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Super-Chandrasekhar limiting mass white dwarfs as emergent

phenomena of noncommutative squashed fuzzy spheres

Surajit Kalita ,1, ∗ T. R. Govindarajan ,2, † and Banibrata Mukhopadhyay 1, ‡

1Department of Physics, Indian Institute of Science, Bangalore 560012, India

2The Institute of Mathematical Sciences, Chennai 600113, India

Abstract

The indirect evidence for at least a dozen massive white dwarfs violating the Chandrasekhar

mass-limit is considered to be one of the wonderful discoveries in astronomy for more than a

decade. Researchers have already proposed a diverse amount of models to explain this astound-

ing phenomenon. However, each of these models always carries some drawbacks. On the other

hand, noncommutative geometry is one of the best replicas of quantum gravity, which is yet to be

proved from observations. Madore introduced the idea of a fuzzy sphere to describe a formalism

of noncommutative geometry. This article shows that the idea of a squashed fuzzy sphere can self-

consistently explain the super-Chandrasekhar limiting mass white dwarfs. We further show that

the length-scale beyond which the noncommutativity is prominent is an emergent phenomenon,

and there is no prerequisite for an ad-hoc length-scale.
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1. INTRODUCTION

The end phase of a star possessing a mass M . (10 ± 2)M� [1] is a white dwarf (WD),

where the inward pressure due to gravity balances the outward pressure due to the degenerate

electron gas, to maintain its stable equilibrium [2]. Chandrasekhar first proposed thereby a

limiting mass of the WD and estimated the maximum mass of a stable non-rotating non-

magnetized carbon-oxygen WD to be ∼ 1.4M� [3]. Beyond this mass-limit, the pressure

balance no longer sustains, and the WDs explode due to new fusion reactions to produce

type Ia supernovae (SNeIa). However, recent observations from more than a dozen of over-

luminous SNeIa suggest that the maximum mass of a WD could be as high as ∼ 2.8M�

[4–12], indicating a clear violation of the Chandrasekhar mass-limit. Moreover, various

simulations have already ruled out the possibility for the existence of a double degenerate

scenario for the generation of the over-luminous SNeIa, and 2.8M� progenitor mass as such

a double degenerate WD produces an off-center ignition and forms a neutron star rather

than an over-luminous SNIa [13, 14]. All these indirect evidences suggest that conventional

physics may significantly be violated inside the high-density regime of massive WDs.

Ostriker and Hartwick first showed that the rotation could alone increase the mass of a

WD up to ∼ 1.8M� [15], which, however, cannot explain the inferred significantly super-

Chandrasekhar WDs. Thereafter, Mukhopadhyay and his collaborators showed that the

high constant magnetic field or highly fluctuating magnetic field such that the average field

is low could comprise super-Chandrasekhar WDs with mass up-to ∼ 2.6M� due to the

formation of Landau levels [16, 17]. However, such a high field may also destabilize the WD,

if it is varying with radial coordinate, depending on the field geometry, as the magnetic field

can change its shape and size (which is a classical effect of the magnetic field) [18–21]. As a

result, having a high magnetic field inside the WDs is a question of debate over the years.

Later, various researchers have proposed different models, such as modified gravity [22, 23],

presence of charge in a WD [24], generalized Heisenberg uncertainty principle [25], lepton

number violation [26], and many more to explain the super-Chandrasekhar WDs. We have

earlier shown that in the presence of noncommutativity (NC), high-density WDs can have

a mass up to ∼ 2.6M� [27]. While deriving this mass-limit, we proposed based on Wigner’s

idea [28] that the effect of NC is significant, mostly at the center of a dense WD, where the

inter-electron separation is less than the Compton wavelength.
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Noncommutative geometry is a sub-class of quantum gravity that can explain various

interesting phenomena ranging from the early universe cosmology to the inside of the event

horizon of a black hole. However, there is no direct observational evidence for NC so far.

In ordinary quantum mechanics (QM), the position variable (x̂) does not commute with the

corresponding momentum component (p̂) and follows the Heisenberg’s uncertainty principle,

whereas various components of x̂ and p̂ commute among themselves. In noncommutative

geometry, x̂ and p̂ even do not commute among themselves. One of the popular ways of

proposing NC is just an ad-hoc consideration of [x̂i, x̂j] = iη and [p̂i, p̂j] = iθ, where η and

θ are the noncommutative variables. Nicolini et al. [29] used this form of NC to show the

shift of the event horizon for black holes. They also showed that this form of NC removes

the essential singularity present at the black hole center. Similarly, other researchers have

used different forms of noncommutative geometry to describe various problems of physics

related to the fundamental length-scale, Berry curvature, Landau levels, etc. [30–35]. As

mentioned above, for many of these theories, the basic assumption in the structure of NC

among the position and momentum variables is quite ad-hoc. Madore [36] first introduced a

self-consistent model of 3−dimensional NC, named fuzzy sphere, where the position variables

follow the well-known angular momentum algebra of QM. This formalism was used by various

researchers to obtain the thermodynamical properties of non-interacting degenerate electron

gas [37, 38]. Andronache and Steinacker [39] later modified the idea of a fuzzy sphere by

projecting it on an equatorial plane, named this configuration a squashed fuzzy sphere, and

showed that this model of NC mimics the magnetic field in the non-relativistic limit. They

also reckoned that this form of NC could quantize the plane by forming different energy levels

in the semi-classical limit, which is similar to the Landau levels formed in the presence of a

magnetic field in the non-relativistic limit.

In this paper, we use the idea of a squashed fuzzy sphere to apply it in a WD. This

formalism is superior to the earlier one we used in [27] due to two main reasons. First, fuzzy

sphere algebra is symmetric under rotation, and second, the squashed fuzzy sphere captures

naturally expected commutative geometry at the boundary of the WD as the NC decreases

from the center to the surface. We show that, by assuming the WD as a noncommutative

fuzzy sphere, its mass increases significantly to form a super-Chandrasekhar limiting mass

WD. Moreover, in this formalism, the length-scale of the system over which effect of NC is

prominent depends on the Compton wavelength of an electron and the Planck scale; thereby,
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it turns out to be an emergent phenomenon. There is no need to pre-assume a length-scale

for the prominence of NC. In the presence of NC, we show that fermions behave less like

fermions, and hence, the effective pressure between them reduces, which allows more mass

to accumulate.

The plan of this paper is as follows. In §2, we discuss the basic formalism of the squashed

fuzzy sphere and thereby obtain the exact (i.e., applicable in both relativistic and non-

relativistic regimes) energy dispersion relation for the squashed fuzzy sphere in §3. We

compare this dispersion relation with the well-known energy dispersion relation for the

Landau levels formed due to a magnetic field. Thereafter, in §4, we derive the equation of

state (EoS) for the degenerate electrons in a squashed fuzzy sphere. In this section, we also

discuss the emergence of an effective length-scale for the prominence of NC. Further, we use

the degenerate equation of state in §5 to derive the mass-radius relation for the WD, and

thereby to obtain its limiting mass. Moreover, we use the dispersion relation to discuss the

neutron drip briefly in the presence of NC in §6 and to show the region on which this EoS

is valid. Finally we end with conclusions in §7.

2. SQUASHED FUZZY SPHERE

A fuzzy sphere S2
N , first introduced by Madore [36], is like an ordinary sphere S2, except

that its coordinates follow the angular momentum algebra of usual QM and, hence, they, in

general, do not commute among themselves. In R3, a sphere of radius r ∈ R is defined as

the set of points which follows

X2
1 +X2

2 +X2
3 = r2, (2.1)

with X1, X2, X3 being the ordinary cartesian coordinates of the points. In a fuzzy sphere,

the coordinates Xi (i = 1, 2, 3) follows

Xi = κJi, (2.2)

where κ is the proportionality (scaling) constant and Ji are the generators of SU(2) group

which follows the angular momentum algebra in an N−dimensional irreducible representa-

tion such that

J2
1 + J2

2 + J2
3 =

~2

4

(
N2 − 1

)
I = CNI, (2.3)
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with CN = ~2 (N2 − 1) /4, ~ = h/2π, h is the Planck constant and I is the N−dimensional

identity matrix. Substituting Ji in terms of Xi and defining k = κr, we obtain the following

relations

κ =
r√
CN

and k =
r2

√
CN

. (2.4)

Since the angular momentum algebra follows [Ji, Jj] = i~εijkJk, the coordinates of the fuzzy

sphere needs to obey the following commutation relation

[Xi, Xj] = i
k~
r
εijkXk. (2.5)

Moreover, in a fuzzy sphere, the fuzzy Laplacian is defined as [39]

� =
1

k2

3∑
i=1

[Xi, [Xi, .]], (2.6)

which satisfies the following eigenvalue equation

�Ŷ l
m =

~2

r2
l(l + 1)Ŷ l

m, (2.7)

where l(l+ 1) are the eigenvalues and Ŷ l
m are the eigenfunctions of the fuzzy Laplacian with

l taking all the integer values from 0 to N − 1 and m taking all the integer values from −l

to l.

A squashed fuzzy sphere is interpreted as the configuration when all the points of a fuzzy

sphere are projected on any of its equatorial planes. Note that this projection is not a

stereographic projection. Figure 1 shows the projection of all the points of a fuzzy sphere

on the x− y equatorial plane. The upper hemisphere points are projected on the upper side

of the equatorial plane and, the points of the lower hemisphere are projected on its lower

side and, then, they are glued together. Writing X3 in terms of X1 and X2 from Equation

(2.1), and substituting it in Equation (2.5), the commutation relation for a squashed fuzzy

sphere is modified as [39]

[X1, X2] = ±ik~
r

√
r2 −X2

1 −X2
2 . (2.8)

The Laplacian for the squashed fuzzy sphere is given by [39]

�s =
1

k2

2∑
i=1

[Xi, [Xi, .]], (2.9)

which satisfies the following eigenvalue equation

�sŶ
l
m =

~2

r2

{
l(l + 1)−m2

}
Ŷ l
m, (2.10)

where l(l + 1)−m2 are eigenvalues of the squashed fuzzy Laplacian.
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z

x

FIG. 1: An illustrative diagram of a squashed fuzzy sphere which is obtained by projecting

all the points of the fuzzy sphere on an equatorial plane.

3. ENERGY DISPERSION RELATION IN A SQUASHED FUZZY SPHERE

The Dirac operator for the squashed fuzzy sphere is defined as [39]

/D =
c

k
(σ1 ⊗ [X1, .] + σ2 ⊗ [X2, .]) , (3.1)

where c is the speed of light and σ1, σ2, σ3 are the Pauli spin matrices. The eigenvalues of

this Dirac operator gives the quantized energy in a squashed fuzzy sphere. Now, the square

of the Dirac operator is given by

/D
2

=
c2

k2
σiσj ⊗ [Xi, [Xi, .]] (3.2)

= c2

{
�⊗ I2 −

1

k2

(
[X3, .] +

k~
2r
σ3

)2

+
~2

4r2

}
. (3.3)

Hence, the eigenvalues of /D
2

(which are the squares of energies) are given by

E2 =
~2c2

r2

{
l(l + 1)−

(
m± 1

2

)2

+
1

4

}
. (3.4)

Since σ3 has the eigenvalues ±1, hence the + and − correspond to the energies of the

spin-up and spin-down particles respectively. From Equation (2.4), using the relation k~ =

2r2/
√
N2 − 1, the above equation reduces to

E2 =
2~c2

k
√
N2 − 1

{l(l + 1)−m(m± 1)} . (3.5)

6



Moreover, the relations between the cartesian and spherical polar coordinates are x =

r sin θ cosφ and y = r sin θ sinφ with radius r being fixed for a particular fuzzy sphere.

Therefore, using Equation (2.8), the algebra of a squashed fuzzy sphere in spherical polar

coordinates can be recast as

[sin θ cosφ, sin θ sinφ] = ±ik~
r2

cos θ. (3.6)

It is evident that the NC in spherical coordinates is between θ− and φ−coordinates only,

while the r−coordinate remains free. In other words, the squashed fuzzy sphere actually

provides a NC between its azimuthal and polar coordinates because the squashed plane in

a fuzzy sphere can be any of its equatorial planes and there is no particular direction for it.

Hence, an electron with mass me, moving in a squashed fuzzy sphere, does not experience the

effect of NC along r−coordinate. Therefore, defining N = lmax + 1, L̃ = lmax− l, M̃ = l−m

and M̃ ′ = l +m, the exact energy dispersion relation for an electron, moving in a squashed

fuzzy sphere, is given by

E2 = p2
rc

2 +m2
ec

4

[
1 + {l(l + 1)−m(m± 1)} ~2

m2
ec

2r2

]
(3.7)

= p2
rc

2 +m2
ec

4

[
1 + {l(l + 1)−m(m± 1)} 2~

m2
ec

2k
√
N2 − 1

]
(3.8)

=

p
2
rc

2 +m2
ec

4
[
1 + M̃ 2N−2L̃−M̃−1√

N2−1
2~

m2
ec

2k

]
for spin-up electrons

p2
rc

2 +m2
ec

4
[
1 + M̃ ′ 2N−2L̃−M̃ ′−1√

N2−1
2~

m2
ec

2k

]
for spin-down electrons,

(3.9)

where pr is the momentum of the electron in radial direction. From Equation (3.7), it is

evident that for spin-up electrons, m = l represents the ground level, whereas m = l − 1

as well as m = −l are the first energy levels, and so on. Similarly, for spin-down electrons,

m = −l is the ground level, whereas m = −l + 1 and m = l are the first energy levels.

Hence, the ground level has always one pair of spin-up and spin-down electrons, whereas

all the other energy levels comprise a couple of pairs of spin-up and spin-down electrons.

Figure 2 shows the quantized energy levels in a noncommutative squashed fuzzy sphere for

N = 20 and N = 50. From this figure, it is evident that spacing between the energy levels

decreases towards the higher energy levels. Moreover, in the large N limit, the expression

for energy dispersion relation (3.9) reduces to

E2 = p2
rc

2 +m2
ec

4

(
1 + 2ν

2~
m2
ec

2k

)
, ν ∈ Z0+ (3.10)
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2
−
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(b)

FIG. 2: Quantized energy levels in the noncommutative squashed fuzzy sphere. Here red

stars represent the spin-up electrons and the green squares depict the spin-down electrons.

It is evident that the ground level is occupied by one pair of spin-up and spin-down

electrons and all the other higher energy levels have two pairs of them. Moreover, the

energy gap decreases towards the higher energy levels.

with ν = M̃ for for spin-up and ν = M̃ ′ for for spin-down electrons. This is the quantized

energy for an electron in a squashed fuzzy sphere. Comparing it with the energy dispersion

relation of Landau quantization due to the magnetic field, which is [40]

E2 = p2
zc

2 +m2
ec

4

(
1 + 2ν

B

Bc

)
, ν ∈ Z0+ (3.11)

where pz is the momentum of an electron along z−direction, B is the magnetic field along

z−direction, and Bc is the critical magnetic field (Schwinger limit), given by Bc = m2
ec

3/~e

with e being the charge of an electron. Upon simplification, comparing equations (3.10) and

(3.11), we obtain

B ≡ 2c

ek
. (3.12)

From the above expression, it is evident that the term k−1 behaves as NC strength in

a squashed fuzzy sphere. Andronache and Steinacker earlier obtained a similar relation

between B and k in the case of non-relativistic squashed fuzzy sphere in NC [39]. Figure

3 shows the comparison of the approximated form of dispersion relation of Equation (3.10)

with the exact expression from Equation (3.7) for N = 20 and N = 50. Comparing both the
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figures, it is evident that the more number of levels coincide when N is large. For N = 20,

only the ground level and the first level match with the approximated levels, whereas, for

N = 50, five levels coincide with the approximated levels. This shows a good agreement

between equations (3.7) and (3.10) if N≫ 1.

20 10 0 10 20
m

0

5

10

15

[l
(l

+
1)
−
m

(m
±

1)
]/
√ N

2
−

1

N= 20

(a)

40 20 0 20 40
m

0

10

20

30

40

[l
(l

+
1)
−
m

(m
±

1)
]/
√ N

2
−

1

N= 50

(b)

FIG. 3: Comparison of the energy levels obtained from equations (3.7) and (3.10). Here

the dotted magenta lines represent the exact energy levels, and the solid cyan lines show

the approximated energy levels. It is evident that as N increases, more energy levels

coincide with approximated energy levels. Here for N = 20, two levels coincide, whereas,

for N = 50, five energy levels coincide.

Equation (3.10) provides the energy dispersion relation of one squashed fuzzy sphere

inside which the strength of NC (k−1) is constant. Let us now consider a series of concentric

fuzzy spheres (each of them are squashed in a common equatorial plane) with the same

values of N . This means that all these fuzzy spheres can be explained by the same SU(2)

algebra. Moreover, from Equation (2.4), for a fixed N , we have k ∝ r2, i.e., k increases

from the center to the surface; therefore, the strength of NC decreases from center to the

surface. Hence the effective NC at a point of radius r, is due to the contributions from all

the concentric spheres with radius more than r. As a result, effective k no longer remains

constant inside the sphere, and the variation of k needs to be chosen so that k is minimum

at the center and maximum at the surface. Figure 4 shows an illustrative diagram of the

variation of k inside a fuzzy sphere. The effective NC at a point P is due to the contributions

of NC from all the fuzzy spheres within which the point is enclosed. Since k−1 behaves as
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the strength of NC in a squashed fuzzy sphere, effective NC is maximum at the center, which

gradually decreases outwards and becomes minimum (mathematically zero) at the surface.

k1

k2

k3

ks

P

k−1
1 >k−1

2 >k−1
3 > >k−1

s

x

y

FIG. 4: Concentric fuzzy spheres with the same N , but effective k varies with the radius.

Note that k−1 behaves as the strength of NC in a squashed fuzzy sphere, which decreases

from the center to the surface.

4. DEGENERATE EQUATION OF STATE IN SQUASHED FUZZY SPHERE

for a given density, is higher as you find in figure 5. So hydrostatic equilibrium can be

maintained to higher masses, preventing collapse Since in this paper, our primary focus is

to apply the effect of NC in the squashed fuzzy sphere for WDs, we now discuss the EoS of

degenerate electrons in the squashed fuzzy sphere. The grand canonical potential for this

system is given by

Ω = − 4V

βkh2

∫ pr,max

0

dpr

νmax∑
ν=0

gν ln
(
1 + eβ(µ−E)

)
(4.1)

= − 4V

βkh2

∫ pr,max

0

dpr

νmax∑
ν=0

gν ln
(
1 + ze−βE

)
, (4.2)

where z = eβµ is the fugacity, β = 1/kBT , µ is the chemical potential, V is the volume of

the system, kB is the Boltzmann constant, T is the temperature, and gν is the degeneracy

factor with gν = 2 − δν0 where δµν being the Kronecker delta function. Note that V is the

10



noncommutative volume, which is different from the classical volume. The relation between

Ω and the number density of electrons (ne) is given by

ne = −βz
V

∂Ω

∂z
. (4.3)

Hence, the mass density (ρ) is given by

ρ = mpµene, (4.4)

where mp is the mass of a proton and µe is the mean molecular weight per electron. Since in

WDs, T � TF or E � EF with TF and EF respectively being the Fermi temperature and

Fermi energy, they are usually assumed to be cold, and the electrons become degenerate.

For cold WDs with T � TF , we have µ ≈ EF . With this approximation in the large

thermodynamic limit, using equations (4.2), (4.3) and (4.4), we obtain

ρ ≈ 4mpµepF
kh2

νmax∑
ν=0

gν =
4mpµepF
kh2

(2νmax + 1) , (4.5)

where pF is the Fermi momentum of the degenerate electrons in the squashed fuzzy sphere.

Here νmax is the quantity that carries the information of the number of occupied energy

levels. Now, defining θD = 2~/m2
ec

2k and using Equation (3.10), the relation between EF

and pF is given by

E2
F (ρ, ν) = p2

F (ρ)c2 +m2
ec

4 {1 + 2νθD(ρ)} . (4.6)

Since p2
F ≥ 0, using this equation, we obtainE2

F ≥ m2
ec

4 (1 + 2νθD) =⇒ ν ≤ (E2
F −m2

ec
4) /2m2

ec
4θD.

Hence, νmax is defined as the greatest integer less than or equal to
(
E2
F,max −m2

ec
4
)
/2m2

ec
4θD,

i.e.

νmax =

[
E2
F,max −m2

ec
4

2m2
ec

4θD

]
(4.7)

or, E2
F,max = m2

ec
4 (1 + 2νmaxθD) , (4.8)

where [·] is the floor function. Let us now assume that θD ∝ ρ2/3, such that the variation of

k with respect to ρ is proposed to be

k = ξ
µ

2/3
e m

2/3
p

hρ2/3
, (4.9)

where ξ is a dimensionless proportionality constant. The power of ρ (which we assume to be

2/3) is chosen in such a way that at the low-density limit, the pressure-density relation follows
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the Chandrasekhar EoS for degenerate electrons. This equation provides the variation of

k with ρ, as shown in Figure 4. Since k−1 ∝ ρ2/3, which means k is minimum at the

center of the star where the density is maximum; it implies that the NC is maximum at the

center. Towards the surface, density decreases gradually and, hence, k increases accordingly,

producing a minimal NC towards the surface. Substituting this expression for k in Equation

(4.5), we obtain

pF =
ξh

4µ
1/3
e m

1/3
p (2νmax + 1)

ρ1/3. (4.10)

From this equation, we obtain pF ∝ ρ1/3, which Chandrasekhar also obtained in his the-

ory [41] except that the proportionality constant is now different. Moreover, in the large

thermodynamic limit (i.e., E � EF ), the pressure (P) is given by [40]

P =
2

kh2

νmax∑
ν=0

gν

pFEF −
(
m2
ec

3 + 2ν
2~c
k

)
ln

 EF + pF c√
m2
ec

4 + 2ν hc
2

πk


=

2ρ2/3

ξhµ
2/3
e m

2/3
p

νmax∑
ν=0

gν

pFEF −
(
m2
ec

3 + 2ν
2~c
k

)
ln

 EF + pF c√
m2
ec

4 + 2ν hc
2

πk

 . (4.11)

This equation for P combining with Equation (4.10), gives the complete EoS. Figure 5 shows

the EoS for degenerate electrons in a squashed fuzzy sphere with various νmax. The quantity

ξ for each νmax is chosen so that at low density, the EoS merge to the Chandrasekhar EoS.

It is evident that as νmax increases, noncommutative EoS merges with the Chandrasekhar

EoS.

4.1. Scales of NC in squashed fuzzy sphere

The structure of NC in a squashed fuzzy sphere is essential to study the physics of a

stellar object as NC becomes zero at its surface. In other words, since the density is minimal

(mathematically zero) at the surface, NC effect should vanish, and the usual physics given by

the QM must be restored there. Moreover, as mentioned above, k−1 is the strength of NC in

a squashed fuzzy sphere. From Equation (2.4), it is evident that r ∝
√
k, which means that

fuzziness is less at a bigger radius, and the usual QM dominates the underlying statistical

mechanics. As a result, WDs with less central densities (which usually have bigger radii)
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FIG. 5: EoS for degenerate electrons in a squashed fuzzy sphere with various νmax along

with the Chandrasekhar EoS.

are expected to possess a larger value of k at the center than those with higher densities (or

smaller radii).

We know that in the presence of a magnetic field, the effect of Landau quantization is

prominent if B & Bc, which is evident from Equation (3.11). Let us now examine the

equivalent condition for the squashed fuzzy sphere algebra. Equation (3.10) can be recast

to

E2 = p2
rc

2 +m2
ec

4

(
1 + 2ν

λ2
e

2π2~k

)
, ν ∈ Z0+ (4.12)

where λe is the Compton wavelength of an electron with λe = h/mec ≈ 2.426 × 10−10 cm.

Hence, the effect of NC is noticeable if λ2
e & 2π2~k. Moreover, we know that the charac-

teristic length-scale of a system is the inter-particle separation, given by L = (ρ/µemp)
−1/3.

Substituting k as a function of ρ from Equation (4.9), we obtain the following relation

L .
λe√
πξ

= Leff . (4.13)

This is the condition for which the effect of NC to be significant in the case of degenerate

electrons. It is evident from this equation that the effective length-scale for the prominence

of NC is not only dependent on the Planck length, but it depends upon the system’s scale

also. This idea of length-scale can also be followed from the idea of Salecker and Wigner [28],

13



which states that the new uncertainty in length-scale for a system has to be δ ∼
(
LL2

p

)1/3
,

where Lp is the Planck length, and one needs to consider δ as the quantum measurement of

length. Hence, for a WD, where L� Lp, the effective scale of NC turns out to be δ � Lp.

As a result, one can expect to observe a significant NC effect in a WD, even though the

system’s scale is far from the Planck scale. In the next section, we show that the effect

of NC is prominent only in the highly-dense regime, whereas its effect is insignificant at

the low-density and, hence, this formalism does not violate any of the observables in the

low-density universe, such as the solar system.

This idea of NC’s prominence depends on the system’s length-scale reasonably overcomes

one of the puzzles lying with the magnetic field. In the case of a magnetic field, as mentioned

above, its quantum effect is prominent only if B & Bc = 4.414× 1013 G. However, we know

that the magnetic field has both classical and quantum effects. Due to its classical effect,

the magnetic field can change the WD’s shape and size, thereby increasing its mass too. If a

WD possesses a field significantly stronger than Bc, such a high field may also destabilize the

WD, depending on the geometry, because of its high magnetic to gravitational energy ratio.

Hence, the existence of a high field inside a WD is debatable. This problem can consistently

be sorted out in the case of a noncommutative squashed fuzzy sphere. In our formalism of

a squashed fuzzy sphere, since the NC is between the azimuthal and polar directions and it

does not have any classical effect, the system’s sphericity is not destroyed. Moreover, the

length-scale for which NC has a noticeable effect is set-in by the theory itself and we do not

need to assume an ad-hoc length-scale beforehand. Hence any further physical effect of NC

will turn out to be an emergent phenomenon.

5. LIMITING MASS OF THE WD IN SQUASHED FUZZY SPHERE

The hydrostatic balance of any stellar object is obtained by simultaneously solving the

pressure balance and mass balance equations (together known as the Tolman-Oppenheimer-

Volkoff or TOV equations) along-with the EoS of the constituent particles. The TOV equa-

tions are given by [42]

dM
dr

= 4πr2ρ,

dP
dr

= −G
r2

(
ρ+
P
c2

)(
M+

4πr3P
c2

)(
1− 2GM

c2r

)−1

,

(5.1)
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whereM is the mass of the star inside a volume of radius r and G is Newton’s gravitational

constant. Figure 6 shows the mass–radius relation as well as the variation of the mass with

respect to the central density ρc for the WDs which is obtained by solving the set of TOV

equations (5.1) along with the EoS obtained in the previous section. For comparison, we also

present Chandrasekhar’s results therein. As mentioned in the §4, it is important that the

effect of NC should be insignificant at lower densities and the usual statistical mechanics,

governed by the usual QM, should prevail there.
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FIG. 6: Upper panel: The mass–radius relation, Lower panel: The variation of central

density with the mass of the WD.

From Figure 6, it is evident that as the occupied energy levels (i.e., νmax) increases, the

effect of NC decreases, and eventually all the curves merge with the Chandrasekhar mass–

radius curve. It can easily be understood from the simple length-scale idea mentioned in

§4 4.1. To match our EoS at low-density with Chandrasekhar’s, we find ξ = 1.51 for νmax = 0

while ξ = 156.56 for νmax = 50. Substituting these values in the relation (4.13), we find

that the NC is prominent if L . 1.11× 10−10 cm for νmax = 0 whereas L . 1.09× 10−11 cm

for νmax = 50. These length-scales correspond to ρ ∼ 2.4 × 106 g cm−3 and ρ ∼ 2.6 × 109

g cm−3. Hence, for νmax = 0, the effect of NC is significant in the regime of the WD with

ρ & 2.4 × 106 g cm−3, while the corresponding ρ & 2.6 × 109 g cm−3 for νmax = 50. As
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a result, we do not observe any significant effect of NC in the WDs in the allowed density

regime for νmax = 50, and it continues to follow the Chandrasekhar’s original mass–radius

relation. Moreover, from equations (2.4) and (4.9), we obtain N ∼ 1037 − 1040 for different

νmax, which verifies the assumption of large N in Equation (3.10) does hold good.

6. NEUTRON DRIP IN THE PRESENCE OF NONCOMMUTATIVITY

We have obtained the modified dispersion relation in Equation (3.10) for a squashed

fuzzy sphere. Since this is a different dispersion relation compared to that of the relativistic

case, one can expect that the property of neutron drip alters in the presence of NC. A

detailed discussion of neutron drip in the presence of a magnetic field is given by Vishal and

Mukhopadhyay [43]. At the neutron drip density, protons and electrons combine to form

neutrons, and they come out of the nucleus to form a neutron lattice. As a result, above

this density, the electron degenerate pressure is no longer available, and the EoS obtained

in §4 is no longer valid. The neutron drip density ρdrip is given by

ρdrip =
neM(A,Z)/Z + εe − nemec

2

c2
, (6.1)

where M(A,Z) is the energy of a single ion with atomic number Z and mass number A. εe

is the electron energy density at zero temperature, which is given by [40]

εe = mec
2 4πθD
λ3
e

νmax∑
ν=0

gν (1 + νθD) Ψ

(
xF (ν)√

1 + 2νθD

)
, (6.2)

where

xF = (2230.31− 2νθD)1/2 , Ψ(z) =
1

2
z
√

1 + z2 +
1

2
ln
(
z +
√

1 + z2
)
.

Figure 7 shows the variation of ρdrip with respect to θD. We notice that for θD below the

linear regime, the drip density oscillates about the density obtained in the absence of NC

which is ∼ 3 × 1011 g cm−3. It is also evident from the figure that the onset drip density

increases linearly above a certain θD. This is because, beyond certain θD, the quantized

electrons reside only in the ground state. To summarize, ρdrip changes with the increase in

NC and, hence, above this density, we can no longer use the EoS of degenerate electrons

obtained in §4.
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7. CONCLUSIONS

NC is a fundamental property of matter and spacetime geometry. In the presence of NC,

the statistical behaviour of the constituent particles changes. Because of this, in NC, the

fermions behave less of conventional fermions. It is evident from Figure 2 that apart from

the ground level, each energy levels comprise of two up-spin and two down-spin electrons.

In the conventional picture of QM, we know that two electrons with the same spin cannot

occupy a common energy state due to the Pauli’s exclusion principle. However, since more

than one electrons with the same spin occupy the common energy state in squashed fuzzy

sphere NC, the effective repulsive pressure between the fermions decreases. Moreover, the

Chandrasekhar mass-limit is the consequence of the competition between effective fermion

pressure and gravitational attraction. If a fermion behaves less like a fermion (more like

a boson), the inter-particle separation decreases, which generates a higher matter density

tempting to accumulate more mass. Moreover, when the central density becomes ∼ 108−10 g

cm−3, the inter-electron separation is less than the Compton wavelength of electrons, which

triggers NC, and the core pressure increases to support more mass. However, fermion,

losing its identity, leads to less repulsion among themselves, which further leads to less

outward pressure to hold more mass. Combining all three effects, nevertheless, we obtain

that the hydrostatic equilibrium is obtained at a higher mass for the highly dense WDs.

Hence, they can collapse to a smaller size and extra mass can be accumulated to form
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super-Chandrasekhar WDs. In other words, in the presence of NC, for a given density, the

degeneracy pressure is higher as shown in Figure 5. Hence, hydrostatic equilibrium can be

maintained to higher masses, preventing collapse.

We previously investigated the effect of NC in a WD with the ad-hoc consideration of

[x̂i, x̂j] = iηij and [p̂i, p̂j] = iθij, and showed that it could lead to a super-Chandrasekhar

WD if we assume that the NC is effective if the length-scale of the system is less than the

Compton wavelength of electrons [27]. However, in the present exploration of NC through

the squashed fuzzy sphere, the effect of NC’s prominence is an emergent quantity through

Equation (4.13), and there is no need to pre-assume any ad-hoc length-scale. It is essential

to mention that our work is primarily based on semi-classical gravity, not quantum gravity

and, hence, the scale of NC is expected to be different from that of the Planck scale. In the

context of specific dynamics of quantum mechanics, gravity, and statistical mechanics, the

NC scale gets complicated. From Equation (4.13), it is evident that if L < Leff , the NC is

efficient. Indeed, Salecker and Wigner already pointed it out as a quantum measurement

of lengths [28]. Hence, the new uncertainty in length-scale appears to be δ ∼
(
LL2

p

)1/3
. To

summarize, the length-scale of uncertainty in a WD, which is a low energy system, depends

both on the Planck length and length-scale of the system.

Earlier explorations for the formation of super-Chandrasekhar WDs in high magnetic

fields and thereby the Landau levels was an interesting idea. However, we know that the

magnetic field has not only microscopic effects but also macroscopic effects. As a result, in

the presence of high varying magnetic fields, a WD would be deformed due to the Lorentz

force of the magnetic field. Various explorations set limits on the maximum magnetic to

gravitational energy ratio in a compact object [44]. Hence, the presence of a very high

magnetic field inside a compact object is debatable. The idea of NC through the squashed

fuzzy sphere fairly overcomes this problem as the fuzzy algebra’s formalism is such that it

does not affect the sphericity of the system. Moreover, from Equation (2.8), the structure

of NC is such that at the surface, the NC is zero. Hence, the effective NC varies with the

density (or, equivalently with distance from the center), and its effect is prominent if the

inter-particle separation L < Leff . Therefore, NC seems to be a better bet to explain the

super-Chandrasekhar WDs as it does not possess any classical effect.

All the inferences of the super-Chandrasekhar WDs so far have been made indirectly, as

none of them has been detected from direct observations. Similarly, there is no direct ob-
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servational evidence for NC so far. Gravitational wave can be one of the prominent tools to

detect such massive WDs directly. We earlier showed that WDs governed by noncommuta-

tive geometry can emit gravitational radiation for a long duration if they possess a minimal

surface magnetic field [21]. In this way, one can estimate both the masses and radii of the

WDs; thereby comparing with the theoretical mass-radius curves, we might have indirect

observational evidence for NC.
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