graph G (finite/countably infinite) there exists a Borcherds algebra 
g whose associated graph is G. One way of doing this is by considering the negative 
of the adjacency matrix of G which is a Borcherds-Cartan matrix. This way we can 
construct a Borcherds algebra from the graph G which we will refer as the Borcherds 
algebra associated with the graph G.

Let k = (ki : i ∈ I) ∈ ZI be such that ki is non-zero only for finitely many elements 
of I. Define suppk = {i ∈ I : ki �= 0}. In this paper, we will be always working with k
satisfying this finite support condition. Even though the graph G can be infinite, we will 
be working with the subgraph generated by suppk in G which is finite.

2.4. Root space and triangular decomposition

Define a ZI–grading on g by giving hi degree (0, 0, . . . ), ei degree (0, . . . , 0, 1, 0, . . . )
and fi degree (0, . . . , 0, −1, 0, . . . ) where ±1 appears at the i–th position. For a se-
quence (n1, n2, . . . ), we denote by g(n1, n2, . . . ) the corresponding graded piece; note 
that g(n1, n2, . . . ) = 0 unless finitely many of the ni are non–zero. Let h be the abelian 
subalgebra spanned by the hi, i ∈ I and let E the space of commuting derivations of g
spanned by the Di, i ∈ I, where Di denotes the derivation that acts on g(n1, n2, . . . ) as 
multiplication by the scalar ni. Note that the abelian subalgebra E � h of E � g acts by 
scalars on g(n1, n2, . . . ) and we have a root space decomposition:

g =
⊕

α∈(E�h)∗
gα, where gα := {x ∈ g | [h, x] = α(h)x for all h ∈ E� h}. (2.1)

Define Π = {αi}i∈I ⊂ (E � h)∗ by αj((Dk, hi)) = δk,j + aij and set

Q :=
⊕
i∈I

Zαi, Q+ :=
∑
i∈I

Z+αi.

Denote by Δ := {α ∈ (E � h)∗\{0} | gα �= 0} the set of roots, and by Δ+ the set of 
roots which are non–negative integral linear combinations of the α′

is, called the positive 
roots. The elements in Π are called the simple roots; we call Πre := {αi : i ∈ Ire} the 
set of real simple roots and Πim = Π\Πre the set of imaginary simple roots. We have 
Δ = Δ+  −Δ+ and

g0 = h, gα = g(n1, n2, . . . ), if α =
∑

niαi ∈ Δ.

i∈I
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Moreover, we have a triangular decomposition

g ∼= n− ⊕ h⊕ n+,

where n+ (resp. n−) is the free Lie algebra generated by ei, i ∈ I (resp. fi, i ∈ I) with 
defining relations

(ad ei)1−aijej = 0 (resp. (ad fi)1−aijfj = 0) for i ∈ Ire, j ∈ I and i �= j

and

[ei, ej ] = 0 (resp. [fi, fj ] = 0) for i, j ∈ I im and aij = 0.

Given (2.1) we have

n± =
⊕

α∈±Δ+

gα.

Finally, given γ =
∑

i∈I niαi ∈ Q+ (only finitely many ni are non–zero), we set ht(γ) =∑
i∈I

ni.

2.5. The Weyl group and the Weyl vector

We denote by R = Q ⊗Z R the real vector space spanned by Δ. There exists a 
symmetric bilinear form on R given by (αi, αj) = εiaij for i, j ∈ I. For i ∈ Ire, define 
the linear isomorphism si of R by

si(λ) = λ− λ(hi)αi = λ− 2 (λ, αi)
(αi, αi)

αi, λ ∈ R.

The Weyl group W of g is the subgroup of GL(R) generated by the simple reflections 
si, i ∈ Ire. Note that W is a Coxeter group with canonical generators si, i ∈ Ire and the 
above bilinear form is W–invariant. We denote by 
(w) = min{k ∈ N : w = si1 · · · sik}
the length of w ∈ W and w = si1 · · · sik with k = 
(w) is called a reduced expression. 
We denote by Δre = W (Πre) the set of real roots and Δim = Δ\Δre the set of imaginary 
roots. Equivalently, a root α is imaginary if and only if (α, α) ≤ 0 and else real. We can 
extend (., .) to a symmetric form on (E � h)∗ satisfying (λ, αi) = λ(εihi) and also si to 
a linear isomorphism of (E � h)∗ by

si(λ) = λ− λ(hi)αi, λ ∈ (E� h)∗.

Let ρ be any element of (E � h)∗ satisfying 2(ρ, αi) = (αi, αi) for all i ∈ I. Note that the 
Weyl vector ρ of g need not be unique. The following lemma from [4, Lemma 2.3] will 
be helpful on multiple occasions.
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Lemma 1. Let i ∈ Iim and α ∈ Δ+\{αi} such that α(hi) < 0. Then α + jαi ∈ Δ+ for 
all j ∈ Z+.

2.6. The modified Weyl denominator identity

The following Weyl denominator identity has been proved in [5]. See also [10, Theo-
rem 3.16].

U :=
∑
w∈W

(−1)�(w)
∑
γ∈Ω

(−1)ht(γ)ew(ρ−γ)−ρ =
∏

α∈Δ+

(1 − e−α)dim gα (2.2)

where Ω is the set of all γ ∈ Q+ such that γ is a finite sum of mutually orthogonal 
distinct imaginary simple roots. Note that 0 ∈ Ω and α ∈ Ω, if α is an imaginary simple 
root.

The following lemma from [4, Lemma 3.6] will be helpful to do the calculations with 
the sum side of the denominator identity.

Lemma 2. Let w ∈ W and γ ∈ Ω. We write ρ − w(ρ) + w(γ) =
∑

α∈Π bα(w, γ)α. Then 
we have

(i) bα(w, γ) ∈ Z+ for all α ∈ Π and bα(w, γ) = 0 if α /∈ I(w) ∪ I(γ),
(ii) I(w) = {α ∈ Πre : bα(w, γ) ≥ 1} and bα(w, γ) = 1 if α ∈ I(γ), and
(iii) If I(w) ∪ I(γ) is independent if, and only if, bα(w, γ) = 1 for all α ∈ I(w) ∪ I(γ).

In the following proposition, we state and prove the modified denominator identity.

Proposition 3. Let X be an indeterminate. Then we have

U(X) :=
∑
w∈W

(−1)�(w)
∑
γ∈Ω

(−1)ht(γ)X− ht(w(ρ−γ)−ρ)ew(ρ−γ)−ρ

=
∏

α∈Δ+

(1 −X− ht(α)e−α)dim gα (2.3)

Proof. Let Xα = e−α. Then with the notations as in Lemma 2, we have

ew(ρ−γ)−ρ =
∏
α∈π

ebα(w,γ)α =
∏

α∈I(w)∪I(γ)

Xbα(w,γ)
α ∈ C[Xα : α ∈ I].

This shows that U =
∑

w∈W (−1)�(w) ∑
γ∈Ω(−1)ht(γ)ew(ρ−γ)−ρ ∈ C[[Xα : α ∈ I]]. Now,

X− ht(w(ρ−γ)−ρ)ew(ρ−γ)−ρ =
∏

(XXα)bα(w,γ) ∈ C[X,Xα : α ∈ I].

α∈π
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This shows that the sum side of Equation (2.3) can be obtained from the sum side of 
Equation (2.2) by a simple change of variable. Since in the product side of Equation (2.3)
also the same change of variable is applied, we get the required result from Equation 
(2.2). �

Next, we define the weighted bond lattice of the graph G.

Definition 3. Let LG(k) be the weighted bond lattice of G, which is the set of J =
{J1, . . . , Jk} satisfying the following properties:

(i) J is a multiset, i.e. we allow Ji = Jj for i �= j

(ii) each Ji is a multiset and the subgraph spanned by the underlying set of Ji is a 
connected subgraph of G for each 1 ≤ i ≤ k and

(iii) the disjoint union J1∪̇ · · · ∪̇Jk = {αi, . . . , αi︸ ︷︷ ︸
ki times

: i ∈ I}.

When k = 1 := (1, 1, . . . ) we denote LG(k) simply by LG. For J ∈ LG(k) we denote 
by D(Ji, J) the number of times Ji appear in J.

Example 1. The Hasse diagram of the bond lattice of weight k = (2, 1, 2) of the path 
graph on three vertices {0, 1, 2} is given below [cf. Example 2].

Bond lattice of weight k = (2, 1, 2) of the path graph on 3 vertices

We record the following lemma from [4, Lemma 3.4] which will be needed later.

Lemma 3. Assume that ki ≤ 1 for i ∈ Ire where k = (ki : i ∈ I). Let P(k) be the 
collection of sets γ = {β1, . . . , βr} (we allow βi = βj for i �= j) such that each βi ∈ Δ+
and β1 + · · · + βr = η(k). Then the map Ψ : LG(k) → P(k) defined by {J1, . . . , Jk} �→
{β(J1), . . . , β(Jk)} is a bijection.
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Remark. Under the assumption of the above Lemma, by Lemma 1, each part Ji of 
J ∈ LG(k) represents a positive root β(Ji) :=

∑
α∈Ji

α ∈ Δ+.

3. Multicoloring and k-chromatic symmetric functions

Let G be the graph of a Borcherds algebra g. In this section, we give the examples of 
k-multicoloring and prove an expression for the k-chromatic symmetric functions.

3.1. An expression for k-chromatic polynomials

Example 2. Let G be the path graph on three vertices and let k = (2, 1, 2). We observe 
that G cannot be k = (2, 1, 2)-colored using two or fewer colors. We list the k = (2, 1, 2)-
colorings of G using four colors, say blue, red, green and yellow, in which the first vertex 
receives the colors blue and red (for interpretation of the colors, the reader is referred to 
the web version of this article):
With three colors:

With four colors:

We note that all possible k = (2, 1, 2) colorings of G using the colors blue, red, 
green and yellow can be obtained from the above-given configurations. This is done by 
changing the choice of the colors in the first vertex and the colors in the remaining 
vertices according to the above configurations. Therefore the number of k = (2, 1, 2)-
colorings of the graph G is equal to 

(4
2
)
· 6 = 36. In Example 3, we have calculated πG

k (q)
explicitly from which we see that πG

k (4) is indeed equal to 36.
The generalized chromatic polynomial has the following well–known description. We 

denote by Pk(k, G) the set of all ordered k–tuples (P1, . . . , Pk) such that:

(i) each Pi is a non–empty independent subset of I, i.e. no two vertices have an edge 
between them; and

(ii) the disjoint union of P1, . . . , Pk is equal to the multiset {αi, . . . , αi︸ ︷︷ ︸ : i ∈ I}.

ki times
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Then we have

πG
k (q) =

∑
k≥0

|Pk(k, G)|
(
q

k

)
. (3.1)

Remark. For a partition P = (P1, . . . , Pk) ∈ Pk(k, G) its type is defined to be the 
composition

(D(P1, P ), . . . , D(Pm, P ))

where D(Pi, P ) is equal to the number of times Pi appears in P and P1, . . . , Pm are the 
distinct elements of P .

For a partition (or a composition) λ = (1a1 , 2a2 , . . . ) of n we define λ! to be the multi-
nomial coefficient n!∏

i≥1
ai! . If we consider the elements of Pk(k, G) as multi-sets (instead 

of ordered tuples) then we have

πG
k (q) =

∑
k≥0

∑
P∈Pk(k,G)

type(P )!
(
q

k

)
. (3.2)

Example 3. Consider the path graph G on three vertices.

0 1 2

Then the graph G(k), the k = (2, 1, 2)-join of G is given by

01

11

21

02 22

Now, up to permutation of the tuples,

P1(k, G) = P2(k, G) = φ,

P3(k, G) = {({1}, {0, 2}, {0, 2})},

P4(k, G) = {({1}, {0}, {2}, {0, 2})},

P5(k, G) = {({1}, {0}, {0}, {2}, {2})}.

Therefore |P1(k, G)| = |P2(k, G)| = 0, |P3(k, G)| = 3!
2 , |P4(k, G)| = 4!, |P5(k, G)| = 5!

2!2! . 
Therefore, by Equation (3.1), we have
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πG
k (q) = (1

2 )q(q− 1)(q− 2) + q(q− 1)(q− 2)(q− 3) +(1
4 )q(q− 1)(q− 2)(q− 3)(q− 4) =

(1
4 )q(q − 1)2(q − 2)2.

A direct computation shows that

π
G(k)
1 (q) = q(q − 1)2(q − 2)2.

Also note that,

πG
k (4) = 36 [cf. Example 2].

The above equalities explain Equation (3.1) and Equation (1.1).

3.2. An expression for k-chromatic symmetric functions

We have the following expression for the k-chromatic symmetric functions whose proof 
is immediate from the definition. We note that this is the extension of (3.1) to the case 
of chromatic symmetric functions.

Proposition 4.

Xk
G =

∑
k≥1

∑
P∈Pk(k,G)

P=(P1,P2,...,Pk)

∑
J ⊆N

J={i1,i2,...,ik}

x
|P1|
i1

x
|P2|
i2

· · ·x|Pk|
ik

(3.3)

Note that, substituting xi =
{

1 if 1 ≤ i ≤ q

0 otherwise
in Equation (3.3) yields Equation 

(3.1).
If we consider the elements of Pk(k, G) as multi-sets then we have

Xk
G =

∑
k≥0

∑
P∈Pk(k,G)

P={P1,P2,...,Pk}

type(P )!
∑
J ⊆N

J={i1,i2,...,ik}

x
|P1|
i1

x
|P2|
i2

· · ·x|Pk|
ik

. (3.4)

Example 4. Let G be the path graph on three vertices and let k = (2, 1, 2). From Exam-
ple 3, up to permutation of the tuples,

P1(k, G) = P2(k, G) = φ,

P3(k, G) = {({1}, {0, 2}, {0, 2})},
P4(k, G) = {({1}, {0}, {2}, {0, 2})},

P5(k, G) = {({1}, {0}, {0}, {2}, {2})}.

Now, from Equation (3.4), we get

Xk
G = 3m221 + 24m2111 + 30m11111. (3.5)
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4. Denominator identity and the chromatic symmetric functions

In this section, we prove a connection between the root multiplicities of g and the 
k-chromatic symmetric function of G. The main results of this section are Theorems 2
and 4.

4.1. The sum side of the denominator identity

In this subsection, we will prove that the chromatic symmetric function can be ob-
tained from the sum side of modified Weyl denominator.

Example 5. As a motivating example, assume g = sl3(C) the smallest non-trivial finite-
dimensional simple Lie algebra for our purpose (The graph of sl2(C) is a single point 
and has no edges. So we are not considering this algebra). This Lie algebra g consists of 
3 ×3 traceless complex matrices. The Dynkin diagram G of the algebra g is given below.

α2α1

The graph G is the path graph on two vertices. In general, the Dynkin diagram of 
sln(C) is the path graph on n − 1 vertices. The set of simple roots of g is equal to Π =
{α1 = ε1 − ε2, α2 = ε2 − ε3} and the set of positive roots of g is Δ+ = {α1, α2, α1 +α2}. 
The Weyl group W is the symmetric group on three symbols {ε1, ε2, ε3} permuting the 
indices. ρ = 1

2
∑

α∈Δ+
α = ε1 − ε3. This implies that

U(Xi) = 1 −Xie
−α1 −Xie

−α2 + X3
i e

−2α2−α1 + X3
i e

−2α1−α2 −X4
i e

−2α1−2α2

[cf. Equation (2.3)].

We claim that, the coefficient of e−α1−α2 in the product 
∏∞

i=1 U(Xi) is XG. For this 
reason, we can assume

U(Xi) = 1 −Xie
−α1 −Xie

−α2 .

Consider the product:

∞∏
i=1

U(Xi) = (1−X1e
−α1 −X1e

−α2)(1−X2e
−α1 −X2e

−α2) · · · (1−Xke
−α1 −Xke

−α2) · · ·

Then the coefficient of e−α1−α2 in the above product is equal to∑
(i1,i2)∈N2

i1 	=i2

Xi1Xi2 = 2!e2 = XG

where e2 is the second elementary symmetric function.
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Remark. If G is the complete graph on n vertices, then XG = n!en where en is the nth 
elementary symmetric function.

Example 6. In this example, we consider the untwisted affine Lie algebra g = ŝl3. This 
is an infinite-dimensional Lie algebra. Let G be the Dynkin diagram of g. Then G is the 
cycle graph (complete graph) on three vertices:

α2α1

α0

In general, the Dynkin diagram of ŝln is the cycle graph on n vertices. Again, we are 
interested in the coefficient of e−α0−α1−α2 . For this reason, like in the case of sl3, we can 
assume that

U(Xi) = 1 −Xie
−α0 −Xie

−α1 −Xie
−α2 .

Then, the coefficient of e−α0−α1−α2 in 
∏∞

i=1 U(Xi) is equal to∑
(i1,i2,i3)∈N2

i1,i2,i3 are distinct

Xi1Xi2Xi3 = 3!e3 = XG.

We claim that this is true for the graph of an arbitrary Borcherds algebra in the fol-
lowing proposition. The proof is exactly the same as the steps in the above two examples.

Proposition 5. Let G be the graph of a Borcherds algebra g. Assume that the set I is 
finite, i.e., g is of finite rank. We set η(1) =

∑
i∈I αi ∈ Q+. Then

( ∞∏
i=1

U1(Xi)
)
[e−η(1)] = (−1)ht(η(1)) XG.

Proof. The required coefficient is equal to

∞∑
k=1

∑
J⊆N

J={i1,i2,...,ik}

∑
((w1,γ1),(w2,γ2),...,(wk,γk))∈(W×Ω)k

(−1)
∑k

i=1 ht(γi)(−1)�(w1···wk)
k∏

j=1

(
X

�(wj)+ht(γj)
ij

)
where the sum ranges over all k–tuples ((w1, γ1), (w2, γ2), . . . , (wk, γk)) ∈ (W ×Ω)k such 
that
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• (wi, γi) is stable for all 1 ≤ i ≤ k,

• I(w1) ∪̇ · · · ∪̇ I(wk) = Ire,

• I(γ1) ∪̇ · · · ∪̇ I(γk) = I im,

• I(wi) ∪ I(γi) �= ∅ for each 1 ≤ i ≤ k,

It follows that 
(
I(w1) ∪ I(γ1), . . . , I(wk) ∪ I(γk)

)
∈ Pk(1, G) and each element is 

obtained in this way. So the sum ranges over all elements in Pk(1, G). Since w1 · · ·wk is 
a subword of a Coxeter element we get

(−1)�(w1···wk) = (−1)|I
re|,

and hence 
(∏∞

i=1 U(Xi)
)
[e−η(k)] is equal to

(−1)ht(η(1))
∑
k≥1

∑
P∈Pk(1,G)

P=(P1,P2,...,Pk)

∑
J⊆N

J={i1,i2,...,ik}

x
|P1|
i1

x
|P2|
i2

· · ·x|Pk|
ik

Now, Proposition 4 finishes the proof. �
Remark. Assume that the set I is not finite in the above theorem. Then consider k =
(ki : i ∈ I) ∈ ZI

+ with finite support such that ki = 1 for i ∈ suppk. We can apply the 
above theorem for this k by replacing the graph G by the subgraph of G generated by 
suppk.

4.2. The product side of the denominator identity

In this subsection, using the product side of the modified Weyl denominator identity, 
we will derive an expression for chromatic symmetric function in terms of root multi-
plicities of Borcherds algebras. Proposition 5 and Equation (2.3) together imply that the 
chromatic symmetric function XG is given by the coefficient of e−η(1) in

(−1)ht(η(1))
∞∏
i=1

∏
α∈Δ+

(1 −X
ht(α)
i e−α) dim gα .

This product is equal to,

(−1)ht(η(1))
∞∏
i=1

∏
α∈Δ+

(
1 − (multα)Xht(α)

i e−α) +
(

multα
2

)
X

ht(2α)
i e−2α − · · ·

)
.

Consider the lattice P(1) [cf. Lemma 3]. Then, the coefficient of e−η(1) in
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Table 1
Graphs of order 4 are distinguished by the chromatic symmetric func-
tions.

S. No. Graphs (4) (2, 1, 1) (3, 1) (2, 2)
1 0 0 0 0
2 0 −1 0 0
3 0 1 0
4 0 1

5 0 2 0

6 −1 2

7 −1 3

8 −2

9 −3

10 −4

11 −6

(−1)ht(η(1))
∞∏
i=1

∏
α∈Δ+

(
1 − (multα)Xht(α)

i e−α) + higher order terms
)

is equal to

(−1)ht(η(1))
∑

P∈P(1)
P={α1,...,αk}

(−1)k mult(P )
∑
J⊆N

J={i1,i2,...,ik}

∏
αj∈P

(
X

ht(αj)
ij

)

where multP =
∏

αi∈P multαi. We can define multiplicity of an element of LG using 
the bijection Ψ defined in Lemma 3. Now, Lemma 3 finishes the proof of Theorem 2.

Example 7. In Table 1, we have shown that the graphs of order 4 are distinguished by 
the chromatic symmetric functions using Theorem 2. We remark that the coefficients of 
pλ appearing in XG whichever is required to distinguish the graphs of order 4 are given 
in Table 1. These values are calculated using the following multiplicity formula from [4, 
Corollary 3.9]. Assume k = (k1, k2, . . . , ) ∈ ZI

+ with finite support and satisfies ki ≤ 1
for i ∈ Ire. Then
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mult η(k) =
∑
l|k

μ(l)
l

|πG
k

l
(q)[q]|, (4.1)

where πG
k

l

(q)[q] denotes the coefficient of q in πG
k

l

(q).

Example 8. Consider g = sl3(C) as in Example 5. In this case, P(1) = {{α1 + α2},
{α1, α2}} and all the roots have multiplicity one [cf. Lemma 3]. The product side of the 
modified denominator identity of g is as follows.

U(Xi) =
∏

α∈Δ+

(1 −X
− ht(α)
i e−α) dim gα

= (1 −X
− ht(α1)
i e−α1)(1 −X

− ht(α1)
i e−α2)(1 −X

− ht(α)
i e−α1−α2).

We have mult {α1 +α2} = mult {α1, α2} = 1 as an element of P(1) where multiplicity of 
a set in P (1) is defined to be the product of the multiplicity of its elements. Note that, 
the map Ψ defined in Lemma 3 respects the multiplicity. Now,

(−1)2
∑

J∈P(1)

(−1)|J|(mult(J)) ptype(J) = −p(2) + p(1,1) = 2 e2 = XG.

Example 9. Consider g = ŝl3(C) as in Example 6. In this case, Δ+ = Δ0
+  (k>0(Δ0 +

kδ))  {kδ : k > 0} where Δ0 is the root system of the underlying sl3 and δ is the null 
root. More precisely, Δ0

+ = {α1, α2, α1 + α2} and δ = α0 + α1 + α2. Further, δ has 
multiplicity 2. We have

P(1) = {{α0 + α1 + α2}, {α0, α1 + α2}, {α0 + α1, α2}, {α0 + α2, α1}, {α0, α1, α2}}.

Now,

(−1)3
∑

J∈P(1)

(−1)k(mult(J)) ptype(J) = 2p(3) − 3p(2,1) + p(13) = 3!e3 = XG

Remark. Consider the bond lattice LG of weight 1. Let S ⊆ E(G). Consider the graph 
GS formed by the vertex set I and the edge set S. Let PS = {P1, . . . , Pk} be the vertex 
sets of the connected components of the graph GS . Then PS ∈ LG. Conversely let 
P = {P1, . . . , Pk} ∈ LG and let G(Pi) be the subgraph of G induced by the set Pi. 
Then each G(Pi) is a connected subgraph of G. Let Ei be the edge set of G(Pi) and 
SP := ∪k

i=1Ei ⊆ E(G). Let σ be the map from P(E(G)) to LG which maps S to PS . We 
observe that c(S)-the number of components of the spanning subgraph GS is equal to 
|σ(S)|-the number of parts in the partition σ(S) ∈ LG. We have the following well-known 
expression for chromatic polynomial due to Whitney [21]:

πG
1 (q) =

∑
(−1)|S|qc(S). (4.2)
S⊆E
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By Equation (1.3) we have

πG
1 (q) =

∑
J∈LG

(−1)l−|J|(mult(J)) q|J|

where l := ht(η(1)). The above two equations imply that for a fixed J ∈ LG,∑
S⊆E

σ(S)=J

(−1)|S| = (−1)l−|J| multJ. (4.3)

In particular, if J is the partition with single part consists of the full vertex set I of 
G then we have ∑

S⊆E
σ(S)=J

(−1)|S| = (−1)l−1 multJ = (−1)l−1 mult(η(1)). (4.4)

Now, Theorem 2 and Equation (4.3) imply the following expression for the chromatic 
symmetric function [16, Theorem 2.5].

XG =
∑
S⊆E

(−1)|S|ptypeS

where typeS = typePS . Hence if we apply the above arguments in Section 4.2, last two 
lines above Example 1, we get the above expression for the chromatic symmetric function 
from the denominator identity.

Remark. An edge cover of a graph G is a set S of edges such that every vertex of G is 
incident to at least one edge of the set S. See [1,6,9] for combinatorial results on edge 
cover of graphs. If J is the partition with a single part consists of the full vertex set of 
G then from Equation (4.4) we have∑

S⊆E
ψ(S)=J

(−1)|S| = (−1)l−1 mult1.

We observe that the subsets S ⊆ E satisfying ψ(S) = J are precisely the edge covers 
of G. Now, Equation (4.4) gives an interesting formula for the multiplicity of the root 
η(1) in terms of edge covers of G. For example, consider the null root δ = α0 + α1 + α2
given in Example 9. The edge covers of the cycle graph on three vertices {α0, α1, α2} are 
{{α0, α1, α2}, {α0, α1}, {α0, α2}, {α1, α2}}. This shows that the multiplicity of the null 
root is equal to 2.

Next, we prove Theorem 4.
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Remark. By Equation (1.1) and Theorem 2, it is possible to recover the k-chromatic 
symmetric function of G from the modified denominator identity: More precisely, the k-
chromatic symmetric function of G is given by the coefficient of 1

k!e
−η(1) in the product ∏∞

i=1 U(Xi) where U(Xi) is the modified denominator identity of the Borcherds algebra 
g(k) corresponds to the graph G(k). But it is possible to recover the k-chromatic sym-
metric function from the modified denominator identity of g itself. We explain this fact 
in the following example.

Example 10. Let g be the Borcherds algebra corresponds to the 1 × 1 order Borcherds-
Cartan matrix [−1]. Then g is generated by the three elements < h, e, f > subject to 
the relations. [h, h] = 0, [h, e] = −e and [h, f ] = f . The root system of g is given by 
Δ = {α, −α}, the Weyl group W = {e} and Ω = {0, α}. Therefore

U(Xi) = 1 −Xie
−α.

Let k = (k), k ∈ N. Consider the product

∞∏
i=1

U(Xi) = (1 −X1e
−α)(1 −X2e

−α) · · · (1 −Xke
−α) · · ·

The coefficient of e−kα in the above product is equal to∑
J ⊆N

J={i1,i2,...,ik}

(−1)k(Xi1 · · ·Xik) = (−1)kek = (−1)ht(k)Xk
G.

Let g be a Borcherds algebra with the associated graph G. In view of the above 
example, we see that the coefficient of e−η(k) in 

∏∞
i=1 U(Xi) is equal to (−1)ht(k)Xk

G. 
The proof is exactly the same as the proof of Proposition 5. Now, an argument similar 
to the one given in Section 4.2 completes the proof of Theorem 4.

5. G-symmetric functions and the denominator identity of Borcherds algebras

5.1. In this subsection, we define the stable part of the modified denominator identity 
and prove that the stable part of the modified denominator identity is the same as the 
G-analogues of the elementary symmetry function.

Let g be a Borcherds algebra with the associated graph G and Weyl group W . For 
a Weyl group element w ∈ W , we fix a reduced word w = si1 · · · sik and let I(w) =
{αi1 , . . . , αik}. We recall that I(w) is independent of the choice of the reduced expression 
of w. For γ ∈ Ω, we set I(γ) = {α ∈ Πim : α is a summand of γ}. A pair (w, γ) ∈ W ×Ω
is said to be stable if I(w) ∪ I(γ) is a stable set and we define l((w, γ)) = 
(w) + ht(γ). 
Let S(G) be the set of all stable subsets of G. It is clear that there exists a bijection f
between the set S(G) and {(w, γ) ∈ W ×Ω : (w, γ) is stable}. Further this map satisfies 
l(f(S)) = |S|. Given this definition, the Weyl denominator can be rewritten as
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U =
∑

(w,γ)∈W×Ω

ε(w, γ)ew(ρ−γ)−ρ, (5.1)

=
∑

(w,γ)∈W×Ω
stable

ε(w, γ)ew(ρ−γ)−ρ +
∑

(w,γ)∈W×Ω
not stable

ε(w, γ)ew(ρ−γ)−ρ, (5.2)

= U1 + U2 (say), (5.3)

where ε(w, γ) = (−1)�(w)(−1)ht(γ).
We define U1 to the stable part of the Weyl denominator U . The stable part U1(X)

of the modified Weyl denominator U(X) is defined similarly. We want to find a relation 
between eGi and the stable part of the Weyl denominator U [cf. Definition 2]. First, we 
will investigate the terms ew(ρ−γ)−ρ that are appearing in U1. Now, from Lemma 2, it is 
easy to see that

U1 =
α(G)∑
k≥0

∑
(w,γ)∈W×Ω

stable
l((w,γ))=k

(−1)kew(ρ−γ)−ρ =
α(G)∑
k≥0

∑
S-stable
|S|=k

(−1)ke(S) =
α(G)∑
k≥0

(−1)keGk , (5.4)

where α(G) is the independence number of G and e(S) =
∏

α∈S e−α. In particular, we 
have

eGk =
∑

(w,γ)∈W×Ω
stable

l((w,γ))=k

ew(ρ−γ)−ρ.

This shows that eGk can be obtained from the Weyl denominator.

Remark. Given a partition λ = λ1 ≥ λ2 ≥ · · · ≥ λk, k ∈ N, we have

eGλ =
k∏

i=1
eGλi

=
k∏

i=1

( ∑
(w,γ)∈W×Ω

stable
l((w,γ))=λi

ew(ρ−γ)−ρ
)

=
∑

((w1,γ1),(w2,γ2),...,(wk,γk))∈(W×Ω)k
(wi,γi)-stable
l((wi,γi))=λi

ew(ρ−γ)−ρ =
∑

(S1,S2,...,Sk)
Si-stable
|Si|=λi

e(S).

Suppose (w, γ) ∈ W×Ω is stable, then |I(w) ∪I(γ)| = 
(w) +ht(γ) = − ht(w(ρ −γ) −γ). 
Again, by Lemma 2, it is easy to see that

U1(X) =
∑

XieGi .

i≥0
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Definition 4. A partition λ = (λ1, . . . , λk) is said to be a stable number partition of G if 
1 ≤ λi ≤ α(G) for all 1 ≤ i ≤ k. The set of all stable number partition of the graph G
is denoted by SP (G).

Proposition 6. With the notations as above, we have

∞∏
i=1

U1(Xi) =
∑
λ

stable

ε(λ)Mλ(x)eGλ

where ε(λ) = (−1)
∑k

i=1 λi for a partition λ = (λ1, . . . , λk).

Proof.

∞∏
i=1

U1(Xi) =
∞∏
i=1

( ∑
(w,γ)∈W×Ω

stable

(−1)(�(w)+ht(γ))X
ht(w(ρ−γ)−ρ)
i ew(ρ−γ)−ρ

)

:=
∞∑
k=1

∑
J ⊆N

J={i1,i2,...,ik}

k∏
j=1

( ∑
(w,γ)∈W×Ω

stable

(−1)(�(w)+ht(γ))X
ht(w(ρ−γ)−ρ)
ij

ew(ρ−γ)−ρ
)

=
∞∑
k=1

∑
J ⊆N

J={i1,i2,...,ik}

∑
((w1,γ1),(w2,γ2),...,(wk,γk))∈(W×Ω)k

(wi,γi)−stable

k∏
j=1

(
(−1)(�(wj)+ht(γj)X

ht(wj(ρ−γj)−ρ)
ij

ewj(ρ−γj)−ρ
)

From Lemma 2, we get

w(ρ) − ρ− w(γ) = −γ −
∑

α∈I(w)

α and

ht(w(ρ) − ρ− w(γ)) = 
(w) + ht(γ) if (w, γ) is stable.

This implies that,

∞∏
i=1

U1(Xi) =
∞∑
k=1

∑
J ⊆N

J={i1,i2,...,ik}

∑
((w1,γ1),(w2,γ2),...,(wk,γk))∈(W×Ω)k

(wi,γi)−stable

k∏
j=1

(
(−1)�(wj)+ht(γj)X

�(wj)+ht(γj)
ij

e(Sj)
)
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where Sj = I(wj) ∪ I(γj) and e(Si) = e
−

∑
α∈Sj

α. Using the above defined bijection f
between the set S(G) and {(w, γ) ∈ W × Ω : (w, γ) is stable} we get,

Right hand side of the above equation

=
∞∑
k=1

∑
J ⊆N

J={i1,i2,...,ik}

∑
(S1,S2,...,Sk)
Si−stable

k∏
j=1

(
(−Xij )|Sj |e(Sj)

)

=
∞∑
k=1

∑
(S1,S2,...,Sk)

|S1|≥|S2|≥···≥|Sk|
Si−stable

∑
(Sm1 ,Sm2 ,...,Smk

)
permutation of (S1,S2,...,Sk)

∑
J ⊆N

J={i1,i2,...,ik}

(
e(Sm1 , Sm2 , . . . , Smk

)
)( k∏

j=1
(−Xij )

|Smj
|
)

=
∑
λ

stable

ε(λ)Mλ(x)eGλ ,

where e(S1, S2, . . . , Sk) =
∏k

i=1 e(Si). �
Remark. Propositions 6 and 5 together lead to an alternate proof of Proposition 2.

5.2. G-power sum symmetric functions and the modified Weyl denominators

In this subsection, we prove Theorem 5. We start with the definition of G-power sum 
symmetric function which is defined in terms of G-elementary symmetric functions. The 
following relation is proved in [17].

− log(1 − eG1 X + eG2 X
2 − eG3 X

3 + · · · ) = pG1 X + pG2
X2

2 + pG3
X3

3 + · · · (5.5)

The G analogues of power sum symmetric functions are defined using the above equation. 
To prove Theorem 5, it is enough to prove it for pGn (n ∈ N). Let g = g(−A) where A is 
the adjacency matrix of G. Then all the simple roots of g are imaginary and the modified 
denominator identity (2.3) of g becomes

U :=
∑
γ∈Ω

(−1)− ht(γ)X− ht(γ)e−γ =
∏

α∈Δ+

(1 −X− ht(α)e−α)dim gα . (5.6)

We observe that, since all the simple roots are imaginary, the stable part U1 of U is 
itself. Equation (5.4) and the remark which follows Equation (5.4) implies that

U1(−X) =
∑

(−X)ieGi .

i≥0
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From Equation (5.5), the coefficient of Xn

n in − log(U(−X)) is equal to pGn . Now, we 
calculate the same coefficient using the product side of Equation (5.6).

− log
( ∏

α∈Δ+

(1 −X− ht(α)e−α)dim gα

)
=

∑
α∈Δ+

dim gα

(
− log(1 −X− ht(α)e−α)

)

=
∑

α∈Δ+

dim gα

(∑
k≥1

(X− ht(α)e−α)k

k

)

=
∑
k≥1

∑
m≥1

∑
α∈Δ+

ht(α)=m

((m)(dim gα)(e−kα))X
mk

mk
.

Hence, the coefficient of X
n

n in − log(U(X)) is equal to

∑
k|n

( ∑
α∈Δ+

ht(α)=n
k

(n
k

)(dim gα)(e−kα)
)

=
∑
k|n

( ∑
α
k ∈Δ+

ht(α
k )=n

k

(n
k

)(dim gα
k
)(e−α)

)

=
∑

α∈Δ+
ht(α)=n

(∑
k|α

(n
k

)(dim gα
k
)
)
e−α

=
∑
k≥1

∑
m≥1

∑
α∈Δ+

ht(α)=m

((m)(dim gα)(e−kα))X
mk

mk
.

This shows that

pGn =
∑

α∈Δ+
ht(α)=n

(∑
k|α

(n
k

)(dim gα
k
)
)
e−α

and the theorem follows.

Remark. We have shown that the chromatic symmetric function can be recovered from 
the modified denominator identity. It is possible to recover the chromatic symmetric 
function from the denominator identity itself:
Consider U =

∑
w∈W (−1)�(w) ∑

γ∈Ω(−1)ht(γ)ew(ρ−γ)−ρ the sum side of the denominator 
identity given in Equation (2.2). By Lemma 2,

ew(ρ−γ)−ρ =
∏
α∈I

Xbα(w,γ)
α ∈ C[Xα : α ∈ I]

where Xα = e−α. For a stable subset S of G, we define XS :=
∏

α∈S Xα ∈ C[Xα : α ∈ I]. 
Then the stable part of U = U1 =

∑
XS [cf. Equation (5.1)].
S-stable
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We consider the subalgebra

A := C[
m∏
i=1

XSi
: {S1, . . . , Sm} is a set of stable sets for some m]

of C[Xα : α ∈ I]. Define a linear map F : A → C[[Xi : i ∈ N]] by:

F(
m∏
i=1

XSi
) =

∑
J⊆N

J={i1,...,im}

m∏
i=1

X
|Si|
i1

for any set of stable sets {S1, . . . , Sm}. Then,

F(
∑
m≥1

Um
1 ) = F(

∑
m≥1

∑
(S1,...,Sm)
Si-stable

m∏
i=1

XSi
) =

∑
m≥1

∑
(S1,...,Sm)
Si-stable

F(
m∏
i=1

XSi
)

=
∑
m≥1

∑
(S1,...,Sm)
Si-stable

∑
J⊆N

J={i1,...,im}

m∏
i=1

X
|Si|
i1

.

Now, it is immediate that,

∑
m≥1

∑
(S1,...,Sm)

Stable partition of G

F(
m∏
i=1

XSi
) =

∑
m≥1

∑
(S1,...,Sm)

Stable partition of G

∑
J⊆N

J={i1,...,im}

m∏
i=1

X
|Si|
i1

= XG

This way we can get the chromatic symmetric function from the denominator iden-
tity (Equation (2.2)). But this approach cannot be implemented in the product side of 
the denominator identity. So we prefer the approach through the modified denominator 
identity.

We discuss here a little about the future directions of this research. In this paper, we 
have made a connection between chromatic symmetric functions and Borcherds algebras. 
In this direction, we can make a connection between chromatic symmetric functions and 
various other branches. The advantage of making such a connection is the tools from 
different areas can be applied in the problems of the theory of chromatic symmetric 
functions.

(1) Example 7 shows that root multiplicities of Borcherds algebras can be used to dis-
tinguish graphs by their chromatic symmetric functions. Given a graph G we can 
associate a Borcherds algebra to it in many ways [cf. Section 2.3]. It is instructive to 
check whether given class of non-isomorphic graphs of order n are distinguished by 
their chromatic symmetric functions using the root multiplicities of the associated 
Borcherds algebras (using Theorem 2).
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(2) Borcherds algebras have a super analogue which is called Borcherds-Kac-Moody Lie 
superalgebras (BKM algebras in short) [20]. The main difference here is that we are 
allowed to have odd roots. These algebras also have a similar but more complicated 
denominator identity [20, Section 2.5]. We can prove a connection between the root 
multiplicities of BKM algebras and the chromatic symmetric function of the asso-
ciated graph G. In a different project under progress, we have already proved such 
connection for k-chromatic polynomials which is further used construct basis for the 
root spaces of BKM superalgebras using heaps of pieces.

(3) Heaps of pieces were introduced by Xavier Viennot in [19] which has many applica-
tions in various branches of Mathematics and Physics. In [3] we have proved various
connections between the heaps of pieces and k-chromatic polynomials. In particular, 
the heap theoretic analogue of the denominator identity of free partially commuta-
tive Lie algebra is discussed. We can further study this connection in the level of 
chromatic symmetric functions which will give us a connection between the heaps of 
pieces and the chromatic symmetric functions.

(4) Also, we can reprove the existing results in the chromatic symmetric function theory 
using our Lie theoretic methods. This way the tools from Borcherds algebras can be 
used in the chromatic symmetric function theory.

(5) In the introduction we have discussed the relation between the Macdonald identities 
and the denominator formula of affine Lie algebras. We can look for similar results 
in the case of the modified denominator identity (Equation (2.3)).
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